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Abstract

Alignment has quickly become a default ingredient in LLM development,
with techniques such as reinforcement learning from human feedback
making models act safely, follow instructions, and perform ever-better on
complex tasks. While these techniques are certainly useful, we propose that
they should not be universally applied and demonstrate a range of tasks on
which base language models consistently outperform their popular aligned
forms. Particularly, we study tasks that require unpredictable outputs, such
as random number generation, mixed strategy games (rock-paper-scissors
and hide-and-seek), and creative writing. In each case, aligned models tend
towards narrow behaviors that result in distinct disadvantages, for instance,
preferring to generate “7” over other uniformly random numbers, becom-
ing almost fully predictable in some game states, or prioritizing pleasant
writing over creative originality. Across models tested, better performance
on common benchmarks tends to correlate with worse performance on our
tasks, suggesting an effective trade-off in the required capabilities.

1 Introduction

The human editors behind “I am Code” (Katz et al., 2023), a popular book of AI poetry,
assert that model-written poems get worse with newer, more aligned models (Kestenbaum,
2024). This trend extends to other capabilities such as world modeling (Li et al., 2024) and
output diversity (Murthy et al., 2024; Kirk et al., 2024). The prospect that alignment is
actively degrading useful capabilities is highly consequential, as the vast majority of LLM
users exclusively interact with public-facing aligned models (Anthropic, 2024; OpenAI et al.,
2023; Gemini-Team, 2024). Although these techniques, such as reinforcement learning from
human feedback (Ouyang et al., 2022), are consistently validated on popular benchmarks
(Fourrier et al., 2024), capabilities such as poetry writing or deploying mixed strategies
deviate significantly from these evaluations (figure 1).

In this work, we study a family of tasks that capture this deviation, particularly tasks that
require unpredictability in models, such as random number generation, mixed-strategy
games, and poetry writing. Contrary to typical benchmark tasks which can be solved
with a single correct answer, tasks such as random number generation explicitly require a
distribution of answers, and the tendencies of aligned models to converge towards specific
correct responses (Li et al., 2024) become a drawback.

We broadly find that standard alignment recipes, although useful for common benchmarks,
erode performance for our tasks (figure 1). We observe the effects of a cross section of
alignment recipes (SFT, DPO, Tulu, Llama-Instruct) on the widely-used Llama-3.1 base
model (Dubey et al., 2024), with alignment causing consistent performance drops across
random number generation (§2), mixed strategy games (§3) and creative poetry generation
(§4). Aligned models pick up recognizable patterns that often hurt performance, for instance,
generating “7” over other equally random numbers, a common human bias (Simon, 1971;
Trueman, 1979; Muller, 2024). In games, aligned models tend to become significantly more
deterministic, and especially more confident after better outcomes (tie or win). Finally, in
creative poetry writing, aligned models seem to sacrifice creative originality in favor of
pleasantness, as judged by humans.
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Figure 1: An empirical tradeoff between leaderboard performance and unpredictable capa-
bilities. We compare model performance (8B & 70B parameters) on the popular Open LLM
Leaderboard (Fourrier et al., 2024) and various tasks requiring models to be unpredictable,
including random number generation and games. Better performance on the leaderboard
for aligned models (▼) seems to come at the cost of unpredictable task performance, while
Base models (•) do best at these tasks.

Overall, our work provides substantial evidence that popular alignment recipes can reduce
capabilities that were present in base models. The unpredictability required in these tasks
could be fundamental in developing truly useful agents that are capable of bargaining on
our behalf (which requires mixed strategies) or helping humans be more creative. Finally, we
note that higher performance on popular benchmarks tends to predict lower performance
on our tasks (figure 1), suggesting the possibility of a fundamental trade-off between the
sets of skills commonly tested and those required here.

2 Basic Randomness: Number Generation

As a basic diagnostic for the ability of models to be unpredictable, we begin with random
number generation, in which each generated number should not be predictable beyond
random chance. We find that aligned models display significant patterns, resulting in
predictability. In generating independent numbers (§2.1.1), even 70B parameter aligned
models tend strongly toward generating the number “7”, while the base LLMs on which
these are built are much closer to uniform. When allowed to generate sequences of random
numbers (§2.1.2), aligned models become much more uniform in overall frequency, but not
necessarily random. For instance, they rarely repeat integers in a given sequence, which
improves uniformity but deviates significantly from a truly random process.

2.1 Experiments

2.1.1 Generating Independent Random Numbers

We begin by testing the ability of models to generate single, uniformly random integers,
specifically generating X ∼ U{0, 10}.

Setup We provide brief instructions via zero-shot prompting to each model, following the
relevant prompt formatting for the given model (Appendix A.2), with the basic phrasing:

Generate a random integer, uniformly between 0 and 10 (inclusive).

We use simple rules to parse model outputs, removing any output that does not follow the
task specification (a small fraction for all models). For each model, we sample until reaching
1500 successful generations, which we analyze below.

Models We hold the base model constant across experiments to one of the most popular
options, Llama-3.1 base (Dubey et al., 2024), and investigate the effects of a cross section
of 4 strong alignment recipes: Direct Preference Optimization (Tulu-DPO), Supervised
Finetuning (Tulu-SFT), the full Tulu-3 instruct recipe (Tulu-Full; Lambert et al. 2025), which
combines SFT, DPO, and Reinforcement Learning, and finally the original Meta-Llama 3.1
post-training recipe (Llama-Instruct) which combines DPO, SFT, and rejection sampling. We
study two available model sizes, 8B and 70B parameters. For the 70B models, we use FP8
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precision to allow these to run locally on 4 NVIDIA RTX A6000 GPUs. Where applicable in
this section, “True Sample” indicates the underlying process that we are prompting models
to replicate, i.e. random.randint(0,10) in Python.

2.1.2 Generating Random Number Sequences

To test whether models can account for these biases given their own generation history, we
also include a setting in which models attempt to generate length-10 sequences of integers
from X ∼ U{0, 10}.

Setup We follow a similar zero-shot prompting format to §2.1.1, simply adding the instruc-
tion to generate 10 random numbers instead of one. We use rule-based parsing for these
sequences, removing any with length < 10 or for which any sequence entries are not integers
in [0, 10]. We study the same models as §2.1.1 here.

2.2 Results

In general, we find that these popular alignment recipes seem to reduce the randomness
of the base model, introducing biases that correspond to common human preferences but
deviate from true randomness. Results are in figures 2 and 3 and table 1.

Alignment increases distributional divergence Figure 2 shows histograms of single-integer
distributions (§2.1.1) across model type. Qualitatively, base models are significantly more
uniform across model sizes. One common pattern in aligned models is a tendency to
generate “7” with significantly higher probability than other numbers, a common human
bias in random numbers (Simon, 1971; Trueman, 1979). While much less dominant, “7” is
also the mode of the base distributions, suggesting the bias may begin in the base model and
be exacerbated by these alignment recipes. We also include Pearson χ2 divergence values
here (Chernoff & Lehmann, 1954), which are commonly used to measure distance from the
uniform distribution. Although the base models (2nd column) deviate significantly more
than a true random sample (1st column), aligned models are roughly an order of magnitude
worse (or more). Llama-Instruct is the most divergent of the aligned models, generating
“7” most of the time, while the supervised finetuned model Tulu-SFT is the least. Note that
these issues persist when accounting for entropy using temperature (see Appendix A.3.1)

Model sequences appear closer to uniform When we allow models to generate integers in
sequence rather than in isolation (§2.1.2), all models become less divergent from the uniform
distribution (table 1, full histograms in appendix A.3.1). Some aligned models are less
divergent than the base model at 70B parameters, although this only indicates uniformity
of frequency in the sequences and not necessarily a more random process. We explore this
below.

Aligned models are biased against repetition While the overall distribution of integers
becomes much more uniform when generating sequences than individual values, this
does not necessarily mean that the underlying process is uniformly random. In fact, we
find that aligned models follow a human-like heuristic: a tendency away from repeating
integers (Wagenaar, 1972; Schulz et al., 2012). While repeated integers may seem less random
to humans, truly uniform sequences tend to contain them (figure 3). Making sequences
non-repeating naturally increases overall uniformity by increasing the coverage of each
sequence, but it specifically biases models away from uniform sampling in which probability
is independent of previous samples. We compare the number of repetitions for each model
and a true uniform sequence (“True Sample”) in figure 3, finding that the base model closely
resembles the true uniform distribution and all aligned models fundamentally deviate. The
most common case for both base models and “True Sample” is sequences with 3 repetitions,
while for all aligned models, the mode is zero repetitions. Note that the SFT 70B is closest
to having a larger mode, and its mean squared error1 from the true sample supports the
ordering Base < SFT < other aligned models, i.e. base is least divergent from random,

1Comparing repetition counts against a large-n sampled approximation of expected counts from
uniform: MSE = ( 1

11 countobs − countexpected)
2 where 11 is the number of bins. The negative of this is

used in figure 1.
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Figure 2: Results of single value random number sampling on [0,10] with a True Sample
using python random.randint(), the Llama-3.1 Base (Dubey et al., 2024) model, as well as 4
aligned versions of this same model: Llama-Instruct alignment, and 3 kinds of Tulu align-
ment: SFT, DPO, and Full. Aligned models have a consistent preference for “7” compared to
the qualitative uniformity of the base model, and significantly higher χ2 divergence values.

size Base Llama-Instruct Tulu-DPO Tulu-SFT Tulu-Full

8 13.9 115.1 100.8 52.3 129.1
70 29.2 43.6 22.9 21.8 18.3

Table 1: χ2 values for sequentially generated random numbers, with sequence lengths of 10
(§2.1.2).

followed by the SFT model and then other aligned models. We include further analysis
in Appendix A.3.1 exploring the next-integer distribution of each model over sequence
position.

Scaling laws need not apply One surprising result here is that issues with randomness do
not always disappear or improve with larger model scale. Particularly, in the single-integer
generation experiments (§2.1.1), 70B models have a higher divergence than 8B models
across the board, including for base LLMs. This disagrees with the general tendency of
performance to improve with scale (Kaplan et al., 2020), and suggests that the usefulness of
alignment is not the only intuition that may break down in tasks requiring unpredictability.
We find similar results in later experiments as well.

3 Games Requiring Randomness

Although random number generation (§2) tests the ability of models to be unpredictable, its
direct significance is limited given the wealth of existing randomness tools (e.g. the Python
random module). Here, we test settings where randomness is required for more complex
behavior. Particularly, we study the effects of alignment on mixed strategy games (von
Neumann & Morgenstern, 1947), where robust strategies must be unpredictable to be robust
to deterministic adversaries. §3.1 gives background on mixed strategy games, §3.2 explains
the games we test, and §3.3 covers model performance. Broadly, alignment seems to make
models less robust to deterministic adversaries, which is in line with our earlier finding of a
reduction in randomness (§2).

3.1 Background: Mixed Strategy Games

In the context of game theory, pure strategies give a complete, deterministic description of a
player’s moves. These are a special case of mixed strategies (von Neumann & Morgenstern,
1947) which provide a probability distribution over potential pure strategies. In some games,
there is no rational pure strategy, i.e. the Nash equilibrium strategy is probabilistic rather
than deterministic. Rock Paper Scissors (described in §3.2.1) is an example: if a player uses a
pure (deterministic) strategy (e.g. playing “rock” every time), there is an adversarial strategy
(playing “paper”) which always beats the player.

Mixed strategy games represent a setting in which the failure of models to be random
(§2) or unpredictable will explicitly result in negative outcomes. Specifically, models will
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Figure 3: The number of repeated integers in sampled sequences of length 10, as sampled
by: True Sample using python random.randint(), the Llama-3.1 Base model and its aligned
version using 4 recipes: Meta-Instruct alignment, and 3 kinds of Tulu alignment: SFT, DPO,
and Full. Qualitatively, the base model is by far the closest to the sampled distribution, e.g.
the two sizes of the base model are the only models that have the same mode as the true
sample of 3 repeated integers. Mean squared error (MSE) is measured against expected
counts estimated with a very large empirical sample (10,000 randomly sampled sets).

Rock Paper Scissors Hide & Seek
Model Wins Ties Losses Net Wins Losses Net

Uniform (limit) 0.0 71.4

8B Parameters
Base 26.3 25.9 47.9 -21.6 66.9 33.1 33.8
Llama-Instruct 20.9 21.3 57.8 -36.9 43.5 56.5 -13.0
Tulu-DPO 23.2 18.7 58.1 -34.9 25.0 75.0 -50.0
Tulu-SFT 26.0 22.5 51.4 -25.4 40.9 59.1 -18.2
Tulu-Full 21.3 17.3 61.4 -40.1 22.4 77.6 -55.2

70B Parameters
Base 34.4 16.2 49.4 -15.0 75.5 24.5 51.0
Llama-Instruct 17.0 15.9 67.1 -50.1 31.0 69.0 -38.0
Tulu-DPO 21.2 23.6 55.2 -34.0 34.9 65.1 -30.2
Tulu-SFT 26.4 25.9 47.7 -21.3 53.1 46.9 6.2
Tulu-Full 22.3 21.8 55.9 -33.6 33.2 66.8 -33.6

Table 2: Outcome rates (%) for different model sizes on Rock Paper Scissors and Hide &
Seek, playing against a greedy deterministic adversary with blackbox access to the model.
Best net outcome for each model size is bolded, second best is underlined.

be vulnerable to deterministic adversaries that have knowledge of the given strategy. In
this section, we will test the robustness of each model against such adversaries, assuming
knowledge of the underlying move probability of the model.

3.2 Experiments

3.2.1 Rock Paper Scissors

Game Rock Paper Scissors is a multi-round game, with 3 moves (rock, paper, scissors) such
that rock beats scissors, scissors beat paper, and paper beats rock (while the same move results in
a tie). Over multiple rounds, players simultaneously announce moves, accumulating wins,
ties, and losses. In our experiments, each model will be playing against a programmatic
adversary with knowledge of model probabilities, to test their ability to deploy a mixed
strategy.

Setup As in §2, we use basic zero-shot prompting to specify the task, keeping language
simple to inform the model that it is playing the game, supply any rounds that have been
played so far, and ask for the model’s next move. Phrasing is consistent across models,
besides model-specific formatting. We sample from models based on logit probability, with
temperature 1.0 and topk/topp set to retain the full, original distribution. We then parse
outputs to handle formatting that may be included for different models. We need to estimate
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Figure 4: To provide intuition for why aligned models do worse at Rock Paper Scissors, we
investigate how deterministic models are in each move, using maxmove p(move) as a measure.
Over all rounds (left), we see that all aligned models tested become more deterministic in
some rounds than the base models ever do. When plotting how much more deterministic
models are after a tie or win vs. a loss (right), we see that the aligned models tend to be
more deterministic after a tie or win, while the base models do not consistently show this
pattern.

model move probability, both to select a new move for the adversary, and analyze model
behavior. To do this, we use the next-token distribution given the prompt p(t|prompt), and
aggregate probability across tokens t corresponding to each move, e.g. taking the probability
of rock to be the combined probability of all tokens that correspond to this move.

We have models play 500 games, with 10 rounds in each game. The set of models is the
same as in §2.

Adversary A main feature of mixed strategy games is that unpredictability is required to be
robust to deterministic (or pure) strategies. If a player is too deterministic, there will be an
adversarial strategy that consistently wins against them. Here, we have models compete
against deterministic adversaries to test robustness in a mixed strategy setting. An ideal
deterministic adversary should take the move at every point that gives the highest expected
win rate over the remaining rounds of the game. We apply a greedy approximation for this
adversary, using the next-token distribution given the prompt to approximate the model’s
probability of each next move, and picking the move most likely to counter that (e.g. if we
find surface form tokens indicating rock add up to 90% of the probability, the adversary
would play paper next to maximize probability of an immediate win).

3.2.2 Hide & Seek

Game We also include Hide & Seek, which is an asymmetrical game where one or more
players hide, and another player (the seeker) attempts to find all other players. We create a
simple one-vs-one version where one player (the model) picks a hiding spot every round,
and the seeker (adversary) is allowed to choose one location to search. The seeker wins
if they pick the same spot, and otherwise loses. This is a mixed strategy game where the
equilibrium strategy for a single hiding player is uniformly random. Unlike Rock Paper
Scissors the expected result in the equilibrium case is to win n−1

n of the time, when there are
n hiding spots. In our experiments, this means that an ideal player will win roughly 85% of
the time against an adversarial seeker, i.e. a net score (ratewin – rateloss) of ≈70 points.

Setup As in §3.2.1, we specify the game simply via zero-shot prompting, informing the
model of all hiding spots and asking for a selection in each round, while providing the
history of the game so far. We use the same models as §3.2.1, and follow the same procedure
for the greedy adversary (the seeker), selecting whichever hiding spot the model is most
likely to have chosen.

3.3 Results

Base models are consistently most robust against adversaries We present results in table 2.
Overall, base models achieve the highest scores across games and model sizes, indicating the
strongest performance against the adversary. In Rock Paper Scissors, the Tulu-SFT model
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achieves the second-best score for both sizes and is within 7 net points in both cases. For
Hide & Seek, the base model is at least 40 points above any baseline for both model sizes,
with Llama-Instruct 2nd best at 8B parameters and Tulu-SFT second best at 70B parameters,
meaning Tulu-SFT is 2nd in 3/4 settings.

Case Study: Patterns in Determinism for Rock Paper Scissors To investigate why align-
ment recipes seem to reduce performance in mixed strategy games, we carry out an in-depth
analysis of Rock Paper Scissors. First, we define a measure for how deterministic a model is
in a given round of a game, as:

determinism = maxmove p(move)

In words, this is the probability of the most probable next move for the model to play. The
minimum is determinism = 1

3 for Rock Paper Scissors when models are uniformly random
and have the best expected outcome. The maximum is determinism = 1 when models are
totally deterministic and expected to lose 100% of the time. One interpretation of this score
is the degree to which one move is dominating model probability, resulting in behavior
more similar to full determinism.

We first investigate the overall distribution of determinism of models across all moves
played (i.e. all rounds in all games) in figure 4, left. Base models, which perform best at
this game, tend to have determinism near 0.5 and have a very low maximum compared to
all other models. For instance, 70B parameter Llama Instruct becomes almost completely
deterministic in some cases.

We also find that the result (win, tie, or loss) of the round directly before the given move
affects determinism differently in different models (figure 4, right). In this experiment, we
plot:

mean(determinism|outcomei−1)− mean(determinism|outcomei−1 = loss)

In words, this is how the outcome of the previous round affects determinism, setting 0 to
the case when models lose, to simplify visual comparison. In every case, aligned models
become more confident after a tie or win than a loss. In contrast, base models are slightly less
confident after a tie than a loss, and very similar between a loss and a win. Overall, aligned
models seem to follow a common human behavior, to become more confident following
a positive (or non-negative) outcome in a game, naturally pushing them to become more
predictable.

4 Creative Poetry Generation

Finally, we test the complex challenge of being creatively unpredictable. Change and evolu-
tion are fundamental aspects of art (Fienberg & Martindale, 1991), meaning that the most
impactful art must be novel and original i.e. not predictable. Following this intuition, we
test the ability of models to be original in creative/artistic writing, specifically for poetry
(Katz et al., 2023).

In a small-scale, contest-style human evaluation, we find that base models generate the
most original poems in every case, while instruct models generate the most pleasant poems.
Providing some intuition for this difference, we find that pleasantness is more strongly
correlated with annotated human preference, a core aspect of many alignment techniques.
Overall, our findings support the idea that aligned poetry is easy to read but less likely to
be impactful or artistically interesting (Kestenbaum, 2024).

4.1 Experiments

Setup We prompt models to carry out a simple poetry exercise, generating fixed-length
poems (4 lines) on a basic topic. We query GPT-4 (OpenAI et al., 2023) for a list of everyday
topics: Coffee, Smartphones, Traffic, Weather, Exercise, Grocery shopping, Sleep, Work, Internet,
Television. We then give models a straightforward, zero-shot prompt asking for a 4-line
poem on the given topic, and generating until we are able to parse 20 poems of the given
length. We find that 70B parameter models are significantly more proficient at this task, and
so we focus our analysis on these models (using the same models as earlier sections).
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Figure 5: Results of creative poetry evaluation for 70B parameter models, where base models
produce the most original, but not always preferred or pleasant, poems. Left: Number of
wins along each axis for human evaluation poetry contests (§4.1), across 4 poem prompts, 5
poems per model, and 3 axes. We include average rank correlation (ρ) with the pleasantness
axis across poems. Right: Examples from one contest, including the best-ranked poems
by human preference and originality. Aligned poems seem to share a style that differs
significantly from the base model. Further examples are included in Appendix A.3.2.

Human Evaluation – Contest Art is typically judged by the best rather than average case
(e.g. in poetry contests), so we construct an evaluation to extract winners along different
human-evaluated axes: originality, pleasantness, and preference. Originality serves as our
notion of unpredictability/creativity, which is what our evaluation ultimately aims to test.
Although annotator preference is often used as the measure of generation quality, there is
no concrete evidence that this correlates well with broader artistic merit or impact, and our
study finds that it correlates more with pleasantness, which may be at odds with novelty and
impact.

To avoid leading annotators, we evaluate each of these axes separately in their own annota-
tion tasks, comparing a series of random pairs of poems. For a given axis and set of poems,
we determine a final winner by inducing an ordering using a variant of the Bradley-Terry
model (Bradley & Terry, 1952) from the pairwise comparisons. We use this format to aggre-
gate over natural disagreements in subjective questions, and so expect some disagreement
between annotators. We also calculate annotator agreement with 70 additional comparisons,
finding Cohen’s Kappa (Cohen, 1960) of 0.33, 0.27, and 0.67 for originality, pleasantness,
and overall preference (respectively).

We carry out human evaluation of the 2 most popular aligned models tested here (Tulu-Full
and Llama-Instruct) along with the base model, all at 70B parameters. We evaluate the 3 axes
for 4 different poem prompts (coffee, sleep, weather, smartphones), comparing 5 random poems
from each model. This results in 12 contests of 15 poems each. We carry out 60 comparisons
per contest on the Prolific platform, resulting in a total of 720 annotated comparisons. We
also include one control question in every job, comparing between a generated poem and a
random bag of words. Annotators selected the generated poem in virtually every case.

4.2 Results

A split between preference and originality The results of our human evaluation of model
poetry are included in figure 5 (left). We include limited examples in figure 5 (right) and
extensive examples in Appendix A.3.2. There is a distinct split in attributes: the base model
produces the winning poem in terms of creative originality in all cases, but this does not
translate to dominance in terms of human annotator preference. Indeed, when taking
Spearman rank correlation (Spearman, 1904) averaged across contests, originality is actually
slightly negatively correlated with human preference (mean ρ across settings is −0.08). These
results support our earlier findings that aligned models tend to be more predictable than
base models, which results in a lower level of perceived artistic originality in this case.
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Pleasantness aligns with Preference We find that the pleasantness axis aligns more pos-
itively with annotator preference in terms of rank (mean ρ = 0.34) than originality does
(mean ρ = −0.08). Given that annotator preference is often a core element of alignment,
their desire for pleasantness may explain why aligned models seem to prioritize this over
originality. This also suggests that crowdsourced preference, commonly used as the ultimate
test of quality in generations, may not give a clear a strong signal towards artistic originality
or impact.

On the other hand, annotators seem to recognize the originality of the base model although
they do not prefer it. The base model never wins in terms of pleasantness, and its poems
also have the lowest median rank in terms of human annotator preference (10.5 in sets of 15
poems). Yet, the base model does win one of four contests in terms of preference, suggesting
that annotator opinions of base model poems are highly variable.

5 Related Work

Our work aims to develop an understanding of broad model limitations and biases, par-
ticularly the effects of alignment techniques. Recent work has studied the relationship
between base and aligned models, often focusing on the differences between them (Lin et al.,
2024), and how to encourage aligned behavior (Hewitt et al., 2024; Fei et al., 2024). Like
our work, Li et al. (2024) study the qualitative differences caused by alignment (particularly
RLHF) and similarly find that alignment can narrow some capabilities not covered by task-
based improvement. A growing body of work studies the loss of diversity that can result
from alignment (Murthy et al., 2024; Kirk et al., 2023; Bronnec et al., 2024; Padmakumar &
He, 2024), which is related to unpredictability studied here. Shypula et al. (2025) find the
counterintuitive result that aligned models can have higher semantic diversity despite lower
syntactic/surface diversity, particularly in settings where aligned models can generate more
high quality answers. McCoy et al. (2023) also study the biased effects of model training
techniques, although focus on issues induced by pretraining rather than post-training.

Other works attempt to measure writing creativity related to LLMs. Lu et al. (2025) measure
this as the degree to which generations match existing text snippets, and similarly find that
alignment (RLHF in that case) greatly reduces this notion of creativity. Many other works
focus on the human experience of creativity, using human judgements instead Chakrabarty
et al. (2024); Anderson et al. (2024); Gómez-Rodríguez & Williams (2023). Our work follows
the latter approach. While our work focuses on direct model creativity, this is also relevant
for the setting in which models collaborate creatively with humans on writing Padmakumar
& He (2024); Chakrabarty et al. (2024); Anderson et al. (2024)

Multiple past works have studied the ability of models to carry out random behavior,
such as random number generation (Hopkins et al., 2023; Bigelow et al., 2024; Koevering &
Kleinberg, 2024), demographic sampling (Meister et al., 2024), or playing games that require
randomness (Silva, 2025). None of these works aim to study the effects of alignment on
randomness, although some observe an effect (Hopkins et al., 2023; Koevering & Kleinberg,
2024). Like our work, some study patterns in generated random sequences: Koevering &
Kleinberg (2024) also find a tendency against repetition, while Bigelow et al. (2024) find
models can transition from randomness to formal languages in different settings. Paruchuri
et al. (2024) investigate the ability of models to reason about randomness rather than sample.
More broadly, Song et al. (2025) advocate for evaluations that consider non-determinism
more strongly.

One aspect of our work is studying model biases in settings that have strong human biases
(randomness, mixed strategy games). Past work has studied these for a range of known
human cognitive biases and opinions (Liu et al., 2025; Jones & Steinhardt, 2022; Itzhak et al.,
2024; Santurkar et al., 2023).

Most works on random numbers look at binary (Bigelow et al., 2024; Koevering & Kleinberg,
2024) or continuous (Hopkins et al., 2023) distributions, while our experiments in this space
use integer sampling. Other works study games for LLMs (Silva, 2025; Brookins & Debacker,
2023; Akata et al., 2023; Jia et al., 2025) but do not focus on the divide between aligned and
base models as our experiments do.
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6 Conclusion

Overall, our work provides extensive support to the notion that popular alignment recipes
erode a range of capabilities present in base models. Despite better performance on
common benchmarks, aligned models are found to have lower performance across a range
of tasks tested here (figure 1).

Concretely, the alignment recipes studied here seem to reduce the ability of models to be
unpredictable. This could have significant implications for the impacts of LLMs, given the
dominance of aligned models. Practically, our findings could mean that aligned LLMs are
not as effective at creative tasks, or assisting humans with creativity, given our results on
poetry generation. Similarly, our results on games call into question how useful aligned
models will be for settings requiring mixed strategies, like natural communication or
bargaining on behalf of a user. On the other hand, this may have positive implications for
safety, as aligned models may be less effective at deception, which is thought to require
ambiguity and non-determinism.

One remaining question resulting from our work is whether there is an inherent tradeoff
between unpredictability and the capabilities at which these aligned models excel. Explor-
ing this question could shed light on the underlying mechanisms of model capabilities.
Regardless, our work suggests that although base LLMs receive much less attention than
their aligned forms, there are mysterious and valuable capabilities hidden within them.

Ethics Statement

Our work carries out analysis of existing language models, and does not train any new
models or introduce any new datasets. In all human evaluations carried out here, we follow
necessary IRB guidelines, and aim to pay our workers $15 per hour on average.

One important point is that our work is advocating for the value of base language models,
which could carry risks compared to aligned models. We would like to clarify that we only
advocate for the deployment of safe systems to the general public. Our work does not
imply that large and untested base models should be made available at large, but rather
that current alignment techniques may erode useful capabilities that were available in the
original base parameters.
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jjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He,
Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro main Sauvestre,
Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey
Edunov, Shaoliang Nie, Sharan Narang, Sharath Chandra Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman,
Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher,
Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic,

11

http://www.jstor.org/stable/2334029
https://api.semanticscholar.org/CorpusID:267740404
https://api.semanticscholar.org/CorpusID:259714625
https://arxiv.org/abs/2309.12570
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104


Published as a conference paper at COLM 2025

Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit ney Meers, Xavier Martinet, Xiaodong
Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag,
Yashesh Gaur, Yasmine Babaei, Yiqian Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zhengxu Yan, Zhengxing Chen, Zoe Papakipos, Aa-
ditya K. Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adi Gangidi,
Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus,
Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew
Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu
Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau
James, Ben Maurer, Ben Leonhardi, Po-Yao (Bernie) Huang, Beth Loyd, Beto De Paola,
Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton,
Catalina Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang
Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel
Kreymer, Shang-Wen Li, Danny Wyatt, David Adkins, David Xu, Davide Testuggine,
Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin
Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei
Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzm’an,
Frank J. Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer,
Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory G. Sizov, Guangyi
Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Han
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi
Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh
Ginsburg, Junjie Wang, Kaixing(Kai) Wu, U KamHou, Karan Saxena, Karthik Prasad,
Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin
Chen, Lakshya Garg, A Lavender, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo,
Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer,
Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Raste-
gari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata
Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning
Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar,
Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip
Bontrager, Pierre Roux, Piotr Dollár, Polina Zvyagina, Prashant Ratanchandani, Pritish Yu-
vraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto,
Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith
Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govin-
daprasad, Sumit Gupta, Sung-Bae Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson,
Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta,
Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Andrei Poenaru, Vlad T. Mihailescu, Vladimir Ivanov, Wei Li, Wenchen
Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xia Tang, Xiaofang Wang, Xiaojian
Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu Wang, Yuchen Hao,
Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu
Yang, and Zhiwei Zhao. The Llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL

12



Published as a conference paper at COLM 2025

https://api.semanticscholar.org/CorpusID:271571434.

Yu Fei, Yasaman Razeghi, and Sameer Singh. Nudging: Inference-time alignment via model
collaboration. ArXiv, abs/2410.09300, 2024. URL https://api.semanticscholar.org/
CorpusID:273346831.

Stephen E. Fienberg and Colin Martindale. The clockwork muse: The predictability of
artistic change. Journal of the American Statistical Association, 88:375, 1991. URL https:
//api.semanticscholar.org/CorpusID:124437281.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf.
Open LLM Leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/
open_llm_leaderboard, 2024.

Gemini-Team. Gemini: A family of highly capable multimodal models, 2024. URL https:
//arxiv.org/abs/2312.11805.

Carlos Gómez-Rodríguez and Paul Williams. A confederacy of models: a comprehen-
sive evaluation of LLMs on creative writing. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023,
pp. 14504–14528, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-emnlp.966. URL https://aclanthology.org/2023.
findings-emnlp.966/.

John Hewitt, Nelson F. Liu, Percy Liang, and Christopher D. Manning. Instruction fol-
lowing without instruction tuning. ArXiv, abs/2409.14254, 2024. URL https://api.
semanticscholar.org/CorpusID:272826987.

Aspen K Hopkins, Alex Renda, and Michael Carbin. Can LLMs generate random numbers?
Evaluating LLM sampling in controlled domains. In ICML 2023 Workshop: Sampling and
Optimization in Discrete Space, 2023. URL https://openreview.net/forum?id=Vhh1K9LjVI.

Itay Itzhak, Gabriel Stanovsky, Nir Rosenfeld, and Yonatan Belinkov. Instructed to bias:
Instruction-tuned language models exhibit emergent cognitive bias. Transactions of the
Association for Computational Linguistics, 12:771–785, 2024. doi: 10.1162/tacl_a_00673. URL
https://aclanthology.org/2024.tacl-1.43/.

Jingru Jia, Zehua Yuan, Junhao Pan, Paul E. McNamara, and Deming Chen. Large lan-
guage model strategic reasoning evaluation through behavioral game theory. ArXiv,
abs/2502.20432, 2025. URL https://api.semanticscholar.org/CorpusID:276724807.

Erik Jones and Jacob Steinhardt. Capturing failures of large language models via human
cognitive biases. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=fcO9Cgn-X-R.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural
language models. ArXiv, abs/2001.08361, 2020. URL https://api.semanticscholar.org/
CorpusID:210861095.

Brent Katz, Josh Morgenthau, and Simon Rich. I am code: An artificial intelligence speaks. Back
Bay Books: Little, Brown and Company, 2023.

David Kestenbaum. That other guy. This American Life, 5 2024. URL https://www.
thisamericanlife.org/832/transcript.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Ed-
ward Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm gener-
alisation and diversity. ArXiv, abs/2310.06452, 2023. URL https://api.semanticscholar.
org/CorpusID:263830929.

13

https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:273346831
https://api.semanticscholar.org/CorpusID:273346831
https://api.semanticscholar.org/CorpusID:124437281
https://api.semanticscholar.org/CorpusID:124437281
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://aclanthology.org/2023.findings-emnlp.966/
https://aclanthology.org/2023.findings-emnlp.966/
https://api.semanticscholar.org/CorpusID:272826987
https://api.semanticscholar.org/CorpusID:272826987
https://openreview.net/forum?id=Vhh1K9LjVI
https://aclanthology.org/2024.tacl-1.43/
https://api.semanticscholar.org/CorpusID:276724807
https://openreview.net/forum?id=fcO9Cgn-X-R
https://openreview.net/forum?id=fcO9Cgn-X-R
https://api.semanticscholar.org/CorpusID:210861095
https://api.semanticscholar.org/CorpusID:210861095
https://www.thisamericanlife.org/832/transcript
https://www.thisamericanlife.org/832/transcript
https://api.semanticscholar.org/CorpusID:263830929
https://api.semanticscholar.org/CorpusID:263830929


Published as a conference paper at COLM 2025

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro,
Edward Grefenstette, and Roberta Raileanu. Understanding the effects of RLHF on LLM
generalisation and diversity. In ICLR, 2024. URL https://openreview.net/forum?id=
PXD3FAVHJT.

Katherine Van Koevering and Jon Kleinberg. How random is random? Evaluating the
randomness and humaness of LLMs’ coin flips. ArXiv, abs/2406.00092, 2024. URL
https://api.semanticscholar.org/CorpusID:270211547.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu,
Saumya Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind
Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi,
and Hannaneh Hajishirzi. Tulu 3: Pushing frontiers in open language model post-training,
2025. URL https://arxiv.org/abs/2411.15124.

Margaret Li, Weijia Shi, Artidoro Pagnoni, Peter West, and Ari Holtzman. Predicting vs.
acting: A trade-off between world modeling & agent modeling. ArXiv, abs/2407.02446,
2024. URL https://api.semanticscholar.org/CorpusID:270878711.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi
Chandu, Chandra Bhagavatula, and Yejin Choi. The unlocking spell on base LLMs:
Rethinking alignment via in-context learning. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=wxJ0eXwwda.

Ryan Liu, Jiayi Geng, Joshua Peterson, Ilia Sucholutsky, and Thomas L. Griffiths. Large
language models assume people are more rational than we really are. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=dAeET8gxqg.

Ximing Lu, Melanie Sclar, Skyler Hallinan, Niloofar Mireshghallah, Jiacheng Liu, Seungju
Han, Allyson Ettinger, Liwei Jiang, Khyathi Chandu, Nouha Dziri, and Yejin Choi. Ai as
humanity’s salieri: Quantifying linguistic creativity of language models via systematic
attribution of machine text against web text, 2025. URL https://arxiv.org/abs/2410.
04265.

R. Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L. Grif-
fiths. Embers of autoregression: Understanding large language models through the
problem they are trained to solve. ArXiv, abs/2309.13638, 2023. URL https://api.
semanticscholar.org/CorpusID:262464572.

Nicole Meister, Carlos Guestrin, and Tatsunori Hashimoto. Benchmarking distributional
alignment of large language models. ArXiv, abs/2411.05403, 2024. URL https://api.
semanticscholar.org/CorpusID:273950542.

Derek Muller. Why is this number everywhere? https://www.youtube.com/watch?v=
d6iQrh2TK98, 2024. [Online; accessed March-2025].

Sonia K. Murthy, Tomer Ullman, and Jennifer Hu. One fish, two fish, but not the whole sea:
Alignment reduces language models’ conceptual diversity. ArXiv, abs/2411.04427, 2024.
URL https://api.semanticscholar.org/CorpusID:273877407.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim ing Bao,
Mo Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made laine Boyd, Anna-Luisa Brakman, Greg
Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, An-
drew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang,
Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Benjamin
Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier,
Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar,

14

https://openreview.net/forum?id=PXD3FAVHJT
https://openreview.net/forum?id=PXD3FAVHJT
https://api.semanticscholar.org/CorpusID:270211547
https://arxiv.org/abs/2411.15124
https://api.semanticscholar.org/CorpusID:270878711
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=dAeET8gxqg
https://openreview.net/forum?id=dAeET8gxqg
https://arxiv.org/abs/2410.04265
https://arxiv.org/abs/2410.04265
https://api.semanticscholar.org/CorpusID:262464572
https://api.semanticscholar.org/CorpusID:262464572
https://api.semanticscholar.org/CorpusID:273950542
https://api.semanticscholar.org/CorpusID:273950542
https://www.youtube.com/watch?v=d6iQrh2TK98
https://www.youtube.com/watch?v=d6iQrh2TK98
https://api.semanticscholar.org/CorpusID:273877407


Published as a conference paper at COLM 2025

David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou,
David Farhi, Liam Fedus, Niko Felix, Sim’on Posada Fishman, Juston Forte, Is abella
Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan
Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Jo hannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey,
Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga,
Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny
Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali,
Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Hendrik Kirchner, Jamie Ryan Kiros, Matthew Knight,
Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic,
Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade
Leung, Daniel Levy, Chak Li, Rachel Lim, Molly Lin, Stephanie Lin, Ma teusz Litwin,
Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning,
Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob Mc-
Grew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin,
Vinnie Monaco, Evan Morikawa, Daniel P. Mossing, Tong Mu, Mira Murati, Oleg Murk,
David M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard
Ngo, Hyeonwoo Noh, Ouyang Long, Cullen O’Keefe, Jakub W. Pachocki, Alex Paino,
Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita,
Alexandre Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Bel-
bute Peres, Michael Petrov, Henrique Pondé de Oliveira Pinto, Michael Pokorny, Michelle
Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack W. Rae, Aditya Ramesh, Cameron Raymond, Francis Real,
Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario D. Saltarelli,
Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama,
Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such,
Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek,
Juan Felipe Cer’on Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll L.
Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Wein-
mann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave
Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim ing Yuan, Wojciech
Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 technical report. OpenAI, 2023.
URL https://api.semanticscholar.org/CorpusID:257532815.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instruc-
tions with human feedback. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=TG8KACxEON.

Vishakh Padmakumar and He He. Does writing with language models reduce content
diversity?, 2024. URL https://arxiv.org/abs/2309.05196.

Akshay Paruchuri, Jake Garrison, Shun Liao, John Hernandez, Jacob Sunshine, Tim Althoff,
Xin Liu, and Daniel McDuff. What are the odds? Language models are capable of
probabilistic reasoning. In Conference on Empirical Methods in Natural Language Processing,
2024. URL https://api.semanticscholar.org/CorpusID:270562235.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,

15

https://api.semanticscholar.org/CorpusID:257532815
https://openreview.net/forum?id=TG8KACxEON
https://arxiv.org/abs/2309.05196
https://api.semanticscholar.org/CorpusID:270562235


Published as a conference paper at COLM 2025

Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming
Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang
Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan
Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori
Hashimoto. Whose opinions do language models reflect? In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Marc-Andre Schulz, Barbara Schmalbach, Peter Brugger, and Karsten Witt. Analysing
humanly generated random number sequences: A pattern-based approach. PloS one, 7:
e41531, 07 2012. doi: 10.1371/journal.pone.0041531.

Alexander Shypula, Shuo Li, Botong Zhang, Vishakh Padmakumar, Kayo Yin, and Osbert
Bastani. Evaluating the diversity and quality of llm generated content, 2025. URL
https://arxiv.org/abs/2504.12522.

Alonso Silva. Large language models playing mixed strategy nash equilibrium games. In
Hélène Le Cadre, Yezekael Hayel, Bruno Tuffin, and Tijani Chahed (eds.), Network Games,
Artificial Intelligence, Control and Optimization, pp. 142–152, Cham, 2025. Springer Nature
Switzerland. ISBN 978-3-031-78600-6.

William E. Simon. Number and color responses of some college students: Preliminary
evidence for a “blue seven phenomenon”. Perceptual and Motor Skills, 33(2):373–374, 1971.
doi: 10.2466/pms.1971.33.2.373. URL https://doi.org/10.2466/pms.1971.33.2.373.

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the
greedy: Evaluation of LLMs should not ignore non-determinism. In Luis Chiruzzo, Alan
Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), pp. 4195–4206, Albuquerque, New Mexico, April 2025. Association for
Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.
211. URL https://aclanthology.org/2025.naacl-long.211/.

C. Spearman. The proof and measurement of association between two things. The American
Journal of Psychology, 15(1):72–101, 1904. ISSN 00029556. URL http://www.jstor.org/
stable/1412159.

John Trueman. Existence and robustness of the blue and seven phenomena. The Journal
of General Psychology, 101(1):23–26, 1979. doi: 10.1080/00221309.1979.9920057. URL
https://doi.org/10.1080/00221309.1979.9920057.

J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1947.

W. A. Wagenaar. Generation of random sequences by human subjects: A critical survey of
literature. Psychological Bulletin, 77:65–72, 1972. URL https://api.semanticscholar.org/
CorpusID:7365951.

16

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2504.12522
https://doi.org/10.2466/pms.1971.33.2.373
https://aclanthology.org/2025.naacl-long.211/
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://doi.org/10.1080/00221309.1979.9920057
https://api.semanticscholar.org/CorpusID:7365951
https://api.semanticscholar.org/CorpusID:7365951


Published as a conference paper at COLM 2025

A Appendix

A.1 Experimental Details

A.2 Overall

We use the suggested prompt formatting for each of the given models. These are:

Tulu

<|user|>
{instruction}
<|assistant|>
{optional infix}

where we may include an infix to aid in parsing, specifically observing intro text that Tulu
includes typically includes before it returns an answer.

Llama-Instruct:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an expert at following human instructions.
<|eot_id|><|start_header_id|>user<|end_header_id|>
{instruction}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{optional infix}

With optional infix as defined above. Finally,

Base:

<|begin_of_text|>{instruction}

Note that the exact wording of the instructions may differ slightly for the base model, which
often requires instructions to be framed more contextually than as a direct command.

LLM Implementation We use the SGLang library for all language model inference. We
use full precision for 8B parameter models on a single NVIDIA RTX A6000 GPU. For 70B
parameter models, we use fp8 precision on 4 NVIDIA RTX A6000 GPUs. All models used
here are based on the Llama 3.1 (Dubey et al., 2024) family of models.

A.2.1 Games Requiring Randomness

Adversarial Probability: We note here that the probabilities used to decide adversarial
moves are approximate. We estimate the likelihood of each next model move by inves-
tigating the next-token distribution given the prompt: p(t|prompt). For each token t that
corresponds to the beginning of a surface form for one of the given moves, we add this
probability to the adversarial estimate of that move, and renormalize these combined proba-
bilities in the end. Note that the actual move played by the model is decided by parsing
model generations, which better indicates the underlying behavior of the model but does
not allow for consistent probability estimation.

A.3 Results

A.3.1 Random Number Generation

Adjusting for Entropy To test whether the superior performance of base models at gener-
ating single random numbers is simply an effect of their higher entropy distributions, we
explicitly adjust for entropy in figure 7. In this experiments, we sample from each model at
multiple temperatures (1.0, 1.5, 2.0, 2.5, 3.0). For each aligned model, we take the lowest
temperature that gives a next-token distribution (following the prompt, i.e. p(t|prompt))
with an entropy at least as high as the base model. As the figure shows, the entropy in
many cases is significantly higher than the base model, but this does not make these models
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model 0 1 2 3 4

Tulu DPO 1774 2116 1461 1158 1377
Tulu SFT 983 1307 773 775 580
Tulu Full 1800 2241 1792 1248 1564
Llama instruct 9127 8839 7578 5800 7158
Base 107 120 145 164 128

Table 3: A comparison of multiple hand-written prompts for single random integer gen-
eration (comparable to figure 2). Values here are divergence, with paraphrased prompts
numbered from 0 to 4.

as uniform as the base model. This indicates that the effect of higher entropy, rather than
smoothing out the distribution, pushes more probability outside of the valid output space.

We further carry out a grid experiment across sampling hyperparameters (topp, entropy) in
tables 4 to understand the broader combined effects of these factors. Overall, we find that
decoding parameters do not offer an easy way to make aligned models better at randomness.
No tested settings allow aligned models to reach the default setting of the base model (temp
= topp = 1.0), which achieves a divergence of 137. Note that these experiments are carried
out on single random number generation (comparable to figure 2)

Alternative model In table 5 we include single random integer generation (comparable
to figure 2) results for an alternative model architecture, the Qwen2.5 models (Qwen et al.,
2025). We see patterns similar to our earlier results, with the aligned form seeing significantly
larger divergence and no significant improvement with scale.

Sampling of characters We carry out an experiment that asks models to generate a random
letter from the first 11 letters in the alphabet, rather than numbers 0-10 in the single integer
generation experiment (figure 2). These results are presented in table 6, and show similar
patterns to the case of integer generation. One significant difference is that the most
commonly generated letter is highly dependent on model, alignment recipe, and scale.
Holding scale constant, Tulu models agreed (“j” for 8B and “f” for 72B). This suggests that
the alignment recipe has a significant impact on how aligned model models collapse.

Sensitivity to prompting We carry out a prompt analysis, testing 5 prompts for random
integer generation with differing wording (paraphrased by hand). These results are included
in table 3. While there is quite a bit of variation between performance with prompts, it is far
from enough to push aligned models towards matching the performance of base models,
and all models seem to follow similar prompt-wise patterns of divergence.

Reward Model Analysis We study the Tulu reward model (used for aligning some Tulu
models) for the random integer generation task in table 7. Particularly, we get the reward
for each random integer between 0 and 10 given the prompt for the original random integer
generation experiment. We find similar rewards returned for many of these values. The
integer that all Tulu models pick most frequently (“7”) achieves the highest reward, by a
very small amount. Yet, given the reward maximization inherent in many RL algorithms,
an optimal policy model would maximize this reward by generating only 7, despite its very
small advantage over other integers.

Sequential random number generation histograms We include histograms for sequential
number generation (similar to figure 2) in figure 8. As discussed in the main paper, sequential
generation results in more uniformity across models, but does not result in true randomness
for the aligned models, which follow other heuristics (such as not repeating integers).

Sequential random number generation – probability by position In figure 6, we include
2D histograms of the probability of each integer being generated at each position in the
10-integer sequence. Note the relatively limited amount of structure in the Base and SFT
histograms, while Llama Instruct, Tulu DPO, and Tulu Full seem to be highly conditional
on position.

18



Published as a conference paper at COLM 2025

temperature topp Base Llama instruct Tulu DPO Tulu SFT Tulu Full

2.5 1.0 6 3028 467 149 649
0.8 7 3184 601 174 646
0.5 18 3275 818 211 1177

2.0 1.0 16 4242 774 356 826
0.8 19 4600 1023 353 1346
0.5 36 7623 2301 820 2402

1.5 1.0 56 5333 965 496 1055
0.8 40 8187 1725 896 1968
0.5 88 15000 3092 1883 3283

1.0 1.0 137 8324 1306 937 1602
0.8 258 10087 2233 1442 2250
0.5 1286 15000 3618 2074 8097

Table 4: A broad sweep of decoding hyperparameters: temperature and topp. Note that the
experimental setup here is comparable to figure 2.

size Base Instruct

7B 792 10970
72B 744 15000

Table 5: A repetition of the single integer generation experiment from figure 2, using the
Qwen2.5 model rather than Llama.

A.3.2 Poem Examples

We include example poems generated by models in table 8 and table 9 for the topics of
coffee and sleep.
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size Base Instruct Tulu DPO Tulu SFT Tulu Full

8B 78 ("a") 1158 ("e") 614 ("j") 370 ("j") 832 ("j")
70B 193 ("k") 10513 ("f") 1177 ("f") 709 ("f") 1231 ("f")

Table 6: Repeating the random integer experiment from figure 2, but prompting models
to generate letters rather than numbers. Values are divergence, while the most frequently
generated letter for each model is included in parentheses.

Integer 0 1 2 3 4 5 6 7 8 9 10

Reward 3.98 4.37 4.99 5.15 5.19 5.03 5.26 5.29 5.28 5.01 4.23

Table 7: Reward values returned by the Tulu reward model, for various integers returned
for random integer generation as in figure 2. This reward model is used in training some
Tulu models. Note that “7” revieves the highest reward for this prompt, by a small margin.
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Base Llama-Instruct

Mighty caffeine
rallying spirit

hot cups of comfort
midst bitter lives

Rich aroma fills the air
A morning pick-me-up beyond compare

Lifting fog from weary eyes
Invigorating senses, a warm surprise

Adenosine wrapped in caffeine,
Dance through my receptors within.

Stimulate; neurotransmitters go insane.
Kicked inside my synapses; wake up brain!

*Winner for Originality

Steaming cup, aromatic delight
Lifting fog, and banishing the night
Rich flavors dance, a sensory thrill

Coffee’s warmth, a morning’s gentle will

Fresh brew softly sitting,
tempting each drinker

to add a drop of poison,
a bitter unrequited love.

Rich aroma fills the air
Lifting fog from morning’s care

A cup of joe, a daily friend
Invigorating till the day’s end

Enjoy the deep and dark flavors of this brew,
Savor the richness that’s found in its hue.
Aromatic and smooth, a cup to cherish,
Coffee, our love, is our dear mistress.

Steaming cup, aromatic delight
Lifting fog from morning’s earliest light

Rich flavors dance upon my tongue
Coffee’s warmth, my daily song

Morning’s wake up call,
Creamy, rich and bold,

Awakens the senses,
As each desire takes hold.

Rich aroma fills the air
As morning dawns, with coffee’s care

Warm and dark, a soothing friend
Lifting fog, till the day’s end.

*Winner for Pleasantness
Tulu-Full

In mugs of steam, the morning starts anew,
Sipping on dreams, bold and subdued.

Beans’ aroma wakes the mind’s embrace,
Coffee’s spirit, in every sip, we trace.

In brewed aroma delight takes flight,
Awakening sleep with a gentle bite.

Caffeine weave through morning’s space,
In every sip, the day we lace.

In the dark, a bean from distant lands,
Brewed to wake from morning’s sweet demands.

The aroma swirls, a siren’s call.
Awake to the world, embrace it all.

*Winner for Preference

Black elixir of the eager dawn,
Awakening the sleepy with its song.

In mugs and cups, its warmth is drawn,
And with each sip, the day is long.

Aromatic brew to start the day,
Infusing warmth with every sip;

Dark elixir, complex, bold, and gay,
Waking spirits, quicken, energize, flip.

Table 8: Poems from various 70B models on the topic of coffee, along with best poems by
axis as judged by humans.
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Base Llama-Instruct

Sleep is a temporary death.
A little rest,

I lift my eyelids
and behold the world’s vastness.

Softly darkness wraps the night
As the world succumbs to sleep’s delight

Dreams dance in the silent brain
Restful slumber soothes the strain

Sweet sleep, how soothing is thy receding power,
When the world’s cares assail me in the hour

Of loneliness and longing; and the place
Lies dark and desolate before my face.

*Winner for Originality

Softly falls the evening night
As tired eyes succumb to sleep’s sweet light

In tranquil rest, the body heals
And weary souls their vigor reveals

*Winner for Pleasantness

Restful repose amid quiet night,
Dreams laid to rest, souls taking flight,
Bridging the gap twixt heaven and hell,

Scarce a single thought to tell.

Softly darkness folds around my mind
Sleep’s sweet respite, where worries unwind
In slumber’s realm, I find my peaceful nest
And dreams transport me to a world at rest

Teach me to be gentle, to love my spring days.
Teach me to be kind and unhard, to sleep.

To rest in flowery night-beds, to fruit,
To live human, to die.

Softly darkness falls around,
Sleep’s sweet solace is found.

In slumber, worries cease to be,
Restful dreams set the soul free.

Tip-toe, feet,
Quiet, it’s bedtime,

and peaceful dreams are
waiting to be slept.

Softly darkness falls at night
Sleep’s sweet solace calms the fight

Weary eyes, now closed in rest
Dreams unfold, and souls are blessed

*Winner for Preference
Tulu-Full

In sleep, we find a haven deep and still,
A realm where night transcends to fulfill.
Dreams’ fleeting scenes, a chorus to fulfill,

Our slumber’s voyage, a nightly drill.

In land of dreams, Sleep gently taps,
Whispering tales from moon’s soft glow,
With closed eyelids, the mind unwraps,

Secrets beneath the shroud of woe.

In the quiet cradle of night, dreams unfold,
A realm where shadows and stars are closely knold.

In slumber’s gentle hands, the world lies still,
While souls wander freely, both far and until.

In realms of soft repose at night we lay,
Eyes heavy, shut by dreams’ gentle sway.

Time forgets to race; the restless mind slows,
In sleep’s embrace, worries and cares decompose.

Silent watcher of our deepest dreams,
Where worries fold and weighted lids descend,
A fleeting realm of whispers and moonbeams,

Sleep, restorer of our tired life’s trend.

Table 9: Poems from various 70B models on the topic of sleep, along with best poems by
axis as judged by humans.
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