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ABSTRACT

Safety-critical applications such as autonomous driving require robust object detec-
tion invariant to real-world domain shifts. Such shifts can be regarded as different
domain styles, which can vary substantially due to environment changes, but deep
models only know the training domain style. Such domain style gap impedes
object detection generalization on diverse real-world domains. Existing classifi-
cation domain generalization (DG) methods cannot effectively solve the robust
object detection problem, because they either rely on multiple source domains
with large style variance or destroy the content structures of the original images.
In this paper, we analyze and investigate effective solutions to overcome domain
style overfitting for robust object detection without the above shortcomings. Our
method, dubbed as Normalization Perturbation (NP), perturbs the channel statistics
of source domain low-level features to synthesize various latent styles, so that the
trained deep model can perceive diverse potential domains and generalizes well
even without observations of target domain data in training. This approach is moti-
vated by the observation that feature channel statistics of the target domain images
deviate around the source domain statistics. We further explore the style-sensitive
channels for effective style synthesis. Normalization Perturbation only relies on
a single source domain and is surprisingly simple and effective, contributing a
practical solution by effectively adapting or generalizing classification DG methods
to robust object detection. Extensive experiments demonstrate the effectiveness of
our method for generalizing object detectors under real-world domain shifts. |||

1 INTRODUCTION

Object detection, a fundamental computer vision task, plays an important role in various safety-critical
applications, including autonomous driving (Grigorescu et al.l 2020)), video surveillance (Raghunan{
dan et al.| 2018), and healthcare (Dusenberry et al., [2020). Deep learning has made great progress
on in-domain data (Ren et al., 2015; Bochkovskiy et al.| |2020; |[Fan et al., 2020; 2022)) for object
detection, but its performance usually degrades under domain shifts (Sakaridis et al., 2018; Michaelis
et al.,|2019), where the testing (target) data differ from the training (source) data.

Real-world domain shifts are usually brought by environment changes, such as different weather
and time conditions, attributed by diverse contrast, brightness, texture, etc. Trained models usually
overfit to the source domain style and generalize poorly in other domains, posing serious problems
in challenging real-world usage such as autonomous driving. Figure [[(b) shows a large gap of
feature channel statistics between two distinct domains, Cityscapes (Cordts et al., 2016) and Foggy
Cityscapes (Sakaridis et al., [2018), especially in shallow CNN layers which preserve more style
information (Zhou et al.|[2020b; [Pan et al., | 2018)). Deep models trained on the source domain cannot
generalize well on the target domain, due to the discrepancy in feature channel statistics caused by
the domain style overfitting.

Domain generalization (DG) (Muandet et al., 2013} |Ghifary et al.| 2016; Mahajan et al.| 2021} Li
et al. 2020) aims to solve this hard and significant problem. Major undertaking has been done
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Figure 1: Visualizations for feature channel statistics on Cityscapes (source domain, red) and Foggy
Cityscapes (target domain, blue). (a) For two domain images with the same content but different
styles, we show their feature channel statistics and differences on the pretrained backbone at stage 1
(“stage” denotes the backbone block). The statistics of the Foggy Cityscapes image are negated for
better visualization. The feature channel statistics of the target domain image deviate around the
source domain statistics. (b) The t-SNE (Van der Maaten & Hinton [2008) map for the feature channel
statistics. The model is trained on the source domain and evaluated on both domains. The distance
between two domains is computed by Maximum Mean Discrepancy (Borgwardt et al., 2006) (MMD).
After equipping Normalization Perturbation in shallow CNN layers, our model can effectively blend
distinct domain style distributions. Thus our model generalizes much better on the target domain.

on improving domain generalization of classification models, where multiple source domains with
large inter-image style variance are available for model training. However, less attention has been
paid on robust object detection (Wang et all, 2021)) which is of equal importance if not more in
many visual perceptual systems. The closely related unsupervised domain adaptation (UDA) object

detection (Schneider et al., [2020; [Nado et al} 2020) has been widely studied, but it requires target

domain images for model training, which is often infeasible for some online object detection systems.

Synthesizing new domains have been demonstrated as an effective solution for domain generalization
in the classification task (Nuriel et all, 2021}, [Zhou et al., 2020b). The rationale behind is that the
model can learn domain-invariant representations and generalizes well by perceiving a large variety
of synthesized domains during training. But existing domain synthesis methods are all specifically
designed for image classification, and it is non-trivial to directly apply these methods for robust object
detection because of the task gap between classification and detection.

Specifically, the feature-level synthesis approach (Zhou et al, 20200} [Li et al., 2022) is effective
for classification DG problem, but it requires multiple source domains with large style variance.

However, there is usually only one single source domain for robust object detection due to the
expensive annotation cost, which means that only relatively small style variance can exist. In this
situation, previous feature-level synthesis approach cannot synthesize sufficient diverse domains.
The image generation based synthesis approach (Jackson et al. [2019; |Geirhos et all, 2018)) can
effectively address the single-source domain problem by leveraging an extra large-scale style image
dataset to synthesize diverse domains. But the image generation procedure may suffer from
the potential destruction on image contents, which are essential for the hierachical object detection
where large context diversity may be present. In this paper, we perform in-depth problem analysis for
the under-explored robust object detection, and propose a novel domain style synthesis approach.

Figure [T(a) shows our motivation. Feature channel statistics of the target domain image deviate
around the source domain statistics. Thus by perturbing the feature channel statistics of source domain
images in the shallow CNN layers, we can effectively synthesize new domains. The perturbed feature
statistics correspond to various latent domain styles, so that the trained model perceives diverse
potential domains accordingly. Such perturbation enables deep models to learn domain-invariant
representations where distinct domains can be effectively blended together in the learned feature
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space. To further boost the performance, we have also explored the style-sensitive channels for
effective domain style synthesis. Figure bﬂ shows the distinct domains can be effectively blended
by the perturbed channel statistics in shallow CNN layers. The learned deep CNN representations are
thus more robust to the variations of different domain styles and generalize well on the target domain.
Note that the model is only trained using a single source domain data without any access to the target
domain style or data.

Our method normalizes features into different scales, thus called Normalization Perturbation (NP).
NP perturbs the feature channel statistics of source domain images to effectively blend distinct
domain style distributions, which is not limited by the small source domain style variance inherent
in while does not affect the input images. Thus our model generalizes much better on robust object
detection, which has small source domain style variance and large context diversity. Our NP is simple
and effective, generalizes well under various real-world domain shifts, and outperforms previous
DG and UDA methods on multiple dense prediction tasks. Our object detection DG method design
contributes a practical solution by effectively adapting or generalizing existing feature perturbation
based classification DG methods to robust object detection. In summary, our contributions are:

* We investigate the real-world domain shifts for robust object detection and highlight short-
comings of existing domain synthesis approach. We contribute to researchers on adapting
existing classification DG methods to effectively address the object detection DG problem.

* We propose to perturb the channel statistics of source domain features to synthesize various
new domain styles, which enables a model to learn domain-variant representations for good
domain generalization.

* Our method generalizes surprisingly well under various real-world domain shifts and is very
simple, without any extra input, learnable parameters or loss. Extensive experiments are
conducted to verify the effectiveness of our method.

2 RELATED WORKS

Domain Generalization (DG) (Hendrycks & Dietterichl, 2018}; |Venkateswara et al., 2017)), which
targets at generalizing models to unseen domains, relies on source data typically consisting of multiple
distinct domains. DG has been mainly studied in the context of object recognition task (Du et al.,
2020azb; [Yue et al.L[2019). DG of dense prediction tasks (Seemakurthy et al.| 2022) (Hasan et al.,
2021 [Lin et al., 2021) has attracted increasing interests because of its wide real-world applications.
The closely related unsupervised domain adaptation (UDA) (Long et al., 2016} |Damodaran et al.}
2018)) has been widely studied on dense prediction tasks (VS et al.|[2021; [Kim et al.,[2019) for real-
world applications, which aims to generalize model to the target domain by accessing its unlabeled
images. Both DG and UDA share significant overlap in technicalities, such as domain alignment (Jia
et al., [2020; |Zhou et al., 2021, self-supervised learning (Xie et al.|[2020; Igbal & Alil [2020), feature
disentanglement (Wang et al.,[2020b; [Yang et al., 2019), and data augmentation (Choi et al.| 2019
Wang et al.,|2022). Our method closely relates to the following works.

Normalization-based Methods. The normalization layers are leveraged to improve model gen-
eralization ability. Various normalization variants have been proposed, such as domain-specific
BatchNorm (Liu et al., 2020; |Segu et al., |2020), AdaBN (Li et al.,|2016), PreciseBN (Wu & Johnson,
2021), Instance-Batch Normalization (Choi et al., [2021} |Pan et al.,[2018]), Adversarially Adaptive
Normalization (Fan et al.| [2021)), Switchable Normalization (Luo et al.,[2019), and Semantic Aware
Normalization (Peng et al.|[2022). The test-time adaptation (Wang et al.,|2020a; Zhang et al., 2021)
attempts to estimate accurate normalization statistics for the target domain during testing. These
methods fit normalization layers to the specific target domains, while our method normalizes features
into different scales to implicitly synthesize arbitrary new domains, and is optimization-free.

Synthesizing New Domains. Data augmentation (Volpi & Murino, 2019; |Otalora et al.;,|2019) has
been widely used to synthesize new domains in DG and UDA. Some methods synthesize new domain
images using image-to-image translation models, such as the random (Xu et al.,|2020) or learnable
augmentation networks (Carlucci et al.,[2019} |Zhou et al.l [2020a), and style transfer models (Yue
et al., 2019; [Somavarapu et al.| 2020). Other works propose to perform implicit domain synthesis
through the feature-level augmentation (Zhou et al., [2020b; Jin et al.| 2021; Mancini et al., [2020;

'For all t-SNE visualizations in this paper, the features from multiple models are mapped jointly into a
unified space but are separately visualized for clarity.
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Table 1: Difference between our methods and closely related classification DG methods, where all
methods are represented by y = x + €,. The i, and o, denote the feature channel mean and standard
deviation, respectively. The A and («, 5) denote the Beta and Gaussian distribution, respectively.

Method € o*(ez)
Mixstyle MI%( —0o1) + AMp2 — 1) [(9:;71“)(02 —01) + (p2 — m)|’o
DSU Aot 5 (@) + Y, (x)  [EEL Y (2)]202 + [3, (2)]%03
NP (Ours) (a ~Dz+ (8- a)m ani + (0% + 03)pi
NP+ (Ours) (o — D)z + [0, (2)](B — a)m 2?0l + Do (z )P (05 + o3)ui

Tang et al.| 2021} Nuriel et al.l [2021; |Gong et al., [2019) to mix CNN feature statistics of distinct
domains to significantly improve the domain synthesis efficiency.

The above methods rely on image generation or multiple source domains for new domain synthesis,
and thus the efficiency or effectiveness is limited. On the other hand, our method only relies on a
single source domain to diversify by perturbing the feature channel statistics to produce various latent
domain styles.

While SFA (Li et al., [2021) performs the activation-wise feature perturbation, which may destroy
meaningful image contents, our method performs the channel-wise feature statistics perturbation
and keeps the image contents unchanged. Note that some methods also perform feature statistics
perturbation, e.g., Mixstyle (Zhou et al., | 2020b)), DSU (Li et al.,[2022), and pAdaIN (Nuriel et al.,
2021). But they all rely on multiple source domains with large style variance to synthesize diverse
domains. Their effectiveness is unknown for object detection under real-world domain shifts. In
contrast, our method is surprisingly effective for the real-world applications of robust object detection.

3 PROBLEM ANALYSIS

We aim at out-of-domain generalization for robust object detection. Object detectors are trained
on source domains and tested on different target domains unknown during training. In this section,
we analyze the shortcomings of existing domain synthesis approach on robust object detection to
motivate our method.

Robust object detection is much harder than the classification domain generalization problem. The
latter usually contains multiple source domains with large style variance for training, and the pertinent
training images are usually dominated by one target object in a relatively simple background. By
contrast, with small domain style variance and large context diversity, robust object detection usually
has only one single source domain for training due to the expensive annotation cost, where the
training images usually contain multiple objects in various scales in front of complex background.
Thus, existing classification DG methods cannot handle well the robust object detection problem,
especially for the domain synthesis based methods.

We conduct empirical studies to demonstrate the shortcomings of existing domain synthesis methods
on robust object detection, so as to motivate our Normalization Perturbation method on the robust
object detection task. The model is trained on the source domain and evaluated on the unseen target
domain, i.e., Cityscapes (C) (Cordts et al.|[2016) — Foggy Cityscapes (F) (Sakaridis et al.|[2018]), and
Sim10k (S) (Johnson-Roberson et al.,|2017) — Cityscapes (C). We use the Faster R-CNN (Ren et al.,
2015) model (with ImageNet (Deng et al., 2009)-pretrained ResNet-50 (He et al.,|2016) backbone) as
the baseline. The detection performance is evaluated using the mean average precision (mAP) metric
with the threshold of 0.5. For better comparisons, we also conduct classification DG experiments
following the experiment setups in Mixstyle (Zhou et al., 2020b) and DSU (Li et al.| 2022}, which
are closely related methods to our NP method. Refer to the appendix for full experimental details.

Small Domain Style Variance Restricts Feature-level Domain Synthesis. To facilitate the
method illustration we rewrite the feature-level domain synthesis methods formulation from y =
O new =L - E + linew (x is the original feature with its channel mean 4 and standard deviation o, and y
is the output feature with the synthesized new channel mean fi,,,, and standard deviation ¢,,¢,,.) to

’I’Le’w U’I’Le’w
y_x+[( _1)$_7M+Nnew]:$+gac
g g
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Table 2: Comparison results on the object detection and classification domain generalization tasks.
The [> H(w)]2 and [Y__(z)]? respectively denote the variance of the feature statistics (mean and
standard deviation) of all images in the entire dataset train set.

Source ‘ [Z#(gv)}2 >, (@)]? H Target ‘ Baseline Mixstyle DSU  CycConf
Cityscapes 1.657 1.870 Foggy Cty 22.0 30.1 34.1 40.9
Sim10k 16.507 4.309 Cityscapes 32.8 46.4 49.3 52.1
PACS Train | 37.163 8.786 || PACSTest | 79.5 83.7 84.1 -

This equation can be represented as y = x + €., where e, = (7222 — 1)z — Z2ew ;4 1., denotes
the perturbation (random noise) given the original input feature x. The perturbation term €, depends
on the given « and how methods perturb the feature z.

We use Mixstyle and DSU as the example to illustrate these feature statistic perturbation methods
are suboptimal for robust object detection, as shown in Table When (3_, () = 0,3, (z) — 0),

both Mixstyle and DSU have (02 (e,) — 0, u(€,;) — 0), and thus fail to perturb the feature 2 where
the method formulation y = x + ¢, collapses to y = x. Mixstyle and DSU rely on large variance in
inter-image feature statistics (3, (), >_ ,(x)) to produce sufficient feature noise o%(e;). Thus it
works well on the classification DG datasets, e.g., PACS, which contains multiple source domains
with large inter-image style variance. Unfortunately, this assumption cannot always hold. In robust
object detection, there is usually only one source domain due to the expensive annotation cost, which
means that only relatively small inter-image style variance can be present. In this situation, Mixstyle
and DSU cannot produce sufficient noises to perturb the feature map.

Table@ shows the feature statistic variance of different datasets, i.e., Cityscapes, Sim10k and PACS (Li
et al.,|2017). Both Cityscapes and SimlOkE] datasets have much smaller feature statistic variance than
PACS. DSU achieves SOTA on the classification DG benchmark PACS with Mixstyle performing
comparably. This is because the large style variance of multiple source domains enables these methods
to produce decent feature noise for sufficient domain style synthesis. By contrast, DSU and Mixstyle
perform much worse than the robust object detection SOTA method CycConf (Wang et al.,[2021)).
Here, smaller feature statistic variance results in larger performance gap between DSU/Mixstyle and
the SOTA CycConf method. This performance gap indicates that DSU and Mixstyle do not have
sufficient diversity in style synthesis when the inter-image style variance is too small.

Large Context Diversity Restricts Image-level Domain Synthesis. The image-level domain
synthesis methods (Jackson et al.,[2019; |Geirhos et al., 2018)) leverage large-scale style image dataset
to generate diverse stylized training images through style transfer techniques (Huang & Belongiel
2017). Unfortunately, such image generation procedure may destroy the content structures underlying
the original images. Figure ] (second column) shows significant lost of meaningful object details in
the stylized training images under large context diversity. The trained model substantially sacrifices
the source domain performance where its generalization ability improvement is also limited.

The above two analyses show that existing classification DG methods cannot be directly applied for
robust object detection, especially for the domain synthesis approach, which motivate us to propose a
novel domain synthesis method to address the two issues, namely, small domain style variance and
large context diversity, in robust object detection.

4 METHOD AND ANALYSIS

It has been known that feature channel statistics, e.g., mean and standard deviation, are closely related
to image styles, where changing feature channel statistics can be regarded as implicitly changing the
input image styles. The Adaptive Instance Normalization (AdaIN) (Huang & Belongie,|2017) achieves
arbitrary style transfer through the feature channel statistics normalization and transformation. Given
a mini-batch B of CNN features x € REXCXHXW with C channels and H x W spatial size from

?Although Sim10k dataset is a single domain dataset, it contains diverse styles synthesized by graphics
engine, e.g., daytime, night, dawn, dusk, clear, snowy and rainy. Thus Sim10k has larger inter-image feature
statistics variance than Cityscapes, but is still smaller than that of PACS.
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Figure 2: Our Normalization Perturbation (NP) is applied at shallow CNN layers only during training.
NP is enabled with probability p = 0.5.

the content images, AdalN can be formulated as:

X c
y=o0. 4, (1)

Oc

where both {ji., 0.} € RE*Y and {15, 05} € RE*C are feature channel statistics, estimated from
the input content images and style images, respectively. The normalized features y can be decoded
into the stylized content images. AdalN provides a feasible and efficient way to implicitly change
image styles in the feature space.

4.1 NORMALIZATION PERTURBATION METHOD

Our proposed method, Normalization Perturbation (NP), perturbs the feature channel statistics of
training images by inserting random noises. Formally, NP can be formulated as:

T — fhe

(&

y=o; +ug,  ol=aoe, L= Ppe @
where {jic, 0.} € RBXC are the channel statistics, mean and standard deviation, estimated on the
input features. The {a, 3} € RP*¢ are random noises drawn from the Gaussian distribution. This
equation can be further simplified as:

y=az+ (8 — a)pe. 3)

As shown in Figure [2] NP is applied at shallow CNN layers (following the backbone stage 1 and
stage 2). NP is enabled with probability p only in the training stage.

Our NP method is fundamentally different from conventional normalization methods (Huang &
Belongie, 2017 [loffe & Szegedyl, 2015} [Ulyanov et al.l 20165 [Wu & He| [2018)), whose affine
parameters { s, 0} are learned from the training set or estimated from extra input style images.
While NP affine parameters {u%, 0¥} are obtained by perturbing the input feature channel statistics,
they are obtained without relying on extra style inputs and are optimization-free. The perturbed affine
parameters can be regarded as the channel statistics corresponding to diverse latent domain styles,
enabling models to learn domain-invariant representations and preventing them from style overfitting.

In NP, all channel statistics are randomly perturbed with the same noise distribution. We further
propose Normalization Perturbation Plus (NP+) to adaptively control the noise magnitude in different
channels, based on the feature statistic variance across different images. Such adaptive perturbation
is motivated by the observation that some channels significantly vary as the domain style changes.
We thus apply more noise on these style-sensitive channels. Specifically, we use the mini-batch of
B feature channel statistics . = {ul, ..., %, ..., u2} to compute the statistic variance A € R *¢:

A=+ ZbB:l(ug — Jic)?, where i, = + Zle(ulg). Then we use the normalized statistic variance
§ = A/max(A) € R to control the injected noise magnitude for each channel:

y=oax+6(8—a), 4)

where max is the maximum operation. When applying NP+, we use the photometric data augmenta-
tion (Color Jittering, GrayScale, Gaussian Blur and Solarize, only for NP+ by default) to generate
pseudo domain styles to facilitate the exploration on style-sensitive channels.

4.2 ADDRESSING ROBUST OBJECT DETECTION

Our Normalization Perturbation can be implemented as a plug-and-play component in modern CNN
models to effectively solve the domain style overfitting problem, where the domain style has low
variance while large context diversity exists typical of robust object detection.
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Figure 3: The t-SNE visualization for the feature channel statistics of different methods on Cityscapes
(source domain) and Foggy Cityscapes (target domain). The target domain performance is presented.
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Figure 4: Latent style visualization. The second column represents stylized images generated by
style randomization. The 3-6 columns show that the perturbed channel statistics of the training image
features are inverted back to the image space.

Effective Domain Blending. Our NP can effectively blend feature channel statistics of different
domains, corresponding to learning better domain-invariant representations. Figure [3|shows that
the Ours model trained with NP can effectively reduce the learned distribution distance between
source and target domains, especially on deep CNN layers. Compared to other methods, NP results in
smaller cross-domain distribution distance and better generalization performance on target domains.

Diverse Latent Styles. Our NP can effectively diversify latent styles. Table shows NP’s 02(e,)
does not rely on inter-image statistic variance, and thus it provides more diversified style diversity
during synthesis even under the small domain style variance typical of robust object detection.
On the other hand, although our NP+ method is also related to inter-image statistic variance, its
0%(ez) = 2?0 + [0, (2)]* (05 + 0F)uf has the %07 term to ensure its scale is sufficiently large.
Our NP+ only partially uses inter-image style variance while achieving the best performance. This
indicates that proper usage of inter-image style variance alongside our NP method is important for
DG tasks, especially for robust object detection.

Sufficiently large perturbation variance o2(s,) is the key to synthesizing higher style diversity
for achieving better domain generalization ability. Table [] shows the ablation study on noise
hyperparameters of our NP method, reflecting different noise variance o2(¢,,) scale. Our NP is also
insensitive to the noise types and hyperparameters, performing well with Beta, Uniform and Gaussian
noises with different v and /3.

For better understanding, we map the NP perturbed feature channel statistics back into the image
space using the feature inverting technique (Zeiler & Fergus| 2014). Figure[dshows that the generated
latent styles effectively diversify the style scopes, covering various potential unseen domain styles in
real-world environments, e.g., dawn, dusk, night times and foggy, rainy, snowy weathers.

Figure @] also shows the stylized images of the image-level synthesis method (Geirhos et al, 2018),
which transfers diverse styles into content images for model training. But the generated stylized
images fail to preserve the content structure details inherent in the original images. In contrast, our
NP generated latent styles can often cover the potential synthesized domain styles generated by style
randomization, while simultaneously maintaining high content fidelity to original images.
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Table 3: Experimental studies on Normalization Perturbation (NP). SR denotes style randomization.
Models are trained on C (Cityscapes), and evaluated on C, F (Foggy Cityscapes) and B (BDD100k).

Method C F B C F B C F B \ C F B
Bascline 580 220 21.8 Method | without NP & DA with DA ‘ with NP
Image SR 51.9 304 26.0 pAdalN | 58.5 27.6 25.1 |58.1 37.5 30.6|582 44.5 30.4
Feat SR 58.2 42.0 29.0 Mixstyle | 57.7 30.1 26.5 |57.5 40.2 30.8|58.3 44.7 30.6
NP 58.7 44.0 30.1 DSU |58.5 34.1 27.2 |582 43.1 314|584 449 31.0
NP+ 58.3 46.3 32.8 Baseline | 58.0 22.0 21.8 |57.2 35.5 30.5|58.7 44.0 30.1
(a) Synthesis method effect. (b) Classification DG methods benefit more from NP than DA.

Table 4: Ablation studies on noise hyperparameters of our NP method.

a | B(0.75,0.75) U(0,2.0)|G(1,0.1) G(1,0.25) G(1,0.5) G(1,0.75) G(1, 1)|G(1,0.75) G(1,0.1)
B |B(0.75,0.75) U(0,2.0)|G(1,0.1) G(1,0.25) G(1,0.5) G(1,0.75) G(1,1)| G(1,0.1) G(1,0.75)

C 59.0 58.4 59.0 58.5 58.3 58.7 574 58.3 58.2
F 43.0 42.0 29.5 38.5 40.1 44.0 44.3 349 39.6
B 29.5 289 26.6 28.2 29.6 30.1 30.2 29.0 26.8

High Content Fidelity. Our NP processes feature channel statistics while faithfully preserving
image and feature spatial structures. Note that image-level domain synthesis methods may destroy
the content structures of the original images in the image generation procedure. Besides, NP trains
deep models with numerous content-style combinations in the high-dimensional feature space, which
is much more efficient and effective than the image-level methods, whose styles are deterministic,
limited and that their style augmentation is only performed on the low-dimensional image space.
Table [3[(a) shows the comparisons between image- and feature-level domain synthesis methods.
Image-level style randomization (Geirhos et al.,|2018]) sacrifices the source domain performance due
to its potential damage on image contents, although this method effectively improves the detection
performance on unseen target domains. Our NP method can be regarded as a variant of AdaIN, which
has been widely shown (Huang & Belongie} [2017; |An et al.| 2021) being able to preserve well the
image content information by keeping the normalized feature maps unchanged.

Benefiting Other Methods. Our NP can be regarded as a better generalization of existing SOTA
methods. Table [3(b) shows that NP can boost the performance of other classification DG methods on
robust object detection, by perturbing the feature statistics to synthesize sufficient diverse domain
styles. Specifically, when combining our NP method with other DG methods, the source domain
performance on Cityscapes (C) is almost unchanged while always better than the performance of
baseline. The generalization performance on target domains Foggy Cityscapes/BDD100k (F/B) is
significantly boosted with 16.91/5.371, 14.61/4.11, 10.81/3.81 AP50 improvements respectively for
pAdalN, Mixstyle and DSU, achieving better performance than the baseline model with NP method.

Discussion on Data Augmentation. The image-level data augmentation can be regarded as a
special case of feature-level augmentation, if we treat the input image as a feature map with the
low-dimensional RGB color channels. Thus such data augmentation is less effective than our feature-
level perturbation, which is performed in the high-dimensional feature channels. Table [3(b) shows
that the data augmentation (DA) significantly improves the generalization performance on different
target domains. Our NP method boosts more performance improvement than data augmentation in
most settings. Our NP method also benefits from data augmentation and the resulting NP+ method
achieves the best generalization performance of 46.3/32.8 AP50 on Foggy Cityscapes/BDD100k.

5 COMPARISON EXPERIMENTS

We compare our method to object detection DG/UDA methods. The experiment setting details are
also included in the appendix.

5.1 ROBUST OBJECT DETECTION

We follow CycConf (Wang et al., 2021)) to train and evaluate models on the robust object detection
benchmark. Specifically, there are two settings: Domain Shift by Time of Day, where the model is
trained on BDD100k (Yu et al., 2020) daytime/night train set and evaluated on the night/daytime val
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Table 5: Robust object detection results.

BDD Day — Night | BDD Night — Day | WaymoL — BDD | WaymoR — BDD
AP AP50 AP75| AP AP50 AP75| AP AP50 AP75| AP AP50 AP75

Faster R-CNN | 17.84 31.35 17.68|19.14 33.04 19.16]10.07 19.62 9.05 | 8.65 17.26 7.49

+ CycConsist | 18.35 32.44 18.07 | 18.89 33.50 18.31|11.55 23.44 10.00| 9.11 17.92 7.98
+ CycConf |[19.09 33.58 19.14|19.57 34.34 19.26 | 12.27 26.01 10.24| 9.99 20.58 8.30

+ NP (Ours) [20.73 36.22 20.85|19.32 34.42 18.63 |17.85 35.34 15.52|14.97 29.42 13.11
+ NP+ (Ours) |20.97 36.76 21.10 |19.73 35.30 19.19|21.18 42.16 18.67 |19.64 38.69 17.07

set, and Cross-Camera Domain Shift, where the model is trained on Waymo (Sun et al.,|2020) Front
Left/Right train set and evaluated on BDD100k night val set. Table [5]shows our NP outperforms
previous SOTA CycConf (Wang et al., [ 2021) on all domain shift settings, especially on the Waymo
Front Left/Right to BDD100k Night setting, where our NP improves the SOTA performance from
12.27/9.99 to 17.85/14.97 AP. Our NP+ further boosts the performance to a new SOTA. Note that our
method is general without any assumption on the inputs, while CycConf is designed to operate on
videos, requiring consecutive video frame pairs to form a time cycle.

5.2 UNSUPERVISED DOMAIN ADAPTIVE DETECTION Table 6: UDA object detection AP50

performance on ResNet-50 backbone ex-

Unsupervised domain adaptive object detection models cept T which are ResNet-101.

are trained on labeled source domain and unlabeled tar-
get domain. We consider two popular adaptation settings:

Sim10k (Johnson-Roberson et all, 2017) to Cityscapes Method ~ Target S—C C—F
(S — C) and Cityscapes (Cordts et al., [2016) to Foggy FR-CNN X 319 228
Cityscapes (Sakaridis et al.,|2018)) (C — F) adaptations. DA-Faster v 419 320
Table [6] shows that our method significantly outperforms SC-DA v 45.1 359
the UDA methods by a large margin even without ac- ViSGA v o493 433
cessing the target domain data, where the UDA meth- EPM' v 512 402
ods (DA-Faster (Chen et al., [2018),SC-DA (Zhu et al.| CycConf' v/ 524 415
2019),ViSGA (Rezaeianaran et al., [2021), EPM (Hsu Our Baseline X 1.8 220
et al., 2020), and CycConf (Wang et al.| 2021)) with self- BIN X 443 284
supervised rotation) all require unlabeled target domain IBN X 474 312
images for model training. We also apply closely re- SFA X 384 253
lated classification DG methods (SFA (L1 et al., 2021), pAdaIN X 437 276
pAdalN (Nuriel et al,[2021), Mixstyle (Zhou et al.,2020b), Mixstyle X 464  30.1
and DSU (Li et al.,[2022)) on our baseline for a fair com- NPD(E)[&rs) ;‘ 45‘491? ii(l)
parison. Our method substantially outperforms other DG NP+ (Ours) X 587 463

methods on UDA object detection, especially on the C —
F setting, where Cityscapes (C) source domain has smaller
domain style variance. Our method also substantially outperforms BIN (Nam & Kiml [2018) and
IBN (Pan et al.,|2018)), whose normalization layer integration manner is fundamentally different from
our normalization perturbation manner.

6 CONCLUSION

SOTA classification DG methods perform unsatisfactorily on robust object detection, since they
are limited by the small domain style variance and large context diversity in the object detection
DG task. We propose Normalization Perturbation (NP) to perturb the channel statistics of source
domain features to synthesize various latent styles. NP is not limited by the small source domain
style variance in the input images and does not destroy image structures. The trained deep model
can perceive diverse potential domains and thus generalizes well on unseen domains thanks to the
learned domain-invariant representations. Our NP method only relies on a single source domain to
generalize on diverse real-world domains, which is effective and easy to implement, while boosting
the performance of other classification DG methods on robust object detection. Extensive analysis
and experiments verify the effectiveness of our Normalization Perturbation.
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A EXPERIMENT SETTING DETAILS

Given the simplicity, anyone can implement NP/NP+ with ease. Our experiments are all based on
public codebases. While we will make our codes and data public upon acceptance, a competent
practitioner can easily reproduce our results. The following gives all the necessary details.

In our main paper, all object detection experiments (Table 2—6 of the main paper) are based on the
CycConf (Wang et al., 202 1)) public codebase (Confusion) and mmdetection (Chen et al.,[2019) public
codebase (MMDetection) (UDA object detection strong baseline). We use their default settings in
our experiments, except that we adjust the training iterations for some datasets to avoid overfitting.
Table[7]shows the object detection experiment setting details.

B NORMALIZATION PERTURBATION IMPLEMENTATION

As shown in the below code block, our Normalization Perturbation (NP) and Normalization Perturba-
tion Plus (NP+) can be easily inserted into popular CNN backbones.

import torch
import random

# ResNet backbone equipped with our Normalization_Perturbation.
Class ResNet_backbone () :

def _ init_ (self, ...):
def forward (x) :
p = random.random ()
x = self.stage_1 (x)
if p < 0.5 and self.training:

# Can be replaced by Normalization_Perturbation_Plus
x = Normalization_Perturbation (x)

14
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Table 7: Object detection experiment setting details.

Config | Table 5 Table 2,3,4,6
description Default object detection setting
codebase Detectron2-CycConf
pretraining data ImageNet
backbone ResNet-50
backbone norm FrozenBN
backbone freeze_at 2
detector Faster R-CNN with FPN
batch size 16
# GPU 4
LR scheduler WarmupMultiStepLR
base LR 0.02
gamma 0.1
momentum 0.9
weight decay 0.0001
warmup method linear
warmup iters 1000
warmup factor 1.0/ 1000
LR steps (36000, 48000) (12000, 16000)
training iterations 52500 17500
training (min, max) size (800, 1333)
testing (min, max) size (800, 1333)

x = self.stage_2(x)

if p < 0.5 and self.training:
# Can be replaced by Normalization_Perturbation_Plus

x = Normalization_Perturbation (x)
x = self.stage_3(x)
x = self.stage_4 (x)
x = self.stage_5(x)

return x

def Normalization Perturbation (feat):
# feat: input features of size (B, C, H, W)

feat_mean = feat.mean((2, 3), keepdim=True) # size: B, C, 1, 1
ones_mat = torch.ones_like (feat_mean)

alpha = torch.normal (ones_mat, 0.75 » ones_mat) # size: B, C,

- 1, 1
beta = torch.normal (ones_mat, 0.75 * ones_mat) # size: B, C,
- 1, 1
output = alpha * feat - alpha * feat_mean + beta » feat_mean

return output # size: B, C, H, W

def Normalization_ Perturbation Plus (feat):
feat_mean = feat.mean((2, 3), keepdim=True)
ones_mat = torch.ones_like (feat_mean)
zeros_mat = torch.zeros_like (feat_mean)

mean_diff = torch.std(feat_mean, 0, keepdim=True)
mean_scale = mean_diff / mean_diff.max() = 1.5
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alpha = torch.normal (ones_mat, 0.75 x ones_mat)
beta = 1 + torch.normal (zeros_mat, 0.75 * ones_mat) =
— mean_scale

output = alpha * feat - alpha * feat_mean + beta » feat_mean
return output

When applying NP+ in the backbone, we apply photometric data augmentation to generate pseudo
domain images to facilitate the domain style synthesis by exploring style-insensitive channels.

Specifically, we adopt the MoCoV3 (Chen* et al,[2021)) data augmentation implementation in our
method, as shown in the below code block.

from PIL import ImageFilter, ImageOps
import random
import torchvision.transforms as transforms

photometric_data_augmentation = [
transforms.RandomApply ([
transforms.ColorJitter (0.4, 0.4, 0.2, 0.1)
1, p:0-8)r
transforms.RandomGrayscale (p=0.3),
transforms.RandomApply ([GaussianBlur ([.1, 2.])], p=0.3),
transforms.RandomApply ([Solarize ()], p=0.3),
]

class GaussianBlur (object) :
"Gaussian blur augmentation from SimCLR"

def _ init__ (self, sigma=[.1, 2.]):
self.sigma = sigma

def _ call (self, x):
sigma = random.uniform(self.sigma[0], self.sigma[l])
x = x.filter (ImageFilter.GaussianBlur (radius=sigma))
return x

class Solarize (object):
"Solarize augmentation from BYOL"

def = call (self, x):
return ImageOps.solarize (x)
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