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Figure 1: One-shot domain adaptation: (left) a single reference image from domain B is used to
refine a GAN G4 to learn G g; (center) every image in domain A has an analog in domain B that
shares a latent code and many salient attributes; (right) because salient attributes are preserved in the
new domain, many latent-edits are meaningful in the new domain.

ABSTRACT

We present a new method for one shot domain adaptation. The input to our method
is a trained GAN that can produce images in domain A and a single reference
image I from domain B. The proposed algorithm can translate any output of the
trained GAN from domain A to domain B. There are two main advantages of our
method compared to the current state of the art: First, our solution achieves higher
visual quality, e.g. by noticeably reducing overfitting. Second, our solution allows
for more degrees of freedom to control the domain gap, i.e. what aspects of the
image I g are used to define the domain B. Technically, we realize the new method
by building on a pre-trained StyleGAN generator as GAN and a pre-trained CLIP
model for representing the domain gap. We propose several new regularizers for
controlling the domain gap to optimize the weights of the pre-trained StyleGAN
generator so that it will output images in domain B instead of domain A. The
regularizers prevent the optimization from taking on too many attributes of the
single reference image. Our results show significant visual improvements over the
state of the art as well as multiple applications that highlight improved controﬂ

1 INTRODUCTION

We propose a new method for domain adaptation based on a single target image. As shown in Fig.[T}
given a trained GAN for domain A, and a single image I from domain B, our approach learns to
find a corresponding image in domain B for any image in domain A. We can achieve this by fine-
tuning the GAN for domain A to obtain a second GAN that generates images in domain B. The two
GANSs share a latent space so that a single latent code will generate two corresponding images, one
in domain A and one in domain B. The main selling point of our method is that it achieves superior
quality than the state of the art in single shot domain adaption. Our method is computationally
lightweight and only takes a few minutes on a single GPU, so that it can be widely applied.

In order to do this, we leverage multiple existing components, including two excellent pre-trained
networks: First, we use StyleGAN2 (Karras et al., [2020b) as a pre-trained GAN. A follow-up ver-
sion has been published on arXiv (Karras et al.}2021)), but the code only became available after we

'Code is available at https: //zpdesu.github.io/MindTheGap,
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finished all experiments. Second, we use a pre-trained network for image embedding, CLIP (Rad-
ford et al., [2021)), to encode images as vectors. Third, we use the pioneering idea of StyleGAN-
NADA (Gal et al.; 2021)), which builds upon StyleCLIP (Patashnik et al., 2021]), to encode a domain
gap (or domain shift) as vector in CLIP embedding space. Fourth, we leverage 112S (Zhu et al.,
2020b) as GAN embedding method to transfer image I into domain A to obtain a better estimation
of the domain gap.

Even though the visual quality of StyleGAN-NADA is already impressive when used as a single
image domain adaption method, we identified multiple technical issues that can be improved to
achieve another large jump in visual quality. First, and most importantly, StyleGAN-NADA was
designed for zero-shot domain adaptation, and does not have a good solution to model the domain
gap based on a single example image. Their reference implementation models the domain gap as
a vector from the average image in domain A to the given image I in CLIP embedding space.
However, this leads to overfitting in practice and the transfer results lose attributes of the input
images, so that input images from domain A get mapped to images that are all too similar to I in
domain B. We identify a better solution to this problem. In fact, the domain gap should be modeled
as a vector from the image I to its analog in domain A, so that the image in domain A shares salient
within-domain attributes with the reference image. We therefore need to solve an inverse B-to-A
domain-transfer problem, which we propose to tackle using the state-of-the-art GAN embedding
method I12S (Zhu et al, |2020b). A key insight is that we can use a heavily regularized version of
the 112S GAN inversion method to do the reverse problem of transferring any related image (from a
domain B) into the domain A, helping to characterize the semantic domain gap better than previous
work. Further extensions enable us to fine tune the modeling of the domain gap to explicitly model
which attributes of the input image should be kept. Second, we propose multiple new regularizers
to improve the quality. Third, we propose a technical improvement to the heuristic layer selection
proposed in StyleGAN-NADA that is more straightforward and robust.

In summary, we make the following contributions:

1. We reduce the mode collapse/overfitting problem which often occurs in one-shot and few-
shot domain adaptation. Our results look similar to the target domain images with fewer
artifacts. These results are also faithful to the identities of the source domain images and
able to capture fine details.

2. Our domain adaptation provides more freedom to control the “similarity” between im-
ages across domains that share a common latent-code, which makes a large number of
downstream applications possible, e.g., pose adaptation, lighting adaptation, expression
adaptation, texture adaptation, interpolation, and layer mixing, using state-of-the-art image
editing frameworks.

2 RELATED WORK

Domain adaptation. Domain adaptation is the task of adapting a model to different domains.
Different works in this area (Bousmalis et al., 20165 2017; |Na et al., 2020; Wang & Breckonl 2020;
Kang et al,|2019) try to learn diverse domain independent representations using the source domain
to make predictions, such as image classification, in the target domains. More importantly, gen-
erating diverse representations of images by combining natural language supervision has been of
interest to the computer vision and NLP research communities (Frome et al.,[2013). Recently, Ope-
nAI’s Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) work established that
transformer, and large datasets, could generate transferable visual models. In CLIP, both images and
text are represented by high dimensional semantic-embedding vectors, which can then be used for
zero-shot learning.

GAN-based domain adaptation. Inthe GAN domain, various models and training strategies have
been proposed for few-shot domain adaptation tasks (Bousmalis et al.|[2017;[ZHANG et al., 2018; |L1
et al.| 20205 Liu et al.,|2019). Most relevant to our work, the domain adaptation methods (Patashnik
et al., 2021} |Gal et al., 2021; Jang et al., 2021; [Song et al.l [2021)) that build upon StyleGAN (Kar-
ras et al.,[2019;/2020bja) demonstrate impressive visual quality and semantic interpretability in the
target domain. These methods can be broadly classified into few-shot and single-shot domain adap-
tation methods.
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A notable few-shot method, StyleGAN-ADA (Karras et al., 2020a)) proposes an adaptive discrimi-
nator augmentation method to train StyleGAN on limited data. Another work, DiffAug (Zhao et al.,
2020), applies differentiable transformations to the real and generated images for robust training. A
discriminator related approach, FreezeD (Mo et al.| 2020)), freezes lower layers of the discrimina-
tor to achieve domain adaptation. Toonify (justinpinkney/toonify)) interpolates between the model-
weights of different generators to generate samples from a novel domain. A more recent work (Ojha
et al.,[2021), reduces overfitting on limited data by preserving the relative similarities and differences
in the instances of samples in the source domain using cross domain correspondence.

Latent space interpretation and semantic editing. GAN interpretation and understanding of the
latent space has been a topic of interest since the advent of GANs. Some notable works in this
domain (Bau et al., 2018; [2019; Harkonen et al., [2020; |Shen et al., [2020; Tewar1 et al., 2020a)
have led to many GAN-based image editing applications. More recent studies into the activation
space of StyleGAN have demonstrated that the GAN can be exploited for downstream tasks like
unsupervised and few-shot part segmentation (Zhang et al., 2021} Tritrong et al.,|2021}; |Abdal et al.,
2021a;|Collins et al.,[2020; Bielski & Favaro| [2019), extracting 3D models of the objects (Pan et al.,
2021} |Chan et al.}2020) and other semantic image editing applications (Zhu et al.||2021}; Tan et al.,
2020; 'Wu et al., [2020; [Patashnik et al., 2021]).

Image embedding is one of the approaches used to study the interpretability of the GANs. To enable
the semantic editing of a given image using GANs, one needs to embed/project the image into its
latent space. Image2StyleGAN (Abdal et al., [2019) embeds images into the extended StyleGAN
space called W+ space. Some followup works (Zhu et al.| 2020a; |[Richardson et al.| [2020; [Tewari
et al., 2020b)) introduce regularizers and encoders to keep the latent code faithful to the original
space of the StyleGAN. Improved-Image2StyleGAN (II2S) (Zhu et al., 2020b) uses Py space to
regularize the embeddings for high-quality image reconstruction and image editing. We use this
method to embed real images into the StyleGAN and show that our domain adaptation preserves the
properties of the original StyleGAN in Sec]

Image editing is another tool to identify the concepts learned by a GAN. In the StyleGAN do-
main, recent works (Harkonen et al.l [2020; |Shen et al.| [2020; [Tewari et al., 2020a; |Abdal et al.,
2021b) extract meaningful linear and non-linear paths in the latent space. InterfaceGAN (Shen
et al.,|2020) finds linear directions to edit latent-codes in a supervised manner. On the other hand,
GANSpace (Harkonen et al., [2020) extracts unsupervised linear directions for editing using PCA
in the W space. Another framework, StyleRig (Tewari et al., 2020a), maps the latent space of the
GAN to a 3D model. StyleFlow (Abdal et al.l 2021b) extracts non-linear paths in the latent space to
enable sequential image editing. In this work, we will use StyleFlow to test the semantic editing of
our domain adapted images.

In the area of text-based image editing, StyleCLIP (Patashnik et al., 2021} extends CLIP to perform
GAN-based image editing. StyleCLIP uses the CLIP embedding vector to traverse the StyleGAN
manifold, by adjusting the latent-codes of a GAN, in order to make a generated image’s CLIP em-
bedding similar to the target vector, while remaining close to the input in latent space. A downside
to this approach is that these edits are unable to shift the domain of a GAN outside its original man-
ifold. However, their use of CLIP embeddings inspired StyleGAN-NADA (Gal et al., [2021)), which
creates a new GAN using refinement learning to do zero-shot domain adaptation. Although unpub-
lished, they also demonstrate one-shot domain adaptation in their accompanying code. The original
and target domain are represented by CLIP text embeddings. The difference of the embeddings
represents a direction used to shift the domains. Although in the accompanying source-code (ri-
nongal/StyleGAN NADA), they use a bootstrap-estimate of the mean CLIP image embedding of
the original domain, and use a reference image or its CLIP image embedding to represent the new
domain.

3 METHOD

Our approach involves fine-tuning a GAN trained for some original domain A, e.g. FFHQ faces,
to adapt it to a new related domain B. In our approach, the images in A and the images in B are
related to each-other by a common latent code. Any image which can be generated or embedded
in domain A can be transferred to a corresponding and similar image in B. We use the CLIP
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embeddings as a semantic-space in order to model the difference between domains A and B, and
we use StyleGAN (Karras et al., 2018} [2020b) as the image generator. A key to our approach is
to preserve directions within and across domains as illustrated in Fig. 3] Before fine-tuning the
GAN for domain A (to obtain the GAN for domain B), we determine a domain-gap direction. This
direction, called v™', is a vector in CLIP embedding space which points towards a reference image
Ip which is in domain B from its corresponding image 4 in which is in domain A. We use the
CLIP image-embedding model E; to find

v = E1(Ig) — Er(14). (1)

Finding 74 in domain A for a given image in domain B is a significant limitation in the current state
of the art, StyleGAN-NADA 2021), as they use the mean of domain A. The mean of
domain A is a very crude approximation for I4. Instead, we propose an inverse domain adaption
step, by projecting the image [ into the domain A to find a sample that is more similar and specific
to the reference image than the mean of domain A. In principle, this problem is also a domain
adaption problem similar to the problem we are trying to solve, just in the inverse direction. The
major difference is that we have a pre-trained GAN available in domain A.

We use the I12S GAN-inversion method (Zhu et all, [2020b) in order to find a latent code for an
image similar to I that is plausibly within domain A. The I2S and II12S methods use an extended
version of W space from StyleGAN2. The W code is used 18 times, once for each style block
in StyleGAN2. When allowing each element to vary independently, the resulting latent space is
called W+ space [Abdal et al.| (2019} [2020); [Zhu et al| (2020b). 12S showed that the additional
degrees of freedom allow GAN inversion for a wider set of images with very detailed reconstruction
capabilities, and II12S showed that an additional regularization term to keep the latent codes close to
their original distribution made latent-code manipulation more robust. II2S uses a hyperparameter,
A, which can be increased in order to generate latent codes using more regularization, and therefore
in higher density regions of the W+ latent space. The effect of this parameter is shown in Fig. 2}
The value suggested in the original work was A = 0.001, however, low values of lambda allow I12S
to find latent codes that are too far away from the latent-codes produced by the mapping network
of the original GAN and thus produce images that are less plausible to have come from domain A,
underestimating the gap between domains. In the context of domain shift we find it is useful to use
A = 0.01 as illustrated in Fig. 2| The result is a latent code w™ in W+ space which is shifted
towards a high-density portion of the domain A. Then the image generated from that code, 14, is an
image in domain A that corresponds to /3.

Figure 2: An illustration showing how I12S embeds I3 in the original StyleGAN domain A, shown
for two different values of \. Reference images from other domains are shown in the top row. The
value recommended by [Zhu et al.| (2020b) is shown in the second row, and the value used in this
work is shown in the third row. Although there is some subjectivity involved, we believe that the
large value A = le—2 is needed for II2S to find images that plausibly could belong to the domain
A, which in this case is FFHQ faces.
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Training As illustrated in Fig.[2} we use II2S to find an image /4 which we consider to be similar
to I 5 but still plausibly within a domain A. In principle, it is possible that II12S finds 14 so that I3 is
similar enough to be considered the same, in which case the two domains overlap. However, we are
concerned with the cases where the domains are different, and the vector v™f indicates the direction
of a gap, or shift, between domain A and domain B. We use refinement learning to train a new
generator, G, so that images generated from G p are shifted parallel to v in CLIP space, relative
to images from G 4. The desired shift is indicated by the red arrows in Fig.[3] During training, latent
codes w are generated using the mapping network of StyleGAN2. Both G4 and G g are used to
generate images from the same latent code, but the weights of G 4 are frozen and only G g is updated
during training. The goal of refinement learning is that G will preserve semantic information that
is within domain A but also that it will generate image shifted across a gap between domains. When
refining the generator for domain B, we freeze the weights of the StyleGAN2 ‘ToRGB’ layers, and
the mapping network is also frozen. The overall process of training is illustrated in Fig. ]
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Figure 3: The vectors in the CLIP image embedding space, E;, which control domain adaptation.
Each domain is depicted here as a dashed outline; the vectors v and v cross between the two
domains and are used to refine a generator for domain B. Corresponding images should be shifted
in the same direction. The vectors v4 and vp model important semantic differences within each
domain that should also be preserved by domain transfer. G 4(w) and Gp(w) are corresponding
images for an arbitrary latent-code w encountered during training. Style mixing (shown on the right)
shifts a part of the latent code towards the reference image effecting the result in both domains.

The goal of training is to shift CLIP embeddings from domain A in a direction parallel to v™!. We
use the vector v**™ to represent the current domain shift of the network G g during training, on a
single sample. We have
v = Fr(Gp(w)) — Er(Ga(w)) 2)
as a cross-domain vector for corresponding images generated from the same w latent code using the
two generators. We use the loss
. s
Lclip,across =1- SIm(Ure 7,Usamp), (3)

where sim(a,b) = W\Ibbl\ is the cosine similarity score. This loss term is minimized when the
domain shift vectors are parallel.

It is important that the reference image Ip matches the generated image, G'g(w™), both in a se-

mantic sense, as measured by the similarity of the CLIP embeddings, and also in a visual sense.
We accomplish this using two losses: Lyef clip and Lies rec. The first loss measures the change in the
CLIP-embeddings of the original and reconstructed reference image,

Leetaiip = 1 — sim (E; (Ig) , Er (Gg(w™))), 4)

ensuring that the G g can reconstruct the embedding. Unlike Leiip_accross» this loss term is not based
on a change in embeddings between the two domains, instead it guides G g by aligning it to a global
embedding in CLIP space, ensuring that /5 remains fixed in the domain of Gp.

The second loss term is a reconstruction loss based on perceptual and pixel-level accuracy,
Lectrec = Lewps (In, Gp(w™)) + La (Ip, Gg(w™)) (5)
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Figure 4: A process diagram for domain transfer. White rectangles indicate calculations, computed
values are shown on the connecting lines. The four loss-calculations are indicated by blue rectangles,
and the learnable weights of StyleGAN?2 (all weights except the mapping network and the TORGB
layers) are indicated in green.

where Lpips is the perceptual loss from[Zhang et al.| (2018)), and L» is the squared euclidean differ-
ence between pixels. The purpose of this loss is to ensure that the visual, and not just the semantic,
qualities of the image are preserved. This is necessary in addition to Ly c1ip because, while the CLIP
embeddings do capture many semantic and visual qualities of the image, there are still many percep-
tually distinct images that could produce the same CLIP embedding. This is visible in Fig. [6] without
the reconstruction loss G fails to preserve some important visual qualities (such as symmetry) of
the input.

There is a tendency for GANs to reduce the variation during training, especially in few-shot fine-
tuning. We combat this by preserving the semantic information that is not related to the domain
gap. A semantic change that is not related to the change in domains should not be affected by G 5.
Therefore, the vector connecting the reference and sample images within the domain A should be
parallel to the corresponding vector in domain B. Let vq = Ej(Ga(w)) — Er(I4) be a vector
connecting a sample image with latent-code w to the reference image in the CLIP space. This vector
represents semantic changes that are within domain A, and we want the matching semantic changes
to occur within the domain B. Let vg = E1(Gp(w)) — Er(Ip) denote the corresponding vector in
domain B. We introduce the loss

Lclip,within =1- Sim(’UA, UB)7 (6)
which is minimized when the two within-domain changes are parallel.
The final loss is then a weighted sum of losses

L= Lclip,across + )\clip,withinLclip,Within + )\ref,clieref,clip + )\refjechefJeu (7)

with empirically determined weights of Aciip within = 0.5, Aretclip = 30, and Aret o = 10. Together,
these four loss terms guide the refinement process for Gg. Among these losses, Lciip_across Was
proposed by StyleGAN-NADA (Gal et al., 2021). The other losses are novel contributions of this
work.

Style Mixing After the training step, the generator Gp generates images that are semantically
similar to the reference image /5. However, we have observed that the visual style may not be
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sufficiently similar. We attribute this to the idea that the target domain may be a subset of the images
produced by the new generator G . This issue was addressed in StyleGAN-NADA (Gal et al., 2021)
using a second latent-mining network in order to identify a distribution of latent codes within the
domain of G g that better match the reference image. Our approach exploits the structure of latent
codes in W+ space. Latent vectors in W+ space can be divided into 18 blocks of 512 elements,
each impacting a different layer of StyleGAN2. Empirically, the latter blocks of the W+ code have
been shown to have more effect on the style (e.g. texture and color) of the image whereas the earlier
layers impact the coarse-structure or content (Zhu et al., [2021)) of the image. We partition the latent
code in the image into w = (w¢, wg) where we consists of the first m blocks of the W+ latent
code that capture the content of the image, and wg consists of the remaining blocks and captures the
style. In this work, we will use m = 7 unless otherwise specified. Then we transfer the style from a
reference image using linear interpolation, to form 1w = (w¢, wWg) where

ws = (1 — a)wg + oz(wfgef), (8)

and w is last (18 — m) blocks of w'™'. Consider the distribution of images generated from random

w drawn according to the distribution of latent codes from the mapping network of StyleGAN2. If
a = 0, then the distribution of images G () includes the reference image, but encompasses a
wide variety of other fine visual styles. If & = 1, then the images G () will still have a diverse
content, but they will all very closely follow the visual style of /5. An important application of this
method is in conditional editing of real photographs. To achieve that, first we take a real input image
Ieq and invert it in domain A using II12S on the generator G 4 in order to find a W+ latent code
Wreal. Then G p(wie) generates a corresponding image in domain B. We can then compute W;ey
by interpolating the style codes so that the final image G (tye,) is similar to ey but has both
content and the visual style shifted towards domain B.

4 RESULTS

In this section, we will show qualitative and quantitative results of our work. The only other pub-
lished method that accomplishes similar one-shot GAN domain adaptation which we are aware of
is|Ojha et al.{(2021). They focus on few-shot domain adaptation, but they also demonstrate a capa-
bility to solve the one-shot problem. The most closely related work to our approach is StyleGAN-
NADA (Gal et al., 2021, which is unpublished at the time of submission, however we compare to it
as the main competitor. The paper mainly discusses zero-shot domain adaptation, but the approach
can also accomplish one-shot domain adaptation, as demonstrated in their accompanying source-
code. Moreover, it demonstrates impressive improvements over the state of the art and even beats
many SOTA few-shot methods considering the visual quality. As our method can still significantly
improve upon the results shown in StyleGAN-NADA, this underlines the importance of our idea in
reducing overfitting. We compare against additional approaches in the appendix.

Training and Inference Time. Given a reference image, the training time for our method is about
15 minutes for 600 iterations on a single Titan XP GPU using ADAM as an optimizer with the same
settings as |Gal et al.[(2021). We use a batch size of 4. At inference time, there are different appli-
cations. In a basic operation, GAN generated images can be transferred with a single forward pass
through a GAN generator network, which works in 0.34 seconds. Considering a more advanced
operation, where existing photographs are embedded into a GAN latent space, the additional em-
bedding time has to be considered. This embedding time is only 0.22 seconds using e4e (Tov et al.|
2021)) and about two minutes using [12S (Zhu et al.| 2020b).

Visual Evaluation. In Fig. |5l we show a comparison of our results on faces against the two
most relevant competing methods — StyleGAN-NADA (Gal et al., |2021)) and few-shot-domain-
adaptation (Ojha et all 2021). The results show that our method remains faithful to the original
identity of the embedded images in domain A, while the other two methods suffer from overfitting,
i.e., collapsing to narrow distributions which do not preserve salient features (for example the iden-
tity of a person). We show additional visual results in the supplemental materials, including results
on cars and dogs and results for fine-tuning the domain adaptation.

User Study. We also perform a user study by collecting 187 responses from Amazon Mechanical
Turk in order to compare the visual quality and the domain transfer capabilities of our framework
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Figure 5: Comparison of our framework with state-of-the-art frameworks for StyleGAN domain
adaptation. We compare with StyleGAN-NADA and the few-shot method of
(2021). Each row corresponds to a different reference image Iz, and each column is a different
real image I;., from domain A. Notice that our method is able to match the styles of the reference
images, while StyleGAN-NADA fails to maintain the content of the images in domain A (for ex-
ample the identity of a person is lost). On the other hand, the few-shot method suffers from severe
mode collapse.

compared to the competing methods. When asked which method generates higher quality images
from domain B, 73% of users preferred our approach to StyleGAN-NADA, and 77% selected ours
over Few-shot 2021). When asked which method is better at maintaining the similar-
ity to a corresponding source image in domain A, we found that 80% of the responses chose our
approach over StyleGAN-NADA, and 91% preferred our approach to Few-shot. Our method out-
performs the competing works in terms of the quality of the generated image, and the similarity of
the generated image to the source image from domain A. According to the user study, the other
methods produced images that are more similar to I, but that is also an indication of overfitting
and mode collapse.

Ablation study. We perform an ablation study to evaluate each component of our framework. In
Fig.[6] we show the effect of I12S embedding, different losses and style mixing/interpolation on the

e Bpe@eoee
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Dom. A StyleGAN-nada +I12S Embedding + Lt clip +Liref rec +Lc11p within ~ +Style Mixing

Figure 6: Ablation study of the losses and style mixing used in our framework. From left to right: the
reference image I 4 and several images from domain A, the baseline approach (StyleGAN-NADA),
adding I12S instead of using the mean of domain A, adding Lief ciip, Lelip_within, and then using style
mixing. The top row shows reconstructions of the image /4 using Gp.
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Image editing capabilities. Another important aspect of our method is that we are able to preserve
the semantic properties of the original StyleGAN (domain A) in domain B. We can make edits to the
images in domain B via the learned generator G g without retraining the image editing frameworks
on the new domain. Fig.[7]shows image editing capabilities in the new domain B. We use StyleFlow
edits such as lighting, pose, gender etc. to show the fine-grained edits possible in the new domain.

Dom. A Dom. B

+Lighting +Pose +Gender +Style
Figure 7: Image editing capabilities of the new domain B using StyleFlow (Abdal et al., [2021b).
This figure shows the editing results of the embedded real image I,..,; transferred to domain B.

Notice that our method preserves the semantic properties of the original StyleGAN.

Limitations Our method has several limitations (See Fig.[8). Some of these limitations are inher-
ent due to the challenging nature of the problem of single-shot domain adaptation. Other limitations
can be addressed in future work. First, when we find the initial image in domain A that corresponds
to the input in domain B, we do not attempt to control for the semantic similarity. Future work
should encourage the images to have similar semantics. Second, we can only transfer between re-
lated domains. For example transferring FFHQ faces into the domain of cars is not explored in this
paper. Third, also relevant to the original distribution of the StyleGAN, embeddings into the Style-
GAN work best when the objects are transformed to the canonical positions (for example face poses
that are the same as FFHQ). Extreme poses of the objects in the reference images sometimes fail.

Figure 8: Some failure cases of our method. In these examples, we observe that the identity of the
face is compromised a bit more than in typical examples of our method.

5 CONCLUSIONS

We propose a novel method for single shot domain adaption. The main achievement of this work
is to obtain results of unprecedented quality while reducing overfitting observed in previous work.
The technical key components of our work are a method to model the domain gap as vector in CLIP
embedding space, a way to preserve within-domain variation, and several extensions for fine-grained
attribute-based control. We also introduce several new regularizers and a style mixing approach.
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A APPENDIX: ADDITIONAL RESULTS

A.1 VISUAL EVALUATION OF STYLE TRANSFER.

We provide additional visual evaluation of the results. In Fig. 0] and [I0] we show results of domain
adaptation applied to faces. The input photographs are in the top row and the reference images are
in the first column. We can see that the results take on the style of the reference image, even though
the reference image is far outside the original GAN’s latent space. Also, we notice that overfitting is
successfully limited, as each result maintains several important aspects of the input image. In Fig.
and @] we show results for cars, cats, and dogs on the same task. This shows that our method is
consistent across different StyleGAN objects/datasets.

A.2 QUANTITATIVE COMPARISON OF SKETCH IMAGES.

We calculate the FID (Heusel et al., [2017) between 1,000 generated images and the entire sketch
dataset. Additionally, we report the precision and recall metric (Kynkdinniemi et al., 2019) to
measure the quality and diversity respectively. As shown in Tab. |1} our method outperforms the
contemporary methods Few-Shot (Ojha et al., [2021)), and StyleGAN-NADA (Gal et al.l 2021) on
both metrics.

Another contemporary method, TargetCLIP (Chefer et al., 2021), is capable of one-shot ‘essence
transfer’ using a latent-edit, however as the weights of the generator are not modified their approach
is restricted to the manifold of the original generator. Because it cannot shift to a completely new
domain, TargetCLIP failed to produce any sketch images and has a precision=0. Because the images
it did generate are in the original space of StyleGAN it has high recall (0.29), but this number is not
meaningful.

Unsurprisingly, all one-shot domain transfer methods have low recall (low diversity) but it is signif-
icant that ours is the only approach with positive recall to within 2 significant digits.

Table 1: Quantitative comparison on one-shot adaptation between few-shot-domain-adaptation,
StyleGAN-NADA, and our method. Evaluation metrics include FID, precision, and recall (higher
means higher diversity).

One Shot Method FID]  precisionT recallf
Few-shot (Ojha et al.[[2021)  158.86 0.00 0.00
SG-NADA (Gal et al.,2021) 124.55 0.12 0.00

Ours 78.35 0.33 0.02

A.3 MULTI-SHOT DOMAIN ADAPTATION.

Although it was designed for one-shot domain adaptation, our method can be extended to few-shot
domain adaptation by using multiple input/reference image pairs (14, I5). In Fig. We show the
visual improvement obtained using 3-shot reference images.

A.4 CONTROLLING THE STYLE GAP

Our method provides a way to control the domain gap between the domain A and domain B by
explicitly controlling the style of the images sampled from or embedded in domain A. Fig.[T2]shows
that we can control the degree to which style from the reference image is preserved by increasing
the style-mixing parameter o, which is not possible with any of the competing methods. This gives
users more control over content generation and editing.

A.5 ADDITIONAL COMPARISON

In addition to our comparison with StyleGAN-NADA (Gal et al.,[2021) and few-shot domain adap-
tation (Ojha et al., [2021), we compare against three additional methods in Fig.[I5] These include
one concurrently developed method called TargetCLIP (Chefer et al., |2021) as well as two other
methods that work on lower resolution images for one-shot domain transfer. These are the method
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dwth AT

Figure 9: Style transfer results obtained by our method after style interpolation in domain B. The
top row represents the real images embedded in the latent space of G 4 (domain A) whose latent
codes are then used by G’ (domain B). The first column represents the reference images /p which

are input to our domain adaptation framework.

of Gatys er. al|Gatys et al|(2016) and the the AdaIN approach
visual results compare favorably against the new methods in Fig.

uang & Belongiel 2017). Our

with respect to preserving the

identity of the original image while also generating images that belong to the new domain.
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A.6 INFERENCE AND EDITING TIME

Our proposed approach uses II12S for training and inference and StyleFlow (Abdal et al., 2021b)
for editing in the new domain. GAN inversion using II2S on HD (1024 x 1024) images takes 150
seconds on average, and each latent-code edit operation takes 0.47 seconds. Generating the images
afterwards takes an addition 0.34 seconds. Note that the run-time is dominated by GAN -inversion
using II2S, however as we show in Fig. [I6] once training is completed, we can use other GAN
inversion methods to accomplish the edits. With ede (Tov et al.L[2021) inversion is only 0.22 seconds
and the entire process of inversion, editing, and generating the edited image can be accomplished in
approximately one second.
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Figure 10: The structure of rows and columns is the same as in Fig.[9} Note: our method also works
well when the reference images are real face images.
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Figure 11: Our method extends to deal with multiple reference images. The figure compares the re-
sults using 3 reference images and using single reference image. It can be observed that our method
can better catch the general style and achieve more stable results when given multiple reference
images.
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Figure 12: Style interpolation results achieved by our framework. Unlike the competing methods,
our method has an explicit control over the styles in the domain B. Each sub figure shows a reference
image and images embedded in domain A. Notice that we can control the amount of variation in
style depending on a parameter « that can be specified by a user.
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Figure 13: Our domain transfer results on cars. The structure of rows and columns is the same as in

Fig.
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Figure 14: Our domain transfer results on cats and dogs. The structure of rows and columns is the
same as in Fig.[9]

19



Published as a conference paper at ICLR 2022

I%@ &
Q

u@@a@ua@bb

= = ey —w
. w .
o d A ! h
|
" . Va

TargetCLIP Gatys et al.

Figure 15: Additional comparisons with other baseline methods including the concurrent method
TargetCLIP (Chefer et all, [2021) as well as two lower-resolution methods from [Gatys et al.| (2016)
and AdaIN (Huang & Belongie, 2017). One-shot reference images from domain B are shown in the
left column. Each image is the result of transferring the image in the top row into the new domain.
Compare these images to our method in Fig. [7} our proposed approach has fewer artifacts while
preserving the identity of the image in domain A.
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Figure 16: Comparison domain-transfer and editing using II2S vs ede. The new GAN is always
trained using II2S, but once training is complete, ede can be used to transfer images into the new
domain. 1I2S takes 2.5 minutes to embed the image, while e4e needs about 0.22 seconds. StyleFlow
editing takes 0.47 seconds, and StyleGAN image generation takes about 0.34 seconds.
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