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Abstract

Recent years have witnessed significant advancements in offline reinforcement
learning (RL), resulting in the development of numerous algorithms with varying de-
grees of complexity. While these algorithms have led to noteworthy improvements,
many incorporate seemingly minor design choices that impact their effectiveness
beyond core algorithmic advances. However, the effect of these design choices
on established baselines remains understudied. In this work, we aim to bridge
this gap by conducting a retrospective analysis of recent works in offline RL and
propose ReBRAC, a minimalistic algorithm that integrates such design elements
built on top of the TD3+BC method. We evaluate ReBRAC on 51 datasets with
both proprioceptive and visual state spaces using D4RL and V-D4RL benchmarks,
demonstrating its state-of-the-art performance among ensemble-free methods in
both offline and offline-to-online settings. To further illustrate the efficacy of
these design choices, we perform a large-scale ablation study and hyperparameter
sensitivity analysis on the scale of thousands of experiments.1

1 Introduction

Interest of the reinforcement learning (RL) community in the offline setting has led to a myriad
of new algorithms specifically tailored to learning highly performant policies without the ability
to interact with an environment (Levine et al., 2020; Prudencio et al., 2022). Yet, similar to the
advances in online RL (Engstrom et al., 2020; Henderson et al., 2018), many of those algorithms
come with an added complexity – design and implementation choices beyond core algorithmic
innovations, requiring a delicate effort in reproduction, hyperparameter tuning, and causal attribution
of performance gains.

Indeed, the issue of complexity was already raised in the offline RL community by Fujimoto
& Gu (2021); the authors highlighted veiled design and implementation-level adjustments (e.g.,
different architectures or actor pre-training) and then demonstrated how a simple behavioral cloning
regularization added to the TD3 (Fujimoto et al., 2018) constitutes a strong baseline in the offline
setting. This minimalistic and uncluttered algorithm, TD3+BC, has become a de-facto standard
baseline to be compared against. Indeed, most new algorithms juxtapose against it and claim
significant gains over (Akimov et al., 2022; An et al., 2021; Nikulin et al., 2023; Wu et al., 2022;
Chen et al., 2022b; Ghasemipour et al., 2022). However, application of newly emerged design and
implementation choices to this baseline is still missing.

In this work, we build upon Fujimoto & Gu (2021) line of research and ask: what is the extent to which
newly emerged minor design choices can advance the minimalistic offline RL algorithm? The answer
is illustrated in Figure 1: we propose an extension to TD3+BC, ReBRAC (Section 3), that simply
adds on recently appeared design decisions upon it. We test our algorithm on both proprioceptive and

1Our implementation is available at https://github.com/DT6A/ReBRAC
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Figure 1: (a) The schema of our approach ReBRAC (b) Performance profiles (c) Probability of
improvement. The curves (Agarwal et al., 2021) are for D4RL benchmark spanning all

Gym-MuJoCo, AntMaze, and Adroit datasets (Fu et al., 2020).

visual state space problems using D4RL (Fu et al., 2020) and V-D4RL (Lu et al., 2022) benchmarks
(Section 4) demonstrating its state-of-the-art performance across ensemble-free methods. Moreover,
our approach demonstrates state-of-the-art performance in offline-to-offline setup on D4RL datasets
(Section 4.3) while not being specifically designed for this setup. To further highlight the efficacy
of the proposed modifications, we then conduct a large-scale ablation study (Section 4.4). We hope
the described approach can serve as a strong baseline under different hyperparameter search budgets
(Section 4.6), further accentuating the importance of seemingly minor design choices introduced
along with core algorithmic innovations.

2 Preliminaries

2.1 Offline Reinforcement Learning

A standard Reinforcement Learning problem is defined as a Markov Decision Process (MDP) with the
tuple {S,A, P,R, γ}, where S ⊂ Rn is the state space, A ⊂ Rm is the action space, P : S×A → S
is the transition function, R : S×A → R is the reward function, and γ ∈ (0, 1) is the discount factor.
The ultimate objective is to find a policy π(a|s) that maximizes the cumulative discounted return
Eπ

∑∞
t=0 γ

tR(st, at). This policy improves by interacting with the environment, observing states,
and taking actions that provide rewards.

In offline RL, policies cannot interact with the environment and can only access a static transaction
dataset D collected by one or more other policies. This setting presents new challenges, such as
estimating values for state-action pairs not included in the dataset while exploration is unavailable
(Levine et al., 2020).

2.2 Behavior Regularized Actor-Critic

Behavior Regularized Actor-Critic (BRAC) is an offline RL framework introduced in Wu et al. (2019).
The core idea behind BRAC is that actor-critic algorithms can be penalized in two ways to solve
offline RL tasks: actor penalization and critic penalization. In this framework, the actor objective is
represented as in Equation (1), and the critic objective as in Equation (2), where F is a divergence
function between dataset actions and policy actions distributions. The differences from a vanilla
actor-critic are highlighted in blue.

π = argmax
π

E(s,a)∼D [Qθ(s, π(s))−α · F (π(s), a)] (1)

θ = argmin
θ

E(s,a,r,s′,â′)∼D
a′∼π(s′)

[
(Qθ(s, a)− (r + γ(Qθ(s

′, a′)−α · F (a′, â′))))2
]

(2)

In the original work, various choices of F were evaluated when used as the regularization term for the
actor or critic. The authors tested KL divergence, Kernel MMD, and Wasserstein distance but did not
observe any consistent advantage. Finally, it is essential to note that, originally, both regularizations
coefficients had the same weight.
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Subsequently, TD3+BC (Fujimoto & Gu, 2021) was introduced, utilizing Mean Squared Error (MSE)
as the regularization term F for the actor. TD3+BC is considered to be the minimalist approach to
offline RL as it modifies existing RL algorithms by simply adding behavior cloning term into actor
loss which is easy to implement and does not bring any significant computational overhead.

3 ReBRAC: Distilling Key Design Choices

In this section, we describe the proposed method along with the discussion of the new design choices
met in the offline RL literature (Table 1). Our approach is a more general version of BRAC built on
top of the TD3+BC (Fujimoto & Gu, 2021) algorithm with different modifications in design while
keeping it simple (Figure 1). We refer to our method as Revisited BRAC (ReBRAC).

Table 1: Adoption of implementation and design choices beyond core algorithmic advancements in
some recently introduced algorithms.

Modification TD3+BC CQL EDAC MSG CNF LB-SAC SAC-RND

Deeper networks ✗ ✓ ✓ ✓ ✓ ✓ ✓
Larger batches ✗ ✗ ✗ ✗ ✓ ✓ ✓
Layer Normalization ✗ ✗ ✗ ✗ ✗ ✓ ✓
Decoupled penalization ✗ ✗ ✗ ✗ ✗ ✗ ✓
Adjusted discount factor ✗ ✗ ✗ ✗ ✗ ✗ ✓

Deeper Networks The use of deeper neural networks has been a critical factor in the success of
many Deep Learning models, with model quality generally increasing as depth increases, provided
there is enough data to support this scaling (Kaplan et al., 2020). Similarly, recent studies in RL
(Neumann & Gros, 2022; Sinha et al., 2020) and offline RL (Lee et al., 2022; Kumar et al., 2022)
have demonstrated the importance of depth in achieving high performance. Although most offline RL
algorithms are based on SAC (Haarnoja et al., 2018) or TD3 (Fujimoto et al., 2018), which by default
employ two hidden layers, recent work (Kumar et al., 2020) uses three hidden layers for SAC instead,
which appears to be an important change (Fujimoto & Gu, 2021). The change in network size has
been adopted by later works (An et al., 2021; Yang et al., 2022; Zhuang et al., 2023; Nikulin et al.,
2023) and may be one of the critical modifications that improve final performance.

The original BRAC and TD3+BC algorithms used only two hidden layers for their actor and critic
networks, while most state-of-the-art solutions use deeper networks. Specifically, three hidden layers
have become a common choice for recent offline RL algorithms. In ReBRAC, we follow this trend
and use three hidden layers for the actor and critic networks. Additionally, we provide an ablation
study in Section 4.5 to investigate the effect of the number of layers on ReBRAC’s performance.

LayerNorm LayerNorm (Ba et al., 2016) is a widely used technique in deep learning that helps
improve network convergence. In Hiraoka et al. (2021), authors add dropout and LayerNorm to
different RL algorithms, notably boosting their performance. This technique is also applied in Smith
et al. (2022), and it appears that boost is achieved primarily because of LayerNorm. Specifically, in
offline RL, various studies have tested the effect of normalizations between layers (Bhatt et al., 2019;
Kumar et al., 2022; Nikulin et al., 2022, 2023). A parallel study by Ball et al. (2023) empirically
shows that LayerNorm helps to prevent catastrophic value extrapolation for the Q function when
using offline datasets in online RL. Following these works, in our approach, we also apply LayerNorm
between each layer of the critic networks.

Larger Batches Another technique to accelerate neural network convergence is large batch opti-
mization (You et al., 2017, 2019). While studying batch sizes larger than 256 is limited, some prior
works have used them. For instance, the convergence of SAC-N was accelerated in Nikulin et al.
(2022). More recently proposed algorithms also use larger batches for training, although without
providing detailed analyses (Akimov et al., 2022; Nikulin et al., 2023).

The usage of large batches in offline RL is still understudied, and its benefits and limitations are
not fully understood. Our experiments show that in some domains, using large batches can lead
to significant performance improvements, while in others, it might not have a notable impact or
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even drop the performance (see Table 8). We increased the batch size to 1024 samples and scaled
the learning rate for D4RL Gym-MuJoCo tasks, following the approach proposed by Nikulin et al.
(2022).

Actor and critic penalty decoupling The original BRAC framework proposed penalizing the actor
and the critic with the same magnitude. Most of the previous algorithms restrict only actor (Fujimoto
& Gu, 2021; Wu et al., 2022) or only critic (Kumar et al., 2020; An et al., 2021; Ghasemipour
et al., 2022). TD3-CVAE (Rezaeifar et al., 2022) penalizes both using the same coefficients, while
another study, SAC-RND (Nikulin et al., 2023), shows that decoupling the penalization in offline RL
is beneficial for algorithm performance, although ablations on using only one of the penalties are
missing.

Our method allows simultaneous penalization of actor and critic with decoupled parameters. Inspired
by TD3+BC (Fujimoto & Gu, 2021), Mean Squared Error (MSE) is used as a divergence function F ,
which we found simple and effective. The actor objective is shown in Equation (3), and the critic
objective is shown in Equation (4). Differences from the original actor-critic are highlighted in red.
Following TD3+BC (Fujimoto & Gu, 2021), the Q function is normalized to make the algorithm less
sensitive to regularization parameters. Nonetheless, we forego the utilization of state normalization,
as initially suggested in TD3 + BC, driven by our intention to execute the algorithm online and the
observation that this adjustment typically results in negligible impact. Since our approach principally
builds upon TD3+BC, the differences in their performances should be considered the most important
ones and do not appear only because of the additional hyperparameters search.

π = argmax
π

E(s,a)∼D

[
Qθ(s, π(s))−β1 · (π(s)− a)2

]
(3)

θ = argmin
θ

E(s,a,r,s′,â′)∼D
a′∼π(s′)

[
(Qθ(s, a)− (r + γ(Qθ(s

′, a′)−β2 · (a′ − â′)2)))2
]

(4)

Discount factor γ value change The choice of discount factor is an important aspect in solving RL
problems (Jiang et al., 2015). A recent study (Hu et al., 2022) suggests that decreasing the default
value of γ from 0.99 may lead to better results in offline RL settings. In contrast, in SPOT (Wu
et al., 2022), the authors increased the value of γ up to 0.995 when fine-tuning AntMaze tasks with
sparse rewards, which resulted in state-of-the-art solutions. Similarly, in the offline setting SAC-RND
(Nikulin et al., 2023), increasing γ also achieved high performance on the same domain. The choice
of increased γ for AntMaze tasks was motivated by the sparse reward, i.e., a low γ value may not
propagate the training signal well. However, further ablations are needed to understand if the change
in the parameter is directly responsible for the improved performance. In our experiments, we also
find that increasing γ from the default value of 0.99 to 0.999 is vital for improved performance on
this set of tasks (see Table 8).

4 Experiments

4.1 Evaluation on offline D4RL

We evaluate the proposed approach on three sets of D4RL tasks: Gym-MuJoCo, AntMaze, and
Adroit. For each domain, we consider all of the available datasets. We compare our results to several
ensemble-free baselines, including TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021),
CQL (Kumar et al., 2020) and SAC-RND (Nikulin et al., 2023).

The majority of the hyperparameters are adopted from TD3+BC, while β1 and β2 parameters from
Equation (3) and Equation (4) are tuned. We examine the sensitivity to these parameters in Section 4.6.
For a complete overview of the experimental setup and details, see Appendix A.

Following Wu et al. (2022), we tune hyperparameters over four seeds (referred to as training seeds)
and evaluate the best parameters over ten new seeds (referred to as unseen training seeds), reporting
the average performance of the last checkpoints for D4RL tasks. On V-D4RL, we use two and five
seeds, respectively. This helps to avoid overfitting during hyperparameters search and outputs more
just and reproducible results. For a fair comparison, we tune TD3+BC and IQL following the same
protocol. We also rerun SAC-RND on Gym-MuJoCo and AntMaze tasks and tune it for the Adroit
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Table 2: Average normalized score over the final evaluation and ten unseen training seeds on Gym-
MuJoCo tasks. CQL scores were taken from An et al. (2021). The symbol ± represents the standard
deviation across the seeds. To make a fair comparison against TD3+BC and IQL, we extensively
tuned their hyperparameters.

Task Name TD3+BC IQL CQL SAC-RND ReBRAC, our

halfcheetah-random 30.9 ± 0.4 19.5 ± 0.8 31.1 ± 3.5 27.6 ± 2.1 29.5 ± 1.5
halfcheetah-medium 54.7 ± 0.9 50.0 ± 0.2 46.9 ± 0.4 66.4 ± 1.4 65.6 ± 1.0
halfcheetah-expert 93.4 ± 0.4 95.5 ± 2.1 97.3 ± 1.1 102.6 ± 4.2 105.9 ± 1.7
halfcheetah-medium-expert 89.1 ± 5.6 92.7 ± 2.8 95.0 ± 1.4 108.1 ± 1.5 101.1 ± 5.2
halfcheetah-medium-replay 45.0 ± 1.1 42.1 ± 3.6 45.3 ± 0.3 51.2 ± 3.2 51.0 ± 0.8
halfcheetah-full-replay 75.0 ± 2.5 75.0 ± 0.7 76.9 ± 0.9 81.2 ± 1.3 82.1 ± 1.1

hopper-random 8.5 ± 0.7 10.1 ± 5.9 5.3 ± 0.6 19.6 ± 12.4 8.1 ± 2.4
hopper-medium 60.9 ± 7.6 65.2 ± 4.2 61.9 ± 6.4 91.1 ± 10.1 102.0 ± 1.0
hopper-expert 109.6 ± 3.7 108.8 ± 3.1 106.5 ± 9.1 109.8 ± 0.5 100.1 ± 8.3
hopper-medium-expert 87.8 ± 10.5 85.5 ± 29.7 96.9 ± 15.1 109.8 ± 0.6 107.0 ± 6.4
hopper-medium-replay 55.1 ± 31.7 89.6 ± 13.2 86.3 ± 7.3 97.2 ± 9.0 98.1 ± 5.3
hopper-full-replay 97.9 ± 17.5 104.4 ± 10.8 101.9 ± 0.6 107.4 ± 0.8 107.1 ± 0.4

walker2d-random 2.0 ± 3.6 11.3 ± 7.0 5.1 ± 1.7 18.7 ± 6.9 18.4 ± 4.5
walker2d-medium 77.7 ± 2.9 80.7 ± 3.4 79.5 ± 3.2 92.7 ± 1.2 82.5 ± 3.6
walker2d-expert 110.0 ± 0.6 96.9 ± 32.3 109.3 ± 0.1 104.5 ± 22.8 112.3 ± 0.2
walker2d-medium-expert 110.4 ± 0.6 112.1 ± 0.5 109.1 ± 0.2 104.6 ± 11.2 111.6 ± 0.3
walker2d-medium-replay 68.0 ± 19.2 75.4 ± 9.3 76.8 ± 10.0 89.4 ± 3.8 77.3 ± 7.9
walker2d-full-replay 90.3 ± 5.4 97.5 ± 1.4 94.2 ± 1.9 105.3 ± 3.2 102.2 ± 1.7

Average 70.3 72.9 73.6 82.6 81.2

Table 3: Average normalized score over the final evaluation and ten unseen training seeds on AntMaze
tasks. CQL scores were taken from Ghasemipour et al. (2022). The symbol ± represents the standard
deviation across the seeds. To make a fair comparison against TD3+BC and IQL, we extensively
tuned their hyperparameters.

Task Name TD3+BC IQL CQL SAC-RND ReBRAC, our

antmaze-umaze 66.3 ± 6.2 83.3 ± 4.5 74.0 97.0 ± 1.5 97.8 ± 1.0
antmaze-umaze-diverse 53.8 ± 8.5 70.6 ± 3.7 84.0 66.0 ± 25.0 88.3 ± 13.0
antmaze-medium-play 26.5 ± 18.4 64.6 ± 4.9 61.2 38.5 ± 29.4 84.0 ± 4.2
antmaze-medium-diverse 25.9 ± 15.3 61.7 ± 6.1 53.7 74.7 ± 10.7 76.3 ± 13.5
antmaze-large-play 0.0 ± 0.0 42.5 ± 6.5 15.8 43.9 ± 29.2 60.4 ± 26.1
antmaze-large-diverse 0.0 ± 0.0 27.6 ± 7.8 14.9 45.7 ± 28.5 54.4 ± 25.1

Average 28.7 58.3 50.6 60.9 76.8

domain. In other cases, we report results from previous works, meaning that scores for other methods
can be lower if evaluated under our protocol.

The results of our tests on D4RL’s Gym-MuJoCo, AntMaze, and Adroit tasks are available in Table 2,
Table 3, Table 4, respectively. The mean-wise best results among algorithms are highlighted with bold,
and the second best performance is underlined. Our approach, ReBRAC, achieves state-of-the-art
results on Gym-MuJoCo, AntMaze, and Adroit tasks outperforming all baselines on average, except
SAC-RND on Gym-MuJoCo tasks, which is slightly better. Performance profiles and probability of
improvement (Agarwal et al., 2021) in Figure 1b and Figure 1c also demonstrate that ReBRAC is
competitive when compared to the algorithms that we contrast against. Our method is also comparable
to ensemble-based approaches (see Appendix C for additional comparisons).

4.2 Evaluation on offline V-D4RL

In addition to testing ReBRAC on D4RL, we evaluated its performance on V-D4RL benchmark (Lu
et al., 2022). Our motivation for doing so was the fact that scores on D4RL Gym-MuJoCo tasks
have saturated in recent years, and even after the introduction of ensemble-based offline RL methods
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Table 4: Average normalized score over the final evaluation and ten unseen training seeds on Adroit
tasks. BC and CQL scores were taken from Yang et al. (2022). The symbol ± represents the standard
deviation across the seeds. To make a fair comparison against TD3+BC and IQL, we extensively
tuned their hyperparameters.

Task Name BC TD3+BC IQL CQL SAC-RND ReBRAC, our

pen-human 34.4 81.8 ± 14.9 81.5 ± 17.5 37.5 5.6 ± 5.8 103.5 ± 14.1
pen-cloned 56.9 61.4 ± 19.3 77.2 ± 17.7 39.2 2.5 ± 6.1 91.8 ± 21.7
pen-expert 85.1 146.0 ± 7.3 133.6 ± 16.0 107.0 45.4 ± 22.9 154.1 ± 5.4

door-human 0.5 -0.1 ± 0.0 3.1 ± 2.0 9.9 0.0 ± 0.1 0.0 ± 0.0
door-cloned -0.1 0.1 ± 0.6 0.8 ± 1.0 0.4 0.2 ± 0.8 1.1 ± 2.6
door-expert 34.9 84.6 ± 44.5 105.3 ± 2.8 101.5 73.6 ± 26.7 104.6 ± 2.4

hammer-human 1.5 0.4 ± 0.4 2.5 ± 1.9 4.4 -0.1 ± 0.1 0.2 ± 0.2
hammer-cloned 0.8 0.8 ± 0.7 1.1 ± 0.5 2.1 0.1 ± 0.4 6.7 ± 3.7
hammer-expert 125.6 117.0 ± 30.9 129.6 ± 0.5 86.7 24.8 ± 39.4 133.8 ± 0.7

relocate-human 0.0 -0.2 ± 0.0 0.1 ± 0.1 0.2 0.0 ± 0.0 0.0 ± 0.0
relocate-cloned -0.1 -0.1 ± 0.1 0.2 ± 0.4 -0.1 0.0 ± 0.0 0.9 ± 1.6
relocate-expert 101.3 107.3 ± 1.6 106.5 ± 2.5 95.0 3.4 ± 4.5 106.6 ± 3.2

Average w/o expert 11.7 18.0 20.8 11.7 1.0 25.5

Average 36.7 49.9 53.4 40.3 12.9 58.6

Table 5: Average normalized score over the final evaluation and five unseen training seeds on V-D4RL
tasks. The score is mapped from a range of [0, 1000] to [0, 100]. The symbol ± represents the standard
deviation across the seeds.

Environment Offline DV2 DrQ+BC CQL BC LOMPO ReBRAC, our

walker-walk

random 28.7 ±13.0 5.5 ±0.9 14.4 ±12.4 2.0 ±0.2 21.9 ±8.1 15.9 ± 2.3
mixed 56.5 ±18.1 28.7 ±6.9 11.4 ±12.4 16.5 ±4.3 34.7 ±19.7 41.6 ± 8.0
medium 34.1 ±19.7 46.8 ±2.3 14.8 ±16.1 40.9 ±3.1 43.4 ±11.1 52.5 ± 3.2
medexp 43.9 ±34.4 86.4 ±5.6 56.4 ±38.4 47.7 ±3.9 39.2 ±19.5 92.7 ± 1.3
expert 4.8 ±0.6 68.4 ±7.5 89.6 ±6.0 91.5 ±3.9 5.3 ±7.7 81.4 ± 10.0

cheetah-run

random 31.7 ±2.7 5.8 ±0.6 5.9 ±8.4 0.0 ±0.0 11.4 ±5.1 12.9 ± 2.2
mixed 61.6±1.0 44.8 ±3.6 10.7 ±12.8 25.0 ±3.6 36.3 ±13.6 46.8 ± 0.7
medium 17.2 ±3.5 53.0 ±3.0 40.9 ±5.1 51.6 ±1.4 16.4 ±8.3 59.0 ± 0.7
medexp 10.4 ±3.5 50.6 ±8.2 20.9 ±5.5 57.5 ±6.3 11.9 ±1.9 58.3 ± 11.7
expert 10.9 ±3.2 34.5 ±8.3 61.5 ±4.3 67.4 ±6.8 14.0 ±3.8 35.6 ± 5.3

humanoid-walk

random 0.1 ±0.0 0.1 ±0.0 0.2 ±0.1 0.1 ±0.0 0.1 ±0.0 0.1 ± 0.0
mixed 0.2 ±0.1 15.9 ±3.8 0.1 ±0.0 18.8 ±4.2 0.2 ±0.0 16.0 ± 2.7
medium 0.2 ±0.1 6.2 ±2.4 0.1 ±0.0 13.5 ±4.1 0.1 ±0.0 9.0 ± 2.3
medexp 0.1 ±0.0 7.0 ±2.3 0.1 ±0.0 17.2 ±4.7 0.2 ±0.0 7.8 ± 2.4
expert 0.2 ±0.1 2.7 ±0.9 1.6 ±0.5 6.1 ±3.7 0.1 ±0.0 2.9 ± 0.9

Average 20.0 30.4 21.9 30.3 15.6 35.5

by An et al. (2021), there has been no notable progress on these tasks. On the other hand, V-D4RL
provides a similar set of problems, with datasets collected in the same way as in D4RL but with the
agent’s observations now being images from the environment.

We tested our algorithm on all available single-task datasets without distractors and compared it to the
baselines from the original V-D4RL work (Lu et al., 2022). The results are reported in Table 5. Our
proposed approach achieves state-of-the-art or close-to-state-of-the-art results on most of the tasks,
and it is the only method that, on average, performs notably better than naive Behavioral Cloning.

4.3 Evaluation on offline-to-online D4RL

The evaluation of offline-to-online performance is a pivotal aspect for reinforcement learning (RL)
algorithms, particularly in light of recent developments. In this context, we conducted additional tests
on ReBRAC, as it stands out as a promising algorithm for several compelling reasons.
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First and foremost, ReBRAC demonstrates a remarkable proficiency following offline pre-training.
Secondly, our algorithm shares notable similarities with TD3+BC, a method that has exhibited
effectiveness in online fine-tuning as observed by Beeson et al. (Beeson & Montana, 2022)

For the sake of simplicity, we opted to disable critic penalization during the online fine-tuning.
Furthermore, we linearly decay the actor’s penalty to half of its initial value, following the approach
described by Beeson & Montana (2022). Notably, no hyperparameter tuning was performed in this
process.

To evaluate our approach in the offline-to-online setting, we followed the methodology outlined by
Tarasov et al. (2022). In our comparative analysis, we consider the following algorithms: TD3+BC
(Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021), CQL (Kumar et al., 2020), SPOT (Wu et al.,
2022), and Cal-CQL (Nakamoto et al., 2023). The scores after the offline stage and online tuning,
are reported in Table 6. We also provide finetuning cumulative regret proposed by Nakamoto et al.
(2023) in Table 7.

Table 6: Normalized performance after offline pretraining and online finetuning on D4RL. Baselines
scores except TD3+BC are taken from Tarasov et al. (2022). ReBRAC and TD3+BC scores are
averaged over ten random seeds, and all others are averaged over four as in Tarasov et al. (2022).

Task Name TD3 + BC IQL SPOT Cal-QL ReBRAC, our

antmaze-u-v2 66.8 → 91.4 77.00 → 96.50 91.00 → 99.50 76.75 → 99.75 97.8 → 99.8
antmaze-u-d-v2 59.1 → 48.4 59.50 → 63.75 36.25 → 95.00 32.00 → 98.50 85.7 → 98.1
antmaze-m-p-v2 59.2 → 94.8 71.75 → 89.75 67.25 → 97.25 71.75→ 98.75 78.4 → 97.7
antmaze-m-d-v2 62.6 → 94.1 64.25 → 92.25 73.75 → 94.50 62.00 → 98.25 78.6 → 98.5
antmaze-l-p-v2 21.5 → 0.1 38.50 → 64.50 31.50 → 87.00 31.75 → 97.25 47.0 → 39.5
antmaze-l-d-v2 9.5 → 0.4 26.75 → 64.25 17.50 → 81.00 44.00 → 91.50 66.7 → 77.6

AntMaze avg 46.4 → 54.8 (+8.4) 56.29 → 78.50 (+22.21) 52.88 → 92.38 (+39.50) 53.04 → 97.33 (+24.29) 75.7 → 85.2 (+9.5)

pen-c-v1 86.1 → 110.3 84.19 → 102.02 6.19 → 43.63 -2.66 → -2.68 91.8 → 152.0
door-c-v1 0.0 → 3.4 1.19 → 20.34 -0.21 → 0.02 -0.33 → -0.33 0.4 → 104.9
hammer-c-v1 2.4 → 11.6 1.35 → 57.27 3.97 → 3.73 0.25 → 0.17 4.1 → 131.2
relocate-c-v1 -0.1 → 0.1 0.04 → 0.32 -0.24 → -0.15 -0.31 → -0.31 0.0 → 12.3

Adroit Avg 22.1 → 31.3 (+9.2) 21.69 → 44.99 (+23.3) 2.43 → 11.81 (+9.38) -0.76 → -0.79 (-0.03) 24.0 → 100.1 (+76.1)

Total avg 36.7 → 45.4 (+8.7) 42.45 → 65.10 (+22.65) 32.70 → 60.15 (+27.45) 31.52 → 58.08 (+26.56) 55.0 → 91.1 (+36.1)

Table 7: Cumulative regret of online finetuning calculated as 1 − average success rate. Baselines
scores except TD3+BC are taken from Tarasov et al. (2022). ReBRAC and TD3+BC regrets are
averaged over ten random seeds, and all others are averaged over four as in Tarasov et al. (2022).

Task Name TD3 + BC CQL IQL SPOT Cal-QL ReBRAC, our

antmaze-umaze-v2 0.09 ± 0.08 0.02 ± 0.00 0.07 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.00 ± 0.00
antmaze-umaze-diverse-v2 0.47 ± 0.16 0.09 ± 0.01 0.43 ± 0.11 0.22 ± 0.07 0.05 ± 0.01 0.06 ± 0.13
antmaze-medium-play-v2 0.12 ± 0.05 0.08 ± 0.01 0.09 ± 0.01 0.06 ± 0.00 0.04 ± 0.01 0.03 ± 0.01
antmaze-medium-diverse-v2 0.09 ± 0.02 0.08 ± 0.00 0.10 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.02 ± 0.00
antmaze-large-play-v2 0.99 ± 0.00 0.21 ± 0.02 0.34 ± 0.05 0.29 ± 0.07 0.13 ± 0.02 0.36 ± 0.30
antmaze-large-diverse-v2 0.99 ± 0.01 0.21 ± 0.03 0.41 ± 0.03 0.23 ± 0.08 0.13 ± 0.02 0.10 ± 0.07

AntMaze avg 0.45 0.11 0.24 0.15 0.07 0.09

pen-cloned-v1 0.30 ± 0.10 0.97 ± 0.00 0.37 ± 0.01 0.58 ± 0.02 0.98 ± 0.01 0.08 ± 0.00
door-cloned-v1 0.97 ± 0.03 1.00 ± 0.00 0.83 ± 0.03 0.99 ± 0.01 1.00 ± 0.00 0.26 ± 0.10
hammer-cloned-v1 0.92 ± 0.14 1.00 ± 0.00 0.65 ± 0.10 0.98 ± 0.01 1.00 ± 0.00 0.13 ± 0.02
relocate-cloned-v1 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.85 ± 0.07

Adroit avg 0.79 0.99 0.71 0.89 0.99 0.33

Total avg 0.59 0.47 0.43 0.44 0.44 0.18

ReBRAC exhibits competitive performance, surpassing four out of six AntMaze datasets and achiev-
ing state-of-the-art results in terms of final scores on Adroit tasks. On average, ReBRAC outperforms
its closest competitor, Cal-CQL, which was specifically designed for the offline-to-online problem in
the concurrent work (Nakamoto et al., 2023).

Regarding regret, ReBRAC outperforms all other algorithms, with Cal-QL being the sole exception,
showing slightly better results on average only in the AntMaze domain.

4.4 Ablating Design Choices

To better understand the source of improved performance, we conducted an ablation study on the
modifications made to the algorithm. Results can be found in Table 8. Additional ablation studies
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for all datasets can be found in Appendix G. One modification at a time was disabled, while all
other changes were retained, including layer normalization in the critic network, additional linear
layers in the actor and critic networks, adding an MSE penalty to the critic and actor loss. In the case
of AntMaze, we also attempted to use the default γ value instead of the increased one. To further
demonstrate the efficacy of our modifications, we also ran our implementation as equivalent to the
original TD3+BC, with all changes disabled and hyperparameters were taken from the original paper.
This experiment serves to show that the improved scores are due to the proposed changes in the
algorithm and not just different implementations. Furthermore, we searched for the regularization
parameter for our implementation of TD3+BC to demonstrate that tuning this parameter is not the
sole source of improvement. Moreover, we tested the TD3 + BC by adding each of the ReBRAC’s
modifications independently to demonstrate that each individual modifications is not sufficient for
achieving performance of ReBRAC where the combination of modification appear.

Additionally, we run ablation which to validate the importance of decoupling by disabling it and
searching the best penalty parameter value from the set of all previously used values listed in the
Appendix B.

Table 8: ReBRAC’s design choices ablations: each modification was disabled while keeping all the
others. For brevity, we report the mean of average normalized scores over four unseen training seeds
across domains. We also include tuned results for TD3+BC to highlight that the improvement does
not come from hyperparameter search. For dataset-specific results, please refer to Appendix G.

Ablation Gym-MuJoCo AntMaze Adroit All

TD3+BC, paper - 27.3 0.0 -
TD3+BC, our 63.4 18.5 52.3 52.2
TD3+BC, tuned 71.8 (-10.9%) 27.9 (-62.9%) 53.5 (-25.9%) 58.3 (-19.2%)

TD3+BC w/ γ change - 17.5 (-76.7%) - -
TD3+BC w/ LN 71.4 (-11.4%) 35.6 (-52.7%) 55.6 (-4.1%) 60.2 (-16.6%)
TD3+BC w/ large batch 14.4 (-82.1%) 0.0 (-100.0%) 1.6 (-97.2%) 7.9 (-89.0%)
TD3+BC w/ layer 71.2 (-11.6%) 44.1 (-41.4%) 56.4 (-2.7%) 61.9 (-14.2%)

ReBRAC w/o large batch 75.9 (-5.8%) - - -
ReBRAC w large batch - 41.0 (-45.6%) 55.4 (-4.6%) -
ReBRAC w/o γ change - 21.0 (-72.1%) - -
ReBRAC w/o LN 59.2 (-26.5%) 0.0 (-100.0%) 25.1 (-56.7%) 38.0 (-47.3%)
ReBRAC w/o layer 78.5 (-2.6%) 18.1 (-75.9%) 59.0 (+1.7%) 61.9 (-14.2%)
ReBRAC w/o actor penalty 22.8 (-71.7%) 0.1 (-99.8%) 0.0 (-100.0%) 11.4 (-84.2%)
ReBRAC w/o critic penalty 81.1 (+0.6%) 72.2 (-4.1%) 56.9 (-1.8%) 71.5 (-0.9%)
ReBRAC w/o decoupling 79.8 (-0.9%) 76.9 (+2.1%) 56.7 (-2.2%) 71.6 (-0.8%)

ReBRAC 80.6 75.3 58.0 72.2

The ablation results show that ReBRAC outperforms TD3+BC not because of different implementa-
tions or actor regularization parameter choice. All domains suffer when the LayerNorm is disabled,
leading to the halved average performance overall. Removing additional layers leads to a notable
drop in AntMaze tasks, while on Gym-MuJoCo decrease is small, and on Adroit tasks, we can see a
slight boost. The algorithm fails to learn most tasks when the actor penalty is disabled. Notably, the
critic penalty plays a minor role in improving the performance on most of the problems as well as the
decoupling penalties. Using standard batch size on Gym-MuJoCo tasks significantly decreases final
scores, while using the increased discount factor for AntMaze is crucial for obtaining state-of-the-art
performance.

Based on the conducted ablations studies, the proposed configuration of design choices leads to the
best performance on average. Note that tuning these choices for each task independently makes it
possible to get even higher scores than we report in Section 4.1. We also can change the number
of hidden layers in the networks, leading to better performance, see Section 4.5. But in real life,
algorithm evaluation might be costly, so we limit ourselves to tuning only regularization parameters.

4.5 Stacking Even More Layers

As ablations show, the depth of the network plays an important role when solving AntMaze and
HalfCheetah tasks (see Appendix G). We conduct additional experiments to check how the perfor-
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mance depends on the network depth in more detail. Ball et al. (2023) used networks of depth four
when solving AntMaze tasks. Our goal is to find the point where the performance saturates. For
this, we run our algorithm on AntMaze tasks increasing the number of layers to six while keeping
other parameters unchanged. We attempt to increase actor and critic separately and at once. We also
decreased each network’s size by one layer similarly. Results can be found in Figure 2.

Several conclusions can be drawn from the results. First, further increments in the number of layers
can lead to better results on the AntMaze domain when layers are scaled up to five. For six layers,
performance drops or does not improve. Second, decreasing the critic’s size leads to the worst
performance on most datasets. Lastly, there is no clear pattern on how the performance changes even
within a single domain. The drop on six layers is the only common feature that can be seen. On
average, four critic layers and three actor layers were the best. Changing only the actor’s network is
more stable on average.
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Figure 2: Impact of networks’ depth on the final performance for the AntMaze tasks. Scores are
averaged over four unseen training seeds. Shaded areas represent one standard deviation across seeds.
These graphics demonstrate that one can achieve marginally better scores by tuning the number of

layers for certain tasks.

4.6 Penalization Sensitivity Analysis

Following Kurenkov & Kolesnikov (2022), we demonstrate the sensitivity of ReBRAC to the choice
of β1 and β2 hyperparameters under uniform policy selection on D4RL tasks using Expected Online
Performance (EOP) and comparing it to the TD3+BC and IQL. EOP shows the best performance
expected depending on the number of policies that can be deployed for online evaluation. Results
are demonstrated in Table 9. As one can see, approximately ten policies are required for ReBRAC
to attain ensemble-free state-of-the-art performance. ReBRAC’s EOP is higher for any number of
online policies when compared to TD3+BC and better than IQL on all domains when the evaluation
budget is larger than two policies. See Appendix F for EOP separated by tasks.

Table 9: Expected Online Performance (Kurenkov & Kolesnikov, 2022) under uniform policy
selection aggregated over D4RL domains across four training seeds. This demonstrates the sensitivity
to the choice of hyperparameters given a certain budget for online evaluation. For dataset-specific
results, please see Appendix F.

Domain Algorithm 1 policy 2 policies 3 policies 5 policies 10 policies 15 policies 20 policies

Gym-MuJoCo
TD3+BC 49.8 ± 21.4 61.0 ± 14.5 65.3 ± 9.3 67.8 ± 3.9 - - -
IQL 65.0 ± 9.1 69.9 ± 5.6 71.7 ± 3.5 72.9 ± 1.7 73.6 ± 0.8 73.8 ± 0.7 74.0 ± 0.6
ReBRAC 62.0 ± 17.1 70.6 ± 9.9 73.3 ± 5.5 74.8 ± 2.1 75.6 ± 0.8 75.8 ± 0.6 76.0 ± 0.5

AntMaze
TD3+BC 6.9 ± 7.0 10.7 ± 6.8 13.0 ± 6.0 15.5 ± 4.6 - - -
IQL 29.8 ± 15.5 38.0 ± 15.4 43.1 ± 13.8 48.7 ± 10.2 53.2 ± 4.4 54.3 ± 2.1 54.7 ± 1.2
ReBRAC 67.9 ± 10.0 73.6 ± 7.4 76.1± 5.5 78.3 ± 3.4 79.9 ± 1.7 80.4 ± 1.1 -

Adroit
TD3+BC 23.6 ± 19.9 34.6 ± 17.7 40.6 ± 14.5 46.4 ± 9.8 - - -
IQL 53.1 ± 0.7 53.5 ± 0.6 53.7 ± 0.5 53.9 ± 0.3 54.1 ± 0.2 54.2 ± 0.2 54.2 ± 0.1
ReBRAC 44.1 ± 18.4 53.2 ± 10.9 56.1 ± 6.1 57.8 ± 2.3 58.6 ± 0.9 58.9 ± 0.7 59.1 ± 0.6
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5 Related Work

Ensemble-free offline RL methods. In recent years, many offline reinforcement learning algorithms
were developed. TD3+BC (Fujimoto & Gu, 2021) represents a minimalist approach to offline RL,
which incorporates a Behavioral Cloning component into the actor loss, enabling online actor-critic
algorithms to operate in an offline setting. CQL (Kumar et al., 2020) drives the critic network to assign
lower values to out-of-distribution state-action pairs and higher values to in-distribution pairs. IQL
(Kostrikov et al., 2021) proposes a method for learning a policy without sampling out-of-distribution
actions.

Despite this, more sophisticated methods may be necessary to achieve state-of-the-art results in an
ensemble-free setup. For instance, Chen et al. (2022b); Akimov et al. (2022) pre-train different forms
of encoders for actions, then optimize the actor to predict actions in the latent space. SPOT (Wu et al.,
2022) pre-trains Variational Autoencoder and uses its uncertainty to penalize actor for sampling OOD
actions while SAC-RND (Nikulin et al., 2023) applies Random Network Distillation and penalizes
actor and critic.

Ensemble-based offline RL methods. A significant number of works in offline reinforcement
learning have also leveraged ensemble methods for uncertainty estimation. The recently introduced
SAC-N (An et al., 2021) algorithm outperformed all previous approaches on D4RL Gym-MuJoCo
tasks; however, it necessitated large ensembles for some tasks, such as the hopper task, which required
an ensemble size of 500 and imposed a significant computational burden. To mitigate this, the EDAC
algorithm was introduced in the same work, which utilized ensemble diversification to reduce the
ensemble size from 500 to 50. Despite the reduction, the ensemble size remains substantial compared
to ensemble-free alternatives. It is worth mentioning that neither SAC-N nor EDAC is capable of
solving the complex AntMaze tasks (Tarasov et al., 2022).

Another state-of-the-art algorithm in the Gym-MuJoCo tasks is RORL (Yang et al., 2022), which is a
modification of SAC-N that makes the Q function more robust and smooth by perturbing state-action
pairs with the use of out-of-distribution actions. RORL also requires an ensemble size of up to 20.
On the other hand, MSG (Ghasemipour et al., 2022) utilizes independent targets for each ensemble
member and achieves good performance on the Gym-MuJoCo tasks with an ensemble size of four
but requires 64 ensemble members to achieve state-of-the-art performance on the AntMaze tasks.

Design choices ablations. Ablations of different design choices on established baselines are very
limited, especially in offline RL. It is only shown by Fujimoto & Gu (2021) that CQL performs poorly
if proposed non-algorithmic differences are eliminated. A parallel study (Ball et al., 2023) shows that
some of the considered modifications (LayerNorm and networks depth) are important when used in
online RL with offline data setting, which is different from pure offline.

6 Conlusion, Limitations, and Future work

In this work, we revisit recent advancements in the offline RL field over the last two years and
incorporate a modest set of improvements to a previously established minimalistic TD3+BC baseline.
Our experiments demonstrate that despite these limited updates, we can achieve more than competitive
results on offline and offline-to-online D4RL and offline V-D4RL benchmarks under different
hyperparameter budgets.

Despite the noteworthy results, our work is limited to one approach and a subset of possible design
changes. It is imperative to explore the potential impact of these modifications on other offline RL
methods (e.g., IQL, CQL, MSG) and to investigate other design choices used in offline RL, e.g.,
learning rate schedules, dropout (like in IQL), wider networks, or selection between stochastic and
deterministic policies.
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A Experimental Details

In order to generate the results presented in Table 2 Table 3 and Table 4, we conducted a hyperparam-
eter search and selected the best results from the final evaluations for each dataset. Our algorithm
was implemented using JAX for the D4RL benchmark. For V-D4RL, we implement our approach
using PyTorch adopting the TD3+BC implementation from Clean Offline RL (Tarasov et al., 2022).
The experiments were conducted on V100 and A100 GPUs.

Gym-MuJoCo and Adroit tasks. Our study utilized the latest version of the datasets – v2 for
Gym-MuJoCo and v1 for Adroit. The agents were trained for one million steps and evaluated over
ten episodes.

For ReBRAC, we fine-tuned the β1 parameter for the actor, which was selected from
0.001, 0.01, 0.05, 0.1. Similarly, the β2 parameter for the critic was selected from a range of
0, 0.001, 0.01, 0.1, 0.5. The selected best parameters for each dataset are reported in Table 11.

For TD3+BC here and in the AntMaze domain, we use the same grid used in ReBRAC for actor
regularization parameter α and add the default value of 0.4.

For IQL here and in the AntMaze domain, we selected β value from a range of 0.5, 1, 3, 6, 10 and
IQL τ value from a range of 0.5, 0.7, 0.9, 0.95. We used the implementation from Clean Offline RL
(Tarasov et al., 2022) and kept other parameters unchanged.

For SAC-RND in Adroit domain we tune β1 (actor parameter) in the range of 0.5, 1.0, 2.5, 5.0, 10.0
and β2 (critic parameter) in the range of 0.01, 0.1, 1.0, 5.0, 10.0.

AntMaze tasks. In our work, we utilized v2 of the datasets. It’s worth noting that previous studies
have reported results using v0 datasets, which were found to contain numerous issues2. Each agent
was trained for 1 million steps and evaluated over 100 episodes. Following Chen et al. (2022a), we
modified the reward function by multiplying it by 100.

For ReBRAC, the β1 (actor) and β2 (critic) hyperparameters were carefully selected from the respec-
tive ranges of 0.0005, 0.001, 0.002, 0.003 and 0, 0.0001, 0.0005, 0.001. In addition, the actor and
critic learning rates were optimized from 0.0001, 0.0002, 0.0003, 0.0005 and 0.0003, 0.0005, 0.001,
respectively. The optimal hyperparameters for each dataset are presented in Table 11.

We also modified the γ value for ReBRAC when addressing these tasks, driven by the following
motivation. The length of the episodes in AntMaze can be as long as 1000 steps, while the reward is
sparse and can only be obtained at the end of the episode. As a result, the discount for the reward with
the default γ can be as low as 0.991000 = 4 · 10−5, which is extremely low for signal propagation,
even when multiplying the reward by 100. By increasing γ to 0.999, the minimum discount value
becomes 0.9991000 = 0.36, which is more favorable for signal propagation.

V-D4RL. We used single-task datasets without distraction with a resolution of 84 × 84 pixels. For
ReBRAC β1 (actor) parameter was selected from the range of {0.03, 0.1, 0.3, 1.0} and β2 (critic)
parameter from the range of {0.0, 0.001, 0.005, 0.01, 0.1}.

Offline-to-offline. We used the same parameters for the offline-to-online setup with the only
difference of setting β2 to zero and lineary decaying β1 to half of it’s initial value during the online
stage.

2https://github.com/Farama-Foundation/D4RL/issues/77
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B Hyperparameters

B.1 ReBRAC

Table 10: ReBRAC’s general hyperparameters.

Parameter Value

optimizer Adam Kingma & Ba (2014)
batch size 1024 on Gym-MuJoCo, 256 on other
learning rate (all networks) 1e-3 on Gym-MuJoCo, 3e-4 on Adroit and V-D4RL, 1e-4 on Antmaze
tau (τ ) 5e-3
hidden dim (all networks) 256
num hidden layers (all networks) 3
gamma (γ) 0.999 on AntMaze, 0.99 on other
nonlinearity ReLU

Table 11: ReBRAC’s best hyperparameters used in D4RL benchmark.

Task Name β1 (actor) β2 (critic)

halfcheetah-random 0.001 0.1
halfcheetah-medium 0.001 0.01
halfcheetah-expert 0.01 0.01
halfcheetah-medium-expert 0.01 0.1
halfcheetah-medium-replay 0.01 0.001
halfcheetah-full-replay 0.001 0.1

hopper-random 0.001 0.01
hopper-medium 0.01 0.001
hopper-expert 0.1 0.001
hopper-medium-expert 0.1 0.01
hopper-medium-replay 0.05 0.5
hopper-full-replay 0.01 0.01

walker2d-random 0.01 0.0
walker2d-medium 0.05 0.1
walker2d-expert 0.01 0.5
walker2d-medium-expert 0.01 0.01
walker2d-medium-replay 0.05 0.01
walker2d-full-replay 0.01 0.01

antmaze-umaze 0.003 0.002
antmaze-umaze-diverse 0.003 0.001
antmaze-medium-play 0.001 0.0005
antmaze-medium-diverse 0.001 0.0
antmaze-large-play 0.002 0.001
antmaze-large-diverse 0.002 0.002

pen-human 0.1 0.5
pen-cloned 0.05 0.5
pen-expert 0.01 0.01

door-human 0.1 0.1
door-cloned 0.01 0.1
door-expert 0.05 0.01

hammer-human 0.01 0.5
hammer-cloned 0.1 0.5
hammer-expert 0.01 0.01

relocate-human 0.1 0.01
relocate-cloned 0.1 0.01
relocate-expert 0.05 0.01
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Table 12: ReBRAC’s best hyperparameters used in V-D4RL benchmark.

Task Name β1 (actor) β2 (critic)

walker-walk-random 0.03 0.1
walker-walk-medium 0.03 0.005
walker-walk-expert 0.1 0.01
walker-walk-medium-expert 0.3 0.005
walker-walk-medium-replay 0.3 0.01

cheetah-run-random 0.1 0.01
cheetah-run-medium 0.1 0.1
cheetah-run-expert 0.01 0.01
cheetah-run-medium-expert 1.0 0.001
cheetah-run-medium-replay 0.03 0.1

humanoid-walk-random 1.0 0.01
humanoid-walk-medium 1.0 0.005
humanoid-walk-expert 1.0 0.1
humanoid-walk-medium-expert 1.0 0.005
humanoid-walk-medium-replay 1.0 0.001
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B.2 IQL

Table 13: IQL’s best hyperparameters used in D4RL benchmark.

Task Name β IQL τ

halfcheetah-random 3.0 0.95
halfcheetah-medium 3.0 0.95
halfcheetah-expert 6.0 0.9
halfcheetah-medium-expert 3.0 0.7
halfcheetah-medium-replay 3.0 0.95
halfcheetah-full-replay 1.0 0.7

hopper-random 1.0 0.95
hopper-medium 3.0 0.7
hopper-expert 3.0 0.5
hopper-medium-expert 6.0 0.7
hopper-medium-replay 6.0 0.7
hopper-full-replay 10.0 0.9

walker2d-random 0.5 0.9
walker2d-medium 6.0 0.5
walker2d-expert 6.0 0.9
walker2d-medium-expert 1.0 0.5
walker2d-medium-replay 0.5 0.7
walker2d-full-replay 1.0 0.7

antmaze-umaze 10.0 0.7
antmaze-umaze-diverse 10.0 0.95
antmaze-medium-play 6.0 0.9
antmaze-medium-diverse 6.0 0.9
antmaze-large-play 10.0 0.9
antmaze-large-diverse 6.0 0.9

pen-human 1.0 0.95
pen-cloned 10.0 0.9
pen-expert 10.0 0.8

door-human 0.5 0.9
door-cloned 6.0 0.7
door-expert 0.5 0.7

hammer-human 3.0 0.9
hammer-cloned 6.0 0.7
hammer-expert 0.5 0.95

relocate-human 1.0 0.95
relocate-cloned 6.0 0.9
relocate-expert 10.0 0.9
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B.3 TD3+BC

Table 14: TD3+BC’s best hyperparameters used in D4RL benchmark.

Task Name α

halfcheetah-random 0.001
halfcheetah-medium 0.01
halfcheetah-expert 0.4
halfcheetah-medium-expert 0.1
halfcheetah-medium-replay 0.05
halfcheetah-full-replay 0.01

hopper-random 0.4
hopper-medium 0.05
hopper-expert 0.1
hopper-medium-expert 0.1
hopper-medium-replay 0.4
hopper-full-replay 0.01

walker2d-random 0.001
walker2d-medium 0.4
walker2d-expert 0.05
walker2d-medium-expert 0.1
walker2d-medium-replay 0.1
walker2d-full-replay 0.1

antmaze-umaze 0.4
antmaze-umaze-diverse 0.4
antmaze-medium-play 0.003
antmaze-medium-diverse 0.003
antmaze-large-play 0.003
antmaze-large-diverse 0.003

pen-human 0.1
pen-cloned 0.4
pen-expert 0.4

door-human 0.1
door-cloned 0.4
door-expert 0.1

hammer-human 0.4
hammer-cloned 0.4
hammer-expert 0.4

relocate-human 0.1
relocate-cloned 0.1
relocate-expert 0.4
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B.4 SAC-RND

Table 15: SAC-RND’s best hyperparameters used in D4RL Adroit tasks.

Task Name β1 (actor) β2 (critic)

pen-human 1.0 10.0
pen-cloned 2.5 0.01
pen-expert 10.0 5.0

door-human 5.0 0.01
door-cloned 5.0 1.0
door-expert 10.0 10.0

hammer-human 10.0 0.01
hammer-cloned 1.0 1.0
hammer-expert 2.5 10.0

relocate-human 5.0 0.01
relocate-cloned 5.0 1.0
relocate-expert 10.0 10.0

C Comparison to Ensemble-based Methods

Comparison of ReBRAC with the ensemble-based methods is presented in Table 16, Table 17, and
Table 18. We add the following ensemble-based methods: RORL for each domain (Yang et al., 2022),
SAC-N/EDAC (An et al., 2021) for the Gym-MuJoCo and Adroit tasks3 and MSG (Ghasemipour
et al., 2022) for AntMaze tasks4. The mean-wise best results among algorithms are highlighted with
bold, and the second-best performance is underlined. Our approach, ReBRAC, shows competitive
results on the Gym-MuJoCo datasets. On AntMaze tasks, ReBRAC achieves state-of-the-art results
among ensemble-free algorithms and a good score compared to ensemble-based algorithms. And on
Adroit tasks, our approach outperforms both families of algorithms.

Table 16: ReBRAC evaluation on the Gym domain. We report the final normalized score averaged
over 10 unseen training seeds on v2 datasets. CQL, SAC-N and EDAC scores are taken from An et al.
(2021). RORL scores are taken from Yang et al. (2022).

Ensemble-free Ensemble-based

Task Name TD3+BC IQL CQL SAC-RND SAC-N EDAC RORL ReBRAC, our

halfcheetah-random 30.9 ± 0.4 19.5 ± 0.8 31.1 ± 3.5 27.6 ± 2.1 28.0 ± 0.9 28.4 ± 1.0 28.5 ± 0.8 29.5 ± 1.5
halfcheetah-medium 54.7 ± 0.9 50.0 ± 0.2 46.9 ± 0.4 66.4 ± 1.4 67.5 ± 1.2 65.9 ± 0.6 66.8 ± 0.7 65.6 ± 1.0
halfcheetah-expert 93.4 ± 0.4 95.5 ± 2.1 97.3 ± 1.1 102.6 ± 4.2 105.2 ± 2.6 106.8 ± 3.4 105.2 ± 0.7 105.9 ± 1.7
halfcheetah-medium-expert 89.1 ± 5.6 92.7 ± 2.8 95.0 ± 1.4 108.1 ± 1.5 107.1 ± 2.0 106.3 ± 1.9 107.8 ± 1.1 101.1 ± 5.2
halfcheetah-medium-replay 45.0 ± 1.1 42.1 ± 3.6 45.3 ± 0.3 51.2 ± 3.2 63.9 ± 0.8 61.3 ± 1.9 61.9 ± 1.5 51.0 ± 0.8
halfcheetah-full-replay 75.0 ± 2.5 75.0 ± 0.7 76.9 ± 0.9 81.2 ± 1.3 84.5 ± 1.2 84.6 ± 0.9 - 82.1 ± 1.1

hopper-random 8.5 ± 0.6 10.1 ± 5.9 5.3 ± 0.6 19.6 ± 12.4 31.3 ± 0.0 25.3 ± 10.4 31.4 ± 0.1 8.1 ± 2.4
hopper-medium 60.9 ± 7.6 65.2 ± 4.2 61.9 ± 6.4 91.1 ± 10.1 100.3 ± 0.3 101.6 ± 0.6 104.8 ± 0.1 102.0 ± 1.0
hopper-expert 109.6 ± 3.7 108.8 ± 3.1 106.5 ± 9.1 109.8 ± 0.5 110.3 ± 0.3 110.1 ± 0.1 112.8 ± 0.2 100.1 ± 8.3
hopper-medium-expert 87.8 ± 10.5 85.5 ± 29.7 96.9 ± 15.1 109.8 ± 0.6 110.1 ± 0.3 110.7 ± 0.1 112.7 ± 0.2 107.0 ± 6.4
hopper-medium-replay 55.1 ± 31.7 89.6 ± 13.2 86.3 ± 7.3 97.2 ± 9.0 101.8 ± 0.5 101.0 ± 0.5 102.8 ± 0.5 98.1 ± 5.3
hopper-full-replay 97.9 ± 17.5 104.4 ± 10.8 101.9 ± 0.6 107.4 ± 0.8 102.9 ± 0.3 105.4 ± 0.7 - 107.1 ± 0.4

walker2d-random 2.0 ± 3.6 11.3 ± 7.0 5.1 ± 1.7 18.7 ± 6.9 21.7 ± 0.0 16.6 ± 7.0 21.4 ± 0.2 18.1 ± 4.5
walker2d-medium 77.7 ± 2.9 80.7 ± 3.4 79.5 ± 3.2 92.7 ± 1.2 87.9 ± 0.2 92.5 ± 0.8 102.4 ± 1.4 82.5 ± 3.6
walker2d-expert 110.0 ± 0.6 96.9 ± 32.3 109.3 ± 0.1 104.5 ± 22.8 107.4 ± 2.4 115.1 ± 1.9 115.4 ± 0.5 112.3 ± 0.2
walker2d-medium-expert 110.4 ± 0.6 112.1 ± 0.5 109.1 ± 0.2 104.6 ± 11.2 116.7 ± 0.4 114.7 ± 0.9 121.2 ± 1.5 111.6 ± 0.3
walker2d-medium-replay 68.0 ± 19.2 75.4 ± 9.3 76.8 ± 10.0 89.4 ± 3.8 78.7 ± 0.7 87.1 ± 2.4 90.4 ± 0.5 77.3 ± 7.9
walker2d-full-replay 90.3 ± 5.4 97.5 ± 1.4 94.2 ± 1.9 105.3 ± 3.2 94.6 ± 0.5 99.8 ± 0.7 - 102.2 ± 1.7

Average w/o full-replay 66.8 70.1 70.1 79.5 82.4 82.9 85.7 78.0

Average 70.3 72.9 73.6 82.6 84.4 85.2 - 81.2

3SAC-N and EDAC score 0 on medium and large AntMaze tasks (Tarasov et al., 2022).
4MSG numerical results are not available for Gym-MuJoCo tasks and Adroit tasks were not benchmarked.
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Table 17: ReBRAC evaluation on AntMaze domain. We report the final normalized score averaged
over 10 unseen training seeds on v2 datasets. CQL scores are taken from Ghasemipour et al. (2022).
RORL scores are taken from Yang et al. (2022).

Ensemble-free Ensemble-based

Task Name TD3+BC IQL CQL SAC-RND RORL MSG ReBRAC, our

antmaze-umaze 66.3 ± 6.2 83.3 ± 4.5 74.0 97.0 ± 1.5 97.7 ± 1.9 97.9 ± 1.3 97.8 ± 1.0
antmaze-umaze-diverse 53.8 ± 8.5 70.6 ± 3.7 84.0 66.0 ± 25.0 90.7 ± 2.9 79.3 ± 3.0 88.3 ± 13.0
antmaze-medium-play 26.5 ± 18.4 64.6 ± 4.9 61.2 38.5 ± 29.4 76.3 ± 2.5 85.9 ± 3.9 84.0 ± 4.2
antmaze-medium-diverse 25.9 ± 15.3 61.7 ± 6.1 53.7 74.7 ± 10.7 69.3 ± 3.3 84.6 ± 5.2 76.3 ± 13.5
antmaze-large-play 0.0 ± 0.0 42.5 ± 6.5 15.8 43.9 ± 29.2 16.3 ± 11.1 64.3 ± 12.7 60.4 ± 26.1
antmaze-large-diverse 0.0 ± 0.0 27.6 ± 7.8 14.9 45.7 ± 28.5 41.0 ± 10.7 71.3 ± 5.3 54.4 ± 25.1

Average 28.7 58.3 50.6 60.9 65.2 80.5 76.8

Table 18: ReBRAC evaluation on Adroit domain. We report the final normalized score averaged over
10 unseen training seeds on v1 datasets. BC, CQL, EDAC and RORL scores are taken from Yang
et al. (2022).

Ensemble-free Ensemble-based

Task Name BC TD3+BC IQL CQL SAC-RND RORL EDAC ReBRAC, our

pen-human 34.4 81.8 ± 14.9 81.5 ± 17.5 37.5 5.6 ± 5.8 33.7 ± 7.6 51.2 ± 8.6 103.5 ± 14.1
pen-cloned 56.9 61.4 ± 19.3 77.2 ± 17.7 39.2 2.5 ± 6.1 35.7 ± 35.7 68.2 ± 7.3 91.8 ± 21.7
pen-expert 85.1 146.0 ± 7.3 133.6 ± 16.0 107.0 45.4 ± 22.9 130.3 ± 4.2 122.8 ± 14.1 154.1 ± 5.4

door-human 0.5 -0.1 ± 0.0 3.1 ± 2.0 9.9 0.0 ± 0.0 3.7 ± 0.7 10.7 ± 6.8 0.0 ± 0.1
door-cloned -0.1 0.1 ± 0.6 0.8 ± 1.0 0.4 0.2 ± 0.8 -0.1 ± 0.1 9.6 ± 8.3 1.1 ± 2.6
door-expert 34.9 84.6 ± 44.5 105.3 ± 2.8 101.5 73.6 ± 26.7 104.9 ± 0.9 -0.3 ± 0.1 104.6 ± 2.4

hammer-human 1.5 0.4 ± 0.4 2.5 ± 1.9 4.4 -0.1 ± 0.1 2.3 ± 2.3 0.8 ± 0.4 0.2 ± 0.2
hammer-cloned 0.8 0.8 ± 0.7 1.1 ± 0.5 2.1 0.1 ± 0.4 1.7 ± 1.7 0.3 ± 0.0 6.7 ± 3.7
hammer-expert 125.6 117.0 ± 30.9 129.6 ± 0.5 86.7 24.8 ± 39.4 132.2 ± 0.7 0.2 ± 0.0 133.8 ± 0.7

relocate-human 0.0 -0.2 ± 0.0 0.1 ± 0.1 0.2 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0
relocate-cloned -0.1 -0.1 ± 0.1 0.2 ± 0.4 -0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.9 ± 1.6
relocate-expert 101.3 107.3 ± 1.6 106.5 ± 2.5 95.0 3.4 ± 4.5 47.8 ± 13.5 -0.3 ± 0.0 106.6 ± 3.2

Average w/o expert 11.7 18.0 20.8 11.7 1.0 9.6 17.4 25.5

Average 36.7 49.9 53.4 40.3 12.9 41.0 21.9 58.6
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D Feature Normalization

Table 19: Average normalized score over the final evaluation and ten unseen training seeds on D4RL
tasks for 2 types of normalization: LayerNorm (LN) and Feature Norm (FN). The symbol ± represents
the standard deviation across the seeds. For both variatns we tune hyperparameters using the same
grid.

Task Name ReBRAC + LN ReBRAC + FN

halfcheetah-random 29.5 ± 1.5 31.4 ± 2.7
halfcheetah-medium 65.6 ± 1.0 66.1 ± 1.2
halfcheetah-expert 105.9 ± 1.7 104.1 ± 3.7
halfcheetah-medium-expert 101.1 ± 5.2 100.9 ± 4.7
halfcheetah-medium-replay 51.0 ± 0.8 54.7 ± 1.0
halfcheetah-full-replay 82.1 ± 1.1 81.5 ± 1.6

hopper-random 8.1 ± 2.4 8.2 ± 2.2
hopper-medium 102.0 ± 1.0 102.4 ± 0.2
hopper-expert 100.1 ± 8.3 99.7 ± 11.7
hopper-medium-expert 107.0 ± 6.4 107.7 ± 6.4
hopper-medium-replay 98.1 ± 5.3 91.0 ± 15.3
hopper-full-replay 107.1 ± 0.4 106.7 ± 0.5

walker2d-random 18.4 ± 4.5 0.0 ± 0.7
walker2d-medium 82.5 ± 3.6 81.8 ± 4.7
walker2d-expert 112.3 ± 0.2 110.7 ± 3.2
walker2d-medium-expert 111.6 ± 0.3 100.6 ± 34.3
walker2d-medium-replay 77.3 ± 7.9 80.2 ± 8.1
walker2d-full-replay 102.2 ± 1.7 101.2 ± 2.7

Gym-MuJoCo average 81.2 79.3

antmaze-umaze 97.8 ± 1.0 96.8 ± 1.6
antmaze-umaze-diverse 88.3 ± 13.0 88.5 ± 7.5
antmaze-medium-play 84.0 ± 4.2 84.1 ± 10.1
antmaze-medium-diverse 76.3 ± 13.5 75.6 ± 13.7
antmaze-large-play 60.4 ± 26.1 55.0 ± 30.0
antmaze-large-diverse 54.4 ± 25.1 66.4 ± 7.4

AntMaze average 76.8 77.7

pen-human 103.5 ± 14.1 107.0 ± 13.8
pen-cloned 91.8 ± 21.7 84.9 ± 20.1
pen-expert 154.1 ± 5.4 151.6 ± 4.7

door-human 0.0 ± 0.1 0.0 ± 0.0
door-cloned 1.1 ± 2.6 0.1 ± 0.1
door-expert 104.6 ± 2.4 105.1 ± 1.4

hammer-human 0.2 ± 0.2 0.2 ± 0.1
hammer-cloned 6.7 ± 3.7 10.1 ± 9.5
hammer-expert 133.8 ± 0.7 133.4 ± 1.5

relocate-human 0.0 ± 0.0 0.0 ± 0.0
relocate-cloned 0.9 ± 1.6 1.2 ± 1.9
relocate-expert 106.6 ± 3.2 108.7 ± 3.0

Adroit average w/o expert 25.5 25.4

Adroit average 58.6 58.5
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E Computational costs

Table 20: Computational costs for algorithms in Table 2.

Algorithm Number of runs Approximate hours per run

TD3+BC, tuning 360 0.3
IQL, tuning 1440 1.8
ReBRAC, tuning 1440 0.4

TD3+BC, eval 180 0.2
IQL, eval 180 1.8
SAC-RND, eval 180 1.8
ReBRAC, eval 180 0.4

Sum 3960 4032.0

Table 21: Computational costs for algorithms in Table 3 and Table 17.

Algorithm Number of runs Approximate hours per run

TD3+BC, tuning 96 0.5
IQL, tuning 480 2.1
ReBRAC, tuning 384 0.6

TD3+BC, eval 60 0.5
IQL, eval 60 2.0
SAC-RND, eval 60 2.9
MSG, eval 60 5.1
ReBRAC, eval 60 0.4

Sum 1260 1940.4

Table 22: Computational costs for algorithms in Table 4.

Algorithm Number of runs Approximate hours per run

TD3+BC, tuning 240 0.3
IQL, tuning 960 1.8
SAC-RND, tuning 1200 1.1
ReBRAC, tuning 960 0.3

TD3+BC, eval 120 0.2
IQL, eval 120 1.9
SAC-RND, eval 120 1.1
ReBRAC, eval 120 0.3

Sum 3840 3828.0

Table 23: Computational costs for algorithms in Table 5.

Algorithm Number of runs Approximate hours per run

ReBRAC, tuning 600 10.6

ReBRAC, eval 75 10.5

Sum 675 7147.5
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Table 24: Computational costs for algorithms in Table 8 and Figure 2.

Algorithm Number of runs Approximate hours per run

ReBRAC, ablations eval 1104 1.4

Sum 1104 1545.6

F Expected Online Performance

Table 25: TD3+BC, IQL and ReBRAC Expected Online Performance under uniform policy selection
on HalfCheetah tasks.

random medium expert medium-expert medium-replay full-replay

Policies TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC

1 14.6 ± 9.3 10.2 ± 6.8 17.6 ± 8.2 48.0 ± 5.8 48.0 ± 1.3 56.1 ± 6.3 59.5 ± 40.5 93.9 ± 4.2 90.7 ± 21.5 68.1 ± 31.4 87.7 ± 5.5 97.7 ± 6.8 34.7 ± 14.2 43.4 ± 1.3 47.7 ± 3.0 67.7 ± 12.5 73.1 ± 1.9 78.7 ± 3.3
2 19.8 ± 8.0 14.1 ± 5.9 22.2 ± 7.0 51.1 ± 5.4 48.8 ± 1.1 59.6 ± 5.8 80.4 ± 28.1 95.6 ± 1.5 100.8 ± 11.4 83.7 ± 18.1 90.8 ± 3.7 101.2 ± 3.8 41.5 ± 7.7 44.2 ± 0.8 49.4 ± 2.6 73.8 ± 7.0 74.1 ± 1.1 80.5 ± 2.6
3 22.5 ± 6.8 16.1 ± 4.6 24.6 ± 5.9 52.9 ± 5.0 49.1 ± 0.9 61.6 ± 4.9 88.2 ± 18.1 96.0 ± 0.8 103.6 ± 6.0 88.5 ± 10.1 92.0 ± 2.7 102.4 ± 2.4 43.6 ± 4.2 44.4 ± 0.6 50.3 ± 2.1 75.8 ± 4.2 74.5 ± 0.8 81.4 ± 2.0
4 24.2 ± 5.7 17.2 ± 3.6 26.1 ± 4.9 54.0 ± 4.7 49.4 ± 0.7 62.8 ± 4.2 91.3 ± 11.5 96.2 ± 0.5 104.7 ± 3.5 90.3 ± 5.9 92.7 ± 2.2 102.9 ± 1.9 44.5 ± 2.6 44.6 ± 0.4 50.8 ± 1.6 76.7 ± 3.1 74.7 ± 0.7 81.9 ± 1.6
5 25.3 ± 4.8 17.9 ± 2.8 27.0 ± 4.1 54.9 ± 4.3 49.5 ± 0.6 63.6 ± 3.5 92.7 ± 7.3 96.3 ± 0.4 105.2 ± 2.5 91.0 ± 3.6 93.2 ± 1.8 103.3 ± 1.6 44.9 ± 1.8 44.6 ± 0.4 51.1 ± 1.3 77.3 ± 2.5 74.9 ± 0.6 82.2 ± 1.2
6 - 18.4 ± 2.3 27.7 ± 3.4 - 49.6 ± 0.5 64.1 ± 3.0 - 96.3 ± 0.3 105.6 ± 2.1 - 93.5 ± 1.5 103.5 ± 1.5 - 44.7 ± 0.3 51.3 ± 1.1 - 75.0 ± 0.5 82.3 ± 1.0
7 - 18.7 ± 1.8 28.1 ± 2.9 - 49.7 ± 0.5 64.5 ± 2.6 - 96.4 ± 0.3 105.9 ± 1.9 - 93.7 ± 1.3 103.7 ± 1.4 - 44.8 ± 0.3 51.4 ± 0.9 - 75.0 ± 0.5 82.5 ± 0.8
8 - 18.9 ± 1.5 28.5 ± 2.5 - 49.7 ± 0.4 64.8 ± 2.3 - 96.4 ± 0.3 106.1 ± 1.7 - 93.8 ± 1.1 103.9 ± 1.4 - 44.8 ± 0.2 51.5 ± 0.7 - 75.1 ± 0.5 82.6 ± 0.7
9 - 19.0 ± 1.3 28.7 ± 2.1 - 49.8 ± 0.4 65.0 ± 2.0 - 96.4 ± 0.2 106.3 ± 1.6 - 93.9 ± 1.0 104.0 ± 1.3 - 44.8 ± 0.2 51.6 ± 0.7 - 75.1 ± 0.4 82.6 ± 0.6

10 - 19.1 ± 1.1 28.9 ± 1.8 - 49.8 ± 0.4 65.2 ± 1.7 - 96.5 ± 0.2 106.4 ± 1.5 - 94.0 ± 0.9 104.1 ± 1.3 - 44.8 ± 0.2 51.6 ± 0.6 - 75.2 ± 0.4 82.7 ± 0.6
11 - 19.2 ± 0.9 29.0 ± 1.6 - 49.9 ± 0.4 65.3 ± 1.5 - 96.5 ± 0.2 106.6 ± 1.3 - 94.1 ± 0.8 104.2 ± 1.3 - 44.8 ± 0.2 51.7 ± 0.6 - 75.2 ± 0.4 82.7 ± 0.5
12 - 19.3 ± 0.8 29.2 ± 1.4 - 49.9 ± 0.3 65.4 ± 1.3 - 96.5 ± 0.2 106.7 ± 1.2 - 94.2 ± 0.7 104.3 ± 1.3 - 44.9 ± 0.2 51.7 ± 0.5 - 75.2 ± 0.4 82.8 ± 0.4
13 - 19.3 ± 0.7 29.2 ± 1.2 - 49.9 ± 0.3 65.5 ± 1.1 - 96.5 ± 0.2 106.8 ± 1.1 - 94.2 ± 0.7 104.4 ± 1.3 - 44.9 ± 0.2 51.7 ± 0.5 - 75.3 ± 0.4 82.8 ± 0.4
14 - 19.4 ± 0.6 29.3 ± 1.1 - 49.9 ± 0.3 65.5 ± 1.0 - 96.5 ± 0.2 106.8 ± 1.1 - 94.3 ± 0.6 104.4 ± 1.2 - 44.9 ± 0.1 51.8 ± 0.5 - 75.3 ± 0.3 82.8 ± 0.4
15 - 19.4 ± 0.5 29.4 ± 1.0 - 49.9 ± 0.3 65.6 ± 0.9 - 96.5 ± 0.2 106.9 ± 1.0 - 94.3 ± 0.6 104.5 ± 1.2 - 44.9 ± 0.1 51.8 ± 0.5 - 75.3 ± 0.3 82.9 ± 0.3
16 - 19.5 ± 0.5 29.4 ± 0.9 - 50.0 ± 0.3 65.6 ± 0.8 - 96.5 ± 0.1 107.0 ± 0.9 - 94.4 ± 0.5 104.6 ± 1.2 - 44.9 ± 0.1 51.8 ± 0.5 - 75.3 ± 0.3 82.9 ± 0.3
17 - 19.5 ± 0.4 29.5 ± 0.9 - 50.0 ± 0.3 65.7 ± 0.7 - 96.6 ± 0.1 107.0 ± 0.8 - 94.4 ± 0.5 104.6 ± 1.2 - 44.9 ± 0.1 51.9 ± 0.5 - 75.3 ± 0.3 82.9 ± 0.3
18 - 19.5 ± 0.4 29.5 ± 0.8 - 50.0 ± 0.3 65.7 ± 0.6 - 96.6 ± 0.1 107.1 ± 0.8 - 94.4 ± 0.5 104.7 ± 1.2 - 44.9 ± 0.1 51.9 ± 0.5 - 75.4 ± 0.3 82.9 ± 0.2
19 - 19.5 ± 0.4 29.6 ± 0.8 - 50.0 ± 0.3 65.7 ± 0.5 - 96.6 ± 0.1 107.1 ± 0.7 - 94.4 ± 0.5 104.7 ± 1.1 - 44.9 ± 0.1 51.9 ± 0.4 - 75.4 ± 0.3 82.9 ± 0.2
20 - 19.5 ± 0.3 29.6 ± 0.7 - 50.0 ± 0.3 65.7 ± 0.5 - 96.6 ± 0.1 107.1 ± 0.7 - 94.5 ± 0.4 104.8 ± 1.1 - 44.9 ± 0.1 51.9 ± 0.4 - 75.4 ± 0.3 82.9 ± 0.2
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(a) halfcheetah-random EOP.
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(b) halfcheetah-medium EOP.
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(c) halfcheetah-expert EOP.
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(d) halfcheetah-medium-expert
EOP.
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(e) halfcheetah-medium-replay
EOP.
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(f) halfcheetah-full-replay EOP.

Figure 3: TD3+BC, IQL and ReBRAC visualised Expected Online Performance under uniform
policy selection on HalfCheetah tasks.

Table 26: TD3+BC, IQL and ReBRAC Expected Online Performance under uniform policy selection
on Hopper tasks.

random medium expert medium-expert medium-replay full-replay

Policies TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC

1 8.3 ± 4.5 7.5 ± 1.3 7.5 ± 0.9 39.8 ± 33.0 59.0 ± 4.9 69.5 ± 32.6 72.2 ± 47.1 96.6 ± 17.3 58.3 ± 40.5 55.0 ± 45.5 83.3 ± 28.4 58.7 ± 39.8 62.5 ± 14.9 63.8 ± 28.3 67.2 ± 28.4 68.7 ± 27.6 94.5 ± 20.8 96.7 ± 17.8
2 10.8 ± 4.1 8.1 ± 1.4 8.0 ± 0.5 57.7 ± 27.1 61.8 ± 3.8 86.6 ± 19.7 96.2 ± 32.3 105.8 ± 10.5 80.7 ± 30.8 79.3 ± 36.3 98.5 ± 17.5 81.1 ± 31.4 70.7 ± 10.2 78.9 ± 19.5 82.7 ± 22.8 83.7 ± 25.7 104.0 ± 9.9 104.5 ± 7.2
3 12.2 ± 3.7 8.4 ± 1.6 8.1 ± 0.4 66.5 ± 20.8 63.1 ± 3.2 92.8 ± 12.8 105.0 ± 20.6 109.0 ± 6.4 90.8 ± 22.1 90.9 ± 26.5 104.1 ± 11.8 91.8 ± 23.8 74.0 ± 7.1 85.2 ± 14.2 90.1 ± 16.6 92.2 ± 22.0 106.2 ± 4.7 106.2 ± 3.4
4 13.1 ± 3.4 8.7 ± 1.7 8.2 ± 0.3 71.4 ± 16.3 63.9 ± 2.9 95.9 ± 9.3 108.4 ± 13.0 110.3 ± 4.1 95.9 ± 16.0 96.8 ± 19.3 106.7 ± 8.3 97.5 ± 18.2 75.6 ± 5.3 88.6 ± 11.5 93.9 ± 11.8 97.4 ± 18.4 107.0 ± 2.5 106.9 ± 1.9
5 13.7 ± 3.1 8.9 ± 1.8 8.3 ± 0.2 74.4 ± 13.3 64.5 ± 2.6 97.7 ± 7.3 109.8 ± 8.2 111.0 ± 2.7 98.7 ± 11.8 100.2 ± 14.6 108.1 ± 6.1 101.0 ± 14.3 76.5 ± 4.0 90.8 ± 9.9 95.8 ± 8.4 100.8 ± 15.3 107.3 ± 1.5 107.2 ± 1.3
6 - 9.2 ± 1.8 8.3 ± 0.2 - 64.9 ± 2.4 98.8 ± 5.9 - 111.4 ± 2.0 100.3 ± 8.9 - 108.9 ± 4.5 103.2 ± 11.4 - 92.3 ± 8.7 97.0 ± 6.1 - 107.5 ± 1.1 107.4 ± 0.9
7 - 9.4 ± 1.8 8.3 ± 0.2 - 65.3 ± 2.1 99.6 ± 4.9 - 111.6 ± 1.5 101.4 ± 6.9 - 109.5 ± 3.5 104.8 ± 9.4 - 93.5 ± 7.7 97.6 ± 4.5 - 107.6 ± 0.9 107.5 ± 0.7
8 - 9.5 ± 1.8 8.4 ± 0.2 - 65.5 ± 2.0 100.2 ± 4.2 - 111.8 ± 1.2 102.1 ± 5.5 - 109.8 ± 2.8 105.8 ± 7.8 - 94.4 ± 6.8 98.1 ± 3.4 - 107.8 ± 0.8 107.5 ± 0.5
9 - 9.7 ± 1.8 8.4 ± 0.2 - 65.8 ± 1.8 100.6 ± 3.6 - 111.9 ± 1.0 102.7 ± 4.6 - 110.1 ± 2.4 106.6 ± 6.7 - 95.0 ± 6.0 98.4 ± 2.6 - 107.8 ± 0.7 107.6 ± 0.4

10 - 9.9 ± 1.8 8.4 ± 0.2 - 65.9 ± 1.7 100.9 ± 3.1 - 112.0 ± 0.9 103.1 ± 3.9 - 110.3 ± 2.2 107.3 ± 5.8 - 95.6 ± 5.3 98.6 ± 2.1 - 107.9 ± 0.7 107.6 ± 0.4
11 - 10.0 ± 1.8 8.4 ± 0.1 - 66.1 ± 1.6 101.2 ± 2.7 - 112.0 ± 0.8 103.4 ± 3.5 - 110.4 ± 2.0 107.7 ± 5.1 - 96.0 ± 4.7 98.7 ± 1.8 - 108.0 ± 0.6 107.6 ± 0.3
12 - 10.1 ± 1.8 8.4 ± 0.1 - 66.2 ± 1.5 101.3 ± 2.3 - 112.1 ± 0.7 103.7 ± 3.2 - 110.6 ± 1.9 108.1 ± 4.5 - 96.3 ± 4.1 98.9 ± 1.5 - 108.0 ± 0.6 107.7 ± 0.3
13 - 10.2 ± 1.7 8.4 ± 0.1 - 66.3 ± 1.4 101.5 ± 2.0 - 112.2 ± 0.7 103.9 ± 2.9 - 110.7 ± 1.8 108.4 ± 4.0 - 96.5 ± 3.6 99.0 ± 1.4 - 108.1 ± 0.5 107.7 ± 0.2
14 - 10.3 ± 1.7 8.4 ± 0.1 - 66.4 ± 1.3 101.6 ± 1.8 - 112.2 ± 0.6 104.1 ± 2.8 - 110.8 ± 1.8 108.7 ± 3.6 - 96.7 ± 3.2 99.1 ± 1.2 - 108.1 ± 0.5 107.7 ± 0.2
15 - 10.4 ± 1.7 8.4 ± 0.1 - 66.5 ± 1.3 101.7 ± 1.6 - 112.2 ± 0.6 104.3 ± 2.6 - 110.9 ± 1.7 108.9 ± 3.3 - 96.9 ± 2.8 99.1 ± 1.1 - 108.1 ± 0.5 107.7 ± 0.2
16 - 10.5 ± 1.6 8.5 ± 0.1 - 66.6 ± 1.2 101.8 ± 1.4 - 112.3 ± 0.6 104.4 ± 2.5 - 111.0 ± 1.7 109.1 ± 3.0 - 97.0 ± 2.5 99.2 ± 1.1 - 108.2 ± 0.4 107.7 ± 0.1
17 - 10.6 ± 1.6 8.5 ± 0.1 - 66.6 ± 1.2 101.9 ± 1.3 - 112.3 ± 0.5 104.6 ± 2.4 - 111.1 ± 1.7 109.3 ± 2.7 - 97.1 ± 2.2 99.3 ± 1.0 - 108.2 ± 0.4 107.7 ± 0.1
18 - 10.7 ± 1.5 8.5 ± 0.1 - 66.7 ± 1.1 101.9 ± 1.2 - 112.3 ± 0.5 104.7 ± 2.3 - 111.2 ± 1.7 109.4 ± 2.5 - 97.2 ± 1.9 99.3 ± 1.0 - 108.2 ± 0.4 107.7 ± 0.1
19 - 10.8 ± 1.5 8.5 ± 0.1 - 66.8 ± 1.1 102.0 ± 1.1 - 112.4 ± 0.5 104.8 ± 2.2 - 111.2 ± 1.6 109.5 ± 2.3 - 97.3 ± 1.7 99.4 ± 0.9 - 108.2 ± 0.4 107.7 ± 0.1
20 - 10.8 ± 1.5 8.5 ± 0.1 - 66.8 ± 1.0 102.0 ± 1.0 - 112.4 ± 0.5 104.9 ± 2.1 - 111.3 ± 1.6 109.6 ± 2.1 - 97.3 ± 1.5 99.4 ± 0.9 - 108.2 ± 0.3 107.7 ± 0.1
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(a) hopper-random EOP.
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(b) hopper-medium EOP.
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(c) hopper-expert EOP.
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(d) hopper-medium-expert EOP.
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(e) hopper-medium-replay EOP.
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(f) hopper-full-replay EOP.

Figure 4: TD3+BC, IQL and ReBRAC visualised Expected Online Performance under uniform
policy selection on Hopper tasks.

Table 27: TD3+BC, IQL and ReBRAC Expected Online Performance under uniform policy selection
on Walker2d tasks.

random medium expert medium-expert medium-replay full-replay

Policies TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC

1 3.2 ± 1.0 6.3 ± 2.9 7.9 ± 6.5 41.3 ± 28.6 65.3 ± 17.8 54.1 ± 34.5 67.0 ± 52.4 110.3 ± 4.0 84.2 ± 45.7 70.9 ± 46.5 103.8 ± 12.2 83.2 ± 46.9 36.4 ± 25.2 51.9 ± 28.3 54.5 ± 26.0 78.9 ± 15.4 71.8 ± 28.7 86.1 ± 21.5
2 3.7 ± 0.8 7.8 ± 2.8 11.4 ± 6.6 57.0 ± 23.4 75.0 ± 13.0 72.5 ± 23.4 92.9 ± 39.0 112.1 ± 1.8 104.3 ± 25.4 94.8 ± 32.2 109.6 ± 6.4 103.8 ± 26.2 50.0 ± 19.0 67.5 ± 21.0 68.8 ± 18.7 87.1 ± 10.5 87.1 ± 17.9 96.2 ± 10.2
3 4.0 ± 0.7 8.8 ± 2.6 13.6 ± 6.3 64.7 ± 17.7 79.0 ± 8.7 79.6 ± 14.9 103.2 ± 26.0 112.7 ± 1.2 109.5 ± 13.0 103.7 ± 20.6 111.2 ± 3.3 109.2 ± 13.4 56.1 ± 13.8 74.2 ± 14.8 74.8 ± 13.1 90.3 ± 6.8 92.6 ± 11.1 99.0 ± 5.7
4 4.2 ± 0.6 9.4 ± 2.3 15.1 ± 5.9 68.9 ± 13.4 80.7 ± 5.8 82.6 ± 9.5 107.4 ± 16.8 113.0 ± 1.0 111.0 ± 6.6 107.3 ± 13.1 111.7 ± 1.7 110.7 ± 6.8 59.2 ± 10.5 77.4 ± 10.4 77.6 ± 9.2 91.6 ± 4.4 94.9 ± 7.2 100.3 ± 3.9
5 4.3 ± 0.4 9.9 ± 2.1 16.3 ± 5.4 71.3 ± 10.4 81.6 ± 3.9 83.9 ± 6.2 109.1 ± 10.7 113.2 ± 0.8 111.5 ± 3.4 108.8 ± 8.3 111.9 ± 0.9 111.2 ± 3.5 61.0 ± 8.5 79.1 ± 7.4 79.1 ± 6.5 92.3 ± 3.0 96.0 ± 4.8 101.0 ± 3.2
6 - 10.2 ± 1.9 17.2 ± 5.0 - 82.0 ± 2.7 84.6 ± 4.1 - 113.3 ± 0.7 111.7 ± 1.8 - 112.0 ± 0.6 111.4 ± 1.9 - 80.1 ± 5.4 80.0 ± 4.7 - 96.7 ± 3.4 101.5 ± 2.8
7 - 10.5 ± 1.7 17.9 ± 4.6 - 82.2 ± 1.9 85.0 ± 2.8 - 113.4 ± 0.6 111.8 ± 1.1 - 112.1 ± 0.4 111.5 ± 1.1 - 80.7 ± 4.1 80.5 ± 3.6 - 97.0 ± 2.5 101.9 ± 2.5
8 - 10.7 ± 1.6 18.4 ± 4.2 - 82.3 ± 1.3 85.2 ± 2.0 - 113.5 ± 0.6 111.9 ± 0.7 - 112.1 ± 0.3 111.6 ± 0.8 - 81.1 ± 3.2 80.9 ± 2.9 - 97.3 ± 1.9 102.1 ± 2.3
9 - 10.9 ± 1.4 18.9 ± 3.8 - 82.4 ± 0.9 85.3 ± 1.5 - 113.6 ± 0.5 111.9 ± 0.6 - 112.2 ± 0.3 111.7 ± 0.6 - 81.4 ± 2.6 81.2 ± 2.4 - 97.4 ± 1.5 102.4 ± 2.0

10 - 11.0 ± 1.3 19.3 ± 3.5 - 82.4 ± 0.7 85.4 ± 1.2 - 113.6 ± 0.5 112.0 ± 0.5 - 112.2 ± 0.3 111.7 ± 0.5 - 81.6 ± 2.1 81.4 ± 2.1 - 97.5 ± 1.2 102.5 ± 1.8
11 - 11.1 ± 1.3 19.6 ± 3.2 - 82.4 ± 0.5 85.5 ± 1.0 - 113.6 ± 0.4 112.0 ± 0.4 - 112.2 ± 0.3 111.7 ± 0.4 - 81.8 ± 1.9 81.5 ± 1.9 - 97.6 ± 1.0 102.7 ± 1.6
12 - 11.2 ± 1.2 19.8 ± 3.0 - 82.5 ± 0.3 85.6 ± 0.8 - 113.7 ± 0.4 112.0 ± 0.4 - 112.2 ± 0.3 111.8 ± 0.4 - 81.9 ± 1.7 81.7 ± 1.8 - 97.7 ± 0.9 102.8 ± 1.5
13 - 11.3 ± 1.1 20.1 ± 2.8 - 82.5 ± 0.3 85.6 ± 0.8 - 113.7 ± 0.4 112.0 ± 0.3 - 112.3 ± 0.2 111.8 ± 0.3 - 82.0 ± 1.5 81.8 ± 1.7 - 97.8 ± 0.7 102.9 ± 1.3
14 - 11.4 ± 1.0 20.2 ± 2.6 - 82.5 ± 0.2 85.7 ± 0.7 - 113.7 ± 0.3 112.1 ± 0.3 - 112.3 ± 0.2 111.8 ± 0.3 - 82.1 ± 1.4 81.9 ± 1.6 - 97.8 ± 0.7 103.0 ± 1.2
15 - 11.5 ± 1.0 20.4 ± 2.4 - 82.5 ± 0.1 85.7 ± 0.7 - 113.7 ± 0.3 112.1 ± 0.2 - 112.3 ± 0.2 111.8 ± 0.3 - 82.2 ± 1.3 82.0 ± 1.6 - 97.9 ± 0.6 103.0 ± 1.1
16 - 11.5 ± 0.9 20.6 ± 2.2 - 82.5 ± 0.1 85.8 ± 0.6 - 113.8 ± 0.3 112.1 ± 0.2 - 112.3 ± 0.2 111.8 ± 0.2 - 82.3 ± 1.2 82.1 ± 1.5 - 97.9 ± 0.5 103.1 ± 0.9
17 - 11.6 ± 0.9 20.7 ± 2.1 - 82.5 ± 0.1 85.8 ± 0.6 - 113.8 ± 0.3 112.1 ± 0.2 - 112.3 ± 0.2 111.9 ± 0.2 - 82.4 ± 1.2 82.2 ± 1.4 - 97.9 ± 0.5 103.1 ± 0.8
18 - 11.6 ± 0.8 20.8 ± 1.9 - 82.5 ± 0.1 85.8 ± 0.6 - 113.8 ± 0.3 112.1 ± 0.2 - 112.3 ± 0.2 111.9 ± 0.2 - 82.4 ± 1.1 82.3 ± 1.4 - 97.9 ± 0.5 103.2 ± 0.8
19 - 11.7 ± 0.8 20.9 ± 1.8 - 82.5 ± 0.1 85.9 ± 0.6 - 113.8 ± 0.2 112.1 ± 0.1 - 112.3 ± 0.2 111.9 ± 0.2 - 82.5 ± 1.0 82.3 ± 1.3 - 98.0 ± 0.4 103.2 ± 0.7
20 - 11.7 ± 0.7 21.0 ± 1.7 - 82.5 ± 0.1 85.9 ± 0.5 - 113.8 ± 0.2 112.1 ± 0.1 - 112.3 ± 0.2 111.9 ± 0.2 - 82.5 ± 1.0 82.4 ± 1.3 - 98.0 ± 0.4 103.2 ± 0.6
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(a) walker2d-random EOP.
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(b) walker2d-medium EOP.
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(c) walker2d-expert EOP.
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(d) walker2d-medium-expert EOP.
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(e) walker2d-medium-replay EOP.
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(f) walker2d-full-replay EOP.

Figure 5: TD3+BC, IQL and ReBRAC visualised Expected Online Performance under uniform
policy selection on Walker2d tasks.
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Table 28: TD3+BC, IQL and ReBRAC Expected Online Performance under uniform policy selection
on AntMaze tasks.

umaze medium-play large-play umaze-diverse medium-diverse large-diverse

Policies TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC

1 12.4 ± 24.8 64.3 ± 12.0 87.5 ± 10.9 7.5 ± 11.7 22.7 ± 29.5 75.0 ± 14.8 0.0 ± 0.0 10.9 ± 16.2 52.7 ± 21.4 9.6 ± 19.2 52.8 ± 11.1 70.4 ± 16.2 11.9 ± 13.8 21.3 ± 26.8 65.3 ± 26.3 0.2 ± 0.2 6.7 ± 10.3 56.8 ± 17.0
2 22.3 ± 29.8 71.1 ± 9.2 93.2 ± 6.2 13.0 ± 13.3 37.5 ± 30.9 82.7 ± 8.9 0.0 ± 0.0 18.6 ± 17.8 64.1 ± 13.0 17.3 ± 23.0 58.7 ± 11.3 79.3 ± 11.2 19.2 ± 14.0 35.0 ± 27.7 79.2 ± 16.0 0.3 ± 0.2 11.6 ± 11.6 66.2 ± 11.3
3 30.3 ± 31.0 74.3 ± 7.5 95.1 ± 3.7 17.0 ± 13.2 47.4 ± 28.5 85.4 ± 5.7 0.0 ± 0.0 24.0 ± 16.9 68.5 ± 9.3 23.4 ± 24.0 62.5 ± 10.4 83.1 ± 8.4 23.8 ± 12.7 44.0 ± 25.1 84.2 ± 9.8 0.4 ± 0.2 15.2 ± 11.4 70.1 ± 8.5
4 36.6 ± 30.5 76.2 ± 6.5 96.0 ± 2.4 20.0 ± 12.6 54.1 ± 25.0 86.7 ± 4.2 0.0 ± 0.0 27.9 ± 15.3 70.8 ± 7.3 28.3 ± 23.6 65.1 ± 9.3 85.2 ± 7.0 26.9 ± 11.1 50.0 ± 21.7 86.4 ± 6.6 0.4 ± 0.2 17.9 ± 10.6 72.2 ± 7.0
5 41.7 ± 29.1 77.5 ± 5.9 96.4 ± 1.8 22.2 ± 11.7 58.7 ± 21.4 87.5 ± 3.5 0.0 ± 0.0 30.8 ± 13.6 72.2 ± 6.0 32.3 ± 22.5 67.0 ± 8.2 86.5 ± 6.3 29.0 ± 9.7 54.0 ± 18.4 87.6 ± 4.9 0.5 ± 0.1 19.9 ± 9.7 73.5 ± 6.2
6 - 78.4 ± 5.4 96.7 ± 1.4 - 61.9 ± 18.2 88.1 ± 3.2 - 32.8 ± 11.8 73.1 ± 4.9 - 68.4 ± 7.3 87.6 ± 5.7 - 56.8 ± 15.4 88.4 ± 3.9 - 21.5 ± 8.8 74.5 ± 5.7
7 - 79.2 ± 4.9 96.9 ± 1.1 - 64.1 ± 15.3 88.5 ± 2.9 - 34.3 ± 10.3 73.7 ± 4.1 - 69.4 ± 6.4 88.4 ± 5.3 - 58.8 ± 12.9 88.9 ± 3.2 - 22.7 ± 8.0 75.3 ± 5.4
8 - 79.8 ± 4.6 97.0 ± 0.9 - 65.7 ± 12.8 88.9 ± 2.7 - 35.5 ± 8.9 74.2 ± 3.5 - 70.2 ± 5.7 89.0 ± 4.9 - 60.1 ± 10.7 89.3 ± 2.8 - 23.7 ± 7.2 75.9 ± 5.1
9 - 80.3 ± 4.3 97.1 ± 0.7 - 66.8 ± 10.7 89.2 ± 2.5 - 36.3 ± 7.7 74.5 ± 2.9 - 70.8 ± 5.1 89.5 ± 4.5 - 61.1 ± 9.0 89.6 ± 2.4 - 24.4 ± 6.5 76.5 ± 4.9

10 - 80.7 ± 4.0 97.1 ± 0.6 - 67.6 ± 9.0 89.4 ± 2.4 - 37.0 ± 6.7 74.8 ± 2.5 - 71.3 ± 4.6 89.9 ± 4.2 - 61.8 ± 7.5 89.8 ± 2.1 - 25.1 ± 5.9 76.9 ± 4.7
11 - 81.1 ± 3.8 97.2 ± 0.6 - 68.2 ± 7.5 89.6 ± 2.2 - 37.5 ± 5.9 75.0 ± 2.1 - 71.7 ± 4.2 90.3 ± 3.9 - 62.4 ± 6.3 90.0 ± 1.9 - 25.6 ± 5.4 77.3 ± 4.6
12 - 81.4 ± 3.5 97.2 ± 0.5 - 68.7 ± 6.3 89.8 ± 2.1 - 37.9 ± 5.2 75.1 ± 1.8 - 72.0 ± 3.8 90.6 ± 3.6 - 62.8 ± 5.3 90.1 ± 1.6 - 26.0 ± 4.9 77.7 ± 4.4
13 - 81.6 ± 3.3 97.3 ± 0.4 - 69.0 ± 5.2 90.0 ± 2.0 - 38.2 ± 4.6 75.2 ± 1.6 - 72.3 ± 3.5 90.9 ± 3.3 - 63.0 ± 4.5 90.3 ± 1.5 - 26.4 ± 4.5 78.0 ± 4.3
14 - 81.9 ± 3.1 97.3 ± 0.4 - 69.2 ± 4.4 90.1 ± 1.9 - 38.5 ± 4.2 75.3 ± 1.4 - 72.6 ± 3.2 91.1 ± 3.1 - 63.3 ± 3.8 90.4 ± 1.3 - 26.7 ± 4.2 78.3 ± 4.1
15 - 82.1 ± 3.0 97.3 ± 0.4 - 69.4 ± 3.7 90.2 ± 1.8 - 38.8 ± 3.8 75.4 ± 1.2 - 72.8 ± 3.0 91.3 ± 2.9 - 63.5 ± 3.2 90.4 ± 1.2 - 27.0 ± 3.9 78.5 ± 4.0
16 - 82.2 ± 2.8 97.3 ± 0.3 - 69.5 ± 3.1 90.3 ± 1.7 - 39.0 ± 3.5 75.4 ± 1.1 - 72.9 ± 2.8 91.4 ± 2.7 - 63.6 ± 2.8 90.5 ± 1.1 - 27.2 ± 3.6 78.7 ± 3.9
17 - 82.4 ± 2.7 - - 69.6 ± 2.6 - - 39.1 ± 3.3 - - 73.1 ± 2.7 - - 63.7 ± 2.4 - - 27.4 ± 3.4 -
18 - 82.5 ± 2.5 - - 69.7 ± 2.2 - - 39.3 ± 3.1 - - 73.2 ± 2.5 - - 63.8 ± 2.1 - - 27.6 ± 3.2 -
19 - 82.7 ± 2.4 - - 69.8 ± 1.9 - - 39.4 ± 2.9 - - 73.4 ± 2.4 - - 63.9 ± 1.8 - - 27.7 ± 3.0 -
20 - 82.8 ± 2.3 - - 69.8 ± 1.6 - - 39.6 ± 2.8 - - 73.5 ± 2.3 - - 64.0 ± 1.6 - - 27.9 ± 2.9 -
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(a) antmaze-umaze EOP.
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(b) antmaze-medium-play EOP.
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(c) antmaze-large-play EOP.
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(d) antmaze-umaze-diverse EOP.
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(e) antmaze-medium-diverse EOP.
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(f) antmaze-large-diverse EOP.

Figure 6: TD3+BC, IQL and ReBRAC visualised Expected Online Performance under uniform
policy selection on AntMaze tasks.

Table 29: TD3+BC, IQL and ReBRAC Expected Online Performance under uniform policy selection
on Pen tasks.

human cloned expert

Policies TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC

1 42.9 ± 32.0 87.1 ± 4.1 69.9 ± 28.2 33.6 ± 23.2 73.8 ± 5.8 65.8 ± 32.7 73.9 ± 65.2 130.1 ± 2.8 136.9 ± 25.4
2 60.4 ± 25.4 89.4 ± 2.9 85.8 ± 20.7 44.9 ± 25.4 76.7 ± 4.8 83.6 ± 21.8 108.9 ± 52.9 131.7 ± 2.1 149.0 ± 13.6
3 68.7 ± 18.9 90.3 ± 2.5 92.8 ± 14.8 52.6 ± 25.2 78.0 ± 4.9 90.8 ± 15.4 125.6 ± 38.7 132.4 ± 1.8 152.4 ± 7.0
4 73.0 ± 14.2 90.9 ± 2.2 96.3 ± 10.9 58.1 ± 24.1 79.0 ± 5.2 94.6 ± 12.2 134.1 ± 27.8 132.8 ± 1.6 153.5 ± 3.8
5 75.6 ± 11.2 91.4 ± 2.0 98.4 ± 8.3 62.3 ± 22.6 79.7 ± 5.4 97.0 ± 10.4 138.5 ± 20.0 133.1 ± 1.5 154.1 ± 2.2
6 - 91.7 ± 1.8 99.7 ± 6.5 - 80.3 ± 5.5 98.7 ± 9.3 - 133.4 ± 1.4 154.3 ± 1.5
7 - 92.0 ± 1.7 100.5 ± 5.2 - 80.9 ± 5.6 100.0 ± 8.4 - 133.6 ± 1.3 154.5 ± 1.1
8 - 92.2 ± 1.6 101.1 ± 4.4 - 81.4 ± 5.7 101.1 ± 7.6 - 133.7 ± 1.2 154.7 ± 0.9
9 - 92.3 ± 1.4 101.6 ± 3.7 - 81.9 ± 5.8 101.9 ± 7.0 - 133.9 ± 1.1 154.8 ± 0.8

10 - 92.5 ± 1.3 101.9 ± 3.3 - 82.3 ± 5.9 102.6 ± 6.4 - 134.0 ± 1.0 154.8 ± 0.7
11 - 92.6 ± 1.2 102.2 ± 2.9 - 82.7 ± 5.9 103.1 ± 5.9 - 134.1 ± 0.9 154.9 ± 0.6
12 - 92.7 ± 1.2 102.4 ± 2.6 - 83.0 ± 5.9 103.6 ± 5.4 - 134.1 ± 0.9 154.9 ± 0.6
13 - 92.8 ± 1.1 102.6 ± 2.4 - 83.4 ± 5.9 104.0 ± 5.0 - 134.2 ± 0.8 155.0 ± 0.5
14 - 92.9 ± 1.0 102.8 ± 2.2 - 83.7 ± 5.9 104.4 ± 4.6 - 134.2 ± 0.7 155.0 ± 0.5
15 - 92.9 ± 1.0 102.9 ± 2.0 - 84.0 ± 5.8 104.7 ± 4.3 - 134.3 ± 0.7 155.0 ± 0.4
16 - 93.0 ± 0.9 103.0 ± 1.8 - 84.3 ± 5.8 104.9 ± 4.0 - 134.3 ± 0.6 155.1 ± 0.4
17 - 93.0 ± 0.9 103.1 ± 1.7 - 84.6 ± 5.7 105.1 ± 3.8 - 134.4 ± 0.6 155.1 ± 0.4
18 - 93.1 ± 0.8 103.2 ± 1.6 - 84.8 ± 5.7 105.3 ± 3.5 - 134.4 ± 0.6 155.1 ± 0.4
19 - 93.1 ± 0.8 103.3 ± 1.4 - 85.0 ± 5.6 105.5 ± 3.3 - 134.4 ± 0.5 155.1 ± 0.4
20 - 93.2 ± 0.8 103.3 ± 1.3 - 85.3 ± 5.5 105.7 ± 3.1 - 134.5 ± 0.5 155.1 ± 0.4
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(a) pen-human EOP.
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(b) pen-cloned EOP.
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(c) pen-expert EOP.

Figure 7: TD3+BC, IQL and ReBRAC visualised Expected Online Performance under uniform
policy selection on Pen tasks.

Table 30: TD3+BC, IQL and ReBRAC Expected Online Performance under uniform policy selection
on Door tasks.

human cloned expert

Policies TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC

1 -0.2 ± 0.1 4.4 ± 1.2 -0.1 ± 0.1 -0.1 ± 0.3 1.6 ± 0.8 0.3 ± 0.9 50.7 ± 46.3 102.1 ± 5.7 75.4 ± 43.0
2 -0.1 ± 0.1 5.0 ± 1.0 -0.0 ± 0.1 0.0 ± 0.3 2.0 ± 0.6 0.6 ± 1.2 75.6 ± 39.5 104.7 ± 2.5 96.1 ± 25.0
3 -0.1 ± 0.1 5.4 ± 1.0 -0.0 ± 0.0 0.1 ± 0.3 2.2 ± 0.5 0.8 ± 1.4 88.2 ± 30.4 105.4 ± 1.3 102.3 ± 13.5
4 -0.1 ± 0.1 5.6 ± 0.9 -0.0 ± 0.0 0.2 ± 0.3 2.4 ± 0.4 1.0 ± 1.6 94.9 ± 22.9 105.7 ± 0.8 104.4 ± 7.3
5 -0.1 ± 0.1 5.8 ± 0.9 -0.0 ± 0.0 0.2 ± 0.3 2.5 ± 0.4 1.2 ± 1.7 98.6 ± 17.2 105.8 ± 0.6 105.2 ± 4.1
6 - 5.9 ± 0.9 0.0 ± 0.0 - 2.5 ± 0.3 1.3 ± 1.8 - 105.9 ± 0.5 105.6 ± 2.4
7 - 6.0 ± 0.9 0.0 ± 0.0 - 2.6 ± 0.3 1.5 ± 1.8 - 106.0 ± 0.5 105.8 ± 1.5
8 - 6.1 ± 0.8 0.0 ± 0.0 - 2.6 ± 0.3 1.6 ± 1.9 - 106.1 ± 0.4 105.9 ± 1.0
9 - 6.2 ± 0.8 0.0 ± 0.0 - 2.6 ± 0.2 1.8 ± 1.9 - 106.1 ± 0.4 105.9 ± 0.7

10 - 6.3 ± 0.8 0.0 ± 0.0 - 2.7 ± 0.2 1.9 ± 1.9 - 106.1 ± 0.4 106.0 ± 0.5
11 - 6.4 ± 0.8 0.0 ± 0.0 - 2.7 ± 0.2 2.0 ± 2.0 - 106.2 ± 0.4 106.0 ± 0.4
12 - 6.4 ± 0.7 0.0 ± 0.0 - 2.7 ± 0.2 2.2 ± 2.0 - 106.2 ± 0.3 106.0 ± 0.3
13 - 6.5 ± 0.7 0.0 ± 0.0 - 2.7 ± 0.2 2.3 ± 2.0 - 106.2 ± 0.3 106.0 ± 0.2
14 - 6.5 ± 0.7 0.0 ± 0.0 - 2.7 ± 0.2 2.4 ± 2.0 - 106.2 ± 0.3 106.0 ± 0.2
15 - 6.6 ± 0.7 0.0 ± 0.0 - 2.7 ± 0.2 2.5 ± 2.0 - 106.3 ± 0.3 106.0 ± 0.2
16 - 6.6 ± 0.6 0.0 ± 0.0 - 2.7 ± 0.2 2.6 ± 1.9 - 106.3 ± 0.3 106.1 ± 0.2
17 - 6.6 ± 0.6 0.0 ± 0.0 - 2.8 ± 0.2 2.7 ± 1.9 - 106.3 ± 0.3 106.1 ± 0.2
18 - 6.7 ± 0.6 0.0 ± 0.0 - 2.8 ± 0.2 2.7 ± 1.9 - 106.3 ± 0.3 106.1 ± 0.1
19 - 6.7 ± 0.6 0.0 ± 0.0 - 2.8 ± 0.2 2.8 ± 1.9 - 106.3 ± 0.3 106.1 ± 0.1
20 - 6.7 ± 0.5 0.0 ± 0.0 - 2.8 ± 0.2 2.9 ± 1.9 - 106.3 ± 0.2 106.1 ± 0.1
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(a) door-human EOP.
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(b) door-cloned EOP.
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(c) door-expert EOP.

Figure 8: TD3+BC, IQL and ReBRAC visualised Expected Online Performance under uniform
policy selection on Door tasks.
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Table 31: TD3+BC, IQL and ReBRAC Expected Online Performance under uniform policy selection
on Hammer tasks.

human cloned expert

Policies TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC

1 0.2 ± 0.0 1.6 ± 0.4 0.3 ± 0.2 1.1 ± 0.8 1.9 ± 1.1 4.5 ± 5.5 60.2 ± 55.4 128.7 ± 1.1 101.9 ± 49.9
2 0.3 ± 0.0 1.8 ± 0.4 0.3 ± 0.2 1.6 ± 0.8 2.5 ± 1.1 7.3 ± 6.1 90.0 ± 48.4 129.3 ± 0.9 124.3 ± 26.8
3 0.3 ± 0.0 1.9 ± 0.4 0.4 ± 0.2 1.8 ± 0.7 2.8 ± 1.0 9.2 ± 6.2 105.7 ± 38.1 129.6 ± 0.7 130.1 ± 13.6
4 0.3 ± 0.0 2.0 ± 0.4 0.4 ± 0.2 2.0 ± 0.6 3.1 ± 0.9 10.6 ± 6.2 114.3 ± 29.3 129.7 ± 0.5 131.9 ± 7.0
5 0.3 ± 0.0 2.1 ± 0.4 0.5 ± 0.2 2.1 ± 0.6 3.3 ± 0.9 11.7 ± 6.2 119.2 ± 22.4 129.8 ± 0.4 132.6 ± 3.8
6 - 2.1 ± 0.4 0.5 ± 0.2 - 3.4 ± 0.8 12.6 ± 6.1 - 129.9 ± 0.3 133.0 ± 2.4
7 - 2.2 ± 0.4 0.5 ± 0.2 - 3.5 ± 0.7 13.3 ± 6.0 - 129.9 ± 0.2 133.2 ± 1.7
8 - 2.2 ± 0.4 0.5 ± 0.2 - 3.6 ± 0.7 14.0 ± 5.9 - 129.9 ± 0.2 133.4 ± 1.4
9 - 2.3 ± 0.3 0.6 ± 0.2 - 3.7 ± 0.6 14.6 ± 5.8 - 130.0 ± 0.1 133.5 ± 1.2

10 - 2.3 ± 0.3 0.6 ± 0.2 - 3.7 ± 0.6 15.1 ± 5.7 - 130.0 ± 0.1 133.6 ± 1.1
11 - 2.3 ± 0.3 0.6 ± 0.1 - 3.8 ± 0.5 15.5 ± 5.6 - 130.0 ± 0.1 133.7 ± 1.0
12 - 2.3 ± 0.3 0.6 ± 0.1 - 3.8 ± 0.5 16.0 ± 5.4 - 130.0 ± 0.1 133.8 ± 0.9
13 - 2.4 ± 0.3 0.6 ± 0.1 - 3.9 ± 0.5 16.3 ± 5.3 - 130.0 ± 0.1 133.9 ± 0.8
14 - 2.4 ± 0.3 0.6 ± 0.1 - 3.9 ± 0.4 16.7 ± 5.2 - 130.0 ± 0.1 133.9 ± 0.7
15 - 2.4 ± 0.3 0.6 ± 0.1 - 3.9 ± 0.4 17.0 ± 5.1 - 130.0 ± 0.1 134.0 ± 0.6
16 - 2.4 ± 0.3 0.6 ± 0.1 - 4.0 ± 0.4 17.3 ± 4.9 - 130.0 ± 0.1 134.0 ± 0.6
17 - 2.4 ± 0.2 0.6 ± 0.1 - 4.0 ± 0.4 17.5 ± 4.8 - 130.0 ± 0.0 134.0 ± 0.5
18 - 2.4 ± 0.2 0.6 ± 0.1 - 4.0 ± 0.3 17.8 ± 4.7 - 130.0 ± 0.0 134.0 ± 0.5
19 - 2.5 ± 0.2 0.6 ± 0.1 - 4.0 ± 0.3 18.0 ± 4.6 - 130.0 ± 0.0 134.1 ± 0.4
20 - 2.5 ± 0.2 0.7 ± 0.1 - 4.0 ± 0.3 18.2 ± 4.5 - 130.0 ± 0.0 134.1 ± 0.4
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(a) hammer-human EOP.
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(b) hammer-cloned EOP.
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(c) hammer-expert EOP.

Figure 9: TD3+BC, IQL and ReBRAC visualised Expected Online Performance under uniform
policy selection on Hammer tasks.

Table 32: TD3+BC, IQL and ReBRAC Expected Online Performance under uniform policy selection
on tasks.

human cloned expert

Policies TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC TD3+BC IQL ReBRAC

1 -0.2 ± 0.1 0.2 ± 0.2 -0.1 ± 0.1 -0.2 ± 0.1 -0.0 ± 0.1 0.5 ± 0.8 21.4 ± 43.2 106.0 ± 1.4 73.5 ± 44.3
2 -0.2 ± 0.1 0.2 ± 0.2 -0.1 ± 0.1 -0.2 ± 0.1 0.0 ± 0.1 0.9 ± 0.9 38.8 ± 51.9 106.8 ± 1.0 96.0 ± 27.4
3 -0.1 ± 0.1 0.3 ± 0.2 -0.0 ± 0.0 -0.2 ± 0.1 0.1 ± 0.1 1.2 ± 0.9 52.6 ± 54.0 107.2 ± 0.8 103.7 ± 15.9
4 -0.1 ± 0.1 0.3 ± 0.2 -0.0 ± 0.0 -0.1 ± 0.1 0.1 ± 0.1 1.4 ± 0.9 63.7 ± 53.1 107.4 ± 0.7 106.7 ± 9.4
5 -0.1 ± 0.1 0.4 ± 0.2 -0.0 ± 0.0 -0.1 ± 0.0 0.1 ± 0.1 1.6 ± 0.9 72.5 ± 50.7 107.5 ± 0.6 107.9 ± 5.8
6 - 0.4 ± 0.2 -0.0 ± 0.0 - 0.1 ± 0.1 1.7 ± 0.8 - 107.6 ± 0.5 108.6 ± 3.8
7 - 0.4 ± 0.2 -0.0 ± 0.0 - 0.1 ± 0.1 1.8 ± 0.8 - 107.7 ± 0.5 108.9 ± 2.6
8 - 0.4 ± 0.2 0.0 ± 0.0 - 0.1 ± 0.1 1.9 ± 0.8 - 107.7 ± 0.5 109.2 ± 1.9
9 - 0.5 ± 0.2 0.0 ± 0.0 - 0.1 ± 0.1 2.0 ± 0.7 - 107.8 ± 0.4 109.3 ± 1.5

10 - 0.5 ± 0.2 0.0 ± 0.0 - 0.1 ± 0.1 2.1 ± 0.7 - 107.8 ± 0.4 109.4 ± 1.3
11 - 0.5 ± 0.2 0.0 ± 0.0 - 0.2 ± 0.1 2.1 ± 0.7 - 107.8 ± 0.4 109.5 ± 1.1
12 - 0.5 ± 0.2 0.0 ± 0.0 - 0.2 ± 0.1 2.2 ± 0.6 - 107.9 ± 0.4 109.6 ± 1.0
13 - 0.5 ± 0.2 0.0 ± 0.0 - 0.2 ± 0.1 2.2 ± 0.6 - 107.9 ± 0.4 109.7 ± 0.9
14 - 0.5 ± 0.2 0.0 ± 0.0 - 0.2 ± 0.1 2.3 ± 0.6 - 107.9 ± 0.4 109.8 ± 0.9
15 - 0.5 ± 0.2 0.0 ± 0.0 - 0.2 ± 0.1 2.3 ± 0.6 - 107.9 ± 0.4 109.8 ± 0.8
16 - 0.5 ± 0.2 0.0 ± 0.0 - 0.2 ± 0.1 2.3 ± 0.5 - 108.0 ± 0.4 109.9 ± 0.8
17 - 0.6 ± 0.2 0.0 ± 0.0 - 0.2 ± 0.1 2.4 ± 0.5 - 108.0 ± 0.4 109.9 ± 0.8
18 - 0.6 ± 0.2 0.0 ± 0.0 - 0.2 ± 0.1 2.4 ± 0.5 - 108.0 ± 0.3 109.9 ± 0.8
19 - 0.6 ± 0.2 0.0 ± 0.0 - 0.2 ± 0.1 2.4 ± 0.5 - 108.0 ± 0.3 110.0 ± 0.7
20 - 0.6 ± 0.1 0.0 ± 0.0 - 0.2 ± 0.1 2.5 ± 0.4 - 108.0 ± 0.3 110.0 ± 0.7
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(a) relocate-human EOP.
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(b) relocate-cloned EOP.
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(c) relocate-expert EOP.

Figure 10: TD3+BC, IQL and ReBRAC visualised Expected Online Performance under uniform
policy selection on Relocate tasks.

G D4RL tasks ablation

Table 33: ReBRAC ablations for halfcheetah tasks. We report final normalized score averaged over 4
unseen training seeds.

Ablation random medium expert medium-expert medium-replay full-replay Average

TD3+BC, paper 11.0 ± 1.1 48.3 ± 0.3 96.7 ± 1.1 90.7 ± 4.3 44.6 ± 0.5 - -
TD3+BC, our 2.2 ± 0.0 44.6 ± 0.4 93.8 ± 0.1 91.9 ± 2.3 40.5 ± 1.6 69.3 ± 0.7 57.0
TD3+BC, tuned 30.1 ± 1.4 (+0.7%) 55.4 ± 0.9 (-15.2%) 95.5 ± 0.5 (-9.6%) 91.9 ± 2.3 (-11.4%) 45.1 ± 1.7 (-11.0%) 74.1 ± 2.9 (-9.5%) 65.3 (-10.3%)

ReBRAC w/o LN 32.0 ± 1.5 (+7.0%) 64.3 ± 4.1 (-1.5%) 61.7 ± 20.4 (-41.5%) 86.7 ± 0.9 (-16.3%) 52.8 ± 2.4 (+4.1%) 82.1 ± 2.1 (+0.2%) 63.2 (-13.1%)
ReBRAC w/o layer 27.8 ± 3.4 (-7.0%) 65.0 ± 1.6 (-0.4%) 74.4 ± 26.7 (-29.5%) 86.7 ± 8.8 (-16.3%) 50.4 ± 0.7 (-0.5%) 80.9 ± 1.1 (-1.2%) 64.1 (-11.9%)
ReBRAC w/o actor penalty 31.8 ± 4.1 (+6.3%) 64.5 ± 0.7 (-1.2%) 4.3 ± 4.3 (-95.9%) 71.6 ± 12.3 (-30.9%) 38.0 ± 27.2 (-25.0%) 59.3 ± 41.3 (-27.5%) 44.9 (-38.3%)
ReBRAC w/o critic penalty 28.1 ± 1.6 (-6.0%) 65.7 ± 1.4 (+0.6%) 104.2 ± 5.9 (-1.3%) 100.5 ± 3.1 (-3.0%) 50.7 ± 0.1 (0.0%) 81.7 ± 1.2 (-0.2%) 71.8 (-1.3%)
ReBRAC w/o large batch 21.0 ± 15.7 (-29.7%) 65.8 ± 0.7 (+0.7%) 62.6 ± 24.3 (-40.7%) 85.2 ± 7.3 (-17.8%) 50.7 ± 1.1 (0.0%) 81.9 ± 1.4 (0.0%) 61.2 (-15.9%)

ReBRAC 29.9 ± 1.2 65.3 ± 1.1 105.6 ± 1.5 103.7 ± 3.9 50.7 ± 0.6 81.9 ± 1.4 72.8

Table 34: ReBRAC ablations for hopper tasks. We report final normalized score averaged over 4
unseen training seeds.

Ablation random medium expert medium-expert medium-replay full-replay Average

TD3+BC, paper 8.5 ± 0.6 59.3 ± 4.2 107.8 ± 7.0 98.0 ± 9.4 60.9 ± 18.8 - -
TD3+BC, our 10.3 ± 1.8 53.2 ± 2.2 108.7 ± 5.3 75.8 ± 8.9 64.5 ± 24.9 49.9 ± 9.6 60.4
TD3+BC, tuned 10.3 ± 1.8 (+51.5%) 57.6 ± 6.8 (-43.2%) 110.7 ± 2.1 (+21.1%) 106.2 ± 2.5 (-3.4%) 64.5 ± 24.9 (-30.8%) 106.2 ± 2.2 (-0.6%) 75.9 (-10.6%)

ReBRAC w/o LN 12.2 ± 13.3 (+79.4%) 1.0 ± 0.6 (-99.0%) 111.1 ± 1.0 (+21.6%) 112.4 ± 0.7 (+2.3%) 57.4 ± 25.0 (-38.5%) 107.2 ± 2.0 (+0.4%) 66.8 (-21.3%)
ReBRAC w/o layer 8.8 ± 0.6 (+29.4%) 101.8 ± 0.2 (+0.4%) 103.7 ± 5.1 (+13.5%) 104.1 ± 7.7 (-5.3%) 97.5 ± 3.5 (+4.5%) 106.5 ± 0.3 (-0.3%) 87.0 (+2.5%)
ReBRAC w/o actor penalty 7.5 ± 4.6 (+10.3%) 1.7 ± 1.2 (-98.3%) 1.1 ± 0.5 (-98.8%) 1.6 ± 1.6 (-98.5%) 24.4 ± 8.7 (-73.8%) 27.7 ± 23.4 (-74.1%) 10.6 (-87.5%)
ReBRAC w/o critic penalty 7.4 ± 1.1 (+8.8%) 102.3 ± 0.5 (+0.9%) 103.4 ± 8.6 (+13.1%) 111.2 ± 0.7 (+1.2%) 83.1 ± 30.9 (-10.9%) 107.5 ± 0.1 (+0.7%) 85.8 (+1.1%)
ReBRAC w/o large batch 8.6 ± 0.5 (+26.5%) 98.9 ± 5.2 (-2.5%) 98.8 ± 13.4 (+8.1%) 107.8 ± 2.9 (-1.9%) 96.2 ± 7.6 (+3.1%) 106.6 ± 0.2 (-0.2%) 86.1 (+1.4%)

ReBRAC 6.8 ± 3.4 101.4 ± 1.5 91.4 ± 4.7 109.9 ± 3.0 93.3 ± 7.5 106.8±0.6 84.9

Table 35: ReBRAC ablations for walker2d tasks. We report final normalized score averaged over 4
unseen training seeds.

Ablation random medium expert medium-expert medium-replay full-replay Average

TD3+BC, paper 1.6 ± 1.7 83.7 ± 2.1 110.2 ± 0.3 110.1 ± 0.5 81.8 ± 5.5 - -
TD3+BC, our 4.5 ± 2.2 77.1 ± 1.9 109.1 ± 0.5 108.9 ± 0.3 50.9 ± 13.7 86.7 ± 5.1 72.8
TD3+BC, tuned 4.5 ± 2.2 (-78.8%) 77.1 ± 1.9 (-5.5%) 110.1 ± 0.1 (-2.0%) 110.2 ± 0.7 (-1.3%) 58.8 ± 28.5 (-22.2%) 89.4 ± 8.2 (-13.0%) 75.0 (-10.9%)

ReBRAC w/o LN 1.3 ± 1.5 (-93.9%) 84.3 ± 2.5 (+3.3%) 8.3 ± 3.1 (-92.6%) 52.7 ± 53.9 (-52.8%) 78.9 ± 8.4 (+4.4%) 61.1 ± 46.6 (-40.6%) 47.7 (-43.3%)
ReBRAC w/o layer 11.4 ± 11.9 (-46.5%) 86.2 ± 0.9 (+5.6%) 112.1 ± 0.1 (-0.2%) 111.9 ± 0.2 (+0.2%) 83.9 ± 5.4 (+11.0%) 101.8 ± 0.9 (-1.0%) 84.5 (+0.4%)
ReBRAC w/o actor penalty 1.1 ± 0.9 (-94.8%) 1.7 ± 2.1 (-97.9%) 0.9 ± 1.1 (-99.2%) 0.8 ± 1.3 (-99.3%) 8.9 ± 5.7 (-88.2%) 64.2 ± 29.5 (-37.5%) 12.9 (-84.7%)
ReBRAC w/o critic penalty 19.8 ± 3.6 (-7.0%) 81.6 ± 9.2 (0.0%) 112.0 ± 0.1 (-0.3%) 111.6 ± 0.3 (-0.1%) 87.0 ± 4.5 (+15.1%) 103.5 ± 1.5 (+0.7%) 85.9 (+2.0%)
ReBRAC w/o large batch 5.6 ± 0.2 (-73.7%) 84.8 ± 1.0 (+3.9%) 112.2 ± 0.2 (-0.1%) 110.9 ± 0.2 (-0.7%) 71.7 ± 20.2 (-5.2%) 97.7 ± 5.8 (-5.0%) 80.4 (-4.5%)

ReBRAC 21.3 ± 0.8 81.6 ± 3.9 112.3 ± 0.0 111.7 ± 0.3 75.6±10.3 102.8±0.9 84.2

Table 36: ReBRAC ablations for AntMaze tasks. We report final normalized score averaged over 4
unseen training seeds.

Ablation umaze umaze-diverse medium-play medium-diverse large-play large-diverse Average

TD3+BC, paper 78.6 71.4 10.6 3.0 0.2 0.0 27.3
TD3+BC, our 62.0 ± 2.4 48.0 ± 11.6 0.0 ± 0.0 0.5 ± 1 0.0 ± 0.0 0.5 ± 0.5 18.5
TD3+BC, tuned 62.0 ± 2.4 (-36.8%) 48.0 ± 11.6 (-42.9%) 39.0 ± 21.7 (-54.8%) 18.5 ± 17.7 (-72.1%) 0.2 ± 0.5 (-99.6%) 0.0 ± 1.0 (-100.0%) 27.9 (-62.9%)

ReBRAC w/o γ change 0.0 ± 0.0 (-100.0%) 90.7 ± 3.2 (+7.7%) 1.0 ± 0.0 (-98.8%) 0.2 ± 0.5 (-99.7%) 19.3 ± 18.5 (-58.0%) 15.0 ± 8.0 (-79.0%) 21.0 (-72.1%)
ReBRAC w/o LN 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 (-100%)
ReBRAC w/o layer 31.0 ± 45.4 (-68.4%) 61.7 ± 25.3 (-26.7%) 0.0 ± 0.0 (-100.0%) 16.0 ± 32.0 (-75.8%) 0.0 ± 0.0 (-100.0%) 0.0 ± 0.0 (-100.0%) 18.1 (-76.0%)
ReBRAC w/o actor penalty 1.0 ± 1.1 (-99.0%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.0 ± 0.0 (-100%) 0.1 (-99.9%)
ReBRAC w/o critic penalty 98.2 ± 1.5 (0.0%) 78.0 ± 26.3 (-7.4%) 86.2 ± 2.6 (0.0%) 57.5 ± 24.2 (-13.1%) 56.7 ± 32.9 (+23.3%) 57.0 ± 16.4 (-20.3%) 72.2 (-4.1%)
ReBRAC w large batch 60.7 ± 31.3 (-38.2%) 68.5 ± 17.9 (-18.6%) 43.9 ± 49.9 (-49.1%) 34.0 ± 40.6 (-48.6%) 39.2 ± 45.9 (-14.8%) 0.0 ± 0.0 (-100.0%) 41.0 (-45.6%)

ReBRAC 98.2 ± 0.9 84.2 ± 18.5 86.2 ± 4.7 66.2 ± 16.3 46.0 ± 40.0 71.5 ± 12.3 75.3
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Table 37: ReBRAC ablations for pen tasks. We report final normalized score averaged over 4 unseen
training seeds.

Ablation human cloned expert Average

TD3+BC, paper 0.0 0.0 0.3 0.0
TD3+BC, our 65.9 ± 24.6 78.1 ± 5.7 144.9 ± 7.5 96.3
TD3+BC, tuned 77.6 ± 18.5 (-23.9%) 78.1 ± 5.7 (-8.5%) 144.9 ± 7.5 (-10.3%) 100.2 (-12.5%)

ReBRAC w/o LN 78.6 ± 14.8 (-22.9%) 21.3 ± 11.0 (-75.1%) 86.7 ± 59.8 (-44.6%) 62.1 (-45.8%)
ReBRAC w/o layer 89.1 ± 14.7 (-12.6%) 106.7 ± 13.9 (+24.9%) 147.2 ± 5.7 (-6.0%) 114.3 (-0.3%)
ReBRAC w/o actor penalty -0.5 ± 1.3 (-100.5%) 0.6 ± 1.6 (-99.3%) 0.0 ± 3.6 (-100.0%) 0.0 (-100.0%)
ReBRAC w/o critic penalty 99.9 ± 6.1 (-2.1%) 75.0 ± 16.7 (-12.2%) 154.6 ± 1.8 (-1.3%) 109.8 (-4.2%)
ReBRAC w large batch 67.2 ± 9.0 (-34.1%) 83.2 ± 23.3 (-2.6%) 155.0 ± 6.8 (-1.0%) 101.8 (-11.2%)

ReBRAC 102.0 ± 10.8 85.4 ± 24.2 156.6 ± 1.4 114.6

Table 38: ReBRAC ablations for door tasks. We report final normalized score averaged over 4 unseen
training seeds.

Ablation human cloned expert Average

TD3+BC, paper 0.0 0.0 0.0 0.0
TD3+BC, our 0.0 ± 0.1 0.4 ± 1.0 102.5 ± 2.9 34.3
TD3+BC, tuned 0.0 ± 0.1 (-) 0.4 ± 1.0 (+100.0%) 105.8 ± 0.3 (+0.8%) 35.4 (+1.1%)

ReBRAC w/o LN -0.1 ± 0.0 (-) -0.3 ± 0.0 (-250.0%) 106.0 ± 0.8 (+1.0%) 35.1 (+0.3%)
ReBRAC w/o layer 0.0 ± 0.0 (-) 0.1 ± 0.5 (-50.0%) 104.4 ± 2.3 (-0.5%) 34.8 (-0.6%)
ReBRAC w/o actor penalty -0.1 ± 0.1 (-) 0.0 ± 0.0 (-100.0%) 0.0 ± 0.2 (-100.0%) 0.0 (-100.0%)
ReBRAC w/o critic penalty 0.0 ± 0.0 (-) 0.1 ± 0.0 (-50.0%) 106.1 ± 0.3 (+1.1%) 35.4 (+1.1%)
ReBRAC w large batch -0.1 ± 0.1 (-) 0.1 ± 0.3 (-50.0%) 106.1 ± 0.1 (+1.1%) 35.3 (+0.9%)

ReBRAC 0.0 ± 0.0 0.2 ± 0.3 104.9 ± 2.2 35.0

Table 39: ReBRAC ablations for hammer tasks. We report final normalized score averaged over 4
unseen training seeds.

Ablation human cloned expert Average

TD3+BC, paper 0.0 0.0 0.0 0.0
TD3+BC, our 0.3 ± 0.4 1.1 ± 1.1 127.0 ± 0.4 42.8
TD3+BC, tuned 0.3 ± 0.4 (+50.0%) 1.1 ± 1.1 (-80.0%) 127.0 ± 0.4 (-5.3%) 42.8 (-8.1%)

ReBRAC w/o LN 0.2 ± 0.0 (0.0%) 1.0 ± 1.0 (-81.8%) 9.9 ± 19.1 (-92.6%) 3.6 (-92.3%)
ReBRAC w/o layer 0.1 ± 0.0 (-50.0%) 21.3 ± 19.7 (+287.3%) 133.1 ± 0.5 (-0.8%) 51.5 (+10.5%)
ReBRAC w/o actor penalty 0.0 ± 0.0 (-100.0%) 0.0 ± 0.1 (-100.0%) 0.0 ± 0.1 (-100.0%) 0.0 (-100.0%)
ReBRAC w/o critic penalty 0.1 ± 0.1 (-50.0%) 1.9 ± 0.7 (-65.5%) 134.1 ± 0.2 (-0.1%) 45.3 (-2.8%)
ReBRAC w large batch 0.3 ± 0.8 (+50.0%) 10.6 ± 14.0 (+92.7%) 133.4 ± 0.5 (-0.6%) 48.1 (+3.2%)

ReBRAC 0.2 ± 0.2 5.5 ± 2.5 134.2 ± 0.4 46.6

Table 40: ReBRAC ablations for relocate tasks. We report final normalized score averaged over 4
unseen training seeds.

Ablation human cloned expert Average

TD3+BC, paper 0.0 0.0 0.0 0.0
TD3+BC, our 0.0 ± 0.0 -0.1 ± 0.0 107.9 ± 0.6 35.9
TD3+BC, tuned 0.0 ± 0.0 (-) -0.1 ± 0.0 (-105.3%) 107.9 ± 0.6 (+1.2%) 35.9 (-0.5%)

ReBRAC w/o LN -0.2 ± 0.0 (-) 0.0 ± 0.3 (-100.0%) -0.1 ± 0.0 (-100.1%) -0.1 (-100.3%)
ReBRAC w/o layer 0.1 ± 0.3 (-) 1.7 ± 2.1 (-10.5%) 105.0 ± 3.1 (-1.5%) 35.6 (-1.4%)
ReBRAC w/o actor penalty -0.1 ± 0.0 (-) 0.0 ± 0.0 (-100.0%) -0.1 ± 0.1 (-100.1%) 0.0 (-100.0%)
ReBRAC w/o critic penalty 0.0 ± 0.1 (-) 1.9 ± 1.9 (0.0%) 109.6 ± 1.2 (+2.8%) 37.1 (+2.8%)
ReBRAC w large batch 0.0 ± 0.0 (-) 0.1 ± 0.2 (-94.7%) 109.6 ± 0.9 (+2.8%) 36.5 (+1.1%)

ReBRAC 0.0 ± 0.0 1.9 ± 2.3 106.6 ± 3.1 36.1
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