
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMULTANEOUS COMPUTATION AND MEMORY EFFI-
CIENT ZEROTH-ORDER OPTIMIZER FOR FINE-TUNING
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning is powerful for adapting large language models to downstream tasks,
but it often results in huge memory usages. A promising approach to mitigate this
is using Zeroth-Order (ZO) optimization, which estimates gradients to replace
First-Order (FO) gradient calculations, albeit with longer training time due to its
stochastic nature. By revisiting the Memory-efficient ZO (MeZO) optimizer, we
discover that the full-parameter perturbation and updating processes consume over
50% of its overall fine-tuning time cost. Based on these observations, we introduce
a novel layer-wise sparse computation and memory efficient ZO optimizer, named
LeZO. LeZO treats layers as fundamental units for sparsification and dynamically
perturbs different parameter subsets in each step to achieve full-parameter fine-
tuning. LeZO incorporates layer-wise parameter sparsity in the process of simul-
taneous perturbation stochastic approximation (SPSA) and ZO stochastic gradient
descent (ZO-SGD). It achieves accelerated computation during perturbation and
updating processes without additional memory overhead. We conduct extensive
experiments with the OPT model family on the SuperGLUE benchmark and two
generative tasks. The experiments show that LeZO accelerates training without
compromising the performance of ZO optimization. Specifically, it achieves over
3× speedup compared to MeZO on the SST-2, BoolQ, and Copa tasks.

1 INTRODUCTION

𝟏. 𝟕 × Speedup

(convergence)

𝟐. 𝟎 × Speedup (computation)

𝟑. 𝟒 × Speedup

Figure 1: LeZO achieves a 3.4× speedup for fine-
tuning the OPT-13b model in run-time compared
with MeZO on the SST-2 dataset.

Large language models (LLMs) have shown
remarkable capabilities in understanding and
generating languages, and have been widely
adopted in various applications (Brown et al.,
2020; Wei et al., 2022; Rao et al., 2022; Wang
et al., 2023). To effectively adapt LLMs to
downstream tasks, full-parameter fine-tuning
has become crucial (Li & Liang, 2021; Lester
et al., 2021; Hu et al., 2022; Malladi et al.,
2023). However, as the scale of LLMs con-
tinues to increase, the memory usage and com-
putational cost of fine-tuning also escalate (Ka-
plan et al., 2020; Hoffmann et al., 2022), posing
a significant challenge to the practical applica-
tion of LLMs.

To address these challenges, researchers have
proposed efficient fine-tuning methods, which can be categorized into forward-backward (Li &
Liang, 2021; Hu et al., 2022; Ding et al., 2022; Pu et al., 2023; Xu et al., 2023) and forward-
only (Zhang et al., 2024; Liu et al., 2024; Guo et al., 2024) approaches. Forward-backward methods
typically use First-Order (FO) optimizers (Robbins & Monro, 1951; Kingma & Ba, 2015), updating
either partial model parameters or introducing small trainable modules to reduce memory usage.
However, the performance of these methods can hardly match full-parameter fine-tuning. Dynamic
update schemes (Brock et al., 2017; Liu et al., 2021; Pan et al., 2024) address this problem by dynam-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

icly changing learnable parameter subsets, but they still require caching many activations. In con-
trast, forward-only methods utilize Zeroth-Order (ZO) optimizers, which estimate gradients with-
out back-propagation, thereby reducing the memory overhead associated with forward-backward
methods. Malladi et al. (2023) first introduce a memory-efficient ZO optimizer (MeZO) for LLM
fine-tuning. ZO optimizers, however, exhibit higher stochasticity in gradient estimation compared
to FO optimizers, and this stochasticity increases as the scale of tuned parameters grows (Wang
et al., 2018; Balasubramanian & Ghadimi, 2018; Cai et al., 2022). Consequently, MeZO requires
significantly more computational cost than FO optimizers.

In this paper, we revisit MeZO and identify that its computational cost is primarily in the forward
pass, perturbation, and updating stages. Specifically, perturbation and updating account for over
50% of the total time when fine-tuning the OPT-13B model (Zhang et al., 2022) on the SST-2 task.
Simplifying these steps can accelerate MeZO. One promising approach is to sparsify the tuned
parameters, which has been shown to be effective for FO optimization (Pan et al., 2024).

Inspired by these insights, we propose a layer-wise sparse and efficient zeroth-order opti-
mizer (LeZO). LeZO aims to improve computational efficiency without additional memory over-
head. We use layers as the basic unit of sparsity, dynamically updating the set of layers to be tuned
at different fine-tuning steps. We integrate this policy into Simultaneous Perturbation Stochastic
Approximation (SPSA) and Zeroth-Order Stochastic Gradient Descent (ZO-SGD), which enables
sparse ZO optimization through localized parameter perturbation and updating. Over multiple steps,
LeZO can achieve full-parameter fine-tuning. LeZO accelerates computations because, during each
step, the weights of untuned layers remain dense. This allows us to skip perturbation and updating
processes for those layers, thereby reducing floating-point computations. Additionally, compared to
MeZO, LeZO does not introduce extra memory overhead. We employ a simple and efficient random
selection strategy, avoiding the need for new parameter modules.

We evaluate our approach by fine-tuning models from the OPT family on the SuperGLUE bench-
mark (Wang et al., 2019), and the SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019)
datasets. By sparsifying 75% of the layers and fine-tuning full-parameters, LeZO outperforms
MeZO on most datasets across three model scales. For instance, on the OPT-13B model, LeZO
surpasses MeZO by an average of 1% in accuracy or F1 score across seven datasets. When integrat-
ing the ZO optimizer with Parameter Efficient Fine Tuning (PEFT), LeZO exceeds MeZO on five
datasets, highlighting the versatility and effectiveness of our sparsity scheme. Additionally, LeZO
achieves over 2× computational acceleration across some tasks, with speedups increasing as layer
sparsity exceeds 75%. Finally, LeZO achieves over 3× training acceleration for the OPT-13B model
fine-tuning on the SST-2, BoolQ, and Copa datasets.

In summary, the contributions of this paper are as follows:

• We analyze the computational costs of MeZO during LLM fine-tuning and find that the
perturbation and updating processes account for over 50% of the fine-tuning time cost.

• We propose a dynamic layer-wise sparse and efficient zeroth-order optimizer that effec-
tively reduces computational cost in fine-tuning LLMs, and achieve faster convergence
than MeZO.

• We evaluate LeZO on SuperGLUE and two generative tasks. This demonstrates its acceler-
ation capability across different sparsity rates and showcases its performance improvement.

2 RELATED WORK

Forward-Backward Fine-Tuning Optimziers rely on the FO optimizer and compute gradients
through derivation (Robbins & Monro, 1951; Kingma & Ba, 2015), which results in high memory
usage. One approach to handle this problem is Parameter-Efficient Fine-Tuning (PEFT) (Xu et al.,
2023). Relevant strategies involve adding trainable modules (Li & Liang, 2021; Hambardzumyan
et al., 2021) or learnable input embeddings (Houlsby et al., 2019) to the model. Moreover, the LoRA
series (Hu et al., 2022; Dettmers et al., 2024) adopt low-rank decomposition to reduce the size of
trainable modules. However, recent studies show that partial fine-tuning cannot match the perfor-
mance of full-parameter fine-tuning (Ding et al., 2022; Pu et al., 2023). To handle this problem,
some methods enable full-parameter fine-tuning by adjusting parameters in an interleaved fashion.
For example, LISA (Pan et al., 2024) updates parameters of different layers in different iterations

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

based on layer importance. Galore (Zhao et al., 2024) switches low-rank subspaces using the rank
information while simultaneously modifying the learnable parameters. These techniques still require
storing the intermediate states of FO optimizers, resulting in significant memory overhead.

Forward-Only Fine-tuning Optimziers do not require back-propagation for gradient computa-
tion (Malladi et al., 2023; Zhang et al., 2024). Malladi et al. (2023) firstly introduce the ZO optimizer
for LLMs fine-tuning, known as MeZO, which significantly reduces memory costs. Because MeZO
employs SPSA to estimate gradients, it exhibits greater randomness compared to FO optimizers.
Consequently, it requires more computational cost to converge. To accelerate the convergence of
MeZO, Sparse-MeZO (Liu et al., 2024) only updates model parameters with small values to en-
hance the effectiveness of ZO optimizer. Nevertheless, this approach necessitates ranking parameter
values and introduces a mask matrix; therefore, it results in additional memory and computational
overhead. Guo et al. (2024) reduced the number of learnable parameters to one-thousandth. How-
ever, it requires cloud computation to provide first-order gradient of the objective function, which is
unsuitable for more general scenarios. In summary, how to effectively accelerate the convergence
speed of ZO optimizers without incurring additional memory overhead still remains a challenge.

Our proposed LeZO adopts ZO optimization to update model parameters, reducing memory usage
compared to forward-backward fine-tuning. By employing a dynamic layer-wise sparsity strategy,
LeZO significantly reduces the number of trainable parameters and minimizes the computational
costs during the forward-only fine-tuning. Thus, LeZO achieves high efficiency in both memory
usage and computational cost.

3 EFFICIENCY ANALYSIS OF MEZO

In this section, we first revisit the classical ZO gradient estimator SPSA (Spall, 1992) and the ZO
optimizer ZO-SGD (Malladi et al., 2023). Subsequently, we analyze the computational redundancy
of MeZO (Malladi et al., 2023).

3.1 PRELIMINARIES

SPSA approximates gradients for multi-parameter systems by applying random perturbations, which
eliminates the need of gradient back-propagation. It iteratively optimizes parameters by estimating
gradients based on differences in function values around a given point. SPSA does not require the
function to be smooth or convex, but it generally converges slowly.

Definition 1 (Simultaneous Perturbation Stochastic Approximation, SPSA (Spall, 1992)). Given
a group of parameters θ ∈ Rd from a model and a loss function L used for optimization, SPSA
estimates the gradient on a mini-batch of data B as follows:

∇̂L(θ;B) = L(θ + ϵz;B)− L(θ − ϵz;B)
2ϵ

z ≈ zz⊤∇L(θ;B), (1)

where z ∈ Rd with z ∼ N (0, Id) and ϵ is a perturbation scale.

Malladi et al. (2023) applied SPSA (Definition 1) to optimize LLMs, using it to obtain approximate
gradients of parameters. They modified the SGD algorithm (Robbins & Monro, 1951), creating
ZO-SGD (Definition 2), which incorporates ZO differential gradients to update model parameters.
MeZO employs both SPSA and ZO-SGD, and performs two forward passes in a single optimization
step without caching the activation information of the parameters. Therefore, it reduces memory
usage to the size occupied by the model parameters alone.

Definition 2 (Zeroth-Order Stochastic Gradient Descent, ZO-SGD (Malladi et al., 2023)). Given a
learning rate η and a group of parameters θ ∈ Rd, the parameters at time t can be updated using
the SPSA gradient estimate as follows:

θt+1 = θt − η∇̂L(θ;Bt), (2)

where Bt is the mini-batch of data used at time t.

3.2 EFFICIENCY DILEMMA OF MEZO

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

−

Figure 2: Proportion of computa-
tional time cost for each operation
in a single step when fine-tuning
the OPT-13b model on the SST-2
dataset using MeZO.

Fine-tuning LLMs with MeZO is extremely time-consuming.
It often takes hundreds or even thousands of times longer than
using FO optimizers like SGD (Robbins & Monro, 1951) and
Adam (Kingma & Ba, 2015). We break down the MeZO com-
putation process into three stages: forward pass, perturbation,
and updating. Algorithm 1 explains the computational opera-
tions for each of these stages. Figure 2 illustrates their relative
time cost in an optimization step.

Surprisingly, in classification tasks, the parameter perturbation
and updating stages account for more than one half of the over-
all time. A common method to reduce the computational bur-
den during optimization is to skip the calculations of certain
modules (Fan et al., 2019). However, this approach typically
introduces an inherent error during the forward pass (Evans &
Aamodt, 2021). This phenomenon is challenging to mitigate
and usually slows down the convergence rate. An alternative
strategy is to selectively optimize the parameters of specific
modules during the updating stage. Many studies have sub-
stantiated the efficacy of this strategy in FO optimization (Liu
et al., 2021; Mi et al., 2022; Pan et al., 2024; Zhao et al., 2024). The above observations motivate us
to implement sparse perturbation and updating for MeZO.

4 METHODOLOGY

In this section, we present the implementation details of LeZO. We explain how it achieves con-
vergence and computation acceleration without additional memory consumption by updating only a
subset of structured parameters during each optimization step.

4.1 DYNAMIC LAYER-WISE SPARSE ZEROTH-ORDER OPTIMIZATION

Building upon Equation (1), we apply structured pruning to the model parameter vector θ. In each
iteration, we partition this vector into two distinct parts. We introduce a sparse functionR to extract
sub-vectors from the input vector and stipulate this partitioning is structured by layer. Given a sparse
rate ρ (0 ≤ ρ ≤ 1), a parameter vector θ, and a random number s, we obtain a new parameter vector
θ′ ∈ Rρd, which is mathematically represented as:

θ
′
= R(θ, ρ, st). (3)

In each step, we maintain the number of elements in θ′. The random seed st is used to determine
which layers’ parameters are selected to form θ′.

Definition 3 (Layer-wise Sparse SPSA). During each step, the sparse parameter set is used as a
condition for differential calculation in SPSA, which is defined as follows:

∇̂LR(θ;B) = L(θ + ϵz
′
;B)− L(θ − ϵz

′
;B)

2ϵ
z

′
, (4)

where z
′
= R(z, ρ, st).

Furthermore, incorporating layer-wise sparsity into ZO-SGD results in:

Definition 4 (LeZO-SGD). At time t, θ can be updated using the layer-wise sparse SPSA gradient
estimation as:

θ
′

t+1 = θ
′

t − η∇̂LR(θ;Bt). (5)

Algorithm 1 presents the pseudocode for LeZO, employing a straightforward approach to implement
the sparse function R. We use layers as the fundamental unit for sparsity (Fan et al., 2020). By
maintaining a subset a to store pruned layers, these layers are skipped during perturbation and
parameter updating processes.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: LeZO (Layer-wise Sparse and Efficient Zeroth-Order Optimization)

Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale µ, batch size
B, learning rate schedule {ηt}, layer number N , and dropping layer number n ∈ (0, N).

for t = 1, ..., T do
Sample batch B ⊂ D and random seed s
Randomly select n elements from {1, ..., N} to generate subset a
θ ← PerturbParameters(θ, a, µ, s) ▷ Perturbation
ℓ+ ← L(θ;B) ▷ Forward Pass
θ ← PerturbParameters(θ, a,−2µ, s) ▷ Perturbation
ℓ− ← L(θ;B) ▷ Forward Pass
θ ← PerturbParameters(θ, a, µ, s) ▷ Perturbation

projected grad← (ℓ+ − ℓ−)/(2µ)
Reset random number generator with seed s
for θi ∈ θ & i /∈ a do

z ∼ N (0, 1)
θi ← θi − ηt ∗ projected grad ∗ z ▷ Updating

end
end

Subroutine PerturbParameters(θ, a, µ, s)
Reset random number generator with seed s
for θi ∈ θ & i /∈ a do

z ∼ N (0, 1)
θi ← θi + µz

end
return θ

Remark 1. As illustrated in Algorithm 1, it is evident that LeZO introduces a layer-wise selection
operation R compared to MeZO. Given the scale of parameters in the billions, this addition has
a negligible computational impact. We have the following remarks. (1) During the Forward pass,
LeZO’s computation aligns with MeZO, incurring no additional memory or computational overhead.
(2) During the perturbation process, we skip the parameter perturbation in the sparsified layers,
thereby reducing the computational load. Both LeZO and MeZO utilize a random seed for fixed
perturbation z. This approach eliminates the need for additional cache storage for perturbation
information, thereby not increasing memory overhead. The same principle applies to the updating
process. Therefore, it is evident that LeZO reduces computational overhead through the introduction
of layer-wise parameter sparsification during the perturbation and updating processes and incurs no
additional memory overhead.

4.2 CONVERGENCE ANALYSIS OF LEZO

When examining the individual optimization steps, LeZO effectively updates a sub-network, similar
to Sparse-MeZO (Liu et al., 2024). We aim to demonstrate that as model parameters converge
towards local optimal values, there exists a value σ2 such that the speed at which the loss approaches
a local optimum is directly proportional to the number of parameters. This implies that the parameter
convergence rate is related to ρ.

Lemma 1 (Unbiased Estimation of Sparse Gradient). Let LR = ER[L(θ + ϵz
′
)]. The relationship

between the model’s sparse gradient ∇̂θ′LR(θ) and the estimated ZO sparse gradient ∇̂LR(θ) can
be expressed as:

∇̂θ′LR(θ) = R(∇LR(θ)) = ∇θ′ER[L(θ + ϵz
′
)]

= ER[
L(θ + ϵz

′
)− L(θ − ϵz

′
)

2ϵ
z

′
] = ER[∇̂LR(θ)].

(6)

From Lemma 1, we can see that the estimated gradient by sparse ZO is an unbiased estimation of
the model’s sparse parameter gradient.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Experiments on the OPT-13b model. SSZO sparsifies 75% of the layers (30 layers out of
40). Two A100-40G GPUs are used for BoolQ and SQuAD tasks.

Task SST-2 RTE CB BoolQ WSC WIC Copa SQuAD AVG.Task type ———————- classification ———————- multiple choice generation

Zero-Shot 58.8 59.6 46.4 59.0 38.5 55.0 80.0 46.2 55.4
ICL 87.0 62.1 57.1 66.9 39.4 50.5 87.0 75.9 65.7

FT (12× memory) 92.0 70.8 83.9 77.1 63.5 70.1 79.0 84.9 77.7

MeZO (Malladi et al., 2023) 91.4 66.1 67.9 67.6 63.5 61.1 88.0 84.7 73.8
MeZO (Reproduce) 91.1±0.1 70.8±1.4 68.8±1.8 69.1±0.6 63.5±1.2 58.7±0.9 87.0±1.6 84.2±1.0 74.2±1.1

SSZO 93.0±0.3 71.4±2.1 69.2±1.7 74.3±0.8 62.7±0.4 60.7±1.5 87.2±0.8 84.3±0.7 75.4±1.1

Table 2: Experiments on OPT-1.3b model. LeZO sparsifies 75% of the layers (18 layers out of 24).

Task SST-2 RTE CB BoolQ WSC WIC MultiRC Copa ReCoRD SQuAD DROP
Task type ——————————– classfication ——————————– —— multiple choice —— —- generation —-

zero-shot 53.6 53.4 39.3 61.1 43.3 57.5 45.4 75.0 70.6 27.2 11.2
ICL 67.7 53.1 44.6 67.2 53.8 56.0 44.7 70.0 69.9 59.0 20.3

MeZO 89.7±1.3 65.4±2.5 69.3±3.0 64.1±0.8 63.5±0.0 58.7±0.5 60.4±1.5 76.0±1.9 71.6±0.5 76.9±0.8 23.1±0.3

LeZO 91.9±0.3 64.5±2.4 69.6±1.8 65.3±1.2 63.3±1.1 59.4±1.3 61.4±1.2 76.8±2.3 71.7±0.4 76.8±0.7 24.1±0.8

Assumption 1 (Lipschitz Continuous). Let ∇L(θ;x) denotes the first-order gradient of L with
respect to θ at x. L satisfies Lipschitz continuity, then

∥∇L(θ;x)−∇L(θt;x)∥ ≤
L(l)

2
∥θ − θt∥2, (7)

where L(l) is a constant ensuring L satisfies Lipschitz continuity.

Assuming that the loss function L(θ;x) is Lipschitz continuous (Assumption 1), we can calculate
the norm distance between the sparse ZO estimated gradient and the true sparse gradient ∇LR(θ).
This distance, denoted as ∥∇̂θ′LR(θ)−∇LR(θ)∥, helps establish their relationship using Lemma 1.
Lemma 2 (Relationship between Sparse Gradient and Estimate Value). Let the loss functionL(θ;x)
to be Lipschitz continuous. According to Minkowski inequality, we have

∥∇LR(θ)∥2 ≤ 2∥∇̂θ′LR(θ)∥2 + ϵ2L2(l)

2
(ρd+ 4)3, (8)

where∇LR(θ) = R(∇L(θ)).

Finally, we can obtain the convergence rate of LeZO.
Lemma 3 (Convergence of LeZO). Assuming a sequence of generated parameters {θt}t≥0 in LeZO.
We have

ER,x[∥∇θLR(θT)∥2] ≤ σ2 (9)

for any T = O(ρdLσ2). t represents the step of fine-tuning and L(l) ≤ L for all L(θt).

From Lemma 3, it is apparent that as the sparsity ratio ρ decreases, the upper bound on the time re-
quired to converge to the expected value also decreases. Hence, parameter sparsity and the smooth-
ness of the objective function can enhance the convergence speed.

5 EXPERIMENTS

In this section, we present extensive experiments to validate the effectiveness of the LeZO algorithm.

5.1 EXPERIMENTAL SETTING

Models and Datasets. To evaluate the efficacy of LeZO, we follow the validation methodology
by Malladi et al. (2023). We conduct experiments on the OPT model family (Zhang et al., 2022)
at various scales: 1.3 billion, 13 billion, and 30 billion parameters, with 32, 40, and 48 Trans-
former blocks, respectively. These models utilize the core components of the Transformer archi-
tecture (Vaswani et al., 2017), including self-attention mechanisms, feed-forward neural networks,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Fine-tuning performance of the ZO optimizer with PEFT. †indicates the results reported in
the paper of Malladi et al. (2023). LeZO (LoRA/prefix) outperforms MeZO (LoRA/prefix) on 4 out
of 5 tasks. LeZO (LoRA) sparsifies 50% of layers, while LeZO (prefix) sparsifies 75%.

Task SST-2 CB BoolQ Copa SQuAD

MeZO (LoRA)† 89.6 66.1 73.8 84.0 83.8
MeZO (LoRA) 90.6±1.6 70.4±1.6 71.8±1.2 86.0±1.2 81.1±0.8

MeZO (prefix)† 90.7 69.6 73.1 87.0 84.2
MeZO (prefix) 90.7±0.9 67.9±2.5 73.2±0.4 87.4±1.7 83.3±1.0

LeZO (LoRA) 92.3±0.5 71.1±0.8 73.7±0.8 86.4±1.5 81.5±1.1

LeZO (prefix) 92.1±0.7 69.7±2.5 74.5±0.6 87.6±1.1 83.1±0.4

residual connections, and layer normalization within each block. For downstream tasks, we use the
SuperGLUE benchmark (Wang et al., 2019), which includes classification tasks, multiple-choice
tasks, and two question-answering tasks.

Table 3: Experiments on the OPT-30b
model. LeZO sparsifies 75% of the lay-
ers (36 layers out of 48). We report the
best results of MeZO and MeZO with
prefix from the paper of Malladi et al.
(2023). Two A100-40G GPUs are used
for SST2, and four for BoolQ.

Task SST-2 BoolQ

zero-shot 56.7 39.1
ICL 81.9 66.2

MeZO/MeZO (prefix) 90.6 73.5
MeZO (reproduce) 90.3±0.5 69.5±0.4

LeZO 92.8±0.6 73.7±0.9

Methods. We utilize zero-shot and 32-shot In-Content
Learning (ICL) (Brown et al., 2020) alongside fine-
tuning with Adamw (FT) as comparison. To demonstrate
LeZO’s ability to accelerate model convergence and re-
duce time cost per training step without additional mem-
ory costs, we compared it with MeZO (Malladi et al.,
2023). In addition to full-parameter fine-tuning, we in-
tegrate LeZO with two PEFT methods: LoRA (Hu et al.,
2022) and prefix tuning (Li & Liang, 2021), to further
enhance fine-tuning efficiency.

Hyper-parameters. We follow most of the experimen-
tal settings used in MeZO, including configurations for
LoRA and prefix tuning, and methods for selecting train-
ing and testing data. We conduct a grid search for the
learning rate and perturbation scale to identify the opti-
mal parameters for each experimental group. We use the experimental code for ZO optimization
provided by Zhang et al. (2024) and set the validation steps to 2000. Experiments are conducted on
an A100-40G GPU. However, due to its memory limitations compare to the A100-80G GPU used
by Malladi et al. (2023), we employ a multi-card parallel strategy for fine-tuning the OPT-13b and
30b model on certain downstream tasks to ensure parameter consistency. We select the final model
based on the checkpoint with the lowest validation loss. All numerical results report in the exper-
iments are reproduced. We conduct parameter fine-tuning experiments using five different random
seeds, reporting the average and standard deviation of these results. Detailed settings are provided in
Appendix A. Unless otherwise specified, all baseline experiments are conducted using the OPT-13b
model with 75% sparsity (30 out of 40 layers).

5.2 MAIN RESULT

Comparison between LeZO and Other Methods. LeZO outperforms both non-training methods
and MeZO, and surpasses the FO optimizer on some tasks. Table 1 presents a comparison between
LeZO and the baseline methods such as zero-shot, the training-free method (ICL), Fine-Tuning
(FT) with AdamW for FO optimization, and MeZO across various downstream tasks. We obtain the
following observations. 1) LeZO significantly outperforms non-training methods such as zero-shot
and ICL on all tasks. This demonstrates LeZO’s superior convergence capabilities during training.
2) LeZO surpasses MeZO in 7 out of 8 tasks, with an average improvement exceeding 1% across
all tasks. Notable enhancements are observed on the SST-2, BoolQ, and WIC datasets, with average
accuracy increases over 2% across five experiments. This indicates that layer-wise sparsity schemes
can effectively accelerate convergence. However, there is a slight performance degradation on the
WSC task compared to MeZO, likely due to the inherent instability of ZO optimization methods
and MeZO’s sensitivity to prompts. It is speculated that LeZO may inherit these drawbacks, as
the fundamental differential gradient computation process in SPSA remains unchanged. 3) LeZO
marginally outperforms FT on the SST-2, RTE, and Copa datasets, while demonstrating comparable

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

A
cc

u
ra

cy

Figure 3: Impact of learning rate and sparsity ratio on
fine-tuning models using LeZO on the SST-2 task. Results
with accuracy exceeding 90% are displayed. Experiments
were conducted with a single random seed. “Dropout
Number” indicates the number of sparse layers in the OPT
13B model. To enhance clarity, the learning rates are log-
arithmically scaled. The curves mapping onto the straight
lines in the lower plane are used to illustrate the range
of learning rates that lead to improved performance after
sparsifying different numbers of layers in the model. The
performance of MeZO performance is the red line.

Figure 4: Correlation between the spar-
sity ratio and runtime in fine-tuning
the OPT-13b model using LeZO on the
SST-2 task. This figure presents the
optimal experimental results at various
sparsity levels from Figure 3, annotated
with different colored pentagrams. The
purple line indicates the total time re-
quired for fine-tuning in the correspond-
ing experiments.

performance on the other datasets. Notably, LeZO and MeZO have the same memory consumption,
and FT incurs a memory cost twelve times higher than LeZO.

Performance on Multi-Size Models. LeZO achieves a notable performance improvement over
MeZO across models of varying scales. Tables 2 and 3 display the performance of LeZO and
other methods on the OPT-1.3b and OPT-30b models, respectively. When fine-tuning OPT-1.3b on
downstream tasks, LeZO achieves superior results in 9 out of 11 tasks. It achieves comparable results
on the WSC task and its performance drop is less than 1% on RTE. When fine-tuning OPT-30b on
the SST-2 and BoolQ datasets, LeZO demonstrates significant improvements compared to MeZO.
The experiments across Tables 1, 2, and 3 reveal that LeZO achieves more pronounced performance
gains on larger LLMs. This phenomenon may relate to the stability of model convergence, with
larger models being more stable. Additionally, LeZO demonstrates greater stability compared to
MeZO.

Figure 5: Comparison in computation efficiency
between LeZO and MeZO on various tasks.

Performance of Combining ZO optimizer
and PEFT. LeZO can be effectively integrated
with PEFT methods. We combine ZO op-
timizers with PEFT by updating the train-
able parameters introduced by PEFT across
different methods. Table 4 showcases the
fine-tuning results of LeZO and MeZO com-
bined with the PEFT across different datasets.
LeZO (LoRA) outperforms MeZO (LoRA) on
all five datasets, while LeZO (prefix) outper-
forms MeZO (LoRA) on 4 out of 5 datasets.
Additionally, the combination of LeZO with
PEFT results in performance improvements ex-
ceeding 1% on the SST-2, CB, and BoolQ tasks
compared to MeZO. This indicates that LeZO
enhances fine-tuning effectiveness even when
combined with PEFT.

Convergence and Computation Speedup by
LeZO. LeZO is more efficient than MeZO. Fig-
ure 1 illustrates the variation in accuracy on the test set when fine-tuning OPT-13b using LeZO on
the SST-2 datasets. LeZO achieves 2× computation speedup and 1.7× convergence speedup. In

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5, we present the convergence and computation speedups obtained when using LeZO to fine-
tune OPT-13b on eight downstream tasks. The experimental results show that with the layer-wise
sparsity policy, LeZO achieves effective convergence and computation speedups. In conclusion,
LeZO achieves more efficient LLM fine-tuning than MeZO.

5.3 HYPERPARAMETER ANALYSIS

Influence of Learning Rate and Sparsity Rate. The layer-wise sparsity scheme we use shows
how the number of sparse layers affects LeZO’s performance. Our experiments show that with an
increase in sparsity rate (more layers being sparsified), the ZO optimization process needs a higher
learning rate. Figure 3 illustrates the relationship between the sparsity rate (Dropout Number),
learning rate, and model accuracy on downstream tasks. From the figure, we obtain several key
observations: 1) LeZO demonstrates significantly superior optimization effectiveness compared to
MeZO (Dropout Number=0). Under full-parameter fine-tuning, LeZO consistently outperforms
MeZO regardless of the number of sparsified layers. 2) LeZO enhances the robustness of the ZO
optimization process. Comparing the lengths of the dashed lines, it can be observed that as the
sparsity ratio increases, the range of learning rates that achieve over 90% accuracy on the SST-2 task
expands. This indicates that the robustness of LeZO improves with an increased sparsity ratio. 3)
The behavior of LeZO markedly differs from fine-tuning only a subset of parameters. Performance
experiences a substantial decline when the sparsity rate reaches ρ = 1 (sparse 40 layers in OPT-13b,
while fine-tuning solely the embedding and linear layers).

Figure 6: The relationship between the length
of input tokens and the computational speedup
achieved by LeZO.

Impact of Downstream Tasks on Compu-
tational Speedup. LeZO achieves varying
speedup ratios across different tasks, as shown
in Figure 5, which depicts the computation and
convergence speedup ratios obtained by LeZO
across all tasks. The differences in computa-
tional speedup ratios come from the varying
proportions of the forward propagation process
within the total computation. The speed of for-
ward propagation depends on the average token
length of different tasks within the same model
framework. Figure 6 illustrates the relationship
between the average input token length of dif-
ferent datasets and the computational speedup
achieved by LeZO. When input token length in-
creases, computation speedup decreases. With
a constant sparsity ratio, LeZO’s floating-point
computational savings per downstream task re-
main fixed. Consequently, LeZO’s computation acceleration is more suited for relatively straight-
forward training samples. However, a similar trend is not observed in the convergence acceleration
of LeZO across different tasks. This disparity may be attributed to the varying difficulty levels of
tasks, their convergence characteristics, and the distributions of training and extracted testing sets.

6 CONCLUSION

In this study, we introduce LeZO, a layer-wise sparse and efficient ZO optimizer for fine-tuning
LLMs. We integrate the layer-wise pruning scheme into the ZO optimization process, which
achieves both computation and convergence speedups in LLMs training without additional mem-
ory costs. Moreover, LeZO combines effectively with existing PEFT methods to further enhance
acceleration. We conduct fine-tuning experiments on models from the OPT family using the Super-
GLUE benchmark and two question-answering datasets. Empirical results show that LeZO signif-
icantly reduces training time and improves performance. Overall, LeZO provides an efficient and
effective approach to ZO fine-tuning. It reduces the computational load caused by full-parameter
perturbations in zeroth-order optimization without introducing additional memory overhead.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex stochastic opti-
mization via conditional gradient and gradient updates. In Advances in Neural Information Pro-
cessing Systems, volume 31, 2018.

Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J Weston. Freezeout: Accelerate
training by progressively freezing layers. In NIPS 2017 Workshop on Optimization: 10th NIPS
Workshop on Optimization for Machine Learning, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

HanQin Cai, Daniel Mckenzie, Wotao Yin, and Zhenliang Zhang. Zeroth-order regularized opti-
mization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Opti-
mization, 32(2):687–714, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
2368–2378, 2019.

R David Evans and Tor Aamodt. Ac-gc: Lossy activation compression with guaranteed convergence.
Advances in Neural Information Processing Systems, 34:27434–27448, 2021.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In International Conference on Learning Representations, 2020.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial re-
programming. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 4921–4933, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Henni-
gan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent
Sifre. An empirical analysis of compute-optimal large language model training. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, pp. 1–13, 2015.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning. arXiv preprint arXiv:2102.01386, 2021.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and San-
jeev Arora. Fine-tuning language models with just forward passes. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
sharpness-aware minimization stronger: A sparsified perturbation approach. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Layer-
wise importance sampling for memory-efficient large language model fine-tuning. arXiv preprint
arXiv:2403.17919, 2024.

George Pu, Anirudh Jain, Jihan Yin, and Russell Kaplan. Empirical analysis of the strengths and
weaknesses of PEFT techniques for LLMs. In ICLR 2023 Workshop on Mathematical and Em-
pirical Understanding of Foundation Models, 2023.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Jun Rao, Fei Wang, Liang Ding, Shuhan Qi, Yibing Zhan, Weifeng Liu, and Dacheng Tao. Where
does the performance improvement come from? -a reproducibility concern about image-text re-
trieval. In Proceedings of the 45th international ACM SIGIR conference on research and devel-
opment in information retrieval, pp. 2727–2737, 2022.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

J.C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient ap-
proximation. IEEE Transactions on Automatic Control, 37(3):332–341, 1992.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Fei Wang, Liang Ding, Jun Rao, Ye Liu, Li Shen, and Changxing Ding. Can linguistic knowledge
improve multimodal alignment in vision-language pretraining? arXiv preprint arXiv:2308.12898,
2023.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order op-
timization in high dimensions. In Proceedings of the Twenty-First International Conference on
Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research,
pp. 1356–1365. PMLR, 2018.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. In Forty-first
International Conference on Machine Learning, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DETAILED EXPERIMENTAL SETTINGS

We aligned the hyperparameter configurations for our primary experiments with the standards set
by MeZO, as described by Malladi et al. (2023). Our experimental framework is based on the work
of Zhang et al. (2024). Our approach incorporates a sparsity rate in LeZO. Our experiments indicate
that this requires larger learning rates to enhance model convergence. Consequently, the grid search
ranges for learning rates differ between LeZO and MeZO in the experiments presented in Table 1,
2, 3, and 4. We strictly adhered to the settings outlined by Malladi et al. (2023) when replicating
MeZO experiments. The hyperparameter search ranges for grid search are detailed in Table 5. We
conducted five trials with fixed random seeds for each set of experiments to compute average results
and standard deviations. This facilitated a robust comparison of the efficiency of different methods.
In the experiments depicted in Figure 3, due to the extensive number of trials, we conducted a
single experiment with one random seed to obtain results under various hyperparameter settings. To
streamline the evaluation process without compromising the representation of convergence across
diverse models and datasets, we set the testing interval at 2000 steps. The convergence behavior of
LeZO is contingent upon that of MeZO and is influenced by prompts; therefore, we did not conduct
prompt removal experiments similar to those in MeZO. The prompts used in the experiments are
identical to those in MeZO.

Experiment Hyperparameters Values

LeZO Batch size 16
Learning rate {1e−6, 7e−7} for OPT-13b/30b, {3e−6, 1e−6} for OPT-1.3b

ϵ 1e−3
Sparse Rate 0.75

MeZO Batch size 16
Learning rate {1e−6, 1e−7} or {1e−6, 5e−7, 1e−7} for RTE and SQuAD

ϵ 1e−3

LeZO (prefix) Batch size 16
Learning rate {3e−2, 1e−2}

ϵ 1e−1
Sparse Rate 0.75

prefix tokens 5

MeZO (prefix) Batch size 16
Learning rate {1e−2, 1e−3} or {5e−2, 1e−2, 5e−3} for SQuAD

ϵ 1e−1
prefix tokens 5

LeZO (LoRA) Batch size 16
Learning rate {3e−5, 5e−5, 7e−5}

ϵ 1e−2
Sparse Rate 0.50

(r, α) (8, 16)

MeZO (LoRA) Batch size 16
Learning rate {1e−4, 5e−5} or {1e−4, 5e−5, 1e−5} for SQuAD

ϵ 1e−2
(r, α) (8, 16)

FT with Adam Batch size 8
Learning Rate {1e−5, 5e−5, 8e−5}

Table 5: The hyperparameter grids used for the experiments. Weight decay is set to 0. FT uses 5
epochs and linear scheduled learning rates. ZO optimizers use 20K steps and constant learning rates.
We check validation performance and save the best checkpoint every 1/10 total training steps (2K).

B PROOF

From a single-step perspective, LeZO also involves updating a sub-network, which aligns with the
theory of Sparse-MeZO (Liu et al., 2024). Therefore, the following proof draws inspiration from it.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Proof of Lemma 1. Let Lz(θ) be the expectation of L(θ + ϵz):

LR(θ) : = Ez[L(θ + ϵR(z))]

= ER[L(θ + ϵz
′
)].

(10)

Then,

∇̂θ′LR(θ) = ∇̂θ′ER[L(θ + ϵz
′
)]

= ∇̂θ′

∫
z′

pdfz′ (z)L(θ + ϵz)dz

= R(∇
∫
z′

pdfz′ (z)L(θ + ϵz)dz)

= R(
∫
z′
∇pdfz′ (z)L(θ + ϵz)dz)

=
1

k
R(

∫
z′
∇e− 1

2∥z∥
2

L(θ + ϵz)dz)

=
1

k
R(

∫
y′
∇e− 1

2∥
y−θ

ϵ ∥2

L(y) 1
ϵn

dy)

=
1

k
R(

∫
y′

y − θ

ϵ2
e−

1
2ϵ2

∥y−θ∥2

L(y) 1
ϵn

dy)

=
1

k
R(

∫
z′

z

ϵ
e−

1
2∥z∥

2

L(θ + ϵz)dz)

= R(
∫
z′

pdfz′ (z)L(θ + ϵz)
z

ϵ
dz)

= ER[R(L(θ + ϵz
′
)

ϵ
z

′
)]

= ER[
L(θ + ϵz

′
)

ϵ
z

′
],

(11)

where y = θ + ϵz, y
′
= θ + ϵz

′
, and k =

√
(2π)ρd.

Next,

ER[
L(θ − ϵz

′
)

ϵ
z

′
] =

1

k

∫
−z′

L(θ + ϵ(−z))
ϵ

− ze−
1
2∥−z∥2

d(−z)

=
1

k

∫
ẑ

L(θ + ϵz)

ϵ
ze−

1
2∥z∥

2

dz

= ER[
L(θ + ϵz

′
)

ϵ
z

′
].

(12)

Therefore,

∇̂θ′LR(θ) = ER[
L(θ + ϵz

′
)

ϵ
z

′
]

=
1

2
(ER[

L(θ + ϵz
′
)

ϵ
z

′
]− ER[

L(θ − ϵz
′
)

ϵ
z

′
])

= ER[
L(θ + ϵz

′
)− L(θ − ϵz

′
)

2ϵ
z

′
]

= ER[∇̂LR(θ)].

(13)

Q.E.D.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof of Lemma 2. Firstly, compute the norm distance between the sparse ZO estimated gradient
∇θ′LR(θ) and the sparse FO gradient ∇̂LR(θ):

∥∇̂θ′LR(θ)−∇LR(θ)∥ = ∥1
k

∫
z

(
L(θ + ϵz)− L(θ − ϵz)

2ϵ
− ⟨∇LR(θ), z⟩)ze− 1

2∥z∥
2

dz
′
∥

= ∥1
k

∫
z

(
L(θ + ϵz)− L(θ)

ϵ
− ⟨R(∇L(θ)), z⟩)ze− 1

2∥z∥
2

dz
′
∥

≤ 1

kϵ

∫
z

|L(θ + ϵz)− L(θ)− ϵ⟨∇L(θ), ϵ⟩|∥R(z)∥e− 1
2∥z∥

2

dz
′

≤ ϵL(l)

2k

∫
ϵ

∥z∥2∥R(z)∥e− 1
2∥z∥

2

dz
′

=
ϵL(l)

2
ER[∥z

′
∥3]

≤ ϵL(l)

2
(ρd+ 3)

3
2 .

(14)

Subsequently, employing the Minkowski inequality for norms, which can be further generalized to
∥a+ b∥2 ≤ 2∥a∥2+2∥b∥2, by letting a = ∇LR(θ)−∇̂θ′LR(θ) and b = ∇̂θ′LR(θ), we obtain:

∥∇LR(θ)∥2 ≤ 2∥∇LR(θ)− ∇̂θ′LR(θ)∥2 + 2∥∇̂θ′LR(θ)∥2

= 2∥∇̂θ′LR(θ)−∇LR(θ)∥2 + 2∥∇̂θ′LR(θ)∥2

≤ ϵ2L2(l)

2
(ρd+ 3)3 + 2∥∇̂LR(θ)∥2

≤ ϵ2L2(l)

2
(ρd+ 4)3 + 2∥∇̂LR(θ)∥2.

(15)

Q.E.D.

Proof of Lemma 3.

LR(θ)− L(θ) = ER[L(θ + ϵz
′
)− L(θ)]

= ER[L(θ + ϵz
′
)− L(θ)− ϵ⟨∇L(θ), z

′
⟩]

=
1

k

∫
z′
[L(θ + ϵz)− L(θ)− ϵ⟨∇L(θ), z⟩]e− 1

2∥z∥
2

dz

≤ 1

k

∫
z′

ϵ2L(l)

2
∥z∥2e− 1

2∥z∥
2

dz

=
ϵ2L(l)

2
ER[∥z

′
∥2]

≤ ϵ2L(l)

2
ρd,

(16)

where θt = θ + ϵz. Given that L satisfies Lipschitz continuity, we can derive |L(θ′) − L(θ) −
⟨∇L(θ),θt − θ⟩| ≤ L(l)

2 ∥θt − θ∥2, establishing the validity of the first inequality.

[(LR(θ)− L(θ))− (LR(θ + ϵz
′
)− L(θ + ϵz

′
))]2

≤ 2[LR(θ)− L(θ)]2 + 2[LR(θ + ϵz
′
)− L(θ + ϵz

′
)]2

≤ ϵ4L2(l)

2
ρ2d2 +

ϵ4L2(l)

2
ρ2d2

= ϵ4L2(l)ρ2d2.

(17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(LR(θ + ϵz
′
)− LR(θ))2 ≤ 2(LR(θ + ϵz

′
)− LR(θ)− ϵ⟨∇̂LR(θ), z

′
⟩)2

+ 2(ϵ⟨∇̂LR(θ), z
′
⟩)2

≤ ϵ4L2(l)

2
∥z

′
∥4 + 2ϵ2⟨∇̂LR(θ), z

′
⟩2

≤ ϵ4L2(l)

2
∥z

′
∥4 + 2ϵ2∥∇̂LR(θ)∥2∥z

′
∥2.

(18)

(L(θ + ϵz
′
)− L(θ))2

≤ 2((LR(θ)− L(θ))− (LR(θ + ϵz
′
)− L(θ + ϵz

′
)))2

+ 2(LR(θ + ϵz
′
)− LR(θ))2

≤ 2ϵ4L2(l)ρ2d2 + ϵ4L2(l)∥z
′
∥4 + 4ϵ2∥∇̂LR(θ)∥2∥z

′
∥2

(19)

Ez,x[∥∇̂LR(θ)∥2] = ER[∥L(θ + ϵz
′
)− L(θ − ϵz

′
)

2ϵ
z

′
∥2]

= ER[∥L(θ + ϵz
′
)− L(θ)

2ϵ
z

′
+
L(θ)− L(θ − ϵz

′
)

2ϵ
z

′
∥2]

≤ ER[2∥L(θ + ϵz
′
)− L(θ)

2ϵ
z

′
∥2 + 2∥L(θ)− L(θ − ϵz

′
)

2ϵ
z

′
∥2]

= ER[
1

2ϵ2
[L(θ + ϵz

′
)− L(θ)]2 · ∥z

′
∥2 + 1

2ϵ2
[L(θ)− L(θ − ϵz

′
)]2 · ∥z

′
∥2]

≤ ER[2ϵ2L2(l)ρ2d2∥z
′
∥2 + ϵ2L2(l)∥z

′
∥6 + 4∥∇̂LR(θ)∥2∥z

′
∥4]

≤ 2ϵ2L2(l)ρ3d3 + ϵ2L2(l)(ρd+ 6)3 + 4(ρd+ 4)2∥∇̂LR(θ)∥2

≤ 3ϵ2L2(l)(ρd+ 4)3 + 4(ρd+ 4)2∥∇̂LR(θ)∥2.
(20)

As ER[∥z′∥p] ≤ (ρd+ p)
p
2 for p ≥ 2, the third inequality holds. Additionally, since 2ρ3d3+(ρd+

6)3 ≤ 3(ρd+ 4)3, the fourth inequality is valid.

Again, given that L is Lipschitz continuous, we have |L(θt+1)− L(θt)− ⟨∇L(θt),θt+1 − θt⟩| ≤
L(l)
2 ∥θt+1 − θt∥2. Therefore, we can derive:

LR(θt+1)− LR(θt)− ⟨∇̂LR(θt),θt+1 − θt⟩
≤ |LR(θt+1)− LR(θt)− ⟨∇̂LR(θt),θt+1 − θt⟩|

≤ L(l)

2
∥θt+1 − θt∥2.

(21)

By further examining the iterative process of Structured Sparse ZO-SGD as outlined in Equation (5),
we can obtain:

LR(θt+1) ≤ LR(θt) + ⟨∇̂LR(θt),θt+1 − θt⟩+
L(l)

2
∥θt − θt+1∥2

= LR(θt)− ηt⟨∇̂LR(θt), ∇̂LR(θt)⟩+
(ηt)

2L(l)

2
∥∇̂LR(θt)∥2,

(22)

where ηt represents the learning rate at step t.

Subsequently, we can derive the expected loss function of the structured sparse model at step t + 1
as:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Ez′ ,x[LR(θt+1)] ≤ Ez′ ,x[LR(θt)]− ηtEz′ ,x[∥∇̂LR(θt)∥2]

+
(ηt)

2L(lz)

2
Ez′ ,x[∥∇̂L(θt)∥

2]

≤ Ez′ ,x[LR(θt)]− ηtEz′ ,x[∥∇̂LR(θt)∥2]

+
(ηt)

2L(l)

2
(4(ρd+ 4)Ez′ ,x[∥∇̂LR(θt)∥2] + 3ϵ2L2(l)(ρd+ 4)3).

(23)

Then, let learning rate be ηt =
1

4(ρd+4)L(l) and obtain:

Ez′ ,x[LR(θt+1)] ≤ Ez′ ,x[LR(θt)]−
1

8(ρd+ 4)L(l)
Ez′ ,x[∥∇̂LR(θt)∥2]+

3ϵ2

32
L(l)(ρd+4). (24)

Summing Equation (24) from 0 to T + 1, where T denotes a sufficiently large number of training
steps, yields:

Ez′ ,x[∥∇̂LR(θT)∥2] ≤ 8(ρd+ 4)L[
LR(θ0)− L∗

R
T + 1

+
3ϵ2

32
L(ρd+ 4)], (25)

where L(l) ≤ L for all L(θt). Thus, based on Lemma 2, we can have:

Ez′ ,x[∥∇Lm(θT)∥2] ≤
ϵ2L2

2
(ρd+ 4)3 + 2Ez′ ,x[∥∇̂LR(θT)∥2]

≤ 16(ρd+ 4)L
LR(θ0)− L∗

R
T + 1

+
ϵ2L2

2
(ρd+ 4)2(ρd+

11

2
).

(26)

To obtain σ-accurate solution Ez′ ,x[∥∇Lm(θT)∥2] ≤ σ2, we can define ϵ = Ω(σ

ρ
3
2 d

3
2 L

).

16(ρd+ 4)L
LR(θ0)− L∗

R
T + 1

+O(ϵ2L2ρ3d3)

= 16(ρd+ 4)L
LR(θ0 − L∗

R)

T + 1
+O(σ2).

(27)

From the above, we can get:

T = O(ρdL
σ2

). (28)

Q.E.D.

17

	Introduction
	Related Work
	Efficiency Analysis of MeZO
	Preliminaries
	Efficiency dilemma of MeZO

	Methodology
	Dynamic Layer-wise Sparse Zeroth-Order Optimization
	Convergence Analysis of LeZO

	Experiments
	Experimental Setting
	Main Result
	Hyperparameter Analysis

	Conclusion
	Detailed Experimental Settings
	Proof

