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ABSTRACT

Fine-tuning is powerful for adapting large language models to downstream tasks,
but it often results in huge memory usages. A promising approach to mitigate this
is using Zeroth-Order (ZO) optimization, which estimates gradients to replace
First-Order (FO) gradient calculations, albeit with longer training time due to its
stochastic nature. By revisiting the Memory-efficient ZO (MeZO) optimizer, we
discover that the full-parameter perturbation and updating processes consume over
50% of its overall fine-tuning time cost. Based on these observations, we introduce
a novel layer-wise sparse computation and memory efficient ZO optimizer, named
LeZO. LeZO treats layers as fundamental units for sparsification and dynamically
perturbs different parameter subsets in each step to achieve full-parameter fine-
tuning. LeZO incorporates layer-wise parameter sparsity in the process of simul-
taneous perturbation stochastic approximation (SPSA) and ZO stochastic gradient
descent (ZO-SGD). It achieves accelerated computation during perturbation and
updating processes without additional memory overhead. We conduct extensive
experiments with the OPT model family on the SuperGLUE benchmark and two
generative tasks. The experiments show that LeZO accelerates training without
compromising the performance of ZO optimization. Specifically, it achieves over
3× speedup compared to MeZO on the SST-2, BoolQ, and Copa tasks.

1 INTRODUCTION

𝟏. 𝟕 × Speedup

(convergence)

𝟐. 𝟎 × Speedup (computation)

𝟑. 𝟒 × Speedup 

Figure 1: LeZO achieves a 3.4× speedup for fine-
tuning the OPT-13b model in run-time compared
with MeZO on the SST-2 dataset.

Large language models (LLMs) have shown
remarkable capabilities in understanding and
generating languages, and have been widely
adopted in various applications (Brown et al.,
2020; Wei et al., 2022; Rao et al., 2022; Wang
et al., 2023). To effectively adapt LLMs to
downstream tasks, full-parameter fine-tuning
has become crucial (Li & Liang, 2021; Lester
et al., 2021; Hu et al., 2022; Malladi et al.,
2023). However, as the scale of LLMs con-
tinues to increase, the memory usage and com-
putational cost of fine-tuning also escalate (Ka-
plan et al., 2020; Hoffmann et al., 2022), posing
a significant challenge to the practical applica-
tion of LLMs.

To address these challenges, researchers have
proposed efficient fine-tuning methods, which can be categorized into forward-backward (Li &
Liang, 2021; Hu et al., 2022; Ding et al., 2022; Pu et al., 2023; Xu et al., 2023) and forward-
only (Zhang et al., 2024; Liu et al., 2024; Guo et al., 2024) approaches. Forward-backward methods
typically use First-Order (FO) optimizers (Robbins & Monro, 1951; Kingma & Ba, 2015), updating
either partial model parameters or introducing small trainable modules to reduce memory usage.
However, the performance of these methods can hardly match full-parameter fine-tuning. Dynamic
update schemes (Brock et al., 2017; Liu et al., 2021; Pan et al., 2024) address this problem by dynam-
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icly changing learnable parameter subsets, but they still require caching many activations. In con-
trast, forward-only methods utilize Zeroth-Order (ZO) optimizers, which estimate gradients with-
out back-propagation, thereby reducing the memory overhead associated with forward-backward
methods. Malladi et al. (2023) first introduce a memory-efficient ZO optimizer (MeZO) for LLM
fine-tuning. ZO optimizers, however, exhibit higher stochasticity in gradient estimation compared
to FO optimizers, and this stochasticity increases as the scale of tuned parameters grows (Wang
et al., 2018; Balasubramanian & Ghadimi, 2018; Cai et al., 2022). Consequently, MeZO requires
significantly more computational cost than FO optimizers.

In this paper, we revisit MeZO and identify that its computational cost is primarily in the forward
pass, perturbation, and updating stages. Specifically, perturbation and updating account for over
50% of the total time when fine-tuning the OPT-13B model (Zhang et al., 2022) on the SST-2 task.
Simplifying these steps can accelerate MeZO. One promising approach is to sparsify the tuned
parameters, which has been shown to be effective for FO optimization (Pan et al., 2024).

Inspired by these insights, we propose a layer-wise sparse and efficient zeroth-order opti-
mizer (LeZO). LeZO aims to improve computational efficiency without additional memory over-
head. We use layers as the basic unit of sparsity, dynamically updating the set of layers to be tuned
at different fine-tuning steps. We integrate this policy into Simultaneous Perturbation Stochastic
Approximation (SPSA) and Zeroth-Order Stochastic Gradient Descent (ZO-SGD), which enables
sparse ZO optimization through localized parameter perturbation and updating. Over multiple steps,
LeZO can achieve full-parameter fine-tuning. LeZO accelerates computations because, during each
step, the weights of untuned layers remain dense. This allows us to skip perturbation and updating
processes for those layers, thereby reducing floating-point computations. Additionally, compared to
MeZO, LeZO does not introduce extra memory overhead. We employ a simple and efficient random
selection strategy, avoiding the need for new parameter modules.

We evaluate our approach by fine-tuning models from the OPT family on the SuperGLUE bench-
mark (Wang et al., 2019), and the SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019)
datasets. By sparsifying 75% of the layers and fine-tuning full-parameters, LeZO outperforms
MeZO on most datasets across three model scales. For instance, on the OPT-13B model, LeZO
surpasses MeZO by an average of 1% in accuracy or F1 score across seven datasets. When integrat-
ing the ZO optimizer with Parameter Efficient Fine Tuning (PEFT), LeZO exceeds MeZO on five
datasets, highlighting the versatility and effectiveness of our sparsity scheme. Additionally, LeZO
achieves over 2× computational acceleration across some tasks, with speedups increasing as layer
sparsity exceeds 75%. Finally, LeZO achieves over 3× training acceleration for the OPT-13B model
fine-tuning on the SST-2, BoolQ, and Copa datasets.

In summary, the contributions of this paper are as follows:

• We analyze the computational costs of MeZO during LLM fine-tuning and find that the
perturbation and updating processes account for over 50% of the fine-tuning time cost.

• We propose a dynamic layer-wise sparse and efficient zeroth-order optimizer that effec-
tively reduces computational cost in fine-tuning LLMs, and achieve faster convergence
than MeZO.

• We evaluate LeZO on SuperGLUE and two generative tasks. This demonstrates its acceler-
ation capability across different sparsity rates and showcases its performance improvement.

2 RELATED WORK

Forward-Backward Fine-Tuning Optimziers rely on the FO optimizer and compute gradients
through derivation (Robbins & Monro, 1951; Kingma & Ba, 2015), which results in high memory
usage. One approach to handle this problem is Parameter-Efficient Fine-Tuning (PEFT) (Xu et al.,
2023). Relevant strategies involve adding trainable modules (Li & Liang, 2021; Hambardzumyan
et al., 2021) or learnable input embeddings (Houlsby et al., 2019) to the model. Moreover, the LoRA
series (Hu et al., 2022; Dettmers et al., 2024) adopt low-rank decomposition to reduce the size of
trainable modules. However, recent studies show that partial fine-tuning cannot match the perfor-
mance of full-parameter fine-tuning (Ding et al., 2022; Pu et al., 2023). To handle this problem,
some methods enable full-parameter fine-tuning by adjusting parameters in an interleaved fashion.
For example, LISA (Pan et al., 2024) updates parameters of different layers in different iterations
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based on layer importance. Galore (Zhao et al., 2024) switches low-rank subspaces using the rank
information while simultaneously modifying the learnable parameters. These techniques still require
storing the intermediate states of FO optimizers, resulting in significant memory overhead.

Forward-Only Fine-tuning Optimziers do not require back-propagation for gradient computa-
tion (Malladi et al., 2023; Zhang et al., 2024). Malladi et al. (2023) firstly introduce the ZO optimizer
for LLMs fine-tuning, known as MeZO, which significantly reduces memory costs. Because MeZO
employs SPSA to estimate gradients, it exhibits greater randomness compared to FO optimizers.
Consequently, it requires more computational cost to converge. To accelerate the convergence of
MeZO, Sparse-MeZO (Liu et al., 2024) only updates model parameters with small values to en-
hance the effectiveness of ZO optimizer. Nevertheless, this approach necessitates ranking parameter
values and introduces a mask matrix; therefore, it results in additional memory and computational
overhead. Guo et al. (2024) reduced the number of learnable parameters to one-thousandth. How-
ever, it requires cloud computation to provide first-order gradient of the objective function, which is
unsuitable for more general scenarios. In summary, how to effectively accelerate the convergence
speed of ZO optimizers without incurring additional memory overhead still remains a challenge.

Our proposed LeZO adopts ZO optimization to update model parameters, reducing memory usage
compared to forward-backward fine-tuning. By employing a dynamic layer-wise sparsity strategy,
LeZO significantly reduces the number of trainable parameters and minimizes the computational
costs during the forward-only fine-tuning. Thus, LeZO achieves high efficiency in both memory
usage and computational cost.

3 EFFICIENCY ANALYSIS OF MEZO

In this section, we first revisit the classical ZO gradient estimator SPSA (Spall, 1992) and the ZO
optimizer ZO-SGD (Malladi et al., 2023). Subsequently, we analyze the computational redundancy
of MeZO (Malladi et al., 2023).

3.1 PRELIMINARIES

SPSA approximates gradients for multi-parameter systems by applying random perturbations, which
eliminates the need of gradient back-propagation. It iteratively optimizes parameters by estimating
gradients based on differences in function values around a given point. SPSA does not require the
function to be smooth or convex, but it generally converges slowly.

Definition 1 (Simultaneous Perturbation Stochastic Approximation, SPSA (Spall, 1992)). Given
a group of parameters θ ∈ Rd from a model and a loss function L used for optimization, SPSA
estimates the gradient on a mini-batch of data B as follows:

∇̂L(θ;B) = L(θ + ϵz;B)− L(θ − ϵz;B)
2ϵ

z ≈ zz⊤∇L(θ;B), (1)

where z ∈ Rd with z ∼ N (0, Id) and ϵ is a perturbation scale.

Malladi et al. (2023) applied SPSA (Definition 1) to optimize LLMs, using it to obtain approximate
gradients of parameters. They modified the SGD algorithm (Robbins & Monro, 1951), creating
ZO-SGD (Definition 2), which incorporates ZO differential gradients to update model parameters.
MeZO employs both SPSA and ZO-SGD, and performs two forward passes in a single optimization
step without caching the activation information of the parameters. Therefore, it reduces memory
usage to the size occupied by the model parameters alone.

Definition 2 (Zeroth-Order Stochastic Gradient Descent, ZO-SGD (Malladi et al., 2023)). Given a
learning rate η and a group of parameters θ ∈ Rd, the parameters at time t can be updated using
the SPSA gradient estimate as follows:

θt+1 = θt − η∇̂L(θ;Bt), (2)

where Bt is the mini-batch of data used at time t.

3.2 EFFICIENCY DILEMMA OF MEZO
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−

Figure 2: Proportion of computa-
tional time cost for each operation
in a single step when fine-tuning
the OPT-13b model on the SST-2
dataset using MeZO.

Fine-tuning LLMs with MeZO is extremely time-consuming.
It often takes hundreds or even thousands of times longer than
using FO optimizers like SGD (Robbins & Monro, 1951) and
Adam (Kingma & Ba, 2015). We break down the MeZO com-
putation process into three stages: forward pass, perturbation,
and updating. Algorithm 1 explains the computational opera-
tions for each of these stages. Figure 2 illustrates their relative
time cost in an optimization step.

Surprisingly, in classification tasks, the parameter perturbation
and updating stages account for more than one half of the over-
all time. A common method to reduce the computational bur-
den during optimization is to skip the calculations of certain
modules (Fan et al., 2019). However, this approach typically
introduces an inherent error during the forward pass (Evans &
Aamodt, 2021). This phenomenon is challenging to mitigate
and usually slows down the convergence rate. An alternative
strategy is to selectively optimize the parameters of specific
modules during the updating stage. Many studies have sub-
stantiated the efficacy of this strategy in FO optimization (Liu
et al., 2021; Mi et al., 2022; Pan et al., 2024; Zhao et al., 2024). The above observations motivate us
to implement sparse perturbation and updating for MeZO.

4 METHODOLOGY

In this section, we present the implementation details of LeZO. We explain how it achieves con-
vergence and computation acceleration without additional memory consumption by updating only a
subset of structured parameters during each optimization step.

4.1 DYNAMIC LAYER-WISE SPARSE ZEROTH-ORDER OPTIMIZATION

Building upon Equation (1), we apply structured pruning to the model parameter vector θ. In each
iteration, we partition this vector into two distinct parts. We introduce a sparse functionR to extract
sub-vectors from the input vector and stipulate this partitioning is structured by layer. Given a sparse
rate ρ (0 ≤ ρ ≤ 1), a parameter vector θ, and a random number s, we obtain a new parameter vector
θ′ ∈ Rρd, which is mathematically represented as:

θ
′
= R(θ, ρ, st). (3)

In each step, we maintain the number of elements in θ′. The random seed st is used to determine
which layers’ parameters are selected to form θ′.

Definition 3 (Layer-wise Sparse SPSA). During each step, the sparse parameter set is used as a
condition for differential calculation in SPSA, which is defined as follows:

∇̂LR(θ;B) = L(θ + ϵz
′
;B)− L(θ − ϵz

′
;B)

2ϵ
z

′
, (4)

where z
′
= R(z, ρ, st).

Furthermore, incorporating layer-wise sparsity into ZO-SGD results in:

Definition 4 (LeZO-SGD). At time t, θ can be updated using the layer-wise sparse SPSA gradient
estimation as:

θ
′

t+1 = θ
′

t − η∇̂LR(θ;Bt). (5)

Algorithm 1 presents the pseudocode for LeZO, employing a straightforward approach to implement
the sparse function R. We use layers as the fundamental unit for sparsity (Fan et al., 2020). By
maintaining a subset a to store pruned layers, these layers are skipped during perturbation and
parameter updating processes.

4
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Algorithm 1: LeZO (Layer-wise Sparse and Efficient Zeroth-Order Optimization)

Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale µ, batch size
B, learning rate schedule {ηt}, layer number N , and dropping layer number n ∈ (0, N).

for t = 1, ..., T do
Sample batch B ⊂ D and random seed s
Randomly select n elements from {1, ..., N} to generate subset a
θ ← PerturbParameters(θ, a, µ, s) ▷ Perturbation
ℓ+ ← L(θ;B) ▷ Forward Pass
θ ← PerturbParameters(θ, a,−2µ, s) ▷ Perturbation
ℓ− ← L(θ;B) ▷ Forward Pass
θ ← PerturbParameters(θ, a, µ, s) ▷ Perturbation

projected grad← (ℓ+ − ℓ−)/(2µ)
Reset random number generator with seed s
for θi ∈ θ & i /∈ a do

z ∼ N (0, 1)
θi ← θi − ηt ∗ projected grad ∗ z ▷ Updating

end
end

Subroutine PerturbParameters(θ, a, µ, s)
Reset random number generator with seed s
for θi ∈ θ & i /∈ a do

z ∼ N (0, 1)
θi ← θi + µz

end
return θ

Remark 1. As illustrated in Algorithm 1, it is evident that LeZO introduces a layer-wise selection
operation R compared to MeZO. Given the scale of parameters in the billions, this addition has
a negligible computational impact. We have the following remarks. (1) During the Forward pass,
LeZO’s computation aligns with MeZO, incurring no additional memory or computational overhead.
(2) During the perturbation process, we skip the parameter perturbation in the sparsified layers,
thereby reducing the computational load. Both LeZO and MeZO utilize a random seed for fixed
perturbation z. This approach eliminates the need for additional cache storage for perturbation
information, thereby not increasing memory overhead. The same principle applies to the updating
process. Therefore, it is evident that LeZO reduces computational overhead through the introduction
of layer-wise parameter sparsification during the perturbation and updating processes and incurs no
additional memory overhead.

4.2 CONVERGENCE ANALYSIS OF LEZO

When examining the individual optimization steps, LeZO effectively updates a sub-network, similar
to Sparse-MeZO (Liu et al., 2024). We aim to demonstrate that as model parameters converge
towards local optimal values, there exists a value σ2 such that the speed at which the loss approaches
a local optimum is directly proportional to the number of parameters. This implies that the parameter
convergence rate is related to ρ.

Lemma 1 (Unbiased Estimation of Sparse Gradient). Let LR = ER[L(θ + ϵz
′
)]. The relationship

between the model’s sparse gradient ∇̂θ′LR(θ) and the estimated ZO sparse gradient ∇̂LR(θ) can
be expressed as:

∇̂θ′LR(θ) = R(∇LR(θ)) = ∇θ′ER[L(θ + ϵz
′
)]

= ER[
L(θ + ϵz

′
)− L(θ − ϵz

′
)

2ϵ
z

′
] = ER[∇̂LR(θ)].

(6)

From Lemma 1, we can see that the estimated gradient by sparse ZO is an unbiased estimation of
the model’s sparse parameter gradient.
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Table 1: Experiments on the OPT-13b model. SSZO sparsifies 75% of the layers (30 layers out of
40). Two A100-40G GPUs are used for BoolQ and SQuAD tasks.

Task SST-2 RTE CB BoolQ WSC WIC Copa SQuAD AVG.Task type ———————- classification ———————- multiple choice generation

Zero-Shot 58.8 59.6 46.4 59.0 38.5 55.0 80.0 46.2 55.4
ICL 87.0 62.1 57.1 66.9 39.4 50.5 87.0 75.9 65.7

FT (12× memory) 92.0 70.8 83.9 77.1 63.5 70.1 79.0 84.9 77.7

MeZO (Malladi et al., 2023) 91.4 66.1 67.9 67.6 63.5 61.1 88.0 84.7 73.8
MeZO (Reproduce) 91.1±0.1 70.8±1.4 68.8±1.8 69.1±0.6 63.5±1.2 58.7±0.9 87.0±1.6 84.2±1.0 74.2±1.1

SSZO 93.0±0.3 71.4±2.1 69.2±1.7 74.3±0.8 62.7±0.4 60.7±1.5 87.2±0.8 84.3±0.7 75.4±1.1

Table 2: Experiments on OPT-1.3b model. LeZO sparsifies 75% of the layers (18 layers out of 24).

Task SST-2 RTE CB BoolQ WSC WIC MultiRC Copa ReCoRD SQuAD DROP
Task type ——————————– classfication ——————————– —— multiple choice —— —- generation —-

zero-shot 53.6 53.4 39.3 61.1 43.3 57.5 45.4 75.0 70.6 27.2 11.2
ICL 67.7 53.1 44.6 67.2 53.8 56.0 44.7 70.0 69.9 59.0 20.3

MeZO 89.7±1.3 65.4±2.5 69.3±3.0 64.1±0.8 63.5±0.0 58.7±0.5 60.4±1.5 76.0±1.9 71.6±0.5 76.9±0.8 23.1±0.3

LeZO 91.9±0.3 64.5±2.4 69.6±1.8 65.3±1.2 63.3±1.1 59.4±1.3 61.4±1.2 76.8±2.3 71.7±0.4 76.8±0.7 24.1±0.8

Assumption 1 (Lipschitz Continuous). Let ∇L(θ;x) denotes the first-order gradient of L with
respect to θ at x. L satisfies Lipschitz continuity, then

∥∇L(θ;x)−∇L(θt;x)∥ ≤
L(l)

2
∥θ − θt∥2, (7)

where L(l) is a constant ensuring L satisfies Lipschitz continuity.

Assuming that the loss function L(θ;x) is Lipschitz continuous (Assumption 1), we can calculate
the norm distance between the sparse ZO estimated gradient and the true sparse gradient ∇LR(θ).
This distance, denoted as ∥∇̂θ′LR(θ)−∇LR(θ)∥, helps establish their relationship using Lemma 1.
Lemma 2 (Relationship between Sparse Gradient and Estimate Value). Let the loss functionL(θ;x)
to be Lipschitz continuous. According to Minkowski inequality, we have

∥∇LR(θ)∥2 ≤ 2∥∇̂θ′LR(θ)∥2 + ϵ2L2(l)

2
(ρd+ 4)3, (8)

where∇LR(θ) = R(∇L(θ)).

Finally, we can obtain the convergence rate of LeZO.
Lemma 3 (Convergence of LeZO). Assuming a sequence of generated parameters {θt}t≥0 in LeZO.
We have

ER,x[∥∇θLR(θT )∥2] ≤ σ2 (9)

for any T = O(ρdLσ2 ). t represents the step of fine-tuning and L(l) ≤ L for all L(θt).

From Lemma 3, it is apparent that as the sparsity ratio ρ decreases, the upper bound on the time re-
quired to converge to the expected value also decreases. Hence, parameter sparsity and the smooth-
ness of the objective function can enhance the convergence speed.

5 EXPERIMENTS

In this section, we present extensive experiments to validate the effectiveness of the LeZO algorithm.

5.1 EXPERIMENTAL SETTING

Models and Datasets. To evaluate the efficacy of LeZO, we follow the validation methodology
by Malladi et al. (2023). We conduct experiments on the OPT model family (Zhang et al., 2022)
at various scales: 1.3 billion, 13 billion, and 30 billion parameters, with 32, 40, and 48 Trans-
former blocks, respectively. These models utilize the core components of the Transformer archi-
tecture (Vaswani et al., 2017), including self-attention mechanisms, feed-forward neural networks,
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Table 4: Fine-tuning performance of the ZO optimizer with PEFT. †indicates the results reported in
the paper of Malladi et al. (2023). LeZO (LoRA/prefix) outperforms MeZO (LoRA/prefix) on 4 out
of 5 tasks. LeZO (LoRA) sparsifies 50% of layers, while LeZO (prefix) sparsifies 75%.

Task SST-2 CB BoolQ Copa SQuAD

MeZO (LoRA)† 89.6 66.1 73.8 84.0 83.8
MeZO (LoRA) 90.6±1.6 70.4±1.6 71.8±1.2 86.0±1.2 81.1±0.8

MeZO (prefix)† 90.7 69.6 73.1 87.0 84.2
MeZO (prefix) 90.7±0.9 67.9±2.5 73.2±0.4 87.4±1.7 83.3±1.0

LeZO (LoRA) 92.3±0.5 71.1±0.8 73.7±0.8 86.4±1.5 81.5±1.1

LeZO (prefix) 92.1±0.7 69.7±2.5 74.5±0.6 87.6±1.1 83.1±0.4

residual connections, and layer normalization within each block. For downstream tasks, we use the
SuperGLUE benchmark (Wang et al., 2019), which includes classification tasks, multiple-choice
tasks, and two question-answering tasks.

Table 3: Experiments on the OPT-30b
model. LeZO sparsifies 75% of the lay-
ers (36 layers out of 48). We report the
best results of MeZO and MeZO with
prefix from the paper of Malladi et al.
(2023). Two A100-40G GPUs are used
for SST2, and four for BoolQ.

Task SST-2 BoolQ

zero-shot 56.7 39.1
ICL 81.9 66.2

MeZO/MeZO (prefix) 90.6 73.5
MeZO (reproduce) 90.3±0.5 69.5±0.4

LeZO 92.8±0.6 73.7±0.9

Methods. We utilize zero-shot and 32-shot In-Content
Learning (ICL) (Brown et al., 2020) alongside fine-
tuning with Adamw (FT) as comparison. To demonstrate
LeZO’s ability to accelerate model convergence and re-
duce time cost per training step without additional mem-
ory costs, we compared it with MeZO (Malladi et al.,
2023). In addition to full-parameter fine-tuning, we in-
tegrate LeZO with two PEFT methods: LoRA (Hu et al.,
2022) and prefix tuning (Li & Liang, 2021), to further
enhance fine-tuning efficiency.

Hyper-parameters. We follow most of the experimen-
tal settings used in MeZO, including configurations for
LoRA and prefix tuning, and methods for selecting train-
ing and testing data. We conduct a grid search for the
learning rate and perturbation scale to identify the opti-
mal parameters for each experimental group. We use the experimental code for ZO optimization
provided by Zhang et al. (2024) and set the validation steps to 2000. Experiments are conducted on
an A100-40G GPU. However, due to its memory limitations compare to the A100-80G GPU used
by Malladi et al. (2023), we employ a multi-card parallel strategy for fine-tuning the OPT-13b and
30b model on certain downstream tasks to ensure parameter consistency. We select the final model
based on the checkpoint with the lowest validation loss. All numerical results report in the exper-
iments are reproduced. We conduct parameter fine-tuning experiments using five different random
seeds, reporting the average and standard deviation of these results. Detailed settings are provided in
Appendix A. Unless otherwise specified, all baseline experiments are conducted using the OPT-13b
model with 75% sparsity (30 out of 40 layers).

5.2 MAIN RESULT

Comparison between LeZO and Other Methods. LeZO outperforms both non-training methods
and MeZO, and surpasses the FO optimizer on some tasks. Table 1 presents a comparison between
LeZO and the baseline methods such as zero-shot, the training-free method (ICL), Fine-Tuning
(FT) with AdamW for FO optimization, and MeZO across various downstream tasks. We obtain the
following observations. 1) LeZO significantly outperforms non-training methods such as zero-shot
and ICL on all tasks. This demonstrates LeZO’s superior convergence capabilities during training.
2) LeZO surpasses MeZO in 7 out of 8 tasks, with an average improvement exceeding 1% across
all tasks. Notable enhancements are observed on the SST-2, BoolQ, and WIC datasets, with average
accuracy increases over 2% across five experiments. This indicates that layer-wise sparsity schemes
can effectively accelerate convergence. However, there is a slight performance degradation on the
WSC task compared to MeZO, likely due to the inherent instability of ZO optimization methods
and MeZO’s sensitivity to prompts. It is speculated that LeZO may inherit these drawbacks, as
the fundamental differential gradient computation process in SPSA remains unchanged. 3) LeZO
marginally outperforms FT on the SST-2, RTE, and Copa datasets, while demonstrating comparable
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Figure 3: Impact of learning rate and sparsity ratio on
fine-tuning models using LeZO on the SST-2 task. Results
with accuracy exceeding 90% are displayed. Experiments
were conducted with a single random seed. “Dropout
Number” indicates the number of sparse layers in the OPT
13B model. To enhance clarity, the learning rates are log-
arithmically scaled. The curves mapping onto the straight
lines in the lower plane are used to illustrate the range
of learning rates that lead to improved performance after
sparsifying different numbers of layers in the model. The
performance of MeZO performance is the red line.

Figure 4: Correlation between the spar-
sity ratio and runtime in fine-tuning
the OPT-13b model using LeZO on the
SST-2 task. This figure presents the
optimal experimental results at various
sparsity levels from Figure 3, annotated
with different colored pentagrams. The
purple line indicates the total time re-
quired for fine-tuning in the correspond-
ing experiments.

performance on the other datasets. Notably, LeZO and MeZO have the same memory consumption,
and FT incurs a memory cost twelve times higher than LeZO.

Performance on Multi-Size Models. LeZO achieves a notable performance improvement over
MeZO across models of varying scales. Tables 2 and 3 display the performance of LeZO and
other methods on the OPT-1.3b and OPT-30b models, respectively. When fine-tuning OPT-1.3b on
downstream tasks, LeZO achieves superior results in 9 out of 11 tasks. It achieves comparable results
on the WSC task and its performance drop is less than 1% on RTE. When fine-tuning OPT-30b on
the SST-2 and BoolQ datasets, LeZO demonstrates significant improvements compared to MeZO.
The experiments across Tables 1, 2, and 3 reveal that LeZO achieves more pronounced performance
gains on larger LLMs. This phenomenon may relate to the stability of model convergence, with
larger models being more stable. Additionally, LeZO demonstrates greater stability compared to
MeZO.

Figure 5: Comparison in computation efficiency
between LeZO and MeZO on various tasks.

Performance of Combining ZO optimizer
and PEFT. LeZO can be effectively integrated
with PEFT methods. We combine ZO op-
timizers with PEFT by updating the train-
able parameters introduced by PEFT across
different methods. Table 4 showcases the
fine-tuning results of LeZO and MeZO com-
bined with the PEFT across different datasets.
LeZO (LoRA) outperforms MeZO (LoRA) on
all five datasets, while LeZO (prefix) outper-
forms MeZO (LoRA) on 4 out of 5 datasets.
Additionally, the combination of LeZO with
PEFT results in performance improvements ex-
ceeding 1% on the SST-2, CB, and BoolQ tasks
compared to MeZO. This indicates that LeZO
enhances fine-tuning effectiveness even when
combined with PEFT.

Convergence and Computation Speedup by
LeZO. LeZO is more efficient than MeZO. Fig-
ure 1 illustrates the variation in accuracy on the test set when fine-tuning OPT-13b using LeZO on
the SST-2 datasets. LeZO achieves 2× computation speedup and 1.7× convergence speedup. In
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Figure 5, we present the convergence and computation speedups obtained when using LeZO to fine-
tune OPT-13b on eight downstream tasks. The experimental results show that with the layer-wise
sparsity policy, LeZO achieves effective convergence and computation speedups. In conclusion,
LeZO achieves more efficient LLM fine-tuning than MeZO.

5.3 HYPERPARAMETER ANALYSIS

Influence of Learning Rate and Sparsity Rate. The layer-wise sparsity scheme we use shows
how the number of sparse layers affects LeZO’s performance. Our experiments show that with an
increase in sparsity rate (more layers being sparsified), the ZO optimization process needs a higher
learning rate. Figure 3 illustrates the relationship between the sparsity rate (Dropout Number),
learning rate, and model accuracy on downstream tasks. From the figure, we obtain several key
observations: 1) LeZO demonstrates significantly superior optimization effectiveness compared to
MeZO (Dropout Number=0). Under full-parameter fine-tuning, LeZO consistently outperforms
MeZO regardless of the number of sparsified layers. 2) LeZO enhances the robustness of the ZO
optimization process. Comparing the lengths of the dashed lines, it can be observed that as the
sparsity ratio increases, the range of learning rates that achieve over 90% accuracy on the SST-2 task
expands. This indicates that the robustness of LeZO improves with an increased sparsity ratio. 3)
The behavior of LeZO markedly differs from fine-tuning only a subset of parameters. Performance
experiences a substantial decline when the sparsity rate reaches ρ = 1 (sparse 40 layers in OPT-13b,
while fine-tuning solely the embedding and linear layers).

Figure 6: The relationship between the length
of input tokens and the computational speedup
achieved by LeZO.

Impact of Downstream Tasks on Compu-
tational Speedup. LeZO achieves varying
speedup ratios across different tasks, as shown
in Figure 5, which depicts the computation and
convergence speedup ratios obtained by LeZO
across all tasks. The differences in computa-
tional speedup ratios come from the varying
proportions of the forward propagation process
within the total computation. The speed of for-
ward propagation depends on the average token
length of different tasks within the same model
framework. Figure 6 illustrates the relationship
between the average input token length of dif-
ferent datasets and the computational speedup
achieved by LeZO. When input token length in-
creases, computation speedup decreases. With
a constant sparsity ratio, LeZO’s floating-point
computational savings per downstream task re-
main fixed. Consequently, LeZO’s computation acceleration is more suited for relatively straight-
forward training samples. However, a similar trend is not observed in the convergence acceleration
of LeZO across different tasks. This disparity may be attributed to the varying difficulty levels of
tasks, their convergence characteristics, and the distributions of training and extracted testing sets.

6 CONCLUSION

In this study, we introduce LeZO, a layer-wise sparse and efficient ZO optimizer for fine-tuning
LLMs. We integrate the layer-wise pruning scheme into the ZO optimization process, which
achieves both computation and convergence speedups in LLMs training without additional mem-
ory costs. Moreover, LeZO combines effectively with existing PEFT methods to further enhance
acceleration. We conduct fine-tuning experiments on models from the OPT family using the Super-
GLUE benchmark and two question-answering datasets. Empirical results show that LeZO signif-
icantly reduces training time and improves performance. Overall, LeZO provides an efficient and
effective approach to ZO fine-tuning. It reduces the computational load caused by full-parameter
perturbations in zeroth-order optimization without introducing additional memory overhead.
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A DETAILED EXPERIMENTAL SETTINGS

We aligned the hyperparameter configurations for our primary experiments with the standards set
by MeZO, as described by Malladi et al. (2023). Our experimental framework is based on the work
of Zhang et al. (2024). Our approach incorporates a sparsity rate in LeZO. Our experiments indicate
that this requires larger learning rates to enhance model convergence. Consequently, the grid search
ranges for learning rates differ between LeZO and MeZO in the experiments presented in Table 1,
2, 3, and 4. We strictly adhered to the settings outlined by Malladi et al. (2023) when replicating
MeZO experiments. The hyperparameter search ranges for grid search are detailed in Table 5. We
conducted five trials with fixed random seeds for each set of experiments to compute average results
and standard deviations. This facilitated a robust comparison of the efficiency of different methods.
In the experiments depicted in Figure 3, due to the extensive number of trials, we conducted a
single experiment with one random seed to obtain results under various hyperparameter settings. To
streamline the evaluation process without compromising the representation of convergence across
diverse models and datasets, we set the testing interval at 2000 steps. The convergence behavior of
LeZO is contingent upon that of MeZO and is influenced by prompts; therefore, we did not conduct
prompt removal experiments similar to those in MeZO. The prompts used in the experiments are
identical to those in MeZO.

Experiment Hyperparameters Values

LeZO Batch size 16
Learning rate {1e−6, 7e−7} for OPT-13b/30b, {3e−6, 1e−6} for OPT-1.3b

ϵ 1e−3
Sparse Rate 0.75

MeZO Batch size 16
Learning rate {1e−6, 1e−7} or {1e−6, 5e−7, 1e−7} for RTE and SQuAD

ϵ 1e−3

LeZO (prefix) Batch size 16
Learning rate {3e−2, 1e−2}

ϵ 1e−1
Sparse Rate 0.75

# prefix tokens 5

MeZO (prefix) Batch size 16
Learning rate {1e−2, 1e−3} or {5e−2, 1e−2, 5e−3} for SQuAD

ϵ 1e−1
# prefix tokens 5

LeZO (LoRA) Batch size 16
Learning rate {3e−5, 5e−5, 7e−5}

ϵ 1e−2
Sparse Rate 0.50

(r, α) (8, 16)

MeZO (LoRA) Batch size 16
Learning rate {1e−4, 5e−5} or {1e−4, 5e−5, 1e−5} for SQuAD

ϵ 1e−2
(r, α) (8, 16)

FT with Adam Batch size 8
Learning Rate {1e−5, 5e−5, 8e−5}

Table 5: The hyperparameter grids used for the experiments. Weight decay is set to 0. FT uses 5
epochs and linear scheduled learning rates. ZO optimizers use 20K steps and constant learning rates.
We check validation performance and save the best checkpoint every 1/10 total training steps (2K).

B PROOF

From a single-step perspective, LeZO also involves updating a sub-network, which aligns with the
theory of Sparse-MeZO (Liu et al., 2024). Therefore, the following proof draws inspiration from it.
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Proof of Lemma 1. Let Lz(θ) be the expectation of L(θ + ϵz):

LR(θ) : = Ez[L(θ + ϵR(z))]

= ER[L(θ + ϵz
′
)].

(10)

Then,

∇̂θ′LR(θ) = ∇̂θ′ER[L(θ + ϵz
′
)]

= ∇̂θ′

∫
z′

pdfz′ (z)L(θ + ϵz)dz

= R(∇
∫
z′

pdfz′ (z)L(θ + ϵz)dz)

= R(
∫
z′
∇pdfz′ (z)L(θ + ϵz)dz)

=
1

k
R(

∫
z′
∇e− 1

2∥z∥
2

L(θ + ϵz)dz)

=
1

k
R(

∫
y′
∇e− 1

2∥
y−θ

ϵ ∥2

L(y) 1
ϵn

dy)

=
1

k
R(

∫
y′

y − θ

ϵ2
e−

1
2ϵ2

∥y−θ∥2

L(y) 1
ϵn

dy)

=
1

k
R(

∫
z′

z

ϵ
e−

1
2∥z∥

2

L(θ + ϵz)dz)

= R(
∫
z′

pdfz′ (z)L(θ + ϵz)
z

ϵ
dz)

= ER[R(L(θ + ϵz
′
)

ϵ
z

′
)]

= ER[
L(θ + ϵz

′
)

ϵ
z

′
],

(11)

where y = θ + ϵz, y
′
= θ + ϵz

′
, and k =

√
(2π)ρd.

Next,

ER[
L(θ − ϵz

′
)

ϵ
z

′
] =

1

k

∫
−z′

L(θ + ϵ(−z))
ϵ

− ze−
1
2∥−z∥2

d(−z)

=
1

k

∫
ẑ

L(θ + ϵz)

ϵ
ze−

1
2∥z∥

2

dz

= ER[
L(θ + ϵz

′
)

ϵ
z

′
].

(12)

Therefore,

∇̂θ′LR(θ) = ER[
L(θ + ϵz

′
)

ϵ
z

′
]

=
1

2
(ER[

L(θ + ϵz
′
)

ϵ
z

′
]− ER[

L(θ − ϵz
′
)

ϵ
z

′
])

= ER[
L(θ + ϵz

′
)− L(θ − ϵz

′
)

2ϵ
z

′
]

= ER[∇̂LR(θ)].

(13)

Q.E.D.
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Proof of Lemma 2. Firstly, compute the norm distance between the sparse ZO estimated gradient
∇θ′LR(θ) and the sparse FO gradient ∇̂LR(θ):

∥∇̂θ′LR(θ)−∇LR(θ)∥ = ∥1
k

∫
z

(
L(θ + ϵz)− L(θ − ϵz)

2ϵ
− ⟨∇LR(θ), z⟩)ze− 1

2∥z∥
2

dz
′
∥

= ∥1
k

∫
z

(
L(θ + ϵz)− L(θ)

ϵ
− ⟨R(∇L(θ)), z⟩)ze− 1

2∥z∥
2

dz
′
∥

≤ 1

kϵ

∫
z

|L(θ + ϵz)− L(θ)− ϵ⟨∇L(θ), ϵ⟩|∥R(z)∥e− 1
2∥z∥

2

dz
′

≤ ϵL(l)

2k

∫
ϵ

∥z∥2∥R(z)∥e− 1
2∥z∥

2

dz
′

=
ϵL(l)

2
ER[∥z

′
∥3]

≤ ϵL(l)

2
(ρd+ 3)

3
2 .

(14)

Subsequently, employing the Minkowski inequality for norms, which can be further generalized to
∥a+ b∥2 ≤ 2∥a∥2+2∥b∥2, by letting a = ∇LR(θ)−∇̂θ′LR(θ) and b = ∇̂θ′LR(θ), we obtain:

∥∇LR(θ)∥2 ≤ 2∥∇LR(θ)− ∇̂θ′LR(θ)∥2 + 2∥∇̂θ′LR(θ)∥2

= 2∥∇̂θ′LR(θ)−∇LR(θ)∥2 + 2∥∇̂θ′LR(θ)∥2

≤ ϵ2L2(l)

2
(ρd+ 3)3 + 2∥∇̂LR(θ)∥2

≤ ϵ2L2(l)

2
(ρd+ 4)3 + 2∥∇̂LR(θ)∥2.

(15)

Q.E.D.

Proof of Lemma 3.

LR(θ)− L(θ) = ER[L(θ + ϵz
′
)− L(θ)]

= ER[L(θ + ϵz
′
)− L(θ)− ϵ⟨∇L(θ), z

′
⟩]

=
1

k

∫
z′
[L(θ + ϵz)− L(θ)− ϵ⟨∇L(θ), z⟩]e− 1

2∥z∥
2

dz

≤ 1

k

∫
z′

ϵ2L(l)

2
∥z∥2e− 1

2∥z∥
2

dz

=
ϵ2L(l)

2
ER[∥z

′
∥2]

≤ ϵ2L(l)

2
ρd,

(16)

where θt = θ + ϵz. Given that L satisfies Lipschitz continuity, we can derive |L(θ′) − L(θ) −
⟨∇L(θ),θt − θ⟩| ≤ L(l)

2 ∥θt − θ∥2, establishing the validity of the first inequality.

[(LR(θ)− L(θ))− (LR(θ + ϵz
′
)− L(θ + ϵz

′
))]2

≤ 2[LR(θ)− L(θ)]2 + 2[LR(θ + ϵz
′
)− L(θ + ϵz

′
)]2

≤ ϵ4L2(l)

2
ρ2d2 +

ϵ4L2(l)

2
ρ2d2

= ϵ4L2(l)ρ2d2.

(17)
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(LR(θ + ϵz
′
)− LR(θ))2 ≤ 2(LR(θ + ϵz

′
)− LR(θ)− ϵ⟨∇̂LR(θ), z

′
⟩)2

+ 2(ϵ⟨∇̂LR(θ), z
′
⟩)2

≤ ϵ4L2(l)

2
∥z

′
∥4 + 2ϵ2⟨∇̂LR(θ), z

′
⟩2

≤ ϵ4L2(l)

2
∥z

′
∥4 + 2ϵ2∥∇̂LR(θ)∥2∥z

′
∥2.

(18)

(L(θ + ϵz
′
)− L(θ))2

≤ 2((LR(θ)− L(θ))− (LR(θ + ϵz
′
)− L(θ + ϵz

′
)))2

+ 2(LR(θ + ϵz
′
)− LR(θ))2

≤ 2ϵ4L2(l)ρ2d2 + ϵ4L2(l)∥z
′
∥4 + 4ϵ2∥∇̂LR(θ)∥2∥z

′
∥2

(19)

Ez,x[∥∇̂LR(θ)∥2] = ER[∥L(θ + ϵz
′
)− L(θ − ϵz

′
)

2ϵ
z

′
∥2]

= ER[∥L(θ + ϵz
′
)− L(θ)

2ϵ
z

′
+
L(θ)− L(θ − ϵz

′
)

2ϵ
z

′
∥2]

≤ ER[2∥L(θ + ϵz
′
)− L(θ)

2ϵ
z

′
∥2 + 2∥L(θ)− L(θ − ϵz

′
)

2ϵ
z

′
∥2]

= ER[
1

2ϵ2
[L(θ + ϵz

′
)− L(θ)]2 · ∥z

′
∥2 + 1

2ϵ2
[L(θ)− L(θ − ϵz

′
)]2 · ∥z

′
∥2]

≤ ER[2ϵ2L2(l)ρ2d2∥z
′
∥2 + ϵ2L2(l)∥z

′
∥6 + 4∥∇̂LR(θ)∥2∥z

′
∥4]

≤ 2ϵ2L2(l)ρ3d3 + ϵ2L2(l)(ρd+ 6)3 + 4(ρd+ 4)2∥∇̂LR(θ)∥2

≤ 3ϵ2L2(l)(ρd+ 4)3 + 4(ρd+ 4)2∥∇̂LR(θ)∥2.
(20)

As ER[∥z′∥p] ≤ (ρd+ p)
p
2 for p ≥ 2, the third inequality holds. Additionally, since 2ρ3d3+(ρd+

6)3 ≤ 3(ρd+ 4)3, the fourth inequality is valid.

Again, given that L is Lipschitz continuous, we have |L(θt+1)− L(θt)− ⟨∇L(θt),θt+1 − θt⟩| ≤
L(l)
2 ∥θt+1 − θt∥2. Therefore, we can derive:

LR(θt+1)− LR(θt)− ⟨∇̂LR(θt),θt+1 − θt⟩
≤ |LR(θt+1)− LR(θt)− ⟨∇̂LR(θt),θt+1 − θt⟩|

≤ L(l)

2
∥θt+1 − θt∥2.

(21)

By further examining the iterative process of Structured Sparse ZO-SGD as outlined in Equation (5),
we can obtain:

LR(θt+1) ≤ LR(θt) + ⟨∇̂LR(θt),θt+1 − θt⟩+
L(l)

2
∥θt − θt+1∥2

= LR(θt)− ηt⟨∇̂LR(θt), ∇̂LR(θt)⟩+
(ηt)

2L(l)

2
∥∇̂LR(θt)∥2,

(22)

where ηt represents the learning rate at step t.

Subsequently, we can derive the expected loss function of the structured sparse model at step t + 1
as:
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Ez′ ,x[LR(θt+1)] ≤ Ez′ ,x[LR(θt)]− ηtEz′ ,x[∥∇̂LR(θt)∥2]

+
(ηt)

2L(lz)

2
Ez′ ,x[∥∇̂L(θt)∥

2]

≤ Ez′ ,x[LR(θt)]− ηtEz′ ,x[∥∇̂LR(θt)∥2]

+
(ηt)

2L(l)

2
(4(ρd+ 4)Ez′ ,x[∥∇̂LR(θt)∥2] + 3ϵ2L2(l)(ρd+ 4)3).

(23)

Then, let learning rate be ηt =
1

4(ρd+4)L(l) and obtain:

Ez′ ,x[LR(θt+1)] ≤ Ez′ ,x[LR(θt)]−
1

8(ρd+ 4)L(l)
Ez′ ,x[∥∇̂LR(θt)∥2]+

3ϵ2

32
L(l)(ρd+4). (24)

Summing Equation (24) from 0 to T + 1, where T denotes a sufficiently large number of training
steps, yields:

Ez′ ,x[∥∇̂LR(θT )∥2] ≤ 8(ρd+ 4)L[
LR(θ0)− L∗

R
T + 1

+
3ϵ2

32
L(ρd+ 4)], (25)

where L(l) ≤ L for all L(θt). Thus, based on Lemma 2, we can have:

Ez′ ,x[∥∇Lm(θT )∥2] ≤
ϵ2L2

2
(ρd+ 4)3 + 2Ez′ ,x[∥∇̂LR(θT )∥2]

≤ 16(ρd+ 4)L
LR(θ0)− L∗

R
T + 1

+
ϵ2L2

2
(ρd+ 4)2(ρd+

11

2
).

(26)

To obtain σ-accurate solution Ez′ ,x[∥∇Lm(θT )∥2] ≤ σ2, we can define ϵ = Ω( σ

ρ
3
2 d

3
2 L

).

16(ρd+ 4)L
LR(θ0)− L∗

R
T + 1

+O(ϵ2L2ρ3d3)

= 16(ρd+ 4)L
LR(θ0 − L∗

R)

T + 1
+O(σ2).

(27)

From the above, we can get:

T = O(ρdL
σ2

). (28)

Q.E.D.
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