Under review as a conference paper at ICLR 2026

FM-EAC: FEATURE MODEL-BASED ENHANCED
ACTOR-CRITIC FOR MULTI-TASK CONTROL IN DY-
NAMIC ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning (MBRL) and model-free reinforcement
learning (MFRL) evolve along distinct paths but converge in the design of Dyna-
Q Sutton & Barto| (2018)). However, modern RL methods still struggle with ef-
fective transferability across tasks and scenarios. Motivated by this limitation,
we propose a generalized algorithm, FM-EAC, that integrates planning, acting,
and learning for multi-task control in dynamic environments. FM-EAC combines
the strengths of MBRL and MFRL and improves generalizability through the use
of novel feature-based models and an enhanced actor-critic framework. Simula-
tions in both urban and agricultural applications demonstrate that FM-EAC con-
sistently outperforms many state-of-the-art MBRL and MFRL methods. More
importantly, different sub-networks can be customized within FM-EAC according
to user-specific requirements.

1 INTRODUCTION

Over the past few decades, it has been a highly debated topic of what the best approach is for
decision-making, i.e., via planning or learning. Within a Markov decision process (MDP), where
one or multiple agents interact with the environment, experience serves at least two key roles. First,
it can be used to improve the model so that it can more accurately reflect the real environment - this
is known as planning or model-based reinforcement learning (MBRL). Second, experience can be
used directly to enhance the value function and policy - this is known as model-free reinforcement
learning (MFRL) |Sutton & Barto| (2018)).

On the one hand, MBRL methods, including MBPO [Janner et al.| (2019), MORel |Kidambi et al.
(2020), COMBO |Yu et al.| (2021), CMBAC Wang et al.| (2022)), and Dreamer |Hafner et al.| (2025)),
make use of a limited amount of experience and thus achieve a higher training efficiency with fewer
environmental interactions. On the other hand, MFRL methods, including DQN Mnih et al.|(2013),
DDPG |Lillicrap et al.| (2016), PPO |Schulman et al.| (2017), SAC [Haarnoja et al.| (2018)), and TD3
Dankwa & Zheng|(2020), are much simpler and are not affected by biases in the design of the model,
thus more suitable for complex environments. Despite the development on these two approaches,
there exist many similarities between MBRL and MFRL methods, and such insights are reflected in
the design of Dyna-Q Sutton & Barto (2018)), which combines model-free learning with simulated
experience from a learned model.

However, a common limitation of existing MBRL and MFRL approaches lies in their lack of trans-
ferability. In the context of MBRL, a model of the environment (a.k.a., state transition model)
means anything that an agent can use to predict how the environment will respond to its actions.
Given a state and an action, a state transition model produces a prediction of the upcoming state
and reward. Thus, MBRL methods are often tailored to specific models and environments. Unlike
MBRL, MFRL methods utilize value and policy iterations to improve the optimality of the policies.
The modern MFRL methods, especially those based on the actor-critic framework, perform well in
complex tasks such as unmanned aerial vehicle (UAV) control [Liu et al.| (2024)); Zhao et al.| (2024).
Nevertheless, they are typically trained in fixed environments for individual tasks, which highlights
the need for a generalized method capable of handling different tasks in dynamic environments.



Under review as a conference paper at ICLR 2026

““Action®””

Dierction, velocity and L. .
task offloading decisions Environment Experience Feature Model

Urban Application " A

1000
0111 o —Pa3,8)
- 1111
)

'
Hidden Layers ‘=~

! | {ON Lavers Mean Polling
| Concurrent-Task Maximum Entropy Policy ! ! Graph GCN Layers Layers ® Feature
T relu o Urban Application Environment Feature Sub-network: GNN
! / Extraction Model
U Sute ¢ Agricultural Application
L Pati,2)
| Input ( 000
' O .. O/ ocoo} — - =, ayay )
i Hidden Layers 000
Sequential-Task Deterministic Policy Mattices PAN Layers Feature
,,,,,,,,,,,,,,,,,,,,,,,,,,,, atrices yers

vector
Environment Feature Sub-network: PAN
Extraction Model

— State Reward
surrounding o @}

‘ situation = = Sea . . H [ D
vae ! ° (04,05 05 ...0,)" =
Evaluation el Feature Of\‘ o o
' Pal3, &) - Vectors BPN Layers Prediction
Battery Prediction Model Sub-network: BPN

Figure 1: Overview of FM-EAC.

To this end, we envision a generalized model integrating planning, acting, and learning for multi-
task control in dynamic environments. Our proposed algorithm, referred to as feature model-based
enhanced actor-critic (FM-EAC), combines the advantages of MBRL and MFRL approaches while
improving the generalizability and transferability. Real-world environments are featured by spatio-
temporal variations. In this context, generalizability refers to the ability of the algorithm to adapt to
various environmental conditions and task requirements, and transferability refers to the ability of
the algorithm to remain robust when environmental conditions or task requirements change.

Beyond existing methods, FM-EAC has two distinct modules: a feature model and an enhanced
actor-critic framework. Despite the spatiotemporal variations in dynamic environments, it is possible
to extract environmental features as representations and leverage them to train a feature model that
is robust to environmental uncertainties. Such a feature model is combined with the state to enrich
environmental information. Meanwhile, the actor-critic framework in MFRL offers higher flexibility
for multi-task setups. Therefore, we propose an enhanced actor-critic framework to decouple the
actors and critics for different tasks, enabling simultaneous policy updates.

The main contributions are summarized below:

* FM-EAC, a feature model-based enhanced actor-critic algorithm, is proposed for multi-
task control in dynamic environments. It combines the benefits of both MBRL and MFRL
with improved generalizability and transferability.

* Within FM-EAC, we demonstrate three exemplary sub-networks: graph neural network
(GNN) Scarselli et al.| (2009), point array network (PAN), and battery prediction network
(BPN). GNN and PAN are adaptively trained networks and pre-trained frozen networks,
respectively, for feature extraction of environments. BPN is a pre-trained frozen network
for capacity prediction of batteries.

* Different from existing reinforcement learning methods that are task- and environment-
specific, our proposed FM-EAC can learn from various environments for multiple tasks,
surpassing the state-of-the-art methods in performance, efficiency, and stability when envi-
ronmental conditions or task requirements change.

2  OVERVIEW OF FM-EAC

FM-EAC, as illustrated in Fig. m is composed of three main components: (1) the environment, (2)
the enhanced actor-critic framework, and (3) the feature model.

We demonstrate two exemplary environments for UAV multi-task control. The first is an urban
application, where multiple UAVs are deployed for package delivery Betti Sorbelli| (2024); [Zieher



Under review as a conference paper at ICLR 2026

et al.| (2024)) and mobile edge computing (MEC)|Zhou et al.|(2020); Ning et al.| (2023)) for Internet of
Things (IoT) devices, i.e., pedestrian-carrying devices (PDs) and ground devices (GDs). The other
is an agricultural application |Agrawal & Arafat| (2024); Rejeb et al.|(2022), where multiple UAVs
are deployed for data collection from wireless sensors (WSs) and charging at docking stations (DSs)
when needed.

To enhance generalization across scenarios, we follow a modular design for the enhanced actor-critic
framework. Since the data collection and battery charging are sequential tasks (i.e., one objective
at one time), we employ a deterministic actor-critic in the agricultural application. Meanwhile, the
package delivery and MEC are concurrent tasks (i.e., multiple objectives at one time with a priority
order); thus, we utilize a maximum entropy actor-critic in the urban application. More specifically,
the actor network is modified accordingly to produce the primary maximum entropy action for the
main task (e.g., UAV trajectory planning), while simultaneously generating task offloading decisions
for MEC as a supplementary output.

Compared to conventional actor-critic methods, our FM-EAC leverages a novel feature model to
generate scenario-related features, which function as specialized evaluation indicators for the critic’s
estimation of state-action values. Note that the structures of sub-networks in the feature model are
highly flexible: GNN is a representation of the compute-intensive yet information-rich adaptive
learning network, while PAN and BPN are representations of pre-trained and lightweight frozen
networks; beyond the GNN, PAN, and BPN adopted in this paper, they can be substituted with other
neural networks or even predefined feature matrices in user-defined scenarios.

Upon deployment, FM-EAC consists of two phases: (1) execution and (2) training, where the flows
of both phases are shown in Fig.|l] In the execution phase, actor networks generate action policies,
which are applied to the scenario environment to update states and receive corresponding rewards.
Simultaneously, in the training phase, agents extract environmental experiences to construct envi-
ronment feature models, thereby producing scenario-aware features. These features, along with
actions, states, and rewards, are then utilized by the critic during execution to estimate state-action
values and guide the update of the actor networks.

3 DESIGN OF FM-EAC

3.1 ENHANCED ACTOR-CRITIC FRAMEWORK

The enhanced actor network has two parts: a linear layer with output of distribution parameters g
and o2, and a softmax layer with output of a unit vector &,. Among them, p and o2 are utilized for
generating independent action variables for sequential tasks. Meanwhile, &, is used for producing
correlated action variables for concurrent tasks. Besides, the input of the critic network consists
of observation, action, and environmental features [0, a, f.], and the output is the evaluated value
V(o,a, f.).

As mentioned above, we consider two types of tasks: the sequential and concurrent tasks. Taking
the concurrent tasks as an example, assuming that Ag, S, Rz, 7@5, and Sj represent the actions,
states, primary task rewards, secondary task rewards, and next states from a batch size of sampled
data, respectively. m(.A3|Si) represents the policy or actor network. To achieve better training per-
formance, four critic networks, Op1(Si, As), Qpr2(Ss, As), Qs1(Ss, As), and Qs5(Sp, Ap) are
applied. Among them, Qp(Sz, Ap) and Qp,(Sg, Ag) are updated by primary task rewards, while
Qs51(SB, Ap), and Qs,(Sg, Ap) are updated by secondary task rewards. We also design the cor-
responding target critic networks: Q51 (S, Ag), Qps(SB, An), Q51 (S, Ag), and Q's,(Sz, Ap),
which copy the parameters from critic networks periodically.

The enhanced actor-critic framework can be implemented via the following steps:

1. Initialize the update parameter for the actor network 6 4, the update parameter for the critic
networks ¢p,, ¢p,, ¢s, and ¢g,, and the update parameters for the target critic networks
O'p1s Ppys d'gq and @y, Initialize the replay buffer D.

2. During an episode epi, let the agents interact with the environment and store the observation
o;, action a;, primary task rewards r;, and secondary task rewards 7; to the replay buffer
D.



Under review as a conference paper at ICLR 2026

3. Randomly sample one batch size data Az, Sg, Rz, Ri and S 15 from D.

4. Use the target critic networks and the current policy to compute the target value. Specifi-
cally, the primary target Q-values )p and secondary target Q-values Vs can be calculated
using the minimum of the two target critics, following the Clipped Double Q-learning strat-
egy to mitigate overestimation bias. The formulations are as follows:

y’P =Rgp + '7(1 - dB) min{Q%l(SlBN‘l/B)’ Q;?2(S£37A/B)}a (])

Vs = R +7(1 — dp) min{ Qls, (S, A), Qs2(Sp, Ap)}- 2)
where dp represents the termination flag.
5. Minimize the mean squared error (MSE) between the predicted Q-values and the target
Q-values for critic update. We update the primary and secondary critic networks by mini-
mizing the loss function Jop;(¢7) and Josi(¢p):

Jori(ép) = E[(Qpi(Ss, Ag) — Vp)?],i € {1,2}, 3)

Tosi(¢s) = E[(Qsi(Sp, As) — Vs)*l.i € {1,2}, @)
where E(-) represents the mathematical expectation.
6. Update actor network by maximizing the sum of the estimated Q-values from the primary

critic Qp,(Sg, Ag) and that of secondary critic Qs(Sz,.Ag). For concurrent tasks based
on maximum entropy policy, the loss function 7, (64) can be represented as:

Trx(04) = E[Qp1(SB, AB) + Qs1(Ss, Ag) — alog g, (A5|SB)], %)

where « represents temperature parameter.
For sequential tasks based on deterministic policy, the loss function can be represented as:

T=(04) = E[Qp1(Ss, T, (As|SB)) + Qs1(SB: m0.4 (AB|SB))]- (6)

7. Softly update target critic networks to ensure training stability. We slowly update the target
critic networks toward the current critic networks. Instead of directly copying the weights,
the target networks are updated using a weighted average of the current and previous target

weights:
Opi = Ep, + (1 = E)dlpsi € {1,2}, (N

where ¢ is the soft update parameter.

8. Repeat step in all the training iterations until policy converges.

Different from the conventional actor-critic framework, we divide the output layers of the actor and
use a softmax to enable the actor to deal with different task action outputs. We use four different
critics to evaluate the total task action value and the partial action value. In this way, the enhanced
actor-critic framework retains the advantages of state-of-the-art actor-critic methods while enabling
seamless decision-making during multi-task control.

3.2 GNN, PAN, AND BPN SUB-NETWORKS

The environment for UAV multi-task control is highly dynamic. The uncertainty comes from vari-
ous aspects, including ground topology and elevation, building distributions and heights, locations
of base stations (BSs), GDs, and WSs, the trajectory of PDs, and the origin and destinations of
UAVs. Under these circumstances, we design three distinct sub-networks for feature extraction and
prediction of environmental parameters, namely GNN, PAN, and BPN.

We also consider alternative approaches that utilize GNN and PAN for environmental feature extrac-
tion, referred to as GNN-EAC and PAN-EAC, respectively. GNN-EAC takes the graph relationships
among UAVs and other entities as features. PAN-EAC takes pre-trained PAN as features.



Under review as a conference paper at ICLR 2026

Algorithm 1 The training process Algorithm 2 The training process of the PAN network.
of the GNN network.

1: Initialize network Fpan(w) and Fgn (Fpan(w))).
1: Initialize network Fonn(¢)- 2: Generate a point array dataset Dp , .
2: forepi € {0,1,...,n} do 3: for Epoch € 0,1,...,k do
3:  Reset environment. 4:  Extract a point array P4 (5, Z) from Dp,.
4. forstep € {0,1,...,m}do 5. Update Fpan(w) and Fsn (Fpan(w))) by equation[12}
5: Generate graph G(a,5) as 6. end for
(H(a,3), A(a, 3) 7: Outputs: Model Fpan(P (8, Z)).
6: Outputs: Fonw(G(a, §)) 8 forepi € {0,1,...,n} do
and Feature F,, as equa- 9:  Reset environment.
tion [Tl 10:  for step € {0,1,...,m} do
7: Update Fonn(y) by equa- — 11: Extract environmental point array P 4 (Ssep Zstep)
tion[10] 12 Output: Feature F,, () as equation
8:  end for 13:  end for
9: end for 14: end for

GNN-EAC consists of graph convolutional network (GCN) layers and mean pooling layers. First, a
graph structure G(a, §) = (H(a, ), A(a, §)), which consists of node features (@, §) and adjacency
matrix A(a, §), is designed, where a represents the corresponding agent nodes, § represents scenario
feature nodes. G(a, §) is utilized to describe the relationship between agents and corresponding
factors. In the urban application, it consists of UAVs, BSs, GDs, and PDs. In the agricultural
application, it consists of UAVs and WSs. Then, G(a, §) is input to GCN layers. The output of the

GCN layers can be denoted as:
H(a,5)T = ¢ (D—%AD—%H(a, §)W) : 9)

where (-)7 represents matrix transposition, D represents degree matrix, W represents the learnable
parameter matrix, and ¢ represents the non-linear activation function, for which we have chosen
ReL.U in this work. After that, H(a, )T is input to the mean pooling layers for output. This GNN
network will be updated as follows:

Trg(p) = Tapi(op) + Tasi(bs) + Tx(04),i € 1,2, (10

where ¢ represents the updating parameter, Jrg(p) represents the loss function, and Jp7;(¢p),
Josi(¢s), and J(0.4) are mentioned before. Finally, we get a GNN feature model Fonn (G (@, 5)).
The environment features F.,, can be represented as:

Fenv = Ba - Fann(G(a, 3)), 1D
where [ represents the feature normalization coefficient. The training process of GNN is shown in
Algorithm

In contrast, PAN-EAC utilizes the pre-trained PAN network to extract environment features. It re-
lies on prior experience from the corresponding environment for decision-making to some extent,
performing better in pre-known scenarios while maintaining a reliable predictive capability for new
environments. First, we generate a point array dataset P 4(85, ), where & represents feature indi-
cator. In the urban application, it includes the GDs’ and PDs’ information, and in the agricultural
application, it consists of WSs’ information. Then we assume that S and X represent a batch of
§ and z, respectively. S and X, which are padded to the same dimension, are input to the PAN
layers Fpan(-), and the output will be sent to a sequential network Fsn (-)) to obtain the prediction
indicator X’. After that, the PAN layers and the connected sequential network will be trained as
follows:

J]:'P(w):H{S7X}_{57X/}||27 (12)
where || - || represents the Euclidean distance function, w represents the updating parameter, and
Jrp(w) represents the loss function for PAN network. Finally, we remove the sequential network
and get a feature extraction model Fpan(P 4 (8, T)), and the F,, can be represented as:



Under review as a conference paper at ICLR 2026

Algorithm 3 Training process of BPN.  Algorithm 4 Training process of FM-EAC.

1: Pre-train the model Qg(Sp, As) 1: Initialize network 7(-), Q(-), and F ().
according to the scenarios and task 2: Define network Fppn(-) according to the scenario.

setting. 3: Pre-train F(-) and Fgpn(-) as Algorithm 2 and 3.
2: Initialize network Fgpn(€). 4: for epi € {0,1,...,n} do
3: Generate dataset {Sg, Xr} from en- 5.  Reset environment.

vironment interaction according the 6: for step € {0,1,...,m} do

scenario setting. 7 Output action a; from 7(-).
4: for Epoch € {0,1,...,k} do 8 Interact with environment.
5:  Extract a batch size {Sgp, Xgp} 9: Store oy, a;, i, 7;, and 0;41 to D.

from {Sg, X} . 10: Update 7(-) and Q(-) by equation|[I]to[3]
6:  Update Fgpn(€) by equation[14  11: Update F(-) by Algorithm 1 as the scenario.
7: end for 12:  end for
8: Outputs: Model Fgpn(sg). 13: end for
Fenv(8) = BrFpan(Pa(3, 7)), (13)

where (p represents the feature normalization coefficient. The training process of PAN is shown in
Algorithm

Unlike GNN and PAN networks, BPN, which is utilized for battery prediction in the agricultural
application, is designed for intermediate decision-making during transitions of tasks. More specif-
ically, we define a task-transition model Qg (Si,.Ag), which determines whether the battery ca-
pacity runs short, so that the task needs to be switched from performing data collection service to
returning to charging.

We use GNN-EAC or PAN-EAC to pre-train such a task-transition model. Then, we utilize such a
model for decision-making as follows. First, we utilize Qs (Si, Ag) to generate the collection of
task-transition states Sgi and the collection of corresponding battery labels Xgp by the interaction
with the environment, where Sgp consists of task-transition state s. After that, we update the BPN
layers by the loss function Jgp (¢€) as follows:

Tsp(€) = |[{Ses, Xps} — {SEs, X55} % (14)

where € represents the updating parameter and X'z represents the collection of predicted battery
labels. Finally, we have a prediction model Fgpn(sg) that determines whether the current state is
the task-transition state or not. The training process of BPN is shown in Algorithm

The overall training process of FM-EAC is shown in Algorithm ] Note that for sequential tasks,
Q(+) is composed of two independent critic networks, together with their target networks. While
for concurrent tasks, Q(+) consists of the primary and secondary critic networks, together with their
target networks. Furthermore, the design of GNN, PAN, and BPN enables efficient and robust
environmental feature extraction. Thus, our proposed FM-EAC algorithm can not only interact with
the environment but also transfer to other diverse environments. In practice, they can be replaced by
other neural networks or feature matrices according to user-specific requirements.

4 PERFORMANCE EVALUATION

4.1 EXPERIMENTAL SETUP

We conducted experiments in two representative applications: an urban and an agricultural one, with
formulations detailed in MDPs. All simulations were conducted on a MacBook Pro equipped with
an Apple M4 chip (12-core CPU, 16-core GPU) and 24 GB of unified memory.

In the urban application, 4 UAVs were deployed within an 800 m x 800 m area. The number of GDs
ranged from 20 to 50, while the number of PDs varied from 0 to 50. The distribution of buildings
was based on real-world Digital Surface Model (DSM). The distribution of BSs and IoT devices was
extracted from OpenCellid |OpenCellid contributors| (2025). The pedestrian traces were simulated



Under review as a conference paper at ICLR 2026

>

0.16
1500+ 3000 PAN
0.141{—"— GNN 5
2000
10001 012 a2
o “ 1000 5 0.10 ;
8 w0 il hd g E 3k
L ittt 1o £
H pﬁmw&“w— FM-EAC (PAN) ' g ° —— FM-EAC (PAN) Coos ,Z
i - | — - < =
W«\%WWN FM-EAC (GNN) , 1000 FM-EAC (GNN) £ 006 3
o — DDOPG — DDPG
—— SAC — sAC 1
D3 2000 D3 oot
-500 —— MBPO —— MBPO 0.02 o

660 860 1660 o 3000 4000 6000 8000 10600 0 200 400 600 800 1000

[ 200 400
Episode Episode Number of Points / Nodes

(a) The performance of training re- (b) The performance of training re- (c) Average inference time (ms) for
ward in urban application. ward in agricultural application. PAN network and GNN.

Figure 2: The performance of training reward and time complexity.

Table 1: Comparison of average reward, computation time, and performance metrics in different
scenarios.

Algorithm Reward 1 Online Time | (ms) | Offline Time | (ms) Urban Agriculture
Urban Agri. Urban Agri. Urban Agri. QoS 1 Time | (s) Aol |
ACO 1352.41 (£190.75) -60.76 (£0.28) - - 55900 2720 5.81 99.2 2.65
GA 802.36 (+£140.64) 107.27 (£0.45) - - 72960 2540 4.82 98.9 2.56
PSO 10.21 (£16.11) 114.15 (£0.12) - - 45880 2530 1.19 99.3 2.48
DDPG 362.83 (£72.96) 1896.41 (+488.91) | 16.73 25.63 49.20 0.62 4.53 81.2 1.55
TD3 410.05 (£62.06) 1653.48 (+451.54) | 15.16 2291 79.50 0.61 8.26 98.3 1.77
SAC 445.87 (£49.72) 1543.85 (£435.97) | 17.34 13.54 74.30 1.05 7.47 96.7 1.80
MBPO 134.14 (£80.19) 1635.42 (+461.81) | 44.85 37.76 73.50 0.75 7.29 98.2 1.97
PAN-EAC | 1391.75 (£62.38) 2402.47 (£5.42) 16.96 37.00 69.50 0.68 8.00 76.3 1.10
GNN-EAC | 1400.30 (£59.38) 2153.84 (£7.50) 35.94 74.96 36.30 5.02 8.08 77.1 1.27

by SUMO randomTrips Lopez et al.|[(2018)). The communication model adopted was based on the
3GPP 36.873 standard | 3GPP, (2012)), ensuring realistic urban channel characteristics.

In the agricultural application, 4 UAVs were deployed, operating within a 400 m x 400 m area. A
total of 400 WSs were uniformly distributed on the ground in this area. The terrain was synthetically
generated based on realistic geographic features such as hills, plains, ravines, and valleys, simulating
complex rural topography. Data transmission was carried out using a data transmission protocol with
retransmission and verification mechanisms to ensure reliability.

4.2 COMPARATIVE STUDY

In the comparative study, we select the latest MFRL models, SAC |[Haarnoja et al.| (2018)) and TD3
Dankwa & Zheng| (2020), as the base algorithms for FM-EAC in urban and agricultural applications,
respectively. To enhance generalizability, we train the FM-EAC models on 3-5 out of 10 maps in
different scenarios, and test them on a random map.

Meanwhile, we select the following state-of-the-art baselines. For the MBRL algorithms, MORel
Kidambi et al.| (2020) can only be used for offline tasks. COMBO |Yu et al| (2021)) and Dreamer
require large-scale training samples and intensive parameter tuning. Thus, we select MBPO [Janner,
et al.| (2019) for comparison. For MFRL algorithms, DQN |Mnih et al.| (2013)) is not feasible for
continuous tasks. PPO |Schulman et al.|(2017) suffers from sample inefficiency due to its on-policy
nature. Therefore, we select DDPG |Lillicrap et al.[| (2016), SAC, and TD3 for comparison, all of
which are off-policy algorithms following the actor-critic framework. We also compare FM-EAC
with meta-heuristic methods, including ant colony optimization (ACO) Dorigo et al.| (2006)), particle
swarm optimization (PSO) Kennedy & Eberhart| (19935)), and genetic algorithm (GA) Immanuel &
Chakraborty| (2019)). Due to the inherent structure of the above algorithms, they can only be trained
on a single map.

As presented in Figs. [2a] 2b] and Table[T} the proposed FM-EAC outperforms all baselines in average
reward, convergence speed, and convergence stability. Furthermore, GNN-EAC exhibits slightly
higher performance in the urban application, while PAN-EAC achieves slightly higher performance
in the agricultural application.



Under review as a conference paper at ICLR 2026

Table 2: Average reward for the ablation study.

Algorithm Urban 1 Agriculture 1

PAN-OAC  592.26 (£109.12) —
GNN-OAC  903.91 (£89.72) —
NFM-EAC ~ 472.62 (£112.19)  1623.45 (+£9.91)
PAN-EAC  1391.75 (£62.38) 2402.47 (+5.42)
GNN-EAC  1400.30 (£59.38) 2153.84 (£7.50)

The model-based MBPO has the lowest reward due to the lack of transferability. Similarly, existing
MFRL methods lag behind FM-EAC since they can only be trained on a specific map, so their
policies become less effective when adapting to new environments, especially in the highly dynamic
urban application. Although ACO and GA achieve good performance in the urban application, they
fall behind in the agricultural application, since they are not feasible for sequential tasks where the
objective alters during the flight.

In contrast, the proposed FM-EAC utilizes feature models to extract environmental features from
diverse maps, achieving the highest generalizability and transferability. In addition, by using an
enhanced actor-critic framework, the policies of different tasks can be jointly and smoothly updated,
yielding the highest convergence value and stability.

4.3 ABLATION STUDY

In the ablation study, we sequentially remove components of GNN-EAC and PAN-EAC to evaluate
their individual contributions. First, we replace the enhanced actor-critic framework with the original
actor-critic (OAC) structure, resulting in GNN-OAC and PAN-OAC. Notably, the structures of EAC
and OAC are identical in the agricultural application, thus they are interchangeable. Table [2[ shows
that GNN-EAC and PAN-EAC are superior to GNN-OAC and PAN-OAC due to the decoupling
of actors and critics for different tasks. Next, we remove the feature extraction models entirely,
yielding NFM-EAC (non-feature model enhanced actor-critic). The absence of feature models leads
to significant drops in average reward, especially in the highly dynamic urban application.

4.4 INFERENCE TIME STUDY

As shown in Table[T} we compare the inference time (in milliseconds) of FM-EAC and the baselines
across two types of tasks: offline and online tasks, depending on whether the policies are trained
before or during execution. Additionally, Fig.|2c|depicts how the inference times of PAN and GNN
increase with the number of points/nodes (e.g., UAVs, IoT devices, and WSs). It can be observed
that the GNN network has a steeper growth slope than the PAN network; therefore, it has a higher
time complexity.

ACO, GA, and PSO, with their iterative and multi-sample nature, do not support incremental updates
and fast responses for online tasks. They operate using a population of candidate solutions, and
each member of the population requires a separate evaluation per iteration. Besides, they rely on
randomized decision-making, so they are less sample efficient and have significantly higher offline
inference time.

For online tasks, TD3 and SAC show the shortest online inference time in urban and agricultural
applications, respectively, while the remaining MFRL and PAN-EAC algorithms show comparable
and slightly higher online inference times. This is thanks to the lightweight design of PAN and actor-
critic networks. Unlike them, MBPO and GNN-EAC encompass more computationally intensive
models, so their online inference times are much longer.

For offline tasks, in the urban application where the number of IoT devices < 100, GNN-EAC
exhibits the shortest offline inference time, since the GNN network can rapidly extract rich envi-
ronmental features (e.g., adjacency matrices among UAVs and IoT). However, in the agricultural
application, GNN-EAC has the longest offline inference time because the massive number of WSs
(i.e., 400) leads to a heavy computational burden. Meanwhile, the offline inference times of MBRL,
MFRL, and PAN-EAC are similar.



Under review as a conference paper at ICLR 2026

In summary, the online inference time of PAN-EAC is lower than that of GNN-EAC. When the
number of devices is small, the offline inference time of GNN-EAC is lower; when the number
of devices is large, the offline inference time of PAN-EAC is lower. In practice, we can choose
between these alternative networks or customize the feature extraction model according to user-
specific requirements.

4.5 REASONING STUDY

The reasoning study evaluates performance metrics compared with baselines. The metrics in the
urban application include the average QoS of IoT devices (utility values with imaginary units) and
average task completion time of UAVs (in seconds). Table |1| shows that TD3 archives the highest
QoS. PAN-EAC and GNN-EAC, despite with 3.15% and 2.18% lower Aol, reduce task completion
time by 22.38% and 21.57%, respectively. Therefore, we can conclude that FM-EAC can better draw
the trade-off between QoS and task completion time. The performance metric in the agricultural
application is the average Aol of the WSs (utility values with imaginary units). PAN-EAC and
GNN-EAC achieve the lowest Aol, showing their superior performance.

5 RELATED WORKS

Most existing research on generalized reinforcement learning algorithms has centered on meta-
reinforcement learning, which trains a meta-policy on various tasks to embed prior knowledge and
facilitate fast adaptation. Some research utilized recurrent neural networks (RNNs) to embed an
agent’s learning process Duan et al.| (2016); |Agarwal et al.|(2024)). Others used gradient descent for
policy adaptation in the inner loop [Finn et al.| (2017); Rakelly et al.|(2019). However, the parameter
tuning for the above methods requires intensive efforts, and the above methods increase general-
izability at the cost of degrading performance. Inspired by few-shot learning in supervised tasks,
feature metrics or external memory have also been used for policy adaptation. Our approach inherits
such an idea, using a feature-based model to extract the feature representations that can rapidly adapt
to various environments.

Meanwhile, most existing research on multi-task control concentrated on discrete-continuous hy-
brid action spaces. P-DQN [Xiong et al.| (2018) is a parametrized DQN framework for the hybrid
action space where discrete actions share the continuous parameters. Similarly, HD3 Jiang & Ji
(2019), a distributed dueling DQN algorithm, was proposed to produce joint decisions by using
three sequences of fully connected layers. Hybrid SAC|Delalleau et al.|(2019) is an extension of the
SAC algorithm, where an actor computes a shared hidden state representation to produce both the
discrete and continuous distributions. HPPO |[Fan et al.| (2019), a hybrid architecture of actor-critic
algorithms, was proposed to decompose the action spaces along with a critic network to guide the
training of all sub-actor networks. However, the above works considered an identical objective for
all tasks, neglecting the interrelationship and heterogeneity between them. In contrast, FM-EAC
can effectively handle interrelated tasks with their respective goals through the enhanced actor-critic
framework.

6 CONCLUSION

We propose a generalized model, FM-EAC, that integrates planning, acting, and learning for multi-
task control in dynamic environments, and leverages the strengths of MBRL and MFRL. Our feature
model improves the generalizability and transferability across scenarios, and our enhanced actor-
critic framework supports simultaneous policy updates, promoting efficient and effective learning
across diverse objectives. The performance of FM-EAC is validated through urban and agricultural
applications. Experimental results demonstrate that FM-EAC consistently outperforms state-of-
the-art MBRL and MFRL algorithms. Moreover, GNN-based and PAN-based FM-EAC achieve
comparable performance, while exhibiting distinct time efficiency for online and offline tasks. In
the future, we will extend FM-EAC to a wider range of environments and practical domains, such
as multi-robot control, multi-user autonomous driving, and multi-player games.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

This work adheres to the standards of reproducibility. The link to the demonstration code of the
proposed algorithms together with the explanation is provided in Appendix [A.2] Additionally, sce-
nario description, problem formulation, and parameter settings regarding the exemplary urban and
agricultural applications are presented in Appendix [A.3] [A.4] and[A.3] respectively. For anonymity,
information regarding city, terrain, and document paths has been omitted. Following acceptance, we
will release the full executable code for function validation.

REFERENCES

3GPP. Study on lte device to device proximity services. Technical Report 36.873, 3rd Generation
Partnership Project (3GPP), 2012. URL https://www.3gpp.org/DynaReport/36873.
htm.

Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya. A deep recurrent-reinforcement
learning method for intelligent autoscaling of serverless functions. [EEE Transactions on Ser-
vices Computing, 17(5):1899-1910, September 2024. ISSN 2372-0204. doi: 10.1109/tsc.2024.
3387661. URL http://dx.doi.org/10.1109/TSC.2024.3387661.

Juhi Agrawal and Muhammad Yeasir Arafat. Transforming farming: A review of ai-powered uav
technologies in precision agriculture. Drones, 8(11), 2024. ISSN 2504-446X. doi: 10.3390/
drones8110664. URL https://www.mdpi.com/2504-446X/8/11/664.

Francesco Betti Sorbelli. Uav-based delivery systems: A systematic review, current trends, and
research challenges. ACM J. Auton. Transport. Syst., 1(3), May 2024. doi: 10.1145/3649224.
URL https://doi.org/10.1145/3649224|

Stephen Dankwa and Wenfeng Zheng. Twin-delayed ddpg: A deep reinforcement learning tech-
nique to model a continuous movement of an intelligent robot agent. In Proceedings of the
3rd International Conference on Vision, Image and Signal Processing, ICVISP 2019, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450376259. doi:
10.1145/3387168.3387199. URL https://doi.orqg/10.1145/3387168.3387199,

Olivier Delalleau, Maxim Peter, Eloi Alonso, and Adrien Logut. Discrete and continuous action
representation for practical RL in video games. CoRR, abs/1912.11077, 2019. URL http:
//arxiv.org/abs/1912.11077.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. [EEE Computational
Intelligence Magazine, 1(4):28-39, 2006. doi: 10.1109/MCI1.2006.329691.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. R1$°2$:
Fast reinforcement learning via slow reinforcement learning. CoRR, abs/1611.02779, 2016. URL
http://arxiv.org/abs/1611.02779.

Zhou Fan, Rui Su, Weinan Zhang, and Yong Yu. Hybrid actor-critic reinforcement learning in pa-
rameterized action space. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, IICAI’ 19, pp. 2279-2285. AAAI Press, 2019. ISBN 9780999241141.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/1703.
03400.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks

through world models. Nature, 640(8059):647-653, Apr 2025. ISSN 1476-4687. doi: 10.1038/
$41586-025-08744-2. URL https://doi.org/10.1038/s41586-025-08744-2.

10


https://www.3gpp.org/DynaReport/36873.htm
https://www.3gpp.org/DynaReport/36873.htm
http://dx.doi.org/10.1109/TSC.2024.3387661
https://www.mdpi.com/2504-446X/8/11/664
https://doi.org/10.1145/3649224
https://doi.org/10.1145/3387168.3387199
http://arxiv.org/abs/1912.11077
http://arxiv.org/abs/1912.11077
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1801.01290
https://doi.org/10.1038/s41586-025-08744-2

Under review as a conference paper at ICLR 2026

Savio D Immanuel and Udit Kr. Chakraborty. Genetic algorithm: An approach on optimization. In
2019 International Conference on Communication and Electronics Systems (ICCES), pp. 701—
708, 2019. doi: 10.1109/ICCES45898.2019.9002372.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: model-
based policy optimization. In Proceedings of the 33rd International Conference on Neural Infor-
mation Processing Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

Xiaolan Jiang and Yusheng Ji. Hd3: Distributed dueling dqn with discrete-continuous hybrid action
spaces for live video streaming. In Proceedings of the 27th ACM International Conference on
Multimedia, MM 19, pp. 2632-2636, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450368896. doi: 10.1145/3343031.3356052. URL https://doi.
org/10.1145/3343031.3356052]

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 - International
Conference on Neural Networks, volume 4, pp. 1942—-1948 vol.4, 1995. doi: 10.1109/ICNN.1995.
488968.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 21810-21823.
Curran Associates, Inc., 2020. URL lhttps://proceedings.neurips.cc/paper_
files/paper/2020/file/f7efadf864ae9088d43527f4bl14f750f-Paper.pdf.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,2016. URL http:
//arxiv.org/abs/1509.02971l

Yaxi Liu, Wencan Mao, Xulong Li, Wei Huangfu, Yusheng Ji, and Yu Xiao. Uav-assisted integrated
sensing and communication for emergency rescue activities based on transfer deep reinforcement
learning. In Proceedings of the 30th Annual International Conference on Mobile Computing and
Networking, ACM MobiCom ’24, pp. 2142-2147, New York, NY, USA, 2024. Association for
Computing Machinery. ISBN 9798400704895. doi: 10.1145/3636534.3698220. URL https:
//doi.org/10.1145/3636534.3698220.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flotterod,
Robert Hilbrich, Leonhard Liicken, Johannes Rummel, Peter Wagner, and Evamarie Wieiner. Mi-
croscopic traffic simulation using sumo. In The 21st IEEE International Conference on Intelligent
Transportation Systems. IEEE, 2018. URL https://elib.dlr.de/124092/.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Zhaolong Ning, Hao Hu, Xiaojie Wang, Lei Guo, Song Guo, Guoyin Wang, and Xinbo Gao. Mobile
edge computing and machine learning in the internet of unmanned aerial vehicles: A survey. ACM
Comput. Surv., 56(1), August 2023. ISSN 0360-0300. doi: 10.1145/3604933. URL https:
//doi.org/10.1145/3604933\

OpenCellid contributors. OpenCellid, The world’s largest Open Database of Cell Towers, 2025.
URL https://opencellid.org. access on 15 April 2025.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pp. 5331-5340. PMLR, 09-15
Jun 2019. URL https://proceedings.mlr.press/v97/rakellyl9a.htmll

Abderahman Rejeb, Alireza Abdollahi, Karim Rejeb, and Horst Treiblmaier. Drones in agriculture:
A review and bibliometric analysis. Computers and Electronics in Agriculture, 198:107017, 2022.
ISSN 0168-1699. doi: https://doi.org/10.1016/j.compag.2022.107017. URL https://www.
sciencedirect.com/science/article/pi11/501681699220033409.

11


https://doi.org/10.1145/3343031.3356052
https://doi.org/10.1145/3343031.3356052
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://doi.org/10.1145/3636534.3698220
https://doi.org/10.1145/3636534.3698220
https://elib.dlr.de/124092/
http://arxiv.org/abs/1312.5602
https://doi.org/10.1145/3604933
https://doi.org/10.1145/3604933
https://opencellid.org
https://proceedings.mlr.press/v97/rakelly19a.html
https://www.sciencedirect.com/science/article/pii/S0168169922003349
https://www.sciencedirect.com/science/article/pii/S0168169922003349

Under review as a conference paper at ICLR 2026

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61-80, 2009.
doi: 10.1109/TNN.2008.2005605.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Zhihai Wang, Jie Wang, Qi Zhou, Bin Li, and Houqgiang Li. Sample-efficient reinforcement learning
via conservative model-based actor-critic. In Thirty-Sixth AAAI Conference on Artificial Intel-
ligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp. 8612-8620. AAAI Press, 2022. doi:
10.1609/AAAIL.V3618.20839. URL https://doi.org/10.1609/aaai.v3618.20839,

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized deep g-networks learning: Reinforcement learning
with discrete-continuous hybrid action space. CoRR, abs/1810.06394, 2018. URL http://
arxiv.orqg/abs/1810.06394.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 28954-28967. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
£file/£29a179746902e331572c483c45e5086-Paper.pdfl

Xiaoru Zhao, Rennong Yang, Liangsheng Zhong, and Zhiwei Hou. Multi-uav path planning and
following based on multi-agent reinforcement learning. Drones, 8(1), 2024. ISSN 2504-446X.
doi: 10.3390/drones8010018. URL https://www.mdpi.com/2504-446X/8/1/18.

Fuhui Zhou, Rose Qingyang Hu, Zan Li, and Yuhao Wang. Mobile edge computing in unmanned
aerial vehicle networks. IEEE Wireless Communications, 27(1):140-146, 2020. doi: 10.1109/
MWC.001.1800594.

Simon Zieher, Ertug Olcay, Klaus Kefferpiitz, Babak Salamat, Sebastian Olzem, Gerhard Elsbacher,
and Henri Meel3. Drones for automated parcel delivery: Use case identification and derivation
of technical requirements. Transportation Research Interdisciplinary Perspectives, 28:101253,
2024. ISSN 2590-1982. doi: https://doi.org/10.1016/j.trip.2024.101253. URL https://www.
sciencedirect.com/science/article/pi1i1/52590198224002392.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We declare that LLMs are only used for the retrieval and discovery of related works. They are NOT
used for polishing writing, research ideation, problem formulation, algorithm development, result
generation, or other purposes.

A.2 EXPLANATION OF DEMONSTRATION CODE

The demonstration code can be downloaded from [link to demonstration code. In the demonstration
code, there are six files. “ReadMe.md” explains the code in general. “Folder_structure” shows the
architecture of the entire code, which will be released upon acceptance. The other four files are the
demonstration code detalied below.

12


http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1609/aaai.v36i8.20839
http://arxiv.org/abs/1810.06394
http://arxiv.org/abs/1810.06394
https://proceedings.neurips.cc/paper_files/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://www.mdpi.com/2504-446X/8/1/18
https://www.sciencedirect.com/science/article/pii/S2590198224002392
https://www.sciencedirect.com/science/article/pii/S2590198224002392
https://anonymous.4open.science/r/FM-EAC-Feature-Model-based-Enhanced-Actor-Critic-for-Multi-Task-Control-in-Dynamic-Environments-CBEF/README.md

Under review as a conference paper at ICLR 2026

A.2.1 GENERAL DESCRIPTION

For anonymity, information regarding city, terrain, and document paths has been omitted. To fa-
cilitate understanding of the proposed algorithms, only agent-related code segments are presented
here. The complete folder structure is documented in the accompanying “Folder_structure.pdf”.
Following acceptance, we will release the full executable code for function validation.

The demonstration code includes the following four files.

agri_eac_gnn_model.py: Implements network architectures for GNN, BPN, and FM-EAC tailored to
agricultural applications.

agri_eac_pan_model.py: Implements network architectures for PAN, BPN, and FM-EAC tailored to
agricultural applications.

urban_eac_gnn_model.py: Implements network architectures for GNN and FM-EAC tailored to ur-
ban applications.

urban_eac_pan_model.py: Implements network architectures for PAN and FM-EAC tailored to urban
applications.

A.2.2 DETAILED DESCRIPTION OF KEY MODULES

The explanation of key modules (i.e., elements and functions) in each file is detailed as follows.

agri_eac_gnn_model.py:

* Actor: Policy network generating actions conditioned on input states.
* Critic: Evaluation network estimating Q-values for state-action pairs.

* BatteryPredictionNetwork: Predicts energy consumption based on state and environmental
features.

* normalize_adjacency_matrix(A): Normalizes adjacency matrices used in graph convolution
layers.

e GCNLayer: Single graph convolutional layer processing node features with normalized
adjacency.

* GNN: Two-layer graph neural network producing a global graph representation via node
features and adjacency.

* GNN_Agent:

* compute_gnn_loss(batch_state, batch_action, batch_reward, batch_done): Computes critic
loss for training GNN and critic networks.

* choose_action(state, explore=True): Selects an action given the current state, optionally
with exploration noise.

* store_transition(state, action, reward, next_state, done): Saves experience tuples into replay
buffer, managing buffer capacity.

* update(): Samples batches from replay buffer and updates GNN, Critic, and Actor networks
with soft target updates.

* save(i, path, eps): Saves model weights (Actor, Critics, GNN) to checkpoint files.

* load(i, path, eps): Loads model weights from checkpoint files; raises error if files are ab-
sent.

agri_eac_pan_model.py:

» Actor: Policy network generating actions based on input states.
¢ Critic: Value network estimating Q-values for state-action pairs.

* BatteryPredictionNetwork: Estimates energy consumption from input state and environ-
ment features.

* PointArrayFeatureExtractor: Extracts features from input environmental point array data.

13



Under review as a conference paper at ICLR 2026

* PAN_Agent:

* choose_action(state, explore=True): Selects action given state, optionally applying explo-
ration noise.

* store_transition(state, action, reward, next_state, done): Stores experience tuples in replay
buffer, handling buffer size constraints.

* update(): Samples from replay buffer and updates Critic and Actor networks, including soft
target network updates.

* save(i, path, eps): Persists model parameters (Actor, Critics) to disk with iteration and
episode identifiers.

* load(i, path, eps): Loads model parameters from saved checkpoints; raises error if missing.
urban_eac_gnn_model.py:

* Actor: Policy network producing two types of actions from input states:

* Primary action (mean mu and standard deviation std): continuous actions modeled as a
Gaussian distribution.

* Secondary action (softmax_out): categorical distribution over three discrete options via
softmax.

¢ Critic_Pri: Value network estimating Q-values for state-primary action pairs.
* Critic_Sec: Value network estimating Q-values for state-secondary action pairs.

* normalize_adjacency_matrix(A): Adds self-loops and normalizes adjacency matrix for
graph convolutional layers.

* GCNLayer: Single graph convolution layer performing adjacency normalization and learn-
able feature transformation.

* GNN: Two-layer graph neural network processing node features and adjacency, outputting
global graph features by mean pooling.

* GNN_Agent:

» compute_gnn_loss(batch_state, batch_action): Computes loss on critic Q-values to update
the GNN network by encouraging higher Q-values.

* update(): Conducts a training step by sampling batches, computing target Q-values, updat-
ing critics and actors, and applying GNN loss optimization.

* choose_action(state): Samples actions combining continuous primary actions and discrete
secondary actions from the actor output.

* save(i, path, eps): Saves model weights (actor, critics, GNN) to checkpoint files.

* load(i, path, eps): Loads model weights from checkpoint files.
urban_eac_pan_model.py:

* Actor: Policy network outputting two action types from the input state:

e Primary action (mean mu and standard deviation std): continuous actions modeled as a
Gaussian distribution, dimension (action_dim - 3).

» Secondary action (softmax_out): categorical distribution over three discrete options via
softmax.

* Critic_Pri: Value network estimating Q-values for state and primary action pairs (continu-
ous).

* Critic_Sec: Value network estimating Q-values for state and secondary action pairs (dis-
crete, one-hot encoded).

 PointArrayFeatureExtractor: Extracts features from environmental point array inputs.
* PAN_Agent:

14



Under review as a conference paper at ICLR 2026

 update(): Executes a training iteration by sampling from replay buffer, computing target Q-
values, optimizing critics via MSE loss, and updating actor networks to maximize expected
Q-values.

* choose_action(state): Samples combined continuous and discrete actions from actor out-
puts.

* save(i, path, eps): Saves current model parameters (actor and critics) with iteration and
episode labels.

* load(i, path, eps): Loads model parameters from saved checkpoints.

A.3 SCENARIO DESCRIPTION

This section illustrates the exemplary scenarios, including urban and agricultural applications. Ad-
ditionally, the system model for each application is presented.

A.3.1 URBAN APPLICATION OVERVIEW

In the urban application, we consider multiple metropolitan areas where a collaborative system
composed of nyay unmanned aerial vehicles (UAVs) is deployed to simultaneously perform material
delivery and mobile edge computing (MEC) services. The set of UAVs is denoted by UAV =
{UAVy,...,UAV, .}

The position of UAV,; at time ¢ is represented by the 3D vector Pu(i,t) =
{Puy(i,t), Puy(i,t), Pu.(i,t)}, where Pug(i,t), Puy(i,t), and Pu,(i,t) denote the spa-
tial coordinates along the -, y-, and z-axes, respectively.

There are two services in the urban application: the package delivery service for the UAVs from
the origin to the destination, and the MEC service from the UAVs to the IoT devices. There are
two concurrent tasks accordingly. The primary (PRI) task is the joint trajectory planning for both
services, and the secondary (SEC) task is the task offloading decision for the MEC service.

Each UAV is required to carry out delivery tasks within designated regions while adhering to
several constraints: avoiding collisions with buildings, maintaining sufficient signal quality from
base stations (BSs), and satisfying the quality-of-service (QoS) requirements of ground IoT de-
vices. The cruising altitude of each UAV must remain within a bounded range, i.e., Pu.(i,t) €
[Puz—mimpuz-max]-

For each UAV,, the delivery task starts from an initial position Pugy,q (i) = Pu(i,0) and proceeds
toward a target destination Pueng(7) = Pu(i, Tena), where Teng denotes the task deadline. The 3D
operational task space is defined as: R? : {z € [Puy_min, PUs—max)s ¥ € [Py—min, Ply—max], 2 €
[Pty ;—min, PU-—max]}. Due to limited onboard battery, each UAV must complete its task within
Teng and be within a predefined threshold distance dgnq of its destination to be considered successful.

In parallel with delivery, UAVs provide MEC services to IoT subscribers on the ground, including
pedestrian-carrying devices (PDs) and ground devices (GDs), to reduce computation latency. The
GDs are stationary while the PDs are moving with the pedestrians. Each UAV is equipped with an
omnidirectional antenna of fixed gain and can simultaneously maintain uplink connections with up
to m IoT devices due to limited channel capacity. To ensure QoS, UAVs must dynamically allocate
their available power resources among the connected devices.

Let nir denote the total number of IoT devices, represented as IoT = {IoTy,...,[0T,}
These devices, sharing the same communication frequency, are the main targets of MEC ser-
vices. Due to the mobility of PDs, the position of device IoT; at time ¢ is defined as
Pi(i,t) = {Piy(i,t), Piy(i,t), Pi.(i,t)}, where Pi.(i,t) reflects the ground elevation, and
Pi,(i,t), Piy(i,t) represent the planar location.

Each IoT device establishes an IoT-UAV communication link to receive downlink signals and upload
data. As the channel capacity improves, the corresponding MEC QoS also increases. The computa-
tional tasks generated by IoT devices are both heterogeneous and dynamic: different devices request
different service types, which may change over time based on certain probability distributions.

In addition to UAVs and IoT devices, we also consider ngs base stations (BSs), denoted as
BS = {BSy,...,BS,,}, deployed atop buildings to provide 5G communication services to UAVs.

15



Under review as a conference paper at ICLR 2026

Each BS is equipped with three unidirectional antennas, spaced 120° apart, forming three distinct
coverage sectors. The set of all antennas is represented as ANT = {ANTq, ..., ANTs, }.

Depending on urban obstacles, communication channels are categorized as line-of-sight (LoS) or
non-line-of-sight (NLoS) links. For each UAV, the BS with the strongest received signal is selected
as its serving BS, while signals from other BSs are treated as interference.

A.3.2 URBAN APPLICATION MODEL DESIGN

In the System Model, we considered the energy model, antenna model, and communication model.
Energy Consumption:

Each UAV performs material delivery and MEC services, including task offloading and computation.
The cumulative energy consumption of UAV; up to time ¢ is:

EC(i,t) = ECemp(i,t) + ECcomm(i,t) + EChy(3,1), (15)

where the components represent energy consumption for computation, communication, and flight,
respectively.

The cumulative computation energy is:

t
ECimp(i, ) = / Pwenp dt, (16)
0

with constant computation power Pwemp.

Communication energy is:

t
ECeomm(is) = / (Puwws + Puw,y) dt, (17)
0
where Pw,; and Pw,, are transmission and reception powers, respectively.
Flight energy is:
t
EChy (i t) = / Puny (i, ) dt, (18)
0
with Pwiy (i, t) defined as:
—muwg®? v(1,t)| <w
Pwﬂy (i, t) = V 2puil‘1.4UAV”;7 v,?(i v 2(“5) . | (" )| th (19)
alv(i, t)]* + = —Tanr T mglv(i,t)|, |v(i,t)| > v,
The aerodynamic parameters are:
1
c1 = 5pAuavCa, (20)
2
m
0= —— O 1)
npairnprpﬂ'Rprp
Avav = Agurt + nprpﬂ'Rgrp- (22)
The remaining battery level is:
BR(i,t) = BC — EC(i,t), (23)

where BC' is the battery capacity.
Antenna:

Each BS has three directional antennas separated by 120°, each serving one sector. Each antenna
consists of an mypa X nyLa ULA, with element spacing dypa.

Based on 3GPP ?, the total attenuation is:

Ar(0,¢) = Au(0) + Av(¢), 24)

16



Under review as a conference paper at ICLR 2026

with horizontal and vertical attenuations:
0 — O
&, 30dB} ,

Apg(0) = —min< 12
(6) { O34

Ay (¢) = —min {12¢_¢’“‘ai“, 30dB} .

D3y

The beamformed array factor is:

muyLa—1 nuLa—1

AF(0,¢) = | Z Z exp(jkydura(msin(6) cos(4)) + nsin(f) sin((b)\z,
m=0 n=0

where k,, = 2%

Antenna gain:
G(0,9) = Gmax + Ar(0,9) 4+ 101og,,(AF (0, 9)),

Gmax = Gelement +10 lOglo (mULA X nULA)~

Communication:

To account for urban LoS and NLoS cases:
28.0 + 221log(drs) + 201og;o(fe), LoS,

PL(Tra,Rec) = { —17.5 + 20 log, o (*%5L=)

+[46 — 71log,(Hrs)]logyo(drs),  NLoS,

Signal power from antenna ANT; to UAV;;:

PwU_B(i,j, t) = P’LUuT + PU}bt + G(ai,j(t), (,2517](75)) — PL(PU(Z,t),ANT]),

The SINR: .
SINRy.g(i, t) = %
Susl(i,t) = mjax Pwysg(i,j,t),
Tus(irt) = Y Pwus(i,j,t) — Sus(i,b),
;’" = kT Bw.

Each IoT device uses an omnidirectional antenna with gain:

PwU_](i,j, t) = Pwy, - (Srj + Pw;; + GroT — PL(Pu(i,t), Pi(j,t)),

Each UAV connects to at most m IoT devices:

{1,y Jm} = argmjax (Pwya(i,4,t)),
with power allocation:

8:(i, k) = {8yj,- 1 0rj 1 D 8y < €.
The SINR and capacity for link (4, j):

_ Pwy(i, jr, t)
IU_I(Z'7 t) + P, ’

Tua(ist) = ZPWU-I(i,j7 t) — ZPwU—I(iajkat)7
J Jk

SINRU—I (7'5 jk ) t)

C(i, ju,t) = Bw - logy(1 + SINRy(i, jk, t)).

17

(25)

(26)

27)

(28)
(29)

(30)

€2y

(32)
(33)

(34)

(35)

(36)

(37

(38)

(39)

(40)

(41)



Under review as a conference paper at ICLR 2026

A.3.3 AGRICULTURAL APPLICATION OVERVIEW

In the agricultural application, we consider multiple hilly farmlands with diverse terrains, where a
collaborative system composed of nyay UAVs is deployed to perform data collection servcie. The
UAV set is denoted by UAV = {UAVy,...,UAV,, . }. Each UAV, departs from its designated
docking station (DS) DS; and must return to DS; for recharging before its battery is depleted. When
UAV; enters the charging zone, another fully charged UAV is dispatched from the same DS to
seamlessly continue UAV;’s mission. The set of DS is denoted by DS = {DSy, ..., DS, }-

To accurately capture environmental variations in crop growth, a wireless sensor network (WSN)
consisting of nws wireless sensors (WSs), represented as WS = {WS, ..., WS,/ }, is deployed to
monitor soil and atmospheric conditions. All WSs are assumed to be equipped with identical low-
power modules for both sensing and wireless communication. These sensors continuously record
environmental parameters such as humidity, temperature, and soil pH, and periodically transmit
data to nearby UAVs. WSs of different types may have distinct sensing and broadcasting cycles.
UAVs receive this data and relay it to DSs, thereby supporting situational awareness for agricultural
monitoring and early warning systems.

In the agricultural application, each UAV performs two sequential tasks: the data collection (COL)
task, where data is gathered from ground WSs, and the return-to-home (RTH) task, where the UAV
travels to the DS for recharging. During the COL phase, UAVs focus on exploration, traversing the
farmland to continuously reduce the Aol of the WSs through timely data collection. When a UAV
estimates that its residual energy becomes short based on the battery prediction network (BPN),
it transitions to the RTH mode. In this phase, the UAV prioritizes a safe return to the DS while
opportunistically collecting data along the route, thereby balancing the trade-off between mission
continuity and energy sufficiency.

Similar to the urban application described earlier, the position of UAV; at time ¢ is denoted by
Pu(i,t) = {Puy(i,t), Puy(i,t), Pu.(i,t)}. Each UAV performs data collection across the farm-
land while satisfying several constraints: avoiding collisions with other UAVs, maintaining proper
flight altitudes, minimizing the overall Age of Information (Aol) of the WSs, and returning to the
corresponding DSs before battery exhaustion.

For each UAV,, the 3D task space can be defined as R® : {zx € [Puyz_min, Plz_ma),y €
[Pty —min; Pty —max], 2 € [PUf.—_min, Pz _max]}. Given the UAVs’ limited battery capacities, each
mission must be completed within a time horizon 7,4, and the UAV must reach within a predefined
threshold distance d.,q of its DS for the return operation to be deemed successful.

A.3.4 AGRICULTURAL APPLICATION MODEL DESIGN

In the System Model, we considered the energy model and communication model.
Energy Consumption:

The energy model is similar to the urban application.

Communication:

The Aol of each WS in WSN in each time slot ¢ can be represented as Aol;(¢). The Aol of WSs
increases during each updating interval TUpdateAm. WSs of different types have different TUPdaterl but
the same Aol threshold Aol.x. Each WS; broadcasts connection requests to surrounding UAV's per
Tupdate,,- Afterwards, WS; transmits data packets to its connected UAV. If the transmission is suc-
cessful, UAV; will send a message to WS; to reset Aol;(¢) and disconnect. Otherwise, transmission
timeout and WS; will prepare for re-transmission next time. Finally, UAV; sends the collected data
packages to DS;.

Then, we define the packet loss rate PLR(P;(¢)) in data transmission as:
PLR(FP;(t)) = 1— (1 — BER(P;(t))", (42)
where L represents the package length and BER(P;(t)) represents the bit error rate at position

P;(t). The binary phase shift keying data (BPSK) encoding method is adapted in this paper, so the
BER(P;(t)) can be represented as:

BER (Pi(t)) = Q ( 2. SINR(Pi(t))) , 43)

18



Under review as a conference paper at ICLR 2026

where SINR(P;(t)) represents the signal-to-interference-plus-noise ratio (SINR) at position P;(t),
and Q(z) means Q-function in communication theory. They can be represented as:

B ZZ,WSkeWS Pwyy(t) + Gws(t) — PL(UAV;, WS;)(t)

SINR (Py(t)) = =% , 44
0] = S s ows Puwn(t) + Gus(t) — PL(UAV,, WS;) (1) 44
Q)= L [Te Tdtm Lo T, (45)

where Pw,,(t) represents the WS transmission power, Gys represents the gain of WSs, and
PL(UAV;, WS;)(t) represents the path loss between UAV, and WS ;.

A.4 MARKOV DECISION PROCESS FORMULATION

A.4.1 MDP FOR URBAN APPLICATION

In the urban application, the UAVs perform two tasks simultaneously with a priority order. We
assume that the primary (PRI) task is the joint trajectory planning of UAVs for package delivery
and MEC service, and the secondary (SEC) task is the computation offloading from IoT devices to
UAVs. Therefore, we formulate the MDP as follows:

* Observations: The observation space provides information on UAVs, including their cur-
rent positions, destinations, and the distances between them. Environmental information,
such as the signal-to-interference-plus-noise ratio (SINR) values from BSs to UAVs and the
locations and path loss of IoT devices, is also included. In FM-EAC, scenario-associated
features equation |1 1|and equation|13|are fused into the observation space.

* Actions: The action of the PRI task is the flying speed vector for each UAV, and the action
of the SEC task is the computational offloading rate for each PD and GD.

* Rewards: The PRI task reward aims to minimize the task completion time, subject to
SINR, QoS, energy consumption, trajectory length, height variation, regional boundary,
and collision constraints. The SEC task reward aims to maximize the QoS of IoT devices
at each timestep. Notably, SEC could be regarded as a partial reward of PRI.

A.4.2 MDP FOR AGRICULTURAL APPLICATION

In the agricultural application, the UAVs perform two tasks sequentially depending on the predicted
battery capacity of UAVs. When the predicted battery capacity is sufficient, the task is the data
collection from WSs; when the predicted battery runs short, the task is returning to the DS while
collecting data along the way. We call the former as collection (COL) task and the latter as return-
to-home (RTH) task. Therefore, we formulate the MDP as follows:

* Observations: The observation space provides information on UAVs, including their cur-
rent positions and nearby WSs’ age of information (Aol) within the communication range.
The observations also include the position of the closest UAV and DSs in the tasks COL and
RTH, respectively. In FM-EAC, scenario-associated features equation |1 1| and equation
are fused into the observation space.

* Actions: The action of both COL and RTH tasks is the flying speed vector for each UAV.

* Rewards: The COL task reward aims to minimize the average Aol of WSs while flying the
UAVs as low as possible w.r.t. terrain altitude to save energy. The RTH task reward aims
to minimize the time to reach the DS for charging while minimizing the average Aol along
the way.

A.5 PARAMETER SETTINGS IN THE SIMULATION

This section includes four tables: Table [3]and Table f] present the environmental parameters and hy-
perparameters for the urban application, respectively. Table[5]and Table 6] present the environmental
parameters and hyperparameters for the agricultural application, respectively. The environmental
parameters are set according to real-world characteristics. The weight parameters are set so that
each constraint term is comparable with each other. The hyperparameters are tuned to achieve the
best training performance.

19



Under review as a conference paper at ICLR 2026

Table 3: Environmental Parameters for the Urban Application.

Symbol Definition Value | Unit | Symbol Definition Value Unit
PUz —min Task Space Left Edge 0 m PUz —max Task Space Right Edge 800 m
DUy —min Task Space Back Edge 0 m PUy—max Task Space Front Edge 800 m
PU»—min Task Space Bottom Edge 180 m PU» —max Task Space Top Edge 220 m
dend Advance End Task Distance 50 m Ve—max | « Dire. Maximum Velocity 8 m/s
Viy—max y Dire. Maximum Velocity 8 m/s V., —max z Dire. Maximum Velocity 8 m/s
Tend Maximum Mission Time 100 S TUAV UAV Number 2—6 -
nBs BS Number 3,4 - NIoT IoT Device Number [0, 100] -
€ Allocation Proportion 0.8 - BC Battery Capacity 155520 J
Pwemp Computation Power 20 \\% PWyt UAV Transmission Power 20 dBm
Pw,y, UAV Received Power 20 dBm Myav UAV Mass 0.2 kg
g Gravitational Acceleration 9.8 - Pair Air Density 1.225 kg/m?
Vth Hovering Speed Threshold 0.1 m/s Cyq Viscosity Coefficient 0.5 —
Nprp Propeller Number 4 - Ry Propeller Radius 0.1 m
n Mechanical Efficiency 0.8 - surf UAV Fuselage Area 0.01 m?
muLa ULA Horizontal Dimension 8 - TVWULA ULA Vertical Dimension 8 -
dura Element Distance 0.05 m O main Horizontal Main Lobe Dire. 0 °
¢main Vertical Main Lobe Dire. 80 ° c Light Speed 3e8 m/s
O34 Horizontal 3dB Beam-width 65 ° (G Vertical 3dB Beam-width 65 °©
element Antenna Element Gain 5 dB kg Boltzmann Constant 1.38e-23 -
Tk Temperature in Kelvin 298 K Bw Bandwidth 20 MHz
fBs BS Frequency 3.5 GHz Jror IoT Device Frequency 5.9 GHz
m Up-link Limitation 3 - Kend Discretized End Time 100 -
Table 4: Hyperparameters for the Urban Application.
Symbol Definition Value | Symbol Definition Value
i Weight Parameter for Length 1 a2 Weight Parameter for Flight Height 0.75
Qs Weight Parameter for SINR 2.5 Qy Weight Parameter for Energy Consumption | 0.1
Qs Weight Parameter for QoS 0.75 Qg Weight Parameter for Out and Collision 10
ar Weight parameter for safety risk | 0.1 as Partial Reward Weight 10
0 Discounted Factor 0.99 HN Normal Hidden Layers 3
T Learning Rate for Actor 10—° Tet Learning Rate for Total Reward Critic 10~
Tep Learning Rate for Partial Critic | 107° Bp PAN Training Batch Size 512
D Replay Buffer Size 216 B RL Training Batch Size 256
€Plmax Maximum Training Episode 1000 €POmax PAN Pre-training Maximum Epoch 100
13 Soft Update parameter 0.01 Kmax Maximum Timestep 100
rG Learning Rate for GNN 1073 Tp Learning Rate for PAN 10~*
S Scenario Number 3 X PMP Trace Number 30
Bp PAN Normalization Coefficient | 0.01 Ba GNN Normalization Coefficient 0.01

20



Under review as a conference paper at ICLR 2026

Table 5: Environmental Parameters for the Agricultural Application.

Symbol Definition Value | Unit | Symbol Definition Value Unit
PUg —min Task Space Left Edge 0 m PUgz—max Task Space Right Edge 400 m
PUy—min Task Space Back Edge 0 m PUy—max Task Space Front Edge 400 m
DU —min Task Space Bottom Edge 30 m PU2 —max Task Space Top Edge 150 m
dend Advance End RTH Distance 30 m Ve—max | = Dire. Maximum Velocity 10 m/s
Viy—max y Dire. Maximum Velocity 10 m/s V,—max | % Dire. Maximum Velocity 5 m/s
T Maximum COL Time 500 s e Maximum RTH Time 100 s
NUAV UAV Number 4 - nws WS Number 400 -
Aolax Maximum Aol of WSs 0.8 BC Battery Capacity 155520 J
Pwemp Computation Power 20 \\% Tupdate, Aol Updating Time 40,50,60 S
Pw,, UAV Received Power 30 dBm MUAV UAV Mass 0.2 kg
g Gravitational Acceleration 9.8 Pair Air Density 1.225 kg/m®
Vth Hovering Speed Threshold 0.1 m/s Cy Viscosity Coefficient 0.5 —
Nprp Propeller Number 4 R Propeller Radius 0.1 m
n Mechanical Efficiency 0.8 surf UAV Fuselage Area 0.01 m?
fe Signal Frequency 2.8 GHz dws Distance between WSs 20 m
Table 6: Hyperparameters for the Agricultural Application.
Symbol Definition Value | Symbol Definition Value
aq Aol Weight Parameter in Collection Task 2 Qa9 Penalty for visiting same grids 0.5
Qs Aol Weight Parameter in Return Task 0.1 Qy Motivation for Exploration 0.01
as Weight Parameter for flying out 10 vy Discounted Factor 0.99
Ta Learning Rate for Actor 1074 Tet Learning Rate for Critic 1075
T Learining rate for BPN 1075 Bp PAN Training Batch Size 512
D Replay Buffer Size 216 B RL Training Batch Size 128
€Plmax Maximum Training Episode 10000 | epomax | PAN Pre-training Maximum Epoch | 1000
13 Soft Update parameter 0.005 S Scenario Number 10
rG Learning Rate for GNN 1073 rp Learning Rate for PAN 10~
Bp PAN Normalization Coefficient 0.01 Ba GNN Normalization Coefficient 0.01

21




	Introduction
	Overview of FM-EAC
	Design of FM-EAC
	Enhanced Actor-Critic Framework
	GNN, PAN, and BPN Sub-networks

	Performance Evaluation
	Experimental Setup
	Comparative Study
	Ablation Study
	Inference Time Study
	Reasoning Study

	Related Works
	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Explanation of Demonstration Code
	General Description
	Detailed Description of Key Modules

	Scenario Description
	Urban Application Overview
	Urban Application Model Design
	Agricultural Application Overview
	Agricultural Application Model Design

	Markov Decision Process Formulation
	MDP for Urban Application
	MDP for Agricultural Application

	Parameter Settings in the Simulation


