PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for
Formal Theorem-Proving

George Tsoukalas' Jasper Lee' John Jennings' Jimmy Xin! Michelle Ding' Michael Jennings '
Amitayush Thakur ' Swarat Chaudhuri

Abstract

We present PUTNAMBENCH, a new multilin-
gual evaluation benchmark for formal theorem-
proving. PUTNAMBENCH consists of formaliza-
tions of problems sourced from the William Low-
ell Putnam Mathematical Competition, the pre-
mier undergraduate-level mathematics competi-
tion in North America. All the problem statements
come with formalizations in Lean 4 and Isabelle; a
substantial subset have Coq formalizations as well.
PUTNAMBENCH consists of 1337 hand-written
formalizations across the three proof assistants,
and aims to benchmark the next generation of
theorem-proving algorithms for competition math-
ematics. Proving the theorems requires significant
problem-solving ability and proficiency in a broad
range of topics taught in undergraduate mathemat-
ics courses. We evaluate several established neu-
ral and symbolic theorem provers using PUTNAM-
BENCH. These approaches can only solve a hand-
ful of the problems, establishing our benchmark
as a difficult open challenge for research on for-
mal theorem-proving. PUTNAMBENCH is avail-
able at https://github.com/trishullab/PUTNAM.

1. Introduction

Automating mathematical reasoning is a longstanding goal
in artificial intelligence. A prominent line of work on the
problem focuses on developing algorithms to produce proofs
in formal frameworks like Lean. These frameworks can
“execute” proofs like code, giving a high-confidence signal
as to correctness, and offer execution feedback, which can
be used to improve the quality of generated proofs.

The design of quality benchmarks is a key challenge in this

"Department of Computer Science, University of Texas at
Austin, Austin, USA. Correspondence to: George Tsoukalas
< george.tsoukalas @utexas.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

research area. The two most prominent datasets for bench-
marking theorem-proving methods for competition mathe-
matics are MINTF2F (Zheng et al., 2021) and FiMo0 (Liu
et al., 2023). The former formalizes problems drawn from
high-school mathematics competitions; the latter consists of
a collection of International Mathematics Olympiad (IMO)
shortlist problems. Both benchmarks have limitations. For
example, MINTF2F contains many “simple” problems that
can be immediately solved using an SMT-solver, and FIMO
only targets the Lean 3 framework, which is no longer ac-
tively maintained.

More generally, as large language models (LLMs) grow in
importance as a tool for neural theorem-proving, preventing
leakage from pretraining sets and evaluation sets is more
important than ever. This makes the continued supply of
new benchmarks an important goal.

In this paper, we respond to this challenge with PUTNAM-
BENCH, a new multilingual benchmark for neural theorem-
provers. PUTNAMBENCH includes formalizations of 514
problems appearing in the William Lowell Putnam Mathe-
matical Competition, a premier college-level mathematics
competition in the United States, between 1962 and 2023.
All our problems have a Lean 4 and Isabelle formaliza-
tion; a substantial fraction have formalizations in Coq as
well — a first for competition mathematics benchmarks for
theorem-proving. PUTNAMBENCH totals 1337 hand-crafted
formalizations across the three interactive theorem provers.

One key benefit of PUTNAMBENCH is that the Putnam
competition problems require a broad base of mathematical
knowledge and skills. In particular, because they target un-
dergraduate students, they cover topics such as analysis and
abstract algebra that do not appear in the International Math-
ematics Olympiad (IMO), a high school competition. At the
same time, success in the two competitions is correlated —
winners of the Putnam competition are often IMO medalists
as well. Hence, we assert that PUTNAMBENCH is aligned
with the IMO Grand Challenge and the AI Mathematical
Olympiad Prize, which are challenges for the research com-
munity to develop a theorem-proving algorithm which can
attain a gold medal at the IMO.

https://github.com/trishullab/PUTNAM

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

a I
theorem putnam_1988_b1 :
Va>2,Vb>2, dxyz: Z,
X>0ANy>0ANz>0A
axb=xxy+x*xz+yx*xz+1.:=
by

intro a ha b hb
use a -1, b-1,1
constructor
linarith
constructor
linarith
constructor
linarith

ring

- /

Figure 1: A formalization of Putnam 1988 B1 and its formal
proof in Lean 4, which asserts that for all integers a, b > 2,
there are positive integers x, y, z such that ab = xy + xz +
yz + 1. The proof introduces all relevant variables and
hypotheses with intro, indicates the choice of z, y, z with
use, and then solves all goals using automated tactics like
linarith and ring. This proof was discovered through a
few-shot invocation of GPT-4o.

We use PUTNAMBENCH to evaluate several neural and
symbolic approaches: Draft-Sketch-Prove (Jiang et al.,
2022b), COPRA (Thakur et al., 2024), GPT-4, Sledgeham-
mer (Paulson & Blanchette, 2015), and Coghammer (Czajka
& Kaliszyk, 2018). Collectively, these methods can only
solve a handful of the PUTNAMBENCH problems, establish-
ing PUTNAMBENCH as a hard open challenge for the neural
theorem-proving community.

2. Background

Formal Theorem-Proving. Formal proof frameworks
like Lean 4 (Moura & Ullrich, 2021), Coq (Huet et al.,
1997), and Isabelle (Wenzel et al., 2008) allow users to
write machine-verifiable proofs of mathematical theorems.
To create such a proof, one first uses a framework-specific
language to formally state the target theorem. The mathe-
matical objects referenced in the theorem can be imported
from an existing repository or defined by the user. During
the proof process, the proof framework maintains a state
that includes information about the parts of the proof that
remain to be completed. One can change this state by exe-
cuting a proof step. The user’s goal is to write a sequence
of proof steps (in the framework’s language) that changes
the proof state to a special state “QED” in which there are
no unmet proof obligations.

Figure 1 illustrates a theorem and proof in the Lean 4 frame-
work.

The Putnam Competition. The William Lowell Putnam
Mathematical Competition, organized by the Mathematical
Association of America (MAA), is the premier collegiate
mathematics competition in North America. Thousands of
undergraduate students from universities across the United
States and Canada take the exam each year. The competi-
tion comprises two 3-hour-long sessions of six problems
each, presented in approximately ascending order of diffi-
culty within each session. While some problems require
competitors to furnish a concrete solution (such as a number,
a set, or the truth value of a given statement), all problems
require a natural-language proof of correctness. The contest
draws from a wide variety of topics in the undergraduate cur-
riculum, often using instances of ideas from research-level
mathematics.

3. PUTNAMBENCH

PUTNAMBENCH is a multilingual evaluation benchmark
consisting of formalized problems from the Putnam compe-
tition. PUTNAMBENCH is a manually produced benchmark,
including 514 formalizations in Lean 4 and Isabelle, and 309
formalizations in Coq. In aggregate, PUTNAMBENCH con-
tains 1337 formalizations of Putnam competition problems.
We also incorporate the informal statements and numerical
solutions where applicable.

Now we elaborate on the main features of PUTNAMBENCH.

Diversity and Breadth. Compared to MINIF2F and
FiMo, which generally relies on high-school mathemat-
ics, PUTNAMBENCH incorporates a wider variety of prob-
lems which require definitions of the standard undergradu-
ate mathematics curriculum. The PROOFNET benchmark
(Azerbayev et al., 2023) also sources problems from the
undergraduate curriculum, but are generally from standard
textbooks as opposed to mathematical competitions. Fur-
thermore, we find that Putnam problems often require con-
cepts from multiple fields, which standard textbooks do not
necessarily target. Formalizations in PUTNAMBENCH in-
clude concepts from a wide range of mathematical fields,
including: (i) Analysis: Limits, integrals, derivatives, conti-
nuity; (ii) Linear Algebra: Matrices, determinants, fields;
(iii) Abstract Algebra: Rings, groups, magmas, permuta-
tions; (iv) Algebra: Polynomials, inequalities, algebraic
expressions; (v) Number Theory: Primes, irrationality, base
representations, divisors, palindromes; (vi) Geometry: Poly-
gons, point sets, line intersections, Euclidean distance; (vii)
Set Theory & Combinatorics: Countability, power sets,
discrete structures, counting.

Multilinguality. PUTNAMBENCH contains formaliza-
tions of Putnam problems in Lean 4, Isabelle, and Coq. The
formalizations also include concepts defined in each proof

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

Table 1: Comparison of existing formal theorem proving evaluation benchmarks.

Benchmark # Problems Natural Language Lean Isabelle Coq Solution Separated
MINIF2F 488 v e v

PROOFNET 371 v v N/A

FimMo 149 v e

PUTNAMBENCH 514 v v v vai v

assistant’s mathematical repositories — notably, Mathlib,
the HOL standard library, and Coquelicot (among various
Coq repositories). To the best of our knowledge, PUTNAM-
BENCH is the first undergraduate-level competition bench-
mark for each of these languages. Furthermore, we are the
first to produce a human mathematics competition-style eval-
uation benchmark for Coq. We hope that this contribution
can enable Coq practitioners access to the rapidly-growing
field of machine learning for mathematics.

Generally, the formalizations of the problems are aligned
in their structure, including hypothesis naming and framing.
Differences may arise according to the underlying founda-
tions of each language. We also note that the pre-defined
mathematical theory in each language differs, which can
sometimes lead to difficulties formalizing certain problems.

Compared to the prior benchmarks MINTF2F, FIMO, and
PROOFNET, PUTNAMBENCH is the first to support Lean 4
on initial release *.

Factored solutions. Roughly 60% of Putnam problems,
in their natural language form, require exhibiting a (closed-
form) solution along with a proof of its correctness. Such
problems are not immediately formalizable as they are not
directly the statement of a theorem. Prior benchmarks such
as MINIF2F sidestep this issue by rewording the problem
statement to ask for a proof that the solution satisfies the con-
straints of the problem. However, this reduction diminishes
the overall difficulty of the problem, as producing a solution
can constitute the majority of its difficulty. To address this
issue, we factor solutions out of such problems from the
formalized theorem statement. We include examples in the
Appendix A. In this way, we provide two tasks for neural
theorem proving:

e Task 1: Given the theorem statement, first identify
the (closed-form) solution, and then provide a proof of
correctness by rewriting the solution into the theorem
statement.

e Task 2: Given the theorem statement and solution,

*MINIF2F, FIMO, and PROOFNET were originally released
using Lean 3, and some have been updated to include Lean 4 for-
malizations following community efforts Azerbayev et al. (2023);
Vishwakarma et al. (2024).

produce a proof of its correctness. This task aligns
with the current benchmarks.

In this way, our formalizations can reflect the true difficulty
of the informal problem statement. We note that the pro-
cess of producing the numerical solution may be highly
correlated with the proof of its correctness.

Additionally, we mention that much like ProofNet, PUT-
NAMBENCH can be applied for measuring autoformalization
capabilities of current LLMs. We believe such investiga-
tions can be especially enlightening towards understanding
the ability of LLMs to combine concepts from multiple
domains.

Formalization effort and challenges. Our formalization
effort was carried out over several months and was per-
formed by a group of graduate students and undergraduate
students with experience in both university mathematics
and computer science. We found that the average time-to-
formalize a single problem in one language was roughly 25
minutes. Each formalization was verified at least once, and
we measured that the verification of a single formalization
took 10 minutes on average. We acknowledge that the time-
to-formalize we report is higher than that of MINIF2F; we
believe this is largely due to the increased complexity of
the Putnam problems, which oftentimes require definitions
we must locate in each language’s respective mathematical
libraries.

We first produced formalizations in Lean 4, and then pro-
ceeded with our formalization effort in Isabelle and then
Coq . Due to differences in the underlying foundations of
each language, we found that formalizations in one language
sometimes do not directly transfer to another; for example,
Isabelle does not have a subtyping mechanism, which we
made extensive use of in Lean 4. Formalizations in Coq
had an added difficulty: Coq lacks an expansive unified li-
brary such as Mathlib and the HOL Library, which we make
extensive use of in Lean 4 and Isabelle respectively. Our
Coq formalizations rely on eight mathematics repositories:
Stdlib, Mathcomp, Mathcomp-analysis, Coquelicot, Stdpp,

"PUTNAMBENCH currently features 309 formalizations in Coq
and continues to expand as we navigate formalization obstacles
specific to Coq.

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

-

4 N

c(3SCX, SEDA
dm: Z, I[m+ X s in S, s|
<17 (n+ 1))

- /

(dm:: int.

\

(b) theorem putnam_2006_b2:

(a) theorem putnam_2006_b2 :;ze)s(rl:i’rZZ{ set” forall (n: nat) (X: list R)
(n : N) o T " , length X = n ->

(npos i > 0) Z;Zumiza:zc:)s' n>o exists (pres§: R -> Prop)
(X : Finset R)) "Finite X A card X = n” (m: Z) (S: list R),

(hXcard : X.card = n) (forall (x: R), In x S <->

shows "3 S C X. (S #{}) A

im+ (X s € S. s)|
<17 (n+ 1)

N ~

(c) Theorem putnam_2006_b2:

(In x X /\ presS x)) /\
Rabs (IZR m +
(fold_left Rplus S 0))
<=1/ 1INR (n+ 1).

PN J

Figure 2: Formalizations of Putnam 2006 B2 in (a) Lean 4, (b) Isabelle, (c) Coq. Putnam 2006 B2 asserts that given a finite
subset X C R with | X| = n > 0, there is a nonempty subset S C X and an m € Z such that |m + > g 5] < n%rl

GeoCoq, Coqtail, and Cogeal. Some problems may require
definitions from multiple of these repositories, which can
be incompatible.

Some problems are not naturally amenable to formaliza-
tion. We found that while formalizing problems involving
probability is possible, such formalizations often require
heavy probability theory which does not reflect the spirit
of the informal problem statement. Similarly, support for
problems involving Euclidean geometry varies among each
language; for example, Lean 4 does not yet have a suffi-
ciently extensive library to make most geometry problems
formalizable. By contrast, Coq has an extensive geome-
try repository called GeoCoq, which we utilize in our Coq
formalizations.

Licensing and Rules of Engagement. PUTNAMBENCH
is available under an Apache 2.0 license for Lean 4 and
Isabelle, and under an MIT license for Coq. We align the
licenses with those of the repositories we use for each lan-
guage. With permission from the Mathematical Association
of America, we also include the informal statements as
sourced from the official Putnam archives (Alexanderson
et al., 1985; Kedlaya et al., 2002; 2020).

4. Experimental Evaluation

To understand the challenges that PUTNAMBENCH poses for
state-of-the-art theorem-proving approaches, we attempt to
solve its problems using a suite of such approaches. Given
the relative lack of tailored systems for multilingual theorem-
proving, we run evaluations for each language separately.
Any method that is evaluated on multiple languages is based
on off-the-shelf foundation models.

Metrics. Our evaluation is based on the pass@n (Lample
et al., 2022) metric. This metric measures a prover’s ability
to produce a successful proof, as determined by the formal
proof environment, given a budget of n proof attempts. In

search-based methods (Thakur et al., 2024), each proof
attempt involves a distinct search that can query a neural
model multiple times.

Models. For each of the languages, we perform evaluations
using GPT-4 (OpenAl, 2023) ¥, a highly capable founda-
tion model. We run evaluations using in-context learning,
appending several examples of successful proofs of simple
theorems in each language. For evaluations with Lean 4 ap-
proaches, we note that many approaches have targeted Lean
3, which is not backward-compatible and no longer actively
maintained. We additionally evaluate COPRA (Thakur et al.,
2024) on PUTNAMBENCH, modifying the prompt examples
of COPRA to enable search in Lean 4.

For our Isabelle experiments, we run evaluations of Draft,
Sketch, and Prove (DSP) (Jiang et al., 2022b) using GPT-
4 as the underlying foundation model, noting that many
further works for theorem-proving in Isabelle have extended
on the DSP pipeline as we mention in Section 5. We also run
evaluations using stand-alone invocations to Sledgehammer,
a powerful symbolic automation tool in Isabelle that relies
on calls to external SMT solvers.

As for our Coq experiments, prior neural approaches for Coq
have mostly targeted software verification tasks, as opposed
to competition mathematics. As a result, our Coq experi-
ments use COPRA, which also supports theorem-proving in
Coq. We also run evaluations using CoqgHammer (Czajka &
Kaliszyk, 2018), a tool similar to Isabelle’s Sledgehammer,
which makes calls to external constraint solvers.

4.1. Results

Lean4. We prompt GPT-4 in a pass@10, setting tempera-
ture 7' = 0.7 and using several examples of simple theorems
and proofs, to generate a proof for each problem. The result
of this experiment yields a single successful proof across all

*We use GPT-4o for all our evaluations

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

PUTNAMBENCH: Isabelle

PUTNAMBENCH: Lean

PUTNAMBENCH: Coq

Method Success Rate Method Success Rate
Method Success Rate

GPT-4 0/514 GPT-4 1/309
gg,ﬁ R ig}j DSP 2514 COPRA 1/309

Sledgehammer 3/514 CogHammer 0/309

Table 2: Results of evaluations on PUTNAMBENCH in each language. We find that all tested methodologies perform poorly,
solving at most a handful of problems. Notably, the only problem solved in both Lean and Coq is Putnam 1988 B1, which is
not solved by any method in Isabelle. Symbolic automation proves to be powerful in Isabelle, with Sledgehammer solving
the most problems. DSP generates more than one successful proof, one of which cannot be generated by Sledgehammer

alone.

514 Lean formalizations. The problem (Putnam 1988 B1)
and the generated proof are given in Figure 1. In particular,
Putnam 1988 B1 is solved on the first of 10 attempts. An
example of a failure mode of GPT-4 is given in Figure 17.

We also run evaluations with COPRA, using their default
hyperparameters for search, performing a pass@1, and al-
lowing 60 queries to GPT-4. However, since COPRA was
originally designed for interaction with Lean 3, we modify
its system prompt to enable search in Lean 4. The result of
the step-wise proof search over all Lean 4 formalizations
yields a correct proof to one problem (1988 B1). We find
that backtracking in the search was not required for this
proof, which was 10 lines long and was found at the 10th
query. It is possible that affording COPRA further queries
to GPT-4 can yield more successful proofs, though it is not
yet feasible to perform such an experiment due to the cost
of queries to GPT-4.

We found that, by default, GPT-4 produces proofs using
Lean 3 syntax, which is not compatible with Lean 4. Even
when directed to produce outputs in Lean 4, GPT-4 typically
continues to produce outputs in Lean 3. Our prompt, which
we include in Figure 15, elucidates some design differences
in Lean 4 to better enforce compliance with the Lean 4
syntax. However, we noticed many examples where GPT-
4 continues to output terms in Lean 3 syntax. One such
example is given in Figure 21.

Isabelle. We run GPT-4 using the same configuration,
with modified prompts for Isabelle, on our Isabelle formal-
izations. We find that GPT-4 is incapable of furnishing suc-
cessful proofs to any of the problems in PUTNAMBENCH.

DSP represents a neurosymbolic methodology which
has seen significant application for theorem-proving in
MINIF2F. We run DSP with pass@10, using temperature
T = 0.1 and GPT-4 as the underlying language model. Our
evaluation yields two successful proofs: one of Putnam 2001
A1, a problem involving magmas (sets with a binary opera-
tion), and one of Putnam 1995 A1, a problem involving a
closed-under-multiplication subset of the reals. In particular,
Putnam 1995 A1 cannot be solved by Sledgehammer alone.

4 Putnam 2001 A1l. Consider a set S and a binary op—\
eration =, i.e., for each a,b € S, a xb € 5. Assume
(axb)*a = bforalla,b € S. Prove that a* (b*a) = b

forall a,b € S.
o ’ %
4 N
theorem putnam_2001_a1:
fixes op :: "'a = 'a = 'a"

assumes hop : "Va b :: 'a.
op (op ab) a=Db"
shows "Va b :: 'a. op a (op b a) =b"

proof -
{
fixab :: 'a
have "op (op a (op b a)) a = op b a” using
hop by simp
then have "op a (op b a) = b"” using hop by
metis
}
then show ?thesis by simp
ged
o %

Figure 3: A formalization of Putnam 2001 Al in Isabelle
and the corresponding proof discovered by our evaluation
with DSP. Sledgehammer alone can also produce a success-
ful proof to this theorem.

The generated proof is included in Figure 3.

We run a baseline using Sledgehammer, a powerful automa-
tion tool in Isabelle which makes calls to external SMT
solvers to prove a given goal. With a set timeout of ¢ = 120
seconds, we run Sledgehammer on each Isabelle formaliza-
tion. The result of this evaluation is 3 successfully proven
problems: Putnam 1971 B1, 2001 A1, and 2012 A2. No-
tably, all of these problems are statements about sets with
binary operations. We include the statements of 1971 B1
and 2012 A2 in Figure 20.

Coq. We run GPT-4 with a Cog-based prompt on our Coq
formalizations using the same configuration as in Lean and
Isabelle. The result of the experiment is 1 solved problem,
namely Putnam 1988 B1, which was also solved in Lean 4.
The proof, which we include in Figure 13, generally follows

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

the same structure as the proof in Lean.

An evaluation with COPRA, in a pass@1-with-60-queries
and T = 0.0 also yields a successful proof only for Putnam
1988 B1 which we include in Figure 13. In this case, back-
tracking was crucial for proof search on this problem. The
crucial step in 1988 B1 is the choice of z,y, 2 once a and
b have been introduced. Initially, COPRA predicts the er-
roneous choice z,y, z = 1,1, ab — 1 and eventually reverts
this choice using backtracking. Afterwards, COPRA pre-
dicts a correct choice x,y,z = 1,a — 1,b — 1 and proceeds
with the proof.

We run CogHammer with 8 parallel threads using an ATP
timeout of 100 seconds, proof reconstruction timeout of 15
seconds, and sauto timeout of 5 seconds, for a total of 120
seconds allocated for each formalization. The evaluation
yields no successful proofs — indicating that symbolic tools
in Coq are not yet capable of handling PUTNAMBENCH
problems. It is not surprising that CogHammer does not
match the performance of Sledgehammer even though they
rely on the same external solvers. The underlying logical
system of Coq is more complex than that of Isabelle and is
hence less amenable to automation.

4.2. General Analysis

Aggregating over all experiments performed in all lan-
guages, we find that a total of 5 problems in PUTNAM-
BENCH are successfully proven. A majority of these come
from evaluations in Isabelle, particularly with strong con-
tributions from Sledgehammer. Sledgehammer can solve
all three problems involving magmas which appear in our
benchmark but fails to produce successful proofs for any
other formalization. DSP solves an additional problem and
relies heavily on Sledgehammer to fill in the proofs of inter-
mediate steps. The single problem solved in Lean and Coq
also makes use of automated tactics like 1inarith and lia,
and requires only a single crucial step.

Hence, we find that a few PUTNAMBENCH problems are
not entirely intractable using current methods. However,
anecdotally, these problems are among the easiest ever in-
cluded in the Putnam competition. All admit a very short
natural language proof and do not require reasoning about
particularly complicated objects. We believe that signifi-
cant advancements in automated mathematical reasoning
are required to make progress on PUTNAMBENCH.

5. Related Works

Formal Benchmarks. Several evaluation benchmarks for
formal mathematics have been developed in recent years.
MINIF2F (Zheng et al., 2021) is a formal-to-formal bench-
mark of competition problems, sourced from high school
competitions such as the AMC, AIME, and IMO. MINIF2F

is a multilingual benchmark, comprising of 488 problems
each formalized in Lean 3, Metamath, Isabelle and HOL
Light. We chose not to include formalizations in Metamath
and HOL Light as they have not been the focus of attention
for neural theorem-proving. A similar competition-style
benchmark is FIMO (Liu et al., 2023), which contains 149
formalizations of IMO shortlist problems in Lean 3, gen-
erated automatically using LLMs and then verified via hu-
mans. Notably, their provided evaluation with GPT-4 yields
no solved problems. This indicates that such problems may
be out of the grasp of current techniques. Oftentimes in-
formal problem statements from such competitions require
a closed-form solution to be exhibited, and do not ask for
a proof-of-correctness. Both benchmarks are designed to
measure certifying the solution to the informal problem
statement when one exists. Compfiles is a collection of 171
Lean 4 formalizations of competition problems, predomi-
nantly from the IMO and USAMO, often accompanied by a
formal proof, which has not seen use in benchmarking auto-
mated theorem provers. ProofNet (Azerbayev et al., 2023)
introduced a benchmark of 371 exercises, formalized in
Lean3, from popular textbooks in the standard undergradu-
ate mathematics curriculum. While largely not competition-
based, problems in ProofNet draw from a broader library
of concepts than MINIF2F and FIMO, which rely only on
high-school mathematics. LeanDojo (Yang et al., 2023)
introduces a dataset of formal mathematics and proofs de-
rived from Lean’s Mathlib library (mathlib Community,
2020), and trains a retrieval-augmented model towards gen-
erating proofs on their held-out test set. ProverBot9001
(Sanchez-Stern et al., 2020) introduced a dataset for the-
orems and proofs written in Coq derived from CompCert
(Leroy, 2009), a formally verified C compiler. PISA (Jiang
et al.) is a dataset derived from Isabelle’s Archive of For-
mal Proofs (Arc), which contains theorems and proofs from
general mathematics as opposed to specifically competition
problems.

Informal Benchmarks. Several popular datasets for
benchmarking natural language reasoning for mathemat-
ics exist. MATH (Hendrycks et al., 2021) is a collection
of 12,500 mathematics problems, in natural language only,
sourced from various high school competitions addition-
ally supplied with step-by-step informal proofs. MATH is
split into a training dataset of 7,500 problems, and a test-
ing split of 5,000 problems. Notably, a “solution” to each
problem is an answer, represented as a closed-form numer-
ical value which can be checked against the known value.
GSMSK (Cobbe et al., 2021) is a collection of 8,500 grade
school mathematics problems, intended to benchmark nat-
ural language reasoning for mathematics-style problems.
NaturalProofs (Welleck et al., 2021) collects a dataset of
informal theorems and proofs scraped from the internet and
evaluates transformer-based architectures for retrieval and

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

generation tasks. Lu et al. (2024) introduces a benchmark
of 6,141 examples for evaluating visual reasoning for math-
ematical tasks. While benefiting from the abundance of
natural language data, these benchmarks fall short, since
in natural language, there is no automatic mechanism for
certifiable verification of the reasoning path which yielded
the numerical answer. For this reason, metrics for success
on these benchmarks usually rely on exact-answer match,
because verifying reasoning paths is imprecise and is best
done by human experts. By contrast, theorem proving in
formal proof assistants comes with a high-confidence signal
for correctness of the reasoning path, or proof, of a theorem.

Methods for Formal Theorem-Proving. Significant ef-
fort has been spent on developing automatic theorem-
provers for formal mathematics (Li et al., 2024). Most
recent efforts train a neural module to perform proof-step
prediction, which is then wrapped in a search mechanism
to locate a valid proof. GPT-f (Polu & Sutskever, 2020)
trains a transformer-based architecture on data derived from
the Metamath library (Megill & Wheeler, 2019) for proof
synthesis. PACT expands on GPT- f by incorporating auxil-
iary training tasks for the neural module towards theorem-
proving in Lean 3. FMSCL (Polu et al., 2022) alternates
proof-search and training to finetune their neural model
based on proofs found during search. HTPS (Lample et al.,
2022) uses a transformer-based neural module in an online,
MCTS-inspired proof search in Lean 3 and Metamath. CO-
PRA (Thakur et al., 2024) uses GPT-4 supplied with error
feedback from the environment and lemmas from a retrieval
mechanism for an agentic proof-search in Lean 3 and Coq.
LLEMMA (Azerbayev et al., 2024) continues pretraining of
Code Llama on a mathematics-based corpus dubbed Proof-
Pile-2, and uses their learned model for formal proof search
in Lean 4. DeepSeek-Prover (Xin et al., 2024) produces
synthetic Lean data en-masse for training their prover model.
AlphaGeometry (Trinh et al., 2024) targets IMO problems in
a geometry-specific proof assistant language using an inter-
leaving search, where a neural module synthesizes auxiliary
constructions and a symbolic engine produces deductive
closures.

The Isabelle proof assistant (Paulson, 1994), given its declar-
ative nature and powerful symbolic automation, has too
been the focus of much attention for neural theorem prov-
ing. Isabelle features Sledgehammer (Paulson & Blanchette,
2015), an automated reasoning tool which calls external au-
tomated theorem provers (ATPs) for proof synthesis. Draft,
Sketch, Prove (DSP) (Jiang et al., 2022b) uses a high-caliber
LLM to generate natural language proofs and converts them
into formal sketches in Isabelle, whose gaps are then filled
using Sledgehammer. Zhao et al. (2023) employed a diffu-
sion model to predict an optimal ordering of the few-shot
examples provided to the LLM in the DSP pipeline. Lyra

(Zheng et al., 2023) utilized error-feedback from Isabelle’s
execution to modify holes in the sketch which were too
difficult for the symbolic prover. POETRY (Wang et al.,
2024) leverages recursion for theorem-proving and trains
a neural module to produce proof sketches, as opposed
to using in-context learning with an LLM. LEGO-Prover
(Wang et al., 2023) extends the pipeline by incorporating a
skill library which grows throughout the proof search task.
Separate from approaches utilizing natural language proofs,
Thor (Jiang et al., 2022a) trains a transformer-based archi-
tecture to predict successful invocations of Sledgehammer,
along with the usual proof-step objective. Baldur (First
et al., 2023) explored repairing erroneous proofs in Isabelle
through the use of LLMs.

The Coq interactive theorem prover has seen use in both
software verification and general mathematics. Famously,
mechanized proofs of the Four Colour Theorem (Robert-
son et al., 1997) and the Feit-Thompson theorem (Gonthier
et al., 2013a) were produced in Coq. Similarly, numer-
ous software verification projects have been undertaken in
Coq, such as CompCert (a formally verified C compiler) and
Verdi (Gonthier et al., 2013b) (a framework for verifying dis-
tributed systems protocols). ASTactic (Yang & Deng, 2019)
trained a neural module involving recurrent networks and
attention on data collected from various Coq repositories.
Proverbot9001 (Sanchez-Stern et al., 2020) targeted proof
synthesis on a set of held-out theorems from the CompCert
project. COPRA (Thakur et al., 2024) also evaluates on this
CompCert-based task using their multilingual approach.

6. Conclusion

We presented PUTNAMBENCH, a benchmark for neural
theorem-proving consisting of formalizations of Putnam
competition problems. A distinctive feature of PUTNAM-
BENCH is that it spans a broad range of undergraduate-level
mathematical topics, including algebra, analysis, and num-
ber theory. Another unique benefit is that it includes prob-
lems in Lean 4, Isabelle, and Coq, the three most popular
formal proof frameworks.

As our experiments show, PUTNAMBENCH is a challeng-
ing benchmark: all current theorem-proving approaches
fail to solve more than a handful of its problems. We be-
lieve that these failures have two root causes: (i) While
current theorem-provers can effectively stitch together stan-
dard proof steps well-represented in the training corpus,
they often fail at synthesizing new lemmas and orchestrat-
ing these lemmas into complex proofs. (ii) Current methods
often fail to leverage the deep knowledge available in math-
ematics repositories. Developing a new generation of neural
theorem-provers in which these weaknesses are at least
partly addressed is an exciting direction of future research.

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

7. Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Archive of Formal Proofs — isa-afp.org. https://www.
isa-afp.org/. [Accessed 25-05-2024].

Alexanderson, G., Klosinski, L., and Larson, L. The William
Lowell Putnam Mathematical Competition: Problems
and Solutions, 1965-1984. MAA problem books se-
ries. Mathematical Association of America, 1985. ISBN
9780883854419. URL https://books.google.com/
books?id=mvOoAQAAMAAT.

Azerbayev, Z., Piotrowski, B., Schoelkopf, H., Ayers, E. W,
Radeyv, D., and Avigad, J. Proofnet: Autoformalizing and
formally proving undergraduate-level mathematics, 2023.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,
McAleer, S., Jiang, A. Q., Deng, J., Biderman, S., and
Welleck, S. Llemma: An open language model for math-
ematics, 2024.

Challenge, I. G. IMO Grand Challenge — imo-grand-
challenge.github.io. https://imo-grand-challenge.
github.io/. [Accessed 01-06-2024].

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021.

Competition, W.-L. P. M. William Lowell Put-
nam Mathematical = Competition — Mathe-
matical Association of America — maa.org.

https://maa.org/math-competitions/
william-lowell-putnam-mathematical-competition.
[Accessed 25-05-2024].

Compfiles. GitHub - dwrensha/compfiles: Catalog Of Math
Problems Formalized In Lean — github.com. https://
github.com/dwrensha/compfiles. [Accessed 25-05-
2024].

Cogeal. GitHub - cog-community/cogeal: = The
Coq Effective Algebra Library [maintain-
ers=@CohenCyril, @proux01] — github.com.

https://github.com/coqg-community/coqgeal.
[Accessed 01-06-2024].

Coqtail. GitHub - whonore/Coqtail: Interactive Coq Proofs
in Vim — github.com. https://github.com/whonore/
Cogtail. [Accessed 01-06-2024].

Coquelicot. GitHub - thery/coquelicot — github.com.
https://github.com/thery/coquelicot. [Accessed
01-06-2024].

Czajka, L. and Kaliszyk, C. Hammer for coq: Automa-
tion for dependent type theory. Journal of automated
reasoning, 61:423-453, 2018.

First, E., Rabe, M. N., Ringer, T., and Brun, Y. Baldur:
whole-proof generation and repair with large language
models. arXiv preprint arXiv:2303.04910, 2023.

GeoCoq. GitHub - GeoCoq/GeoCoq: A formalization
of geometry in Coq based on Tarski’s axiom system
— github.com. https://github.com/GeoCoq/GeoCoqg.
[Accessed 01-06-2024].

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen,
C., Garillot, F., Le Roux, S., Mahboubi, A., O’Connor,
R., Ould Biha, S., Pasca, 1., Rideau, L., Solovyev, A.,
Tassi, E., and Théry, L. A machine-checked proof of
the odd order theorem. In Blazy, S., Paulin-Mohring, C.,
and Pichardie, D. (eds.), Interactive Theorem Proving,
pp- 163-179, Berlin, Heidelberg, 2013a. Springer Berlin
Heidelberg. ISBN 978-3-642-39634-2.

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen,
C., Garillot, F., Le Roux, S., Mahboubi, A., O’Connor,
R., Ould Biha, S., Pasca, 1., Rideau, L., Solovyev, A.,
Tassi, E., and Théry, L. A machine-checked proof of
the odd order theorem. In Blazy, S., Paulin-Mohring, C.,
and Pichardie, D. (eds.), Interactive Theorem Proving,
pp. 163-179, Berlin, Heidelberg, 2013b. Springer Berlin
Heidelberg. ISBN 978-3-642-39634-2.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset, 2021.

Huet, G., Kahn, G., and Paulin-Mohring, C. The coq proof
assistant a tutorial. Rapport Technique, 178, 1997.

Jiang, A. Q., Li, W,, Han, J. M., and Wu, Y. Lisa: Language
models of isabelle proofs.

Jiang, A. Q., Li, W., Tworkowski, S., Czechowski, K.,
Odrzyg6zdz, T., Milos, P., Wu, Y., and Jamnik, M. Thor:
Wielding hammers to integrate language models and au-
tomated theorem provers, 2022a.

Jiang, A. Q., Welleck, S., Zhou, J. P, Li, W,, Liu, J., Jamnik,
M., Lacroix, T., Wu, Y., and Lample, G. Draft, sketch,
and prove: Guiding formal theorem provers with informal
proofs. arXiv preprint arXiv:2210.12283, 2022b.

Kedlaya, K., Poonen, B., Vakil, R., and of America, M. A.
The William Lowell Putnam Mathematical Competition
1985-2000: Problems, Solutions and Commentary. MAA

https://www.isa-afp.org/
https://www.isa-afp.org/
https://books.google.com/books?id=mv0oAQAAMAAJ
https://books.google.com/books?id=mv0oAQAAMAAJ
https://imo-grand-challenge.github.io/
https://imo-grand-challenge.github.io/
https://maa.org/math-competitions/william-lowell-putnam-mathematical-competition
https://maa.org/math-competitions/william-lowell-putnam-mathematical-competition
https://github.com/dwrensha/compfiles
https://github.com/dwrensha/compfiles
https://github.com/coq-community/coqeal
https://github.com/whonore/Coqtail
https://github.com/whonore/Coqtail
https://github.com/thery/coquelicot
https://github.com/GeoCoq/GeoCoq

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

Problem Book Series. Mathematical Association of Amer-
ica, 2002. ISBN 9780883858073. URL https://books.
google.com/books?id=AA-10ATnPDcC.

Kedlaya, K., Kane, D., Kane, J., and O’Dorney, E. The
William Lowell Putnam Mathematical Competition 2001—
2016: Problems, Solutions, and Commentary. Problem
Books. American Mathematical Society, 2020. ISBN
9781470454272. URL https://books.google.com/
books?id=QwGWzQEACAAJ.

Lample, G., Lacroix, T., Lachaux, M.-A., Rodriguez, A.,
Hayat, A., Lavril, T., Ebner, G., and Martinet, X. Hyper-
tree proof search for neural theorem proving. Advances
in Neural Information Processing Systems, 35:26337—
26349, 2022.

Leroy, X. Formal verification of a realistic compiler.
Commun. ACM, 52(7):107-115, jul 2009. ISSN 0001-
0782. doi: 10.1145/1538788.1538814. URL https:
//doi.org/10.1145/1538788.1538814.

Li, Z., Sun, J., Murphy, L., Su, Q., Li, Z., Zhang, X., Yang,
K., and Si, X. A survey on deep learning for theorem
proving, 2024.

Liu, C., Shen, J., Xin, H., Liu, Z., Yuan, Y., Wang, H., Ju,
W., Zheng, C., Yin, Y., Li, L., Zhang, M., and Liu, Q.
Fimo: A challenge formal dataset for automated theorem
proving, 2023.

Lu, P, Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi, H.,
Cheng, H., Chang, K.-W.,, Galley, M., and Gao, J. Math-
vista: Evaluating mathematical reasoning of foundation
models in visual contexts, 2024.

Mathcomp. GitHub - math-comp/math-comp: Mathemati-
cal Components — github.com. https://github.com/
math-comp/math-comp. [Accessed 01-06-2024].

mathlib Community, T. The lean mathematical li-
brary. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and
Proofs, POPL °20. ACM, January 2020. doi: 10.
1145/3372885.3373824. URL http://dx.doi.org/10.
1145/3372885.3373824.

Megill, N. D. and Wheeler, D. A. Metamath: A Computer
Language for Pure Mathematics, 2019. URL http:
//us.metamath.org/downloads/metamath.pdf.
http://us.metamath.org/downloads/metamath.pdf.

Moura, L. d. and Ullrich, S. The lean 4 theorem prover
and programming language. In Automated Deduction—
CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12—15, 2021, Proceedings
28, pp. 625-635. Springer, 2021.

OpenAl. Gpt-4 technical report, 2023.

Paulson, L. and Blanchette, J. Three years of experience
with sledgehammer, a practical link between automatic
and interactive theorem provers. 02 2015. doi: 10.29007/
tnfd.

Paulson, L. C. Isabelle: A generic theorem prover. Springer,
1994.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, 1.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning, 2022.

Prize. AIMO Prize — aimoprize.com.
aimoprize.com/. [Accessed 01-06-2024].

https://

Robertson, N., Sanders, D., Seymour, P., and Thomas,
R. The four-colour theorem. Journal of Combi-
natorial Theory, Series B, 70(1):2-44, 1997. ISSN
0095-8956. doi: https://doi.org/10.1006/jctb.1997.
1750. URL https://www.sciencedirect.com/
science/article/pii/S0095895697917500.

Sanchez-Stern, A., Alhessi, Y., Saul, L., and Lerner, S. Gen-
erating correctness proofs with neural networks. In Pro-
ceedings of the 4th ACM SIGPLAN International Work-
shop on Machine Learning and Programming Languages,
pp- 1-10, 2020.

Thakur, A., Tsoukalas, G., Wen, Y., Xin, J., and Chaud-
huri, S. An in-context learning agent for formal theorem-
proving, 2024.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476-482, 2024.

Vishwakarma, R., Monticone, P., and Niser, A. GitHub
- rahul3613/ProofNet-lean4: ProofNet dataset ported
into Lean 4 — github.com. https://github.com/
rahul3613/ProofNet-1ean4, 2024. [Accessed 01-06-
2024].

Wang, H., Xin, H., Zheng, C., Li, L., Liu, Z., Cao, Q.,
Huang, Y., Xiong, J., Shi, H., Xie, E., Yin, J., Li, Z., Liao,
H., and Liang, X. Lego-prover: Neural theorem proving
with growing libraries, 2023.

Wang, H., Xin, H., Liu, Z., Li, W,, Huang, Y., Lu, J., Yang,
Z., Tang, J., Yin, J., Li, Z., and Liang, X. Proving theo-
rems recursively, 2024.

https://books.google.com/books?id=AA-lOA1nPDcC
https://books.google.com/books?id=AA-lOA1nPDcC
https://books.google.com/books?id=QwGWzQEACAAJ
https://books.google.com/books?id=QwGWzQEACAAJ
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp
http://dx.doi.org/10.1145/3372885.3373824
http://dx.doi.org/10.1145/3372885.3373824
http://us.metamath.org/downloads/metamath.pdf
http://us.metamath.org/downloads/metamath.pdf
https://aimoprize.com/
https://aimoprize.com/
https://www.sciencedirect.com/science/article/pii/S0095895697917500
https://www.sciencedirect.com/science/article/pii/S0095895697917500
https://github.com/rahul3613/ProofNet-lean4
https://github.com/rahul3613/ProofNet-lean4

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

Welleck, S., Liu, J., Bras, R. L., Hajishirzi, H., Choi, Y., and
Cho, K. Naturalproofs: Mathematical theorem proving
in natural language, 2021.

Wenzel, M., Paulson, L. C., and Nipkow, T. The isabelle
framework. In Theorem Proving in Higher Order Logics:
21st International Conference, TPHOLs 2008, Montreal,
Canada, August 18-21, 2008. Proceedings 21, pp. 33-38.
Springer, 2008.

Xin, H., Guo, D., Shao, Z., Ren, Z., Zhu, Q., Liu, B., Ruan,
C., Li, W., and Liang, X. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data, 2024.

Yang, K. and Deng, J. Learning to prove theorems via
interacting with proof assistants, 2019.

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P,,
Yu, S., Godil, S., Prenger, R., and Anandkumar, A. Le-
andojo: Theorem proving with retrieval-augmented lan-
guage models. arXiv preprint arXiv:2306.15626, 2023.

Zhao, X., Li, W., and Kong, L. Decomposing the enigma:
Subgoal-based demonstration learning for formal theo-
rem proving, 2023.

Zheng, C., Wang, H., Xie, E., Liu, Z., Sun, J., Xin, H., Shen,
J.,Li, Z., and Li, Y. Lyra: Orchestrating dual correction
in automated theorem proving, 2023.

Zheng, K., Han, J. M., and Polu, S. Minif2f: a cross-system
benchmark for formal olympiad-level mathematics. arXiv
preprint arXiv:2109.00110, 2021.

10

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

Section putnam_2009_b1.
Require Import List QArith Znumtheory Reals.
Open Scope Q.
Theorem putnam_2009_b1:
let fix factl (1 : list nat) : list nat :=
match 1 with
| nil => nil
| h :: t=>fact h :: t end in
forall (gq: Q), q > 0 —>
exists (n d: list nat), (forall x, (In x n \/ In x d)-> prime (Z.of_nat x)) /\
inject_Z (Z.of_nat (fold_left Nat.mul (factl n) 1%nat)) / inject_Z (Z.of_nat (fold_left Nat.mul (
factl d) 1%nat)) = q.
Proof. Admitted.
End putnam_2009_b1.

- /

Figure 4: A formalization of Putnam 2009 B1 in Coq. The conversion methods here switch between the rationals, integers,
reals, and natural numbers.

A. Appendix
A.1. Formalization difficulties in Coq

In the Coq Standard Library, operations and definitions for numbers are split across modules. The classical reals are
defined in Coq.Reals.Raxioms, the integers are defined in Coq.ZArith.BinInt, and the natural numbers are defined in
Coq.Init.Datatypes and Coq.Numbers.BinNums. The last two modules are distinct to reflect the two different constructions
of natural numbers, one in base 10 and one in binary. The rational numbers are defined in Coq.QArith.QArith_base and the
Positive type is defined in Coq.Numbers.BinNums. Unlike the previous binary number definition, the Positive type excludes
the number zero.

Formalizing a problem may require switching between these various types using an inbuilt set of conversions. For example,
comparing an integer with a real number may take the form of r = IZR i, where r is a real number and i is an integer, with
the comparision being done in the Reals scope. These additional casting operations can introduce additional complexity in
our formalizations.

Mathcomp and GeoCoq are extension libraries for the Coq proof assistant. Mathcomp is a theory-based library in that it
contains high-level structures for algebra and data structures. In order to extend its functionality, the developers have created
a refinement library called CogEAL, which contains a framework compatible with other representations like the numerical
types found in the Coq Standard Library. While there has been substantial work on these refinements, to the best of our
knowledge, it is currently not possible to instantiate matrices or groups of real type.

GeoCoq is a library built for geometry that operates off Tarski’s Axioms. Many problems have been formalized using the
vast amount of theorems based off these axioms. However, GeoCoq’s inbuilt numbers (a field [F) lacks compatibility with
the numerical representation of Coq Reals. As such, numerical expressions and computations using explicit numerals like
13 and 37 are not natively accommodated within GeoCoq’s framework. This limitation prohibits us from producing certain
Coq formalizations.

11

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

KPutnam 2001 B4. Let S denote the set of rational numbers different from {—1,0,1}. Define f : S — S by\

f(x) =« — 1/x. Prove or disprove that
o0
N ™) =2,
n=1
where f(") denotes f composed with itself n times.
_ /
4 N
abbrev putnam_2001_b4_solution : Prop := True
theorem putnam_2001_b4
(S : Set @
(hS : S = univ \ {-1, 0, 13})
(f : S =9
(hf : Vx:S, fx=x-1/(:Q)
:Nn € lIcil, f'[n] "' univ = 0 < putnam_2001_b4_solution
:= sorry
_ /

Figure 5: A formalization of Putnam 2001 B4 in Lean 4. As the problem requires deciding whether the infinite intersection
is empty, it is not directly the statement of a theorem. We consider the associated “solution” of this problem to be a boolean
value, and factor it out from the theorem statement. sorry is the placeholder keyword for Lean.

KPutnam 2020 A3. Let ag = /2, and let a,, = sin(a,,—1) for n > 1. Determine whether)
o0
2
> an
n=1
converges.
\onvere /
4 N
abbrev solution : Prop := False
theorem putnam_2020_a3
(a: N—=R)
(ha0 : a @ = Real.pi / 2)
(ha : Vn: N, n>1— an=Real.sin (a (n - 1)))
: (3L : R, Tendsto (funm : N=>3X n: Icc 1 m (an)"2) atTop (N L))
<> putnam_2020_a3_solution
1= sorry
o %

Figure 6: A formalization of Putnam 2020 A3 in Lean 4. As the problem requires deciding whether the series converges, it
is not directly the statement of a theorem. We consider the associated “solution” of this problem to be a boolean value, and
factor it out from the theorem statement.

12

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

KPutnam 1997 A4. Let G be a group with identity e and ¢ : G — G a function such that A

?(91)9(92)¢(93) = d(h1)¢(h2)(hs)

whenever g1g293 = e = hyhahs. Prove that there exists an element a € G such that)(x) = a¢(z) is a homomor-

kphlsm. %
4 N
theorem putnam_1997_a4
(G : Typex)
[Group G]
(p : G— G)

(hp : V g1 g2 g3 hl h2h3 : G, (g1 *xg2+*g3=1Ahl=*h2xh3=1)
— @ gl x ¢ g2 *x ¢ g3=¢hl x¢ph2xph3)

:da:G, lety :=fung=>axpg; Vxy:6 ¢ xX*y)=¢Yx*py
1= sorry

- J

Figure 7: A formalization of Putnam 1997 A4, which requires knowledge of group theory, in Lean 4. The informal statement
is slightly underspecified - g1, g2, g3, h1, ho, hs are not explicitly defined to be in G. To produce the formalization, we must
be specific about the type of g;, h;.

KPutnam 2018 B1. Let P be the set of vectors defined by)

P:{(Z)‘O<a<2,0<b<100, anda,beZ}

Find all v € P such that the set P \ {v} obtained by omitting vector v from P can be partitioned into two sets of
Kequal size and equal sum.)

4 N
abbrev putnam_2018_b1_solution : Set (Vector Z 2) :=
{v :Vector Z2 | db :7Z, @ <bAb <100 A Even b A v.toList = [1, b]}
theorem putnam_2018_b1
(P : Finset (Vector Z 2))
(v : Vector Z 2)
(vinP : Prop)
(Pvdiff : Finset (Vector Z 2))
(Pvpart : Prop)
(hP : P =
{v' : Vector Z 2 | 0 < v'[0] Av'[0] <2 A0 < Vv'[1] A Vv'[1] < 100})
(hvinP : vinP = (v € P))
(hPvdiff : Pvdiff = P \ ({v} : Finset (Vector Z 2)))
(hPvpart : Pvpart = (3 Q R : Finset (Vector Z 2),
(QUR=Pvdiff) A QN R =0) A (Q.card = R.card) A
(X gqinQ, q[e]l = X r in R, r[el) A (X qin Q, ql1] = ¥ r in R, r[11)))
: (vinP A Pvpart) <> v € putnam_2018_b1_solution := sorry

- /

Figure 8: A formalization of Putnam 2018 B1, which requires the Vector class in mathlib4.

13

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

4 Putnam 1992 B6. Let M be a set of real n x n matrices such that A
1. I € M, where [is the n x n identity matrix;

2. if A € M and B € M, then exactly one of AB € M and —AB € M holds;

3. if A€ M and B € M, then either AB = BAor AB = —BA,;

4. if A€ Mand A # I, there is at least one B € M such that AB = —BA.

KProve that M contains at most n2 matrices.)
4 N
theorem putnam_1992_b6:
fixes n :: nat
and M :: "(real"'n"'n) set”

assumes npos: "n > Q"
and pncard: "CARD('n) = n"
and h1: "mat 1 € M"
and h2: "VAEM. VBEM. (A**B € M) # (-A*xB € M)"
and h3: "VAEM. VBEM. (A**B = BxxA) V (A**B = -B**xA)"
and h4: "VAEM. (A # mat 1 — (IBEM. A**B = -Bx*A))"
shows "card M < n"2"

sorry
_ /
Figure 9: An Isabelle formalization of Putnam 1992 B6.
(" Putnam 2012 A3. Let f : [~1,1] — R be a continuous function such that A
1. f(z)= 2—2’”2f(2f;) for every z in [—1, 1],
2. f(0)=1,and
3. lim,_,q- \;% exists and is finite.
KProve that f is unique, and express f(x) in closed form.)
4 N
definition putnam_2012_a3_solution :: "real = real” where

"putnam_2012_a3_solution = (Ax::real. sqgrt (1 - x"2))"
theorem putnam_2012_a3:
fixes S :: "real set”
and hf :: "(real = real) = bool”
defines "S = {-1..1}"
and "hf = (Af::real=sreal. continuous_on S f A
(VxeS. f x = ((2 - x"2)/2)*f (x"2/(2 - x"2))) Af o =1A
(dy::real. filterlim (Ax::real. (f x)/sqgrt (1 - x)) (nhds y) (at_left 1)))"
shows "hf putnam_2012_a3_solution A
(Vf::real=real. hf f — (VxeS. f x = putnam_2012_a3_solution x))"
sorry

- /

Figure 10: An Isabelle formalization of Putnam 2012 A3. The mechanism for factoring the solution out of the theorem
statement is similar to that of Lean.

14

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

~

KPutnam 1980 AS. Let P(t) be a nonconstant polynomial with real coefficients. Prove that the system of simultaneous
equations

O:/ P(t)sintdt:/ P(t) costdt
0 0

has only finitely many real solutions .
_ y y y)
a I
Theorem putnam_1980_a5
(n : nat)

(npos : gt n Q)

(coeff : nat -> R)

(hcoeff : coeff n <> 0)

(p : R->R :=fun x => sum_n (fun i => coeff i * x " i) (S n))

(h1 : nat -> Prop := fun a => RInt (fun x => p x * sin x) @ (INR a) = @)
(h2 : nat -> Prop := fun a => RInt (fun x => p x * cos x) @ (INR a) = Q)
: exists (m: nat), forall (b: nat), h1 b /\ h2 b -> 1t b m.
Proof. Admitted.
o %

Figure 11: A Coq formalization of Putnam 1980 AS5. This formalization is done using Coquelicot, a Coq repository outside
of the standard library. The Coq equivalent of sorry is Admitted.

KPutnam 2017 B2. Suppose that a positive integer N can be expressed as the sum of k£ consecutive positive integers)
N=a+(a+1)+(@a+2)+-+(a+k—1)

for k£ = 2017 but for no other values of £ > 1. Considering all positive integers IV with this property, what is the
ksmallest positive integer a that occurs in any of these expressions?)

4 N
Definition putnam_2017_b2_solution := 16.
Theorem putnam_2017_b2
(mina : nat)
(posMin : mina > 0)
(A : nat -> nat -> nat := fun a k = Z.to_nat (floor (sum_n (fun i => Raxioms.INR (a + (i + 1))) k)
))
(p : nat -> nat -> Prop := fun N k => exists (a: nat), a >0 /\ A ak =N)
(g : nat -> Prop := fun N => p N 2017 /\ forall (k: nat), k > 1 -> k <> 2017 -> " p N k)
(hmina : g (A mina 2017))
(hminalb : (forall (a: nat), a > @ /\ g (A a 2017) -> mina <= a))
: mina = putnam_2017_b2_solution.
Proof. Admitted.

- J

Figure 12: A Coq formalization of Putnam 2017 B2. As the problem requires a numerical witness, we factor that out using
Coq’s syntax for making definitions.

15

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

Putnam 1988 B1. A composite is a product ab with a and b not necessarily distinct integers {2, 3,4, ... }. Show that
every composite is expressible as xy + xz 4+ yz + 1 with z, y, z positive integers.

4 N
Require Import ZArith Znumtheory Lia.
Open Scope Z.
Theorem putnam_1988_b1:
forall (a : Z), a > 2 ->
forall (b : 2), b >=2 —>
exists (x y z: Z), x>0@ /Ny >0 /\z>0/\
a*xb=xxy+y*xz+z*x+1.
Proof.
intros a Ha b Hb.
exists 1, (a - 1), (b - 1).

Qed.
o %

Figure 13: A Coq proof of Putnam 1988 B1 generated through a few-shot invocation of GPT-4. The proof is similar to that
of the Lean version, also discovered by GPT-4. The main difficulty of the problem is to choose the values of x, y, z given
a, b. Once correctly supplied, the remainder of the proof is routine and can be done with automated methods like 1ia which
handles linear arithmetic.

theorem mathd_numbertheory_85 : theor?mRrr;athd_algebraJ 07

N - (xy:
1% 3"3 +2 %32+ 243 +2 =253 R A _
.= sorry (ho : x"2+8*x+y"'2-6*y=20)

D (x +4)"2 + (y-3)"2 =5"2 := sorry

Figure 14: Examples of formalizations of easy problems in MINIF2F. While useful for benchmarking straightforward
mathematical reasoning in a formal setting, these problems are quite simple compared to the competition problems present
in PUTNAMBENCH. We note that MINTIF2F does include some formalizations of problems sourced directly from high
school competitions, but these are fewer in number.

16

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

You

The
1.

Generate a Lean 4 proof for the theorem which starts with the keyword “[PROOF]" followed by

—

e

o

The theorem statement using the ~[THEOREM]™ keyword.
3. The theorem description ends with the keyword “[END]".

~

are proficient at formal theorem-proving in Lean 4. Given a theorem statement in Lean 4,
generate the proof in Lean 4. You can assume that you have access to Lean's mathlib
library.

theorem is described in the following format:

the proof of the theorem. The syntax for Lean 4 is different than that of Lean 3 -
premises like "Nat.dvd_mul” and "Finset.singleton_injective” exist in Lean 4, the
equivalent in Lean 3 is "nat.dvd_mul” and "finset.singleton_injective” which DO NOT WORK
in Lean 4. Additionally, you cannot chain tactics into one step using ',' - this will NOT
work - you can use ';' instead but try to avoid such usage where not necessary! When doing
rewrites you MUST wrap the premise in brackets: "rw [h]". If you want to do multiple
rewrites at once you can do something like "rw [stepl, step2, step3]"”. Always predict one
tactic at a time, though you can predict the "have"” tactic and may supply a proof for it
with tactics split by ";". You can provide witnesses to consecutive existential
quantifiers all at once, for example 'use 1, 2, 3' but NOT as a list 'use [1, 2, 3]' -
these are not the same things! You can introduce with "intro"” everything you think you
can introduce at once. In Lean 4, you can split apart conjunctions with "constructor” NOT
"split”. You should use the "ring" tactic to handle goals that follow from ring axioms,
especially instead of doing a long series of rewrites or calculations. Similarly,
"linarith" can be useful for solving goals involving linear arithmetic. Do NOT indent
tactics, every new line should not have spaces to start! PLEASE use Lean 4 syntax only!
The proof ends with the keyword “[END]. Also please DO NOT write “sorry™ in the proof.
You can assume that the theorem is provable.

/

Figure 15: Parts of the “system prompt” used by GPT-4 for Lean 4 evaluations. Due to GPT-4’s tendency towards producing
outputs in Lean 3 syntax, our prompt places special attention towards preventing such syntactic mistakes. A similar
modification is made to COPRA’s system prompt for Lean 3.

17

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

-

Goals to prove:

[GOALS]

[GOAL] 1

DifferentiableAt R (fun x => g x / hgd x) @ = DifferentiableAt R g @
[HYPOTHESES] 1

[HYPOTHESIS] case mpr

[HYPOTHESIS] f : True

[HYPOTHESIS] g hge : R » R

[HYPOTHESIS] hcg : hgd @ 0

[HYPOTHESIS] hfg : ContinuousAt hgo @

[HYPOTHESIS] hfg_div : DifferentiableAt R (fun x => g x * hgd x) @

[STEPS]

[STEP] constructor

[STEP] intro h

[STEP] trivial

[STEP] intros f g hgd hcg hfg hfg_div

[INCORRECT STEPS]
[STEP] apply differentiable_at_of_mul

[LAST STEP]
apply differentiable_at.div

[ERROR MESSAGE]
error: unknown identifier 'differentiable_at.div'

K[END])

Figure 16: An example of a failed tactic prediction during proof search for Putnam 2011 B2 using COPRA in Lean 4. GPT-4
predicts a tactic involving the premise “differentiable_at.div,” which exists in Lean 3, but not Lean 4. Even with the system
prompt asserting outputs should involve Lean 4 syntax alone, GPT-4 is not always capable of making the distinction.

theorem putnam_2001_a1l

(S : Typex)

[Mul S]

(hS : Vab:S, (a*xb) *a=hb)
:Vab:S,ax(b=*xa)=>b:=hby
intro a b
have h1 : (@ x (b * a)) *xa=b x a := by
rw +[mul_assoc]

rw [hS]

rw [hS]

apply hi

- /

Figure 17: A failed proof generated by few-shot invocation of GPT-4. GPT-4 misunderstands that the hypothesis [Mul S1,
which gives an operation x and asserts it is a binary operation on .S, also asserts associativity of the operation. The tactic rw
[+mul_assoc], which performs a rewrite using the associativity of x, is hence not applicable in this setting.

18

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

4 Putnam 1995 A1. Let S be a set of real numbers which is closed under multiplication (that is, if @ and b are in S, then\
sois ab. Let T' and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily
distinct) elements of 7" is in 7" and the product of any three elements of U is in U, show that at least one of the two

subsets 7', U is closed under multiplication.
_ /
4 N
theorem putnam_1995_a1:
fixes S :: "real set”
and T U :: "real set”

assumes hS: "VaeS. VbeS. a x b € S”
and hsub: "T C S AUCS”
and hunion: "(T U U) = s”
and hdisj: "(T N U) = {}"
and hT3: "Va€eT. VbeT. VceT. a*xb x c € T
and hu3: "VaeU. VYbeU. VceU. a x b x ¢ € U"
shows "(Va€T. VbeT. a x b € T) V (VaeU. VbeU. a x b € U)"
proof (rule ccontr)
assume "— ((Va€T. VbeT. a * b € T) vV (VaeU. VbeU. a * b € U))"
then have "Jt1€T. 3t2€T. t1 % t2 ¢ T" "JuleU. Ju2€U. ul * u2 ¢ U” by auto
then obtain t1 t2 where t1t2: "t1 € T" "t2 € T" "t1 x t2 € U"
using hS hunion by blast
then obtain ul u2 where ulu2: "ul € U" "u2 € U" "ul * u2 € T"
using = ((Va€T. VbeT. a x b € T) vV (VacU. VbeU. a x b € U)) hS hunion
by blast
have "t1 * t2 * t3 € T" if "t3 € T"” for t3 using hT3 t1t2(1) t1t2(2) that
by auto
then have "t1 * t2 * t3 € U" if "t3 € T" for t3 using t1t2(3) hS that
by (metis disjoint_iff hU3 hdisj mult.commute ulu2(1) ulu2(2) ulu2(3))
then have False using hdisj t1t2(1) t1t2(2)
by (meson disjoint_iff_not_equal hT3)
then show False by blast
ged

- /

Figure 18: A successful proof in Isabelle discovered using DSP. In particular, this proof is not found using a single invocation
of sledgehammer, so the sketching mechanism of DSP is crucial for this problem. We note that the DSP pipeline involves
using an LLM (GPT-4) to synthesize an informal proof which is translated into a sketch in Isabelle - this can potentially be a
source of indirect dataset contamination, as we cannot ensure the informal proofs are not present in GPT-4’s training data.

19

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

4 N
theorem putnam_1971_b1:
fixes Smul :: "'S = 'S = 'S" (infixl "*" 70)
assumes hself: "Vx::'S. x * x = x"
and h2: "Vx y z::'S. (x xy) *z=(y * z) x x"
shows "Vx y z::'S. (x xy) * z=x* (y*x2z) ANX*xy=y*Xx
proof -
have comm: "Vx y::'S. x x y =y * x"
proof
fix xy :: 'S
have "(x * y) * x = (y * x) * x" using h2 by blast (* sledgehammer x)
also have "... =y * x" using hself by (metis h2) (* sledgehammer x)
finally have "(x * y) * x =y * x" by simp (* sledgehammer x)
then have "x * y = y * x" using hself by (metis h2) (x sledgehammer x)
thus "x * y =y * x" by simp

n

ged
have assoc: "Vx y z::'S. (x xy) x z =x x (y x z)"
proof

fix xyz :: 'S

have "(x * y) * z = (y * z) * x" using h2 sledgehammer
also have "... = x * (y * z)" using comm sledgehammer
finally show "(x * y) * z = x * (y * z)" by simp
ged
show "Vx y z::'S. (x xy) *x z=x*x (y*xz) AN Xx*xy=y*x"
using assoc comm by simp
ged

- J

Figure 19: An erroneous generation produced by DSP for Putnam 1971 B1. While a single invocation of Sledgehammer can
prove this problem, the formal sketch generated in the pipeline is much more complex and is erroneous, leading to a failed
proof attempt.

4 N
theorem putnam_1971_b1:
fixes Smul :: "'S = 'S = 'S" (infixl "*" 70)
assumes hself: "V¥x::'S. x * x = x"
and h2: "Vx y z::'S. (x xy) xz=(y * z) * x"
shows "Vx y z::'S. (x xy) *z=x* (y*z) Ax*xy=y*x"
o %
4 N
theorem putnam_2012_a2:
fixes Smul :: "'S ='S = 'S" (infixl "x" 70)
and abc:: 'S
assumes Smulasg: "abel_semigroup Smul”
and hS: "Vx y::'S. Jz::'S. x * z = y"
and habc: "a * ¢ = b * ¢”
shows "a = b"
o %

Figure 20: The other two Isabelle formalizations solved with invocations of Sledgehammer. We note that the problems
Sledgehammer was capable of solving are all problems involving binary operations on sets. It is not surprising that SMT
solvers are capable of solving such problems, which do not require reasoning about complicated objects.

20

PUTNAMBENCH: A Multilingual Competition-Mathematics Benchmark for Formal Theorem-Proving

-

o

Goals to prove:

[GOALS]

[GOAL] 1

1>0 /\

1>0 /\
a*b-1>0/\Na*xb=1x1+1Tx@G*xb-1)+G*rxb-1)*1+1
[HYPOTHESES] 1
[HYPOTHESIS] a : Z
[HYPOTHESIS] Ha : a >= 2
[HYPOTHESIS] b : Z
[HYPOTHESIS] Hb : b >= 2

[STEPS]
[STEP] intros a Ha b Hb.

[LAST STEP]
exists 1, 1, (a * b - 1).

[SUCCESS]
[END]

Goals to prove: # Step 32 of Search
[GOALS]

[GOAL] 1

a-1>0/\

1>0 /\
b-1>0/Naxb=@G-1D)*x1+1*x(Mb-1)+M-1)*((G-1)+1
[HYPOTHESES] 1

[HYPOTHESIS] a : Z

[HYPOTHESIS] Ha : a >= 2
[HYPOTHESIS] b : Z

[HYPOTHESIS] Hb : b >= 2

[STEPS]
[STEP] intros a Ha b Hb.

[LAST STEP]
exists (a - 1), 1, (b - 1).

[SUCCESS]
[END]

/

Figure 21: Early in COPRA’s attempt on Putnam 1988 B1, an incorrect prediction of x, y, z given a, b is made, which dooms
that path of search as the most crucial step is the correct choice. Later, at step 32 of search, COPRA backtracks and then
successfully predicts a correct choice for , ¥, z. Once this step is generated, the remainder of the proof is straightforward.

21

