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ABSTRACT

Exploration is one of the central topics in reinforcement learning (RL). Many exist-
ing approaches take a single agent perspective when tackling this problem. In this
work, we view this problem from a different angle by taking a collaborative parallel-
agent perspective. By doing this, we can not only learn with parallel agents, which
is not fundamentally different by itself, but more importantly, it unlocks the possi-
bility of introducing collaborative exploration and learning among these agents. We
formulate this problem as Collaborative Exploration and propose concrete instantia-
tions. We introduce a collaborative reward generator as a core component to induce
collaboration, which can compute novelty of a state not only from one agent’s own
perspective, but also respect other agents’ intrinsic motivation in pursuit of novelty.
This leads to collaboration and specialization of each agent within the set of agents.
In addition, we discussed how to effectively leverage the shared information from
other agents in the data collection and evaluation phases, respectively. Experiments
on the DMC benchmark tasks showcase the effectiveness of the proposed method.
Code will be released: https://github.com/Anonymous/CE_URL.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 2018) has achieved great success across a wide
array of applications. However, it typically requires a large number of interactions with the envi-
ronment (Micheli et al., 2023; Kapturowski et al., 2023), which largely limits its practical applica-
tion (D’Oro et al., 2023). While there are multiple reasons for the low sample efficiency, inefficient
exploration is one of the major factors (Gao et al., 2022; Zhang et al., 2022; Hu et al., 2023). Therefore
how to improve its sample efficiency by improving exploration is an important topic (Du et al., 2020;
Pierrot et al., 2022; Zheng et al., 2022; Zhou & Garg, 2023).

A large body of work has been developed to address this issue from different aspects (Tiapkin et al.,
2023; Zhang et al., 2023a). The common practice is to formulate the problem in the framework
of a single agent RL problem, augmented with an additional intrinsic reward on top of the task
reward (Badia et al., 2020; Lobel et al., 2023; Pathak et al., 2017; Burda et al., 2019; Seo et al., 2021;
Jo et al., 2022; Yuan et al., 2023; Wang et al., 2023b). The intuition is that by the incorporation of
this intrinsic reward, the policy can gain some learning signal even before encountering any useful
task reward. This paradigm is very powerful and has led to many successful progresses in the past.

This work aligns with prior work in the direction of improving sample efficiency by designing better
exploration strategy (Wang et al., 2023b; Yuan et al., 2023; Zahavy et al., 2023). The difference is
that we explore a collaborative perspective (Du et al., 2023) in contrast to the commonly taken single
agent perspective for exploration (Pathak et al., 2017; Burda et al., 2019; Seo et al., 2021). This is
achieved by additionally introducing another dimension of multiple agents (Ding et al., 2023; Qiu
et al., 2023) and taking their interactions into account during learning and exploration (Zhang et al.,
2023c). The collaborative effects are achieved mainly from the following interconnected components:

1. parallel agents: instead of a single agent, we introduce a set of agents, each with its own
learnable parameters and environment;

2. collaboration and specialization: during training, the knowledge among agents is shared by
data and intrinsic reward. A collaborative (intrinsic) reward generator is used to encourage
each agent not only guided by the intrinsic in the typical sense (e.g. novelty etc), but also to
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Figure 1: The proposed Collaborative Exploration framework: we achieve collaborative explo-
ration via a collaborative reward generator R to share the novelty information among agents.

be distinct from the other agents in the agent set, encouraging specialization of each agent;
during unroll, each agent explores according to its specialization, while further taking other
agent’s unroll behavior into consideration.

It is important to emphasize that these components are inter-connected with each other and it is the
interactions between them that make the full approach effective. For example, the parallel-agent
structure, by itself, does not bring any essential differences, compared to the single-agent form.
However, it unlocks the possibility of collaborative exploration and learning, once used together with
the other components, as done in this work. Figure 1 shows an illustration of our framework.

The main contributions of this work are: (1) We present a collaborative perspective for improving
exploration in RL. (2) We designed a contrastive collaborative exploration approach as an instantiation.
(3) Experiments show that the proposed method outperforms other SOTA methods.

2 RELATED WORK

Parallel Agents and Distributed RL. From a model structure perspective, our method is similar
to prior work on Parallel Agents and Distributed RL (Mnih et al., 2016; Espeholt et al., 2018;
2020; Petrenko et al., 2020; Mei et al., 2023). The goal of them is usually to achieve high data
throughput (Liu et al., 2020) by adopting a large number of parallel agents and specialized architecture
designs (Espeholt et al., 2020; Mei et al., 2023). Moreover, there is usually no explicit collaboration
among the agents except for the shared replay buffer. Our work is different from this line of research
in that we focus on the question of how to leverage explicit collaboration among different agents.

MARL. Multi-agent RL (MARL) aims to coordinate multiple agents to achieve a shared objec-
tive (Zhang et al., 2021). A typical setting of MARL is multiple agents residing in the same
environment, where different agents have different roles to solve a cooperative/competitive task (Yu
et al., 2022). These MARL agents share experiences and (or) weight parameters (Gupta et al., 2017;
Terry et al., 2020; Christianos et al., 2021). In contrast to MARL, in our setting, each agent reside in
its own environment and the agent’s action will not influence the other agent’s observations/rewards.
Therefore, from the perspective of settings, ours is closer to that of the parallel agents than MARL.

Concurrent RL. In concurrent RL, multiple agents simultaneously interact with different instances
of the same environment and share experiences with each other (Silver et al., 2013; Dimakopoulou
et al., 2018; Taiga et al., 2022). A large body of work in this category studies some theoretical
aspect of the problem including regret bounds etc. (Pazis & Parr, 2016; Dimakopoulou et al., 2018;
Dimakopoulou & Van Roy, 2018; Taiga et al., 2022; Chen et al., 2022). Our work is aligned with this
category in terms of settings, and focuses on improving exploration and sample efficiency and further
investigates when and how to collaborate among the agents.

Intrinsic Reward for Exploration. One common form of intrinsic reward based exploration (Pathak
et al., 2017; Burda et al., 2019; Seo et al., 2021; Jo et al., 2022; Yuan et al., 2023) is to modify the task
MDP as M′ = (S,A,P, r̂, γ, µ), where r̂(s, a) = rtask(s, a) + λrintrinsic(s, a). λ is a combination
weight between the original task reward rtask(s, a) and the intrinsic reward rintrinsic(s, a). While
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the standard way under this context is to design rintrinsic(s, a) to reflect novelty etc., we leverage it
with an additional purpose of encouraging specialization and collaboration in exploration. This is
achieved by incorporating a collaborative reward generator in the learning process.

3 COLLABORATIVE EXPLORATION: FORMULATION

In this section, we introduce the main idea and formulation of the proposed method. Conceptually,
the proposed approach first views the RL problem from the perspective of multiple agents (Wang
et al., 2023a) and then introduces collaborations between them (Du et al., 2023). There are two key
components in the current approach: parallel-agent formulation and collaborative exploration. In
particular, the parallel-agent formulation is a necessary foundation for collaborative exploration.

3.1 LEARNING WITH A SET OF AGENTS

Common RL formulation typically adopts a single agent perspective. In standard off-policy RL
algorithms such as SAC (Haarnoja et al., 2018), the single agent A is composed of a single policy
π and a corresponding value function Q, represented as A ≜ (π,Q). In this work, we take a
collaborative parallel-agent perspective instead by maintaining a set of agents A = {Ai}Ni=1 ={
(π1, Q1), · · · , (πi, Qi), · · · , (πN , QN )

}
, where N denotes the number of agents in the set. We

denote the collection of policies as a policy set Π = [π1, π2, · · · , πN ] and the collection of value
functions as a value set Q = [Q1, Q2, · · · , QN ]. It’s notable that this setting is also known as the
Concurrent Exploration setting in some previous work (Silver et al., 2013; Pazis & Parr, 2016;
Dimakopoulou et al., 2018; Dimakopoulou & Van Roy, 2018; Taiga et al., 2022; Chen et al., 2022).

During unrolling, each agent Ai from the set interacts with its own environment according to its
policy πi. The data collected by all the agents are stored in a shared replay buffer Dshared. The set of
agents A are trained collectively on the jointly collected data. More specifically, each agent Ai is
trained not only on the data from its own unrolling, but also from the data collected by others (c.f.
Fig. 1). Intuitively, this enables it to learn from more diverse data and share knowledge among agents.

3.2 COLLABORATIVE EXPLORATION AND LEARNING

The parallel-agent formulation presented above unlocks possibilities for different kinds of collabo-
ration between agents. Actually, the shared replay buffer is the first form of collaboration via data
sharing. To further leverage the presence of multiple agents in our formulation, we can incorporate
other forms of collaboration. Here we show how to achieve collaborative exploration as an example.

Collaborative Reward Generator. To induce collaboration among the agents in A, a collaborative
reward generator R is introduced to generate unique intrinsic rewards (Jo et al., 2022) for each agent
Ai ≜ (πi, Qi) ∈ A, with the awareness to others ({j, j ̸= i}):

riintrinsic(s, a) ≜ R(s, a, i, {j, j ̸= i}). (1)

Then each agent is trained under its own version of modified MDP as Mi = (S,A,P, r̂i, γ, µ) with
its augmented reward r̂i(s, a) = rtask(s, a) + λriintrinsic(s, a). λ is a combination weight. More
details on specific instantiations of R are presented in Section 4.1.

Data Sharing and Relabeling. To enhance the utilization of data through collaboration among
agents and enable data sharing, the data collected by all the agents are stored in a shared replay
buffer Dshared (Lee et al., 2021; Chen et al., 2022). For each agent during training, we first sample a
batch from Dshared, and then relabel the reward following Eqn.(1). Since Eqn.(1) is specialized to
each agent while taking the rest of the agents into consideration, we can use the same batch of data
sampled from the replay buffer to do specialized training for different agents.

Collaborative Data Collection. Since each agent is encouraged to be specialized in its own behavior,
which can naturally generate more diverse behaviors and cover different spaces collectively during
exploration and data collection (Sheikh et al., 2022; Parker-Holder et al., 2020). Furthermore, it is
also possible to further incorporate certain forms of explicit knowledge-sharing mechanism between
agents on which action should be taken as a form of collaborative data collection. We will explain in
detail each component and example instantiations in the sequel.
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A1

Figure 2: Collaborative reward generator: for a sampled afterstate s′, we compute its KNN cosine
similarity w.r.t. each agent’s recent trajectories and use the negative similarity as the intrinsic reward.

4 COLLABORATIVE EXPLORATION (CE)

To investigate the collaborative behaviors among agents in A and the impacts on exploration, we
concentrate on two key questions: (1) How to collaborate? and (2) When to collaborate? For
the first question, we mainly study the effectiveness of sharing novelty information among agents
(Section 4.1). For the second question, we study the effects of incorporating collaborative behaviors at
different phases: during the data collection, training and evaluation phases (Section 4.2), respectively.

4.1 HOW TO COLLABORATE

We first introduce how to collaborate in A by sharing the novelty information with a collaborative
reward generator R(s, a, i, {j, j ̸= i}). In a nutshell, the intrinsic reward (Burda et al., 2019; Jo
et al., 2022; Wang et al., 2023b; Yuan et al., 2023) for each agent is calculated collaboratively, not
only considering its own knowledge, but also taking other agents into consideration (Peng et al.,
2020). Here, we introduce an instantiation which uses a contrastive encoder (Ermolov et al., 2021).

Collaborative Contrastive Reward. The main idea of the collaborative intrinsic reward is that given
any transitions, to calculate intrinsic reward for a particular agent, we consider not only the behaviors
of this agent, but the behaviors of all other agents as well. Specifically, to calculate the intrinsic
reward for a transition (s, a, r, s′) sampled from the shared replay buffer, we first use a learnable
encoder eϕ(·) to extract a feature vector (referred to as query embedding) from the afterstates s′ as
z = eϕ(s

′). As a practical way to approximately capture the agent behaviors using data, we maintain
a memory bank, which stores recent trajectories for each agent.

To measure the similarities of an afterstates s′ w.r.t. a particular agent Ai, we calculate the similarity
of the query embedding z w.r.t. the embeddings of the states in the memory bank for Ai (Zi≜{zik},
referred to as key embeddings), and take the negative similarity as intrinsic reward w.r.t. Ai:

r(s′, Ai) = −fKNN(z,Zi), (2)
where f and fKNN denote the cosine similarity and KNN cosine similarity respectively. With
r(s′, Ai) only, the agent is encouraged to visit states that are novel from its own perspective (ego).
To further induce collaborations among agents, we introduce inter-agent terms (mutual) and use the
following collaborative reward for the agent Ai:

R(s′, Ai) = w ∗ r(s′, Ai)︸ ︷︷ ︸
ego

+(1− w) ∗ g
(
{r(s′, Aj)}j ̸=i

)︸ ︷︷ ︸
mutual

, (3)

where g(·) is an aggregation operator such as mean/max/min and w is a weight parameter. In the
experiment, we use mean aggregator and w = 0.5. This process is illustrated in Figure 2. Intuitively,
Eqn.(3) encourages the agent to visit states that are not only novel from its own perspective, but also
to respect other agents’ intrinsic motivation in pursuit of novelty. Alternatively, a strong motivation
of one agent in pursuit of a state will reduce the motivations of others on the same state.

We train the encoder eϕ(·) using the InfoNCE loss with a temperature parameter τ :

Lencoder = −E

[
log

exp(f(zi, zj)/τ)∑
k,k ̸=i exp(f(zi, zk)/τ)

]
(4)

We select nearby samples (Stooke et al., 2021) as the positive pairs (zi, zj), i.e., si and sj are within
5 timesteps, and use the other positive samples in a batch as the negative pairs (zi, zk).
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4.2 WHEN TO COLLABORATE

In Section 4.1, we have incorporated collaboration during training. There are also other scenarios
where it is possible to leverage collaboration. In this subsection, we explore additional scenarios for
applying collaborative information among agents beyond what was discussed above.

Collaborative Data Collection. Besides collaborating by sharing the novelty information, we can
also collaborate in A by sharing the policy information. In this subsection, we introduced a simple
collaborative exploration strategy by leveraging multiple policies for joint exploration. Given an
agent set A and the policy set Π = [π1, · · · , πN ], the i-th agent receives the observation st from its
environment at timestep t. We then use each agent to sample M actions, i.e., the j-th agent samples
{aj1, · · · , ajM}. Similar to the ϵ-greedy exploration (Sutton & Barto, 2018), instead of sampling
πi(st) directly, we select the following action for the i-th agent with probability ϵ:

ai = max
k

N∑
j ̸=i

M∑
h=1

∥aik − ajh∥2. (5)

The intuition of the proposed ϵ-collaborative exploration is to let the agent select actions that are less
similar to the other agents in order to explore more diverse behaviors.

Collaborative Evaluation. After learning a set of agents A, we face another question of how to
select actions in the evaluation phase. This might not necessarily be a problem when all agents are
comparably good, i.e., in some simple tasks. However, randomly picking one agent from A for the
evaluation could lead to unexpected bad performance in complex environments under some edge
cases. To mitigate this issue, we propose to learn an extra classifier cψ(s) to select which agent to take
action in the evaluation. Simply, we can use the softmax function cψ(s) = softmax(Qi(s, πi(s))) as
the classifier if all agents use the same hyper-parameters and Q(s, a) functions are in the same scale.
Alternatively, we can learn another value function cψ(s) = argmaxaQ

e
ψ(s, a) where the action a is

the agent index. For example, Qe
ψ(s, i) is the cumulative reward starting from s following policy πi.

5 EXPERIMENT

In this section, we mainly focus on the following questions: (1) How does the proposed method
compare against other baselines? (2) Can we generalize the idea of collaborative reward to other
existing methods? (3) Does collaborative exploration really help to generate more diverse behaviors?
(4) Are the collaborative information useful in the data collection and evaluation phases?

5.1 EXPERIMENT SETTING

Tasks and Settings. We use 15 tasks from the DeepMind Control Suite benchmark (referred to as
DMC15) (Tassa et al., 2018) in the experiments. We use SAC (Haarnoja et al., 2018) as the backbone
algorithm. The size of A is set to 4 and we run 1e6 environment steps on each task, where each agent
runs for 2.5e5 environment steps. We do 4 gradient updates per environment step to match the total
gradient updates for each agent as in baselines. The training is repeated with 5 random seeds. In
the following experiments, we always select the first agent for evaluation. Apart from the results
presented in the sequel, additional results are deferred to Appendix D due to space consideration.
Baselines. We compare CE to the following baselines: (1) SAC (Haarnoja et al., 2018): the basic
single agent baseline, which is also used as the backbone algorithm in CE; (2) Replica: parallel SAC
agents with a shared buffer and each agent has its own environment; (3) A2C: a basic distributed RL
algorithm; (4) DIAYN (Eysenbach et al., 2018): a two-stage method to learn skill-conditioned policy;
(5) RND (Burda et al., 2019): using the prediction error w.r.t. a random target network as intrinsic
reward; (6) DiCE (Peng et al., 2020): collaborative exploration using a diversity regularization; (7)
SUNRISE (Lee et al., 2021): reweighing samples according to uncertainty in ensemble RL.

5.2 PERFORMANCE ON THE DMC15 BENCHMARK TASKS

We first compare the proposed method (CE), to other baselines with state-based inputs. Table 1
reports the mean and standard deviation results on the DMC15 benchmark. We also report the results
of the interquartile mean (IQM) performance aggregated over all the tasks following (Agarwal et al.,
2021), as shown in Figure 5.2. The running time of CE is around 2 times of training a single agent.
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Table 1: Average return on DMC15: CE generally outperforms other baselines.

Environment
Single Agent Parallel Agents Intrinsic Reward Collaborative Agents

SAC Replica A2C DIAYN RND DiCE SUNRISE CE

acrobot-swingup 9.9 (4.8) 22.8 (17.6) 39.2 (4.7) 22.3 (17.4) 11.3 (5.9) 15.2 (11.8) 5.7 (1.3) 54.6 (30.3)
cheetah-run 847.3 (17.9) 869.2 (19.8) 271.4 (58.5) 820.2 (39.2) 857.4 (25.1) 868.8 (8.7) 810.9 (28.5) 877.8 (4.1)
hopper-hop 148.2 (49.5) 164.6 (93.3) 20.4 (26.3) 182.8 (55.0) 164.7 (34.4) 167.5 (62.6) 188.0 (78.1) 306.8 (20.6)

hopper-stand 784.7 (242.9) 825.2 (205.5) 69.7 (79.5) 638.3 (237.9) 809.7 (122.1) 581.6 (274.3) 733.0 (196.3) 933.3 (7.8)
humanoid-run 147.5 (15.8) 134.2 (27.9) 0.9 (0.1) 125.8 (23.6) 110.6 (55.0) 141.8 (24.0) 136.4 (33.4) 167.3 (6.4)

humanoid-stand 429.6 (243.1) 844.2 (12.4) 5.3 (0.2) 660.3 (156.9) 744.8 (113.1) 662.2 (109.3) 732.8 (82.9) 836.4 (37.4)
humanoid-walk 494.1 (41.3) 561.7 (32.7) 1.5 (0.1) 521.0 (48.6) 463.2 (19.1) 481.3 (42.3) 538.3 (20.6) 574.6 (20.2)
finger-turn_hard 826.8 (71.8) 841.8 (47.5) 204.6 (82.6) 809.1 (18.7) 763.1 (87.1) 858.4 (66.5) 812.0 (57.3) 882.6 (21.1)

pendulum-swingup 652.1 (298.6) 345.0 (320.8) 50.3 (2.2) 623.5 (284.8) 836.0 (10.1) 831.1 (12.2) 688.3 (115.8) 841.4 (4.3)
quadruped-run 838.9 (53.6) 853.4 (54.6) 185.9 (75.0) 851.9 (56.0) 837.9 (50.3) 881.4 (18.4) 841.8 (35.7) 895.3 (25.3)

quadruped-walk 940.0 (21.1) 945.6 (7.2) 128.1 (45.1) 919.9 (27.3) 806.5 (200.1) 951.4 (5.1) 835.6 (195.4) 942.3 (22.3)
reacher-hard 948.0 (8.4) 963.4 (15.6) 829.5 (76.0) 957.9 (19.2) 954.8 (9.6) 962.2 (17.5) 969.7 (2.5) 956.3 (13.6)
walker-run 711.2 (59.5) 767.7 (21.5) 305.7 (162.8) 729.9 (20.5) 759.1 (26.3) 795.6 (3.1) 699.0 (49.8) 799.7 (5.0)
fish-swim 205.8 (31.9) 152.4 (30.6) 84.8 (8.9) 304.2 (116.4) 260.2 (69.2) 139.1 (38.6) 196.5 (67.5) 305.2 (15.4)

swimmer-swimmer6 282.2 (39.5) 288.5 (44.6) 240.0 (20.6) 332.5 (40.4) 300.4 (36.7) 280.0 (50.4) 290.4 (45.9) 298.6 (47.8)

Figure 3: The overall IQM score: the
proposed CE method achieves a higher
IQM score on the DMC15 benchmark.

We can observe that CE generally outperforms or matches
the performance of other baselines in most tasks. The
performance gap between Replica and SAC indicates that
joint learning with a set of different policies can help to
improve the exploration. On the other hand, the perfor-
mances of RND are usually worse than CE, which proves
the advantage of sharing data among agents. Further, CE
outperforms DiCE by a large margin, which showcases
the benefits of sharing novelty information among agents.
A2C usually underperforms other baselines, where the
collected samples are discarded once used. The perfor-
mance gap between DIAYN and CE shows the difficulty
in identifying the correct skills in the selected tasks. The
comparison between CE and SUNRISE indicates that the
proposed collaborative reward generator can achieve collaborative exploration more effectively. These
results show that the proposed multiple agents setting with a collaborative reward generator can help
to achieve more efficient exploration and better performance.

5.3 PERFORMANCE ON VISUAL TASKS

We also validate the effectiveness of the proposed method with complex visual inputs as shown in
Figure 5.3. For the pixel-based tasks, we use the DrQ (Laskin et al., 2020; Yarats et al., 2021) as the
backbone algorithm and use an agent set of size 2. We compare CE to DrQ, a Replica version of DrQ,
RND and SUNRISE. We can observe that CE achieved the best performance in all four tasks, which
suggests that our method is effective for both state-based and pixel-based inputs.

Figure 4: Average return on pixel-based tasks: CE also outperforms baselines with image inputs.

5.4 GENERALIZE THE IDEA OF COLLABORATIVE REWARD TO OTHER METHODS

Actually, the proposed collaborative reward is a general idea that can be implemented using different
existing curiosity-based exploration methods (Pathak et al., 2017; Burda et al., 2019; Seo et al., 2021).
Here, we introduce another variant using the standard RND module. Simply, instead of learning a
single RND module for each parallel agent with its own data, we can learn the RND module using
the shared buffer, as shown in Figure 14. By training the RND module on the shared buffer, the
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Table 2: CE is generally applicable: combining the collaborative reward with RND is also effective.

Methods acrobot-swingup cheetah-run hopper-hop hopper-stand humanoid-stand humanoid-walk reacher-hard

RND 11.3 (5.9) 857.4 (25.1) 164.7 (34.4) 809.7 (122.1) 744.8 (113.1) 463.2 (19.1) 954.8 (9.6)
+ Replica 24.7 (14.9) 882.5 (13.1) 227.5 (28.1) 925.4 (14.7) 625.4 (228.0) 522.8 (31.5) 953.1 (26.7)
+ CE (ours) 34.5 (24.3) 884.6 (10.6) 267.9 (53.5) 935.3 (8.3) 809.9 (47.9) 558.6 (30.4) 962.1 (8.0)

computed intrinsic reward naturally contains the curiosity information w.r.t. the holistic agent set,
hence leading to a collaborative exploration behavior to visit the states that are less visited by all
agents. In addition, we can extend this baseline variant to learn a separate RND module for each
agent on the shared buffer to increase diversity.

To validate the effectiveness of applying collaborative reward with RND, we compare the performance
of different RND variants in Table 2. The RND corresponds to a single RND agent, RND+Replica
learns a separate RND module using each agent’s own data as in Figure 14(a), and RND+CE denotes
the approach that applies the idea of CE to RND (more details are deferred to Section D.8) . From
Table 2, we can observe that simply applying Replica to RND has some improvements over vanilla
RND on some tasks but not significant overall. Applying CE to RND can effectively improve the
performance over both RND and RND+Replica.

5.5 DOES COLLABORATIVE EXPLORATION HELP TO GENERATE MORE DIVERSE BEHAVIORS?

We first conduct a case study on a maze task, where an RL agent starts from the left and aims to arrive
at either of two goal positions. In Figure 5, the top row shows the results of two non-collaborative
agents, where each agent is trained individually with its own data. The bottom row shows the results
of two collaboratively trained agents (CE). To visualize the behavior of each individual agent, we
colored one agent’s trajectories in blue and the other agent’s trajectories in brown for both methods.
We plot one trajectory per 10 trajectories for each agent, and the four columns correspond to the results
when each agent runs for 100/200/300/400 trajectories. We can observe that the two collaborative
agents are able to collect more diverse trajectories, while the two parallel agents fail to find the second
goal position. This simple toy example illustrates that by using the idea of collaborative intrinsic
reward, agents in the agent set can achieve more efficient exploration from a holistic view.

Figure 5: Evolution of trajectories on the Maze task at different training steps along the training
process. (Top) non-collaboratively trained agents (Bottom) collaboratively trained agents.

We conduct a second case study on the MuJoCo (Todorov et al., 2012) environments, where we
use the KL divergence DKL(πi, πj) and mutual information I(S;A) to quantitatively approximate
the diversity between different policies. To compute these metrics, we first use saved checkpoints
to collect some trajectories {s1, s2, · · · , sT }. We then use the agents from A to sample actions
for each collected state and measure the KL divergence DKL(πi(a|s), πj(a|s)) between the i-th
agent’s policy and the j-th agent’s policy. Next, we use the MINE lower bound (Belghazi et al.,
2018) to estimate the mutual information I(S;A) between the collected states and actions. Here, a
smaller I(S;A) means a higher uncertainty in action a given state s (Ma et al., 2023). Therefore, a
larger DKL and a smaller I(S;A) refer to more diverse policies. In the experiment, we use saved
checkpoints to collect 3000 trajectories to compute the DKL and I(S;A) metric for CE and Replica
SAC agents. We report the average metrics and average return across 5 random seeds in Table 3. We
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πCE1

πSAC1

πSAC2

πCE2

Walker2d Hopper

Figure 6: Trajectories in the Walker2d and Hopper tasks: The trajectories for some key points,
i.e., head, waist and foot, are colored in orange, green and blue. We can observe that the CE agents
(last two rows) display more diverse gaits than the SAC agents (first two rows).

Table 3: Diversity of agents: we use mutual information and KL divergence as diversity proxies.

Ant-V3 HalfCheetah-V3 Hopper-v3 Walker2d-V3

Metrics DKL I(S;A) R DKL I(S;A) R DKL I(S;A) R DKL I(S;A) R

Replica 22.754 2.988 4190.5 1.912 3.068 11552.8 4.044 1.490 2674.1 9.191 2.771 4171.1
CE 23.611 2.751 4613.5 2.674 3.095 11545.1 5.488 1.444 3325.6 13.157 2.587 4876.6

can observe that the CE agents usually have larger DKL and smaller I(S;A) metrics, except for the
HalfCheetah-V3 task, where both CE and Replica SAC agents learned near-optimal policies.

We further use the checkpoints at 2e5 steps to plot trajectories (Figure 6) for each agent in the
Walker2d-v3 (left column) and Hopper-v3 (right column) tasks (Janner et al., 2022). We can observe
that the CE agents (last two rows) display more diverse gaits than the Replica SAC agents (first two
rows), which is in accordance with the results in the Table 3.

5.6 IS COLLABORATIVE DATA COLLECTION USEFUL?

In this subsection, we investigate the usage of collaborative information during data collection. We
compare the following baselines: (1) Replica: each agent independently interacts with its own
environment; (2) ϵ-greedy: each agent has probability ϵ to select a random action; (3) UCB: a
baseline from the SUNRISE (Lee et al., 2021) that selects action w.r.t. the uncertainty of the learned
Q-functions, i.e., at = maxa{Qmean(st, a) + λQstd(st, a)}; (4): Softmax: constructing a mixture
policy using the softmax function w.r.t. each agent’s Q-function; (5) ϵ-collaborative: selecting action
that maximizes the differences w.r.t. other agents’ sampled actions as described in the Eqn.(5).

In the experiment, we use λ = 1 for the UCB method, ϵ = 0.2 and M = 10 for the ϵ-collaborative
method. ϵ-greedy method also uses ϵ = 0.2. From the Figure 7, we can observe that simply selecting
the most dissimilar actions outperforms the naïve Replica baseline in three out of four tasks, while
the UCB and Softmax method only outperform the baseline in one task. The main reason is that
UCB and Softmax exploration methods depend on the learned Q(s, a) functions, which are usually
inaccurate at the early stage of training and prevent the agent from collecting useful samples. These
results show the efficacy of the proposed ϵ-collaborative exploration strategy for collaborative data
collection. Moreover, ϵ-collaborative only adopts the policy information, so we can use different
hyper-parameters, i.e., discount factor γ, for each individual agent in the A for more diversities.

Figure 7: Collaborative data collection: a comparison of different unroll methods.
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Non-Collaborative  Evaluation Collaborative  Evaluation

Figure 8: Collaborative evaluation could help to mitigate the high variance issue: (Left) Agent
performance could vary depending on the task. (Right) Applying collaborative evaluation helps to
mitigate the performance variance in some complex tasks, i.e., fish-swim.

5.7 IS COLLABORATIVE EVALUATION USEFUL?

In this subsection, we study the efficacy of using collaborative information during the evaluation. We
compare the following three methods: (1) Replica: we always by default select the first agent in the
evaluation; (2) Softmax: we select actions according to a softmax policy softmax(Qi(s, π

i(s))) as
introduced in the PEX (Zhang et al., 2023b); and (3) QClassifier: we learn an extra value function
Qe
ψ(s, a) where agent index is the action. In the experiment, we simply use the multi-step cumulative

reward as the Monte Carlo target and learn Qe
ψ(s, a) as in a regression problem. We set the multi-step

horizon to be 100 and use Qe
ψ(s, a) to select the agent for evaluation for the next 100 steps. In

Figure 8, we first plot the evaluation curves for the 4 Replica agents in the cheetah-run and fish-swim
tasks for one random seed. Compared with the simple cheetah-run task, the agent performances
have much higher variances in the fish-swim task. We then plot the evaluation curves for the two
proposed collaborative evaluation methods across 5 random seeds. We can observe that the proposed
collaborative evaluation methods could effectively reduce the variance and improve the performance.

5.8 EXPERIMENTS WITH MULTIHEAD CE

In this subsection, we further compare to a multihead variant of CE, where each agent shares the
same torso network and uses different heads as the policy/value function. As we can observe from
Figure 9, the multihead variant generally performs slightly worse than CE. One main reason is that
the agent policies are less diverse in multihead CE when we use a shared torso network for each
agent. On the other hand, the advantage of using the multihead CE is that it reduces the computation
complexity by sharing parameters among agents. The superior performance of multihead CE against
Replica agent again demonstrates the benefits of leveraging collaborative exploration.

Figure 9: Multihead CE: a multihead variant where each agent shares the same torso network.

6 CONCLUSION

In this work, we focus on the problem of improving exploration in RL. Different from commonly
used single-agent formulations, we take a parallel-agent perspective and use a collaborative reward
generator to introduce collaborations between the agents, by sharing information among them when
computing the intrinsic reward. Then we further investigated the questions of how and when to
collaborate in the agent set to learn more diverse behaviors. We discuss the usage of collaboration in
the data collection and evaluation phases beyond training. In addition to the proposed instantiation,
the idea of collaborative exploration can also be integrated with existing intrinsic reward approaches
easily. Experiments on different benchmark tasks demonstrate the efficacy of the proposed method.
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APPENDIX

In the appendix, we first introduce some related work and discuss the connections and differences of
our work with prior work. Later, we discuss the limitations and future directions of this work. Lastly,
we report the details of experiment setups and additional experiment results.

A EXTENDED BACKGROUND MATERIALS

In this section, we discuss the connections and differences of our work with prior work.

Multi-Agent RL. Our problem setting with an agent set is very closely related to the Multi-agent
RL (MARL) (Zhang et al., 2021; Jin et al., 2022; Qiu et al., 2023; Samvelyan et al., 2023) set-
ting. In MARL, different agents operate in the same environment and share the state and reward
information (Li et al., 2022), while in our setting each agent independently interacts with its own
environment. Moreover, agents in the MARL setting usually work together to accomplish the same
task, i.e, defeating enemies in the Dota2 game (Zhang et al., 2020a; Castanyer, 2023). However, the
agent in our setting always focuses on its own task and its action will not affect the other agents. The
proposed multihead variant of CE is also related to the parameter sharing based MARL (Gupta et al.,
2017; Terry et al., 2020; Christianos et al., 2021; Yu et al., 2022), where the agents share some or all
parameters. Parameter-sharing helps to reduce the number of trainable parameters and scale to more
agents (Christianos et al., 2021). Parameter-sharing is usually used in MARL to learn cooperative
policies (Gupta et al., 2017; Yu et al., 2022), while the original proposed CE is inclined to introduce
more policy diversities via different policy parameters.

Collaborative RL. Our work is also closely related to some prior work in the literature on the
Collaborative RL (Lin et al., 2017). For example, CERL (Khadka et al., 2019) employs a gradient-
free neuroevolution method to learn a set of agents with different time horizons. CMAE introduced
a shared common goal to achieve cooperative exploration in the MARL setting (Liu et al., 2021).
Role Diversity provided theoretical analysis and evaluation metrics to measure a cooperative MARL
task (Hu et al., 2022). InfoMARL (Nayak et al., 2023) aggregates the information of neighborhood
of agents via a Graph Neural Network for the multi-agent navigation tasks.

Distributed RL. From a model structure perspective, our method is similar to prior work on the
Distributed RL (Mnih et al., 2016; Espeholt et al., 2018; 2020; Petrenko et al., 2020; Mei et al.,
2023), where multiple agents are interacting with their own environments simultaneously. Distributed
RL usually adopts a large number of parallel agents to accelerate the exploration (Espeholt et al.,
2020). Distributed RL focuses on improving the data throughput (Liu et al., 2020) via specialized
infrastructures or architecture designs (Mei et al., 2023). However, we use a much smaller agent
number than the Distributed RL and we only focus on leveraging the collaborative information from
different agents to achieve the collaborative exploration. One common challenge of our method and
the Distributed RL is the off-policy samples (Espeholt et al., 2018). We simply address this issue by
using the gradient clipping training technique, and leave a combination of more advanced off-policy
evaluation methods with our method for future work.

RL with Policy Set and Ensemble RL. Our work is related to work learning a set of policies (Badia
et al., 2020; Lee et al., 2021; Zhang et al., 2023b; Sheikh et al., 2022). NGU (Badia et al., 2020)
learns a set of policies each associated with a different discount factor. SUNRISE (Lee et al., 2021)
maintains an ensemble of policies and selects an action from their proposals for exploration using
UCB-base criteria. PEX Zhang et al. (2023b) sequentially expands a policy set to accommodate
the change in transfer learning, while our work focuses on a parallel policy set in online RL. Our
work is also related to population-based methods (Jung et al., 2020; Parker-Holder et al., 2020).
DiCE (Peng et al., 2020) is a work related to ours which adds a diversity regularization to improve
the diversity in an ensemble. MED-RL (Sheikh et al., 2022) further introduced a set of regularization
methods to prevent the collapse of representations in ensemble RL. Our setting is also similar to the
Thompson Sampling RL, which maintains a distribution of policies and samples a set of policies from
the posterior for exploration, and sync after interactions (Osband & Roy, 2017; Chen et al., 2022).

Exploration with Intrinsic Rewards. In this work, we leverage the proposed Collaborative Reward
Generator to achieve collaborative exploration via a collaborative intrinsic reward (Pathak et al.,
2017; Burda et al., 2019; Badia et al., 2020; Zhang et al., 2020b; Seo et al., 2021; Jo et al., 2022;
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Wang et al., 2023b; Yuan et al., 2023; Zahavy et al., 2023). The key point is to share the novelty
information among agents to improve the exploration efficiency from a holistic view. In principle, the
idea of collaborative exploration is agnostic to the selected intrinsic reward method. For example,
the CE variant uses a KNN-based intrinsic reward (Seo et al., 2021) and the CE-RND variant uses a
RND-based intrinsic reward (Burda et al., 2019). In this work, we mainly focus on demonstrating
the effectiveness of the idea of collaborative exploration in a parallel-agent setting, and we leave the
comparison of more intrinsic reward methods for future work.

B LIMITATIONS AND FUTURE DIRECTIONS

A major limitation of our work is the increasing computational cost. Given an agent set A of size N ,
our model is roughly N times larger than a single RL agent. Moreover, the proposed method requires
learning an extra contrastive encoder or RND modules to compute the intrinsic rewards. Therefore,
our method takes a longer training time than its single RL agent counterpart. In this work, we attempt
to mitigate this issue by implementing our code in JAX with vectorized model architectures. We
provide more detailed discussions about the problem of time efficiency in the Appendix D.6.

In this work, we investigate how to achieve collaborative exploration in an agent set A via sharing
different information. Moreover, we treat all the other agents in A equally when we compute the
collaborative intrinsic rewards for the i-th agent. An interesting future direction is to assign different
weights to each agent when we compute the collaborative intrinsic rewards. For example, we can use
each agent’s recent performance or uncertainty as the weight to compute a more fine-grained reward.
Another interesting future direction is to use a policy distillation stage to extract a distilled policy
from the agent set. In addition, the samples in the shared buffer could be quite off-policy for each
agent, where many of them are collected by the other agents. Therefore, it would be interesting to
investigate the combination of more advanced off-policy policy evaluation methods.

C EXPERIMENT DETAILS

In this section, we provide more details on the experiment setups.

C.1 EXPERIMENT SETUPS

In the experiment, we compare the baseline agents on the DeepMind Control suite (DMC) benchmark
tasks (Tassa et al., 2018). In all experiments, we run the RL agents for 1 million environment steps
for each baseline except for the A2C and DIAYN. Since A2C is more close to an on-policy algorithm,
where the collected samples are discarded once used. We run A2C for 1e7 environmental steps. We
run DIAYN for 2e6 environmental steps, where the first 1e6 steps are used for pre-training skills and
the second 1e6 steps are used for tine-tuning. For the proposed CE method, we use 4 agents in the
state-based experiments and use 2 agents in the pixel-based experiments. Agents interact with the
environment for the same environment steps, i.e., each agent in the state-based experiments interacts
with its own environment for 2.5e5 environment steps. In addition, each agent takes 4 gradient
updates per environment step to match the 1e6 gradient steps for each agent as in the other baselines.

Table C.1 shows the hyperparameters we use in the experiments. For the proposed components for
the collaborative exploration, we use an epsilon ϵ of 0.2 for the collaborative exploration and the
sampled action number M = 10. We use K = 20 for the KNN cosine similarity in the contrastive
collaborative encoder. To approximate the agent’s behaviors, we use a memory bank of size 300
to store the agent’s recent trajectories. Specifically, the memory bank is a FIFO buffer that stores
the agent’s latest trajectories. Since two consecutive states st and st+1 are usually very similar
in different tasks, we further introduce a skip frame parameter of 5 to only add one state into the
memory bank for every 5 environment steps. To construct the positive samples to train the contrastive
encoder, we adopt nearby samples {st−L, · · · .st−1, st+1, · · · , st+L} as the positive samples for the
state st with the L = 5. All the other samples are viewed as the negative samples for st, and in
the experiment, we use the other positive samples in the batch as the negative samples. Figure 10
illustrates the overall training pipeline of the proposed CE method. We implement the baselines in
JAX (Bradbury et al., 2018), and we adopt the parameter settings from the JaxRL2 library (Kostrikov,
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Table 4: Collaborative exploration parameters: some parameters for the proposed ϵ-collaborative
exploration, collaborative training, and collaborative evaluation.

Hyperparameter DMC15

ϵ for the ϵ-collaborative exploration 0.2
Sampled action number M 10

Memory skip 5
Memory bank size 300

Positive sample horizon 10
KNN 20

Batch size 256
Intrinsic reward weight λ 0.2

Temperature τ in contrastive loss 0.07

2022). More model parameters are summarized in the Table 5. Algorithm 1 shows the pseudocode
for the proposed method.

Encoder

(Contrastive) Collaborative Exploration

πθ1

πθ2

Replay Buffer Memory bank

πθ3

πθ4
contrastive loss Sampled batch

Intrinsic
Reward 

pos-neg pair
pos-pos pair

Figure 10: An illustration of the training pipeline: similar to ATC (Stooke et al., 2021), we select
nearby transitions as positive samples and train the contrastive encoder with InfoNCE loss.

Algorithm 1 Contrastive Collaborative Exploration
Input: total environment step T , evaluation frequency F , agent number N , shared buffer D,
memory bank M, action number M for the ϵ-collaborative exploration.
Initialize: the policy the πi and value function Qπi(s, a) for each SAC agent, timestep t = 0.
while t <= T do

for i = 1 to N do
The i-th agent sample an action at according to the ϵ-collaborative exploration (Eqn. 5).
Store the sampled transition (st, at, rt, st+1) to the shared buffer D and memory bank M.
t = t+ 1.

end for
Sample data from the memory bank M to compute the intrinsic reward (Eqn. 3).
Update the backbone SAC agent.
Update the contrastive encoder with Eqn. 4.
if t%F == 0 then

Collaborative evaluation using the softmax policy.
end if

end while

D ADDITIONAL EXPERIMENT RESULTS

D.1 EVALUATION CURVES ON THE DMC15 BENCHMARK TASKS

Figure 11 shows the evaluation curves for each baseline on 15 DeepMind Control suite (DMC) tasks .
We report the mean and standard deviation of the evaluation scores across 5 random seeds. We use
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Table 5: Model parameters: some other parameters we use in the experiments.

Hyperparameter DMC15

Actor network 256-256
Critic network 256-256
RND network 256-256

Encoder network 64-64
Batch size 256

Learning rate 3e-4
Replay buffer size 1e6

Discount factor 0.99
Ensemble size 4

Actor gradient clip 20
Critic gradient clip 20

Target entropy -0.5 * |A|

the mean of the last 10 evaluation results, where the agent is evaluated for every 5000 timesteps, after
9.5e5 timesteps as the evaluation score for one random seed. To facilitate visualization, we further
smooth the curves with a sliding window of length 10. We can observe that the proposed CE method
outperformed or matched other baselines in most of the tasks.

Figure 11: Evaluation Curves on the DMC15 Tasks: we report the average and standard deviation
of the evaluation scores across 5 random seeds.

D.2 ABLATION STUDIES ON DIFFERENT PROPOSED COMPONENTS

In this subsection, we investigate the combination of the different proposed components – the
collaborative data collection (Col-Unroll), collaborative training (Col-Training) and collaborative
evaluation (Col-Eval). For the collaborative evaluation, we simply use the softmax-based mixture
policy. We also add the results of the Replica baseline and CE for the comparison. The combination
of all three components is denoted as the All method. Table 6 shows the results of four DMC tasks.
We can observe that combining the three components performs the best except for the fish-swim task,
where using the collaborative evaluation is effective and using the collaborative data collection hurts
the performance. This is because the fish-swim is a challenging goal-reaching task, and adding the
collaborative data collection might distract the agent from reaching the target goal when some other
agents sample sub-optimal actions. Overall, removing the collaborative training (w/o Col-Training)
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performs the worst, which indicates that collaborative training via the proposed collaborative reward
generator is the most effective component.

Table 6: Ablation of different components: collaborative training is the most important component.

Env Replica CE All w/o Col-Eval w/o Col-Unroll w/o Col-Training

fish-swim 152.4 (30.6) 305.2 (15.4) 330.2 (25.8) 222.8 (54.6) 377.5 (71.0) 207.3 (35.1)
hopper-hop 164.6 (93.3) 306.8 (20.6) 343.1 (61.5) 333.7 (62.2) 325.4 (81.4) 162.6 (60.1)

humanoid-walk 561.7 (32.7) 574.6 (20.2) 589.3 (17.1) 573.3 (13.4) 558.3 (17.3) 517.8 (68.7)
pendulum-swingup 345.0 (320.8) 841.4 (4.3) 843.6 (5.4) 841.8 (3.8) 841.4 (3.2) 661.1 (312.8)

D.3 ABLATION STUDIES ON AGENT NUMBERS

In this subsection, we investigate the effect of using different agent numbers in the agent set A.
Table 7 compares the results of using 2/4/8/16/32/64 agents in the Replica baseline and the CE
method. We can observe that the performance of scaling to more agents actually depends on the tasks.
It’s notable that there is a trade-off between policy diversity and training stability. With more agents,
we have more diverse policies and help to solve tasks where exploration is particularly difficult, i.e.,
the goal-reaching fish-swim task. On the other hand, the off-policyness of the sampled data increases
as we have more agents. Given a sampled batch, there are only on average 1/N samples that are
collected by each agent. As the number N increase, the problem becomes closer to an offline RL
setting, where the optimization becomes more challenging, i.e., the performance variances increase
significantly for larger N . The focus of this work is to illustrate the effectiveness of collaborative
exploration among agents, and we leave the optimization challenge for future work. Therefore, using
a medium size of agent set strikes a balance of exploration and optimization.

Table 7: Ablation of agent numbers: a larger number of agents could improve the diversities and
help exploration, but it also makes the optimization more difficult due to more off-policy data.

fish-swim hopper-hop humanoid-walk pendulum-swingup

Replica 2 156.9 (45.6) 166.8 (78.7) 509.5 (42.1) 365.1 (263.6)
Replica 4 152.4 (30.6) 164.6 (93.3) 561.7 (32.7) 345.0 (320.8)
Replica 8 260.6 (68.7) 224.8 (51.3) 438.1 (77.5) 369.0 (351.4)

Replica 16 414.3 (58.6) 223.8 (40.3) 567.9 (73.1) 330.1 (328.0)
Replica 32 565.8 (65.6) 160.2 (56.7) 578.5 (88.3) 276.6 (327.0)
Replica 64 569.5 (89.1) 152.7 (60.1) 432.3 (138.1) 288.9 (279.2)

CE 2 324.7 (28.5) 207.2 (129.7) 483.0 (79.2) 837.2 (9.2)
CE 4 305.2 (15.4) 306.8 (20.6) 574.6 (20.2) 841.4 (4.3)
CE 8 360.1 (68.2) 205.0 (37.6) 523.1 (41.6) 830.2 (14.1)

CE 16 458.6 (76.9) 232.4 (60.5) 531.0 (51.7) 825.1 (18.1)
CE 32 604.6 (83.5) 226.8 (70.7) 545.2 (67.8) 824.5 (23.5)
CE 64 601.6 (103.7) 201.2 (86.2) 518.2 (129.0) 828.4 (26.3)

D.4 ABLATION STUDIES ON THE CONTRASTIVE ENCODER

One key point in our method is to measure the similarity between the sampled transitions to each
agent’s behaviors. To this end, we need one module to extract the representations for each transition
and compute the similarity. In practice, we could select any suitable representation learning methods
to measure the similarities between transitions. In this subsection, we compare different encoders for
the CE method. In particular, we compare the proposed contrastive encoder to an identical encoder,
which outputs the raw observation, and a random encoder (Seo et al., 2021). From the results in
Table 8, we can observe that using either the identical encoder or the random encoder performs much
worse than the proposed contrastive encoder in the CE. These results first prove the effectiveness of
the proposed contrastive encoder and highlight the importance of learning a good representation for
the similarity computation.
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Table 8: Ablation of different encoders: contrastive encoder can learn useful representations.

Env Replica CE Identical Random

fish-swim 152.4 (30.6) 305.2 (15.4) 176.4 (49.4) 190.2 (61.3)
hopper-hop 164.6 (93.3) 306.8 (20.6) 147.7 (63.4) 179.7 (63.6)

humanoid-walk 561.7 (32.7) 574.6 (20.2) 453.8 (131.4) 537.3 (26.6)
pendulum-swingup 345.0 (320.8) 841.4 (4.3) 697.5 (259.5) 514.6 (361.5)

D.5 ABLATION STUDIES ON THE KNN DISTANCE

In this subsection, we study the effects of using different K values for the KNN distance. Firstly, we
want to point out that the K parameter is closely related to the intrinsic reward weight λ:

r̂i(s, a) = rtask(s, a) + λriintrinsic(s, a).

As we use the negative KNN cosine similarity as the intrinsic reward riintrinsic(s, a), so a larger K
value corresponds to a smaller cosine similarity (larger intrinsic reward). The overall effect of the
intrinsic reward depends on both the λ and K parameters. Therefore, to investigate the influence on
the parameter K, we use a fixed λ = 0.2 in the following experiments. Table 9 shows the results of
using different K as the KNN cosine similarity, and we can observe that using a medium value of
K = 20 performs the best. When we select a small value, i.e., K = 5, then the cosine similarity is
likely to be always close to 1 and the intrinsic reward degrades to a constant reward shifting. On the
other hand, when we select a large value, i.e., K = 30, then the intrinsic reward would have a large
value which might distract the agent from the real task reward.

Table 9: Ablation of KNN: a medium value of K = 20 performs the best.

Env Replica K=5 K=10 K=20 K=30

fish-swim 152.4 (30.6) 172.8 (79.2) 210.6 (77.4) 305.2 (15.4) 241.8 (49.8)
hopper-hop 164.6 (93.3) 165.4 (64.0) 264.7 (95.1) 306.8 (20.6) 256.7 (50.3)

humanoid-walk 561.7 (32.7) 539.7 (29.6) 545.0 (26.6) 574.6 (20.2) 577.0 (19.9)
pendulum-swingup 345.0 (320.8) 773.8 (135.3) 839.4 (2.8) 841.4 (4.3) 837.1 (5.3)

D.6 COMPARISON OF TIME EFFICIENCY

Compared to the single RL agent baseline, the proposed method needs to learn more RL agents, hence
leading to a longer training time. To mitigate this issue, we implement our code in JAX (Bradbury
et al., 2018) with vectorized model structures (Flajolet et al., 2022). Overall, the CCE agent with an
ensemble size of four takes around 2 times slower than a single JAX-based SAC agent. More detailed
running time for each task can be referred to Table 10. Here, we compare to a single SAC agent
which takes more gradient updates per step (UPS), which roughly matches the wall-clock running
time of our method. As we can observe in the Figure 12, using more gradient updates can usually
improve the performance (Nikishin et al., 2022). The performance gap between SAC (UPS3) with
our method indicates the benefits of incorporating the collaborative exploration information.

Figure 12: SAC with more gradient updates: running SAC with more gradients per update.
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Table 10: A comparison of wall-clock running time on different DMC tasks: our method using an
ensemble of 4 agents is roughly 2 times slower than a single JAX-based SAC agent. The running
time is measured on a machine with RTX 3090 GPU and Intel i9-12900KF CPU.

Environment State Dimension |S| Action Dimension |A| SAC (min) Ours (min)

acrobot-swingup 6 1 23 45
cheetah-run 17 6 23 45

finger-turn-hard 12 2 25 50
fish-swim 24 5 26 51

hopper-hop 15 4 24 47
hopper-stand 15 4 27 55
humanoid-run 67 21 36 75

humanoid-stand 67 21 36 75
humanoid-walk 67 21 37 75

pendulum-swingup 3 1 24 46
quadruped-run 78 12 32 62

quadruped-walk 78 12 33 62
reacher-hard 6 2 23 45

swimmer-swimmer6 25 5 37 72
walker-run 24 6 28 55

D.7 EXPERIMENTS ON THE ATARI GAMES

We further compare the proposed method to DQN on the Asterix, BeamRider, Breakout, and
SpaceInvaders environments. In each environment, we train the agent for 5e6 environment steps, and
we evaluate the agent for every 2e5 steps. We run for 5 random seeds and report the mean evaluation
score and standard deviation. We further smoothed the curves with a sliding window of 5. Results
are shown in the Figure D.6. We can observe that CE generally outperforms the DQN baseline.

Figure 13: Results on the Atari games: CE outperforms DQN on the selected tasks.

D.8 COLLABORATIVE RND DETAILS

Here we further provide an illustration of the proposed collaborative variant using RND (RND+CE)
in the Figure 14. In RND+Replica, each agent is trained with its own data. In RND+CE, it learns a
shared RND module using the shared buffer, containing data from all the agents.
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9

D1 RND1

̂r

<latexit sha1_base64="Il+MuAEdRgFi0G+aMoM/ZYnXlfQ=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCKkuVIF5jBQtjkehDakLluE5r1XEi+wapirrwKywMIMTKZ7DxN7htBmg5kqXjc86VfU+QCK7Bcb6twtLyyupacb20sbm1vWPv7jV1nCrKGjQWsWoHRDPBJWsAB8HaiWIkCgRrBcObid96ZErzWN7DKGF+RPqSh5wSMFLXPiDY0zzCXsIf3Iq5mDBgfdK1y07VmQIvEjcnZZSj3rW/vF5M04hJoIJo3XGdBPyMKOBUsHHJSzVLCB2SPusYKknEtJ9NFxjjY6P0cBgrcyTgqfp7IiOR1qMoMMmIwEDPexPxP6+TQnjlZ1wmKTBJZw+FqcAQ40kbuMcVoyBGhhCquPkrpgOiCAXTWcmU4M6vvEiap1X3onp+d1auXed1FNEhOkIV5KJLVEO3qI4aiKIxekav6M16sl6sd+tjFi1Y+cw++gPr8weeeJUn</latexit>

a ⇠ ⇡1(a|s)

<latexit sha1_base64="0IPU4lFDaur6P5QHHqDHrrikqZo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ6kJKIX8eiF48VTFtoS9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O0vLK6tr64WN4ubW9s5uaW+/buJUM+6zWMa6GVDDpVDcR4GSNxPNaRRI3giGdxO/8cS1EbF6xFHCOxHtKxEKRtFKvj4j5qRbKrsVdwqySLyclCFHrVv6avdilkZcIZPUmJbnJtjJqEbBJB8X26nhCWVD2uctSxWNuOlk02PH5NgqPRLG2pZCMlV/T2Q0MmYUBbYzojgw895E/M9rpRjedDKhkhS5YrNFYSoJxmTyOekJzRnKkSWUaWFvJWxANWVo8ynaELz5lxdJ/bziXVUuHy7K1ds8jgIcwhGcggfXUIV7qIEPDAQ8wyu8Ocp5cd6dj1nrkpPPHMAfOJ8/07KODg==</latexit>

r, s0 <latexit sha1_base64="x9IHSutZFKaKUY6Prqa2PtgFlSE=">AAAB9HicbVDLSsNAFL2pr1pfVZduBotYoZREfC2LblxWsA9oQ5lMJ+3QySTOTAol9DvcuFDErR/jzr9xmmahrQcuHM65l3vv8SLOlLbtbyu3srq2vpHfLGxt7+zuFfcPmiqMJaENEvJQtj2sKGeCNjTTnLYjSXHgcdryRnczvzWmUrFQPOpJRN0ADwTzGcHaSG5ZVRCuIFlB6vSsVyzZVTsFWiZORkqQod4rfnX7IYkDKjThWKmOY0faTbDUjHA6LXRjRSNMRnhAO4YKHFDlJunRU3RilD7yQ2lKaJSqvycSHCg1CTzTGWA9VIveTPzP68Tav3ETJqJYU0Hmi/yYIx2iWQKozyQlmk8MwUQycysiQywx0SanggnBWXx5mTTPq85V9fLholS7zeLIwxEcQxkcuIYa3EMdGkDgCZ7hFd6ssfVivVsf89aclc0cwh9Ynz+t95Ab</latexit>

(s, a, r, s0)
<latexit sha1_base64="rusMu8syzTIQT9JAjz7insF8BtE=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA9hV3xdQx68RjFPCBZwuxkNhkyO7vM9AphyR948aCIV//Im3/jJNmDJhY0FFXddHcFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6ea8TqLZaxbATVcCsXrKFDyVqI5jQLJm8HwduI3n7g2IlaPOEq4H9G+EqFgFK30YE66pbJbcacgi8TLSRly1Lqlr04vZmnEFTJJjWl7boJ+RjUKJvm42EkNTygb0j5vW6poxI2fTS8dk2Or9EgYa1sKyVT9PZHRyJhRFNjOiOLAzHsT8T+vnWJ47WdCJSlyxWaLwlQSjMnkbdITmjOUI0so08LeStiAasrQhlO0IXjzLy+SxlnFu6xc3J+Xqzd5HAU4hCM4BQ+uoAp3UIM6MAjhGV7hzRk6L8678zFrXXLymQP4A+fzB0JnjTI=</latexit>

s0

D2

̂r
<latexit sha1_base64="x9IHSutZFKaKUY6Prqa2PtgFlSE=">AAAB9HicbVDLSsNAFL2pr1pfVZduBotYoZREfC2LblxWsA9oQ5lMJ+3QySTOTAol9DvcuFDErR/jzr9xmmahrQcuHM65l3vv8SLOlLbtbyu3srq2vpHfLGxt7+zuFfcPmiqMJaENEvJQtj2sKGeCNjTTnLYjSXHgcdryRnczvzWmUrFQPOpJRN0ADwTzGcHaSG5ZVRCuIFlB6vSsVyzZVTsFWiZORkqQod4rfnX7IYkDKjThWKmOY0faTbDUjHA6LXRjRSNMRnhAO4YKHFDlJunRU3RilD7yQ2lKaJSqvycSHCg1CTzTGWA9VIveTPzP68Tav3ETJqJYU0Hmi/yYIx2iWQKozyQlmk8MwUQycysiQywx0SanggnBWXx5mTTPq85V9fLholS7zeLIwxEcQxkcuIYa3EMdGkDgCZ7hFd6ssfVivVsf89aclc0cwh9Ynz+t95Ab</latexit>

(s, a, r, s0)
<latexit sha1_base64="rusMu8syzTIQT9JAjz7insF8BtE=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA9hV3xdQx68RjFPCBZwuxkNhkyO7vM9AphyR948aCIV//Im3/jJNmDJhY0FFXddHcFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6ea8TqLZaxbATVcCsXrKFDyVqI5jQLJm8HwduI3n7g2IlaPOEq4H9G+EqFgFK30YE66pbJbcacgi8TLSRly1Lqlr04vZmnEFTJJjWl7boJ+RjUKJvm42EkNTygb0j5vW6poxI2fTS8dk2Or9EgYa1sKyVT9PZHRyJhRFNjOiOLAzHsT8T+vnWJ47WdCJSlyxWaLwlQSjMnkbdITmjOUI0so08LeStiAasrQhlO0IXjzLy+SxlnFu6xc3J+Xqzd5HAU4hCM4BQ+uoAp3UIM6MAjhGV7hzRk6L8678zFrXXLymQP4A+fzB0JnjTI=</latexit>

s0
<latexit sha1_base64="0IPU4lFDaur6P5QHHqDHrrikqZo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ6kJKIX8eiF48VTFtoS9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O0vLK6tr64WN4ubW9s5uaW+/buJUM+6zWMa6GVDDpVDcR4GSNxPNaRRI3giGdxO/8cS1EbF6xFHCOxHtKxEKRtFKvj4j5qRbKrsVdwqySLyclCFHrVv6avdilkZcIZPUmJbnJtjJqEbBJB8X26nhCWVD2uctSxWNuOlk02PH5NgqPRLG2pZCMlV/T2Q0MmYUBbYzojgw895E/M9rpRjedDKhkhS5YrNFYSoJxmTyOekJzRnKkSWUaWFvJWxANWVo8ynaELz5lxdJ/bziXVUuHy7K1ds8jgIcwhGcggfXUIV7qIEPDAQ8wyu8Ocp5cd6dj1nrkpPPHMAfOJ8/07KODg==</latexit>

r, s0

<latexit sha1_base64="/5E+fxdvhQsbVlw190ZpARxtVBs=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIZamSitdYwcJYJPqQmlA5rtNadZzIvkGqoi78CgsDCLHyGWz8DW6bAVqOZOn4nHNl3xMkgmtwnG9raXlldW29sFHc3Nre2bX39ps6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHNxG89MqV5LO9hlDA/In3JQ04JGKlrHxLsaR5hL+EP1bK5mDBgfdq1S07FmQIvEjcnJZSj3rW/vF5M04hJoIJo3XGdBPyMKOBUsHHRSzVLCB2SPusYKknEtJ9NFxjjE6P0cBgrcyTgqfp7IiOR1qMoMMmIwEDPexPxP6+TQnjlZ1wmKTBJZw+FqcAQ40kbuMcVoyBGhhCquPkrpgOiCAXTWdGU4M6vvEia1Yp7UTm/OyvVrvM6CugIHaMyctElqqFbVEcNRNEYPaNX9GY9WS/Wu/Uxiy5Z+cwB+gPr8wegB5Uo</latexit>

a ⇠ ⇡2(a|s)
RND2

⋯

<latexit sha1_base64="0IPU4lFDaur6P5QHHqDHrrikqZo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ6kJKIX8eiF48VTFtoS9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O0vLK6tr64WN4ubW9s5uaW+/buJUM+6zWMa6GVDDpVDcR4GSNxPNaRRI3giGdxO/8cS1EbF6xFHCOxHtKxEKRtFKvj4j5qRbKrsVdwqySLyclCFHrVv6avdilkZcIZPUmJbnJtjJqEbBJB8X26nhCWVD2uctSxWNuOlk02PH5NgqPRLG2pZCMlV/T2Q0MmYUBbYzojgw895E/M9rpRjedDKhkhS5YrNFYSoJxmTyOekJzRnKkSWUaWFvJWxANWVo8ynaELz5lxdJ/bziXVUuHy7K1ds8jgIcwhGcggfXUIV7qIEPDAQ8wyu8Ocp5cd6dj1nrkpPPHMAfOJ8/07KODg==</latexit>

r, s0

<latexit sha1_base64="XPfPsWuZj3ykMIfrgiNbVySL5kA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIZakSxGusYGFCRaIPqQmV4zqtVTuJ7BukKurCr7AwgBArn8HG3+C2GaDlSJaOzzlX9j1BIrgGx/m2FhaXlldWC2vF9Y3NrW17Z7eh41RRVqexiFUrIJoJHrE6cBCslShGZCBYMxhcj/3mI1Oax9E9DBPmS9KLeMgpASN17H2CPc0l9hL+cFs2FxMGrI87dsmpOBPgeeLmpIRy1Dr2l9eNaSpZBFQQrduuk4CfEQWcCjYqeqlmCaED0mNtQyMimfazyQIjfGSULg5jZU4EeKL+nsiI1HooA5OUBPp61huL/3ntFMJLP+NRkgKL6PShMBUYYjxuA3e5YhTE0BBCFTd/xbRPFKFgOiuaEtzZledJ46TinlfO7k5L1au8jgI6QIeojFx0garoBtVQHVE0Qs/oFb1ZT9aL9W59TKMLVj6zh/7A+vwBy6uVRA==</latexit>

a ⇠ ⇡N (a|s)

<latexit sha1_base64="0IPU4lFDaur6P5QHHqDHrrikqZo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ6kJKIX8eiF48VTFtoS9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O0vLK6tr64WN4ubW9s5uaW+/buJUM+6zWMa6GVDDpVDcR4GSNxPNaRRI3giGdxO/8cS1EbF6xFHCOxHtKxEKRtFKvj4j5qRbKrsVdwqySLyclCFHrVv6avdilkZcIZPUmJbnJtjJqEbBJB8X26nhCWVD2uctSxWNuOlk02PH5NgqPRLG2pZCMlV/T2Q0MmYUBbYzojgw895E/M9rpRjedDKhkhS5YrNFYSoJxmTyOekJzRnKkSWUaWFvJWxANWVo8ynaELz5lxdJ/bziXVUuHy7K1ds8jgIcwhGcggfXUIV7qIEPDAQ8wyu8Ocp5cd6dj1nrkpPPHMAfOJ8/07KODg==</latexit>

r, s0

<latexit sha1_base64="/5E+fxdvhQsbVlw190ZpARxtVBs=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIZamSitdYwcJYJPqQmlA5rtNadZzIvkGqoi78CgsDCLHyGWz8DW6bAVqOZOn4nHNl3xMkgmtwnG9raXlldW29sFHc3Nre2bX39ps6ThVlDRqLWLUDopngkjWAg2DtRDESBYK1guHNxG89MqV5LO9hlDA/In3JQ04JGKlrHxLsaR5hL+EP1bK5mDBgfdq1S07FmQIvEjcnJZSj3rW/vF5M04hJoIJo3XGdBPyMKOBUsHHRSzVLCB2SPusYKknEtJ9NFxjjE6P0cBgrcyTgqfp7IiOR1qMoMMmIwEDPexPxP6+TQnjlZ1wmKTBJZw+FqcAQ40kbuMcVoyBGhhCquPkrpgOiCAXTWdGU4M6vvEia1Yp7UTm/OyvVrvM6CugIHaMyctElqqFbVEcNRNEYPaNX9GY9WS/Wu/Uxiy5Z+cwB+gPr8wegB5Uo</latexit>

a ⇠ ⇡2(a|s)

Dshared

⋯

RND
̂r

̂r

̂r

<latexit sha1_base64="Il+MuAEdRgFi0G+aMoM/ZYnXlfQ=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCKkuVIF5jBQtjkehDakLluE5r1XEi+wapirrwKywMIMTKZ7DxN7htBmg5kqXjc86VfU+QCK7Bcb6twtLyyupacb20sbm1vWPv7jV1nCrKGjQWsWoHRDPBJWsAB8HaiWIkCgRrBcObid96ZErzWN7DKGF+RPqSh5wSMFLXPiDY0zzCXsIf3Iq5mDBgfdK1y07VmQIvEjcnZZSj3rW/vF5M04hJoIJo3XGdBPyMKOBUsHHJSzVLCB2SPusYKknEtJ9NFxjjY6P0cBgrcyTgqfp7IiOR1qMoMMmIwEDPexPxP6+TQnjlZ1wmKTBJZw+FqcAQ40kbuMcVoyBGhhCquPkrpgOiCAXTWcmU4M6vvEiap1X3onp+d1auXed1FNEhOkIV5KJLVEO3qI4aiKIxekav6M16sl6sd+tjFi1Y+cw++gPr8weeeJUn</latexit>

a ⇠ ⇡1(a|s)

<latexit sha1_base64="0IPU4lFDaur6P5QHHqDHrrikqZo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ6kJKIX8eiF48VTFtoS9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O0vLK6tr64WN4ubW9s5uaW+/buJUM+6zWMa6GVDDpVDcR4GSNxPNaRRI3giGdxO/8cS1EbF6xFHCOxHtKxEKRtFKvj4j5qRbKrsVdwqySLyclCFHrVv6avdilkZcIZPUmJbnJtjJqEbBJB8X26nhCWVD2uctSxWNuOlk02PH5NgqPRLG2pZCMlV/T2Q0MmYUBbYzojgw895E/M9rpRjedDKhkhS5YrNFYSoJxmTyOekJzRnKkSWUaWFvJWxANWVo8ynaELz5lxdJ/bziXVUuHy7K1ds8jgIcwhGcggfXUIV7qIEPDAQ8wyu8Ocp5cd6dj1nrkpPPHMAfOJ8/07KODg==</latexit>

r, s0

<latexit sha1_base64="x9IHSutZFKaKUY6Prqa2PtgFlSE=">AAAB9HicbVDLSsNAFL2pr1pfVZduBotYoZREfC2LblxWsA9oQ5lMJ+3QySTOTAol9DvcuFDErR/jzr9xmmahrQcuHM65l3vv8SLOlLbtbyu3srq2vpHfLGxt7+zuFfcPmiqMJaENEvJQtj2sKGeCNjTTnLYjSXHgcdryRnczvzWmUrFQPOpJRN0ADwTzGcHaSG5ZVRCuIFlB6vSsVyzZVTsFWiZORkqQod4rfnX7IYkDKjThWKmOY0faTbDUjHA6LXRjRSNMRnhAO4YKHFDlJunRU3RilD7yQ2lKaJSqvycSHCg1CTzTGWA9VIveTPzP68Tav3ETJqJYU0Hmi/yYIx2iWQKozyQlmk8MwUQycysiQywx0SanggnBWXx5mTTPq85V9fLholS7zeLIwxEcQxkcuIYa3EMdGkDgCZ7hFd6ssfVivVsf89aclc0cwh9Ynz+t95Ab</latexit>

(s, a, r, s0)

<latexit sha1_base64="tYKArnkche3YvmIA2INPxq4+XYM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNJ1Sax/LBjBMMIjqQvM8ZNVbyOwl/9Lrlilt1ZyDLxMtJBXLUu+WvTi9maYTSMEG1bntuYoKMKsOZwEmpk2pMKBvRAbYtlTRCHWSzYyfkxCo90o+VLWnITP09kdFI63EU2s6ImqFe9Kbif147Nf3rIOMySQ1KNl/UTwUxMZl+TnpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcVb1LqsX9+eV2k0eRxGO4BhOwYMrqMEd1MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPeGKOeg==</latexit>

⇡1

DN

̂r
<latexit sha1_base64="x9IHSutZFKaKUY6Prqa2PtgFlSE=">AAAB9HicbVDLSsNAFL2pr1pfVZduBotYoZREfC2LblxWsA9oQ5lMJ+3QySTOTAol9DvcuFDErR/jzr9xmmahrQcuHM65l3vv8SLOlLbtbyu3srq2vpHfLGxt7+zuFfcPmiqMJaENEvJQtj2sKGeCNjTTnLYjSXHgcdryRnczvzWmUrFQPOpJRN0ADwTzGcHaSG5ZVRCuIFlB6vSsVyzZVTsFWiZORkqQod4rfnX7IYkDKjThWKmOY0faTbDUjHA6LXRjRSNMRnhAO4YKHFDlJunRU3RilD7yQ2lKaJSqvycSHCg1CTzTGWA9VIveTPzP68Tav3ETJqJYU0Hmi/yYIx2iWQKozyQlmk8MwUQycysiQywx0SanggnBWXx5mTTPq85V9fLholS7zeLIwxEcQxkcuIYa3EMdGkDgCZ7hFd6ssfVivVsf89aclc0cwh9Ynz+t95Ab</latexit>

(s, a, r, s0)
<latexit sha1_base64="rusMu8syzTIQT9JAjz7insF8BtE=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA9hV3xdQx68RjFPCBZwuxkNhkyO7vM9AphyR948aCIV//Im3/jJNmDJhY0FFXddHcFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6ea8TqLZaxbATVcCsXrKFDyVqI5jQLJm8HwduI3n7g2IlaPOEq4H9G+EqFgFK30YE66pbJbcacgi8TLSRly1Lqlr04vZmnEFTJJjWl7boJ+RjUKJvm42EkNTygb0j5vW6poxI2fTS8dk2Or9EgYa1sKyVT9PZHRyJhRFNjOiOLAzHsT8T+vnWJ47WdCJSlyxWaLwlQSjMnkbdITmjOUI0so08LeStiAasrQhlO0IXjzLy+SxlnFu6xc3J+Xqzd5HAU4hCM4BQ+uoAp3UIM6MAjhGV7hzRk6L8678zFrXXLymQP4A+fzB0JnjTI=</latexit>

s0
<latexit sha1_base64="0IPU4lFDaur6P5QHHqDHrrikqZo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ6kJKIX8eiF48VTFtoS9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O0vLK6tr64WN4ubW9s5uaW+/buJUM+6zWMa6GVDDpVDcR4GSNxPNaRRI3giGdxO/8cS1EbF6xFHCOxHtKxEKRtFKvj4j5qRbKrsVdwqySLyclCFHrVv6avdilkZcIZPUmJbnJtjJqEbBJB8X26nhCWVD2uctSxWNuOlk02PH5NgqPRLG2pZCMlV/T2Q0MmYUBbYzojgw895E/M9rpRjedDKhkhS5YrNFYSoJxmTyOekJzRnKkSWUaWFvJWxANWVo8ynaELz5lxdJ/bziXVUuHy7K1ds8jgIcwhGcggfXUIV7qIEPDAQ8wyu8Ocp5cd6dj1nrkpPPHMAfOJ8/07KODg==</latexit>

r, s0

<latexit sha1_base64="XPfPsWuZj3ykMIfrgiNbVySL5kA=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIZakSxGusYGFCRaIPqQmV4zqtVTuJ7BukKurCr7AwgBArn8HG3+C2GaDlSJaOzzlX9j1BIrgGx/m2FhaXlldWC2vF9Y3NrW17Z7eh41RRVqexiFUrIJoJHrE6cBCslShGZCBYMxhcj/3mI1Oax9E9DBPmS9KLeMgpASN17H2CPc0l9hL+cFs2FxMGrI87dsmpOBPgeeLmpIRy1Dr2l9eNaSpZBFQQrduuk4CfEQWcCjYqeqlmCaED0mNtQyMimfazyQIjfGSULg5jZU4EeKL+nsiI1HooA5OUBPp61huL/3ntFMJLP+NRkgKL6PShMBUYYjxuA3e5YhTE0BBCFTd/xbRPFKFgOiuaEtzZledJ46TinlfO7k5L1au8jgI6QIeojFx0garoBtVQHVE0Qs/oFb1ZT9aL9W59TKMLVj6zh/7A+vwBy6uVRA==</latexit>

a ⇠ ⇡N (a|s)
RNDN

<latexit sha1_base64="iaxASmeusxTbFWcwuwu3FLlJqUA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRiyepYNpCG8tmu2mXbjZhdyKU0t/gxYMiXv1B3vw3btsctPpg4PHeDDPzwlQKg6775RSWlldW14rrpY3Nre2d8u5ewySZZtxniUx0K6SGS6G4jwIlb6Wa0ziUvBkOr6d+85FrIxJ1j6OUBzHtKxEJRtFKficVD7fdcsWtujOQv8TLSQVy1Lvlz04vYVnMFTJJjWl7borBmGoUTPJJqZMZnlI2pH3etlTRmJtgPDt2Qo6s0iNRom0pJDP158SYxsaM4tB2xhQHZtGbiv957Qyjy2AsVJohV2y+KMokwYRMPyc9oTlDObKEMi3srYQNqKYMbT4lG4K3+PJf0jipeufVs7vTSu0qj6MIB3AIx+DBBdTgBurgAwMBT/ACr45ynp03533eWnDymX34BefjG6RWjpc=</latexit>

⇡N

<latexit sha1_base64="kIsn6+pgD2xRVlvhFXrrFLJWnII=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kknx61j04rGCaQttLJvtpl262YTdiVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJJpxn2WyES3Qmq4FIr7KFDyVqo5jUPJm+Hwduo3n7g2IlEPOEp5ENO+EpFgFK3kd1LxWO2Wym7FnYEsEy8nZchR75a+Or2EZTFXyCQ1pu25KQZjqlEwySfFTmZ4StmQ9nnbUkVjboLx7NgJObVKj0SJtqWQzNTfE2MaGzOKQ9sZUxyYRW8q/ue1M4yug7FQaYZcsfmiKJMEEzL9nPSE5gzlyBLKtLC3EjagmjK0+RRtCN7iy8ukUa14l5WL+/Ny7SaPowDHcAJn4MEV1OAO6uADAwHP8ApvjnJenHfnY9664uQzR/AHzucPeeaOew==</latexit>

⇡2

Figure 14: An example of collaborative novelty using RND: (Left) RND+Replica agents training
with its own data; (Right) RND+CE: collaborative RND agents training with a shared RND module.
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