
Rotating without Seeing:
Towards In-hand Dexterity through Touch

Zhao-Heng Yin1,∗†, Binghao Huang2,∗, Yuzhe Qin2, Qifeng Chen1, Xiaolong Wang2
1HKUST 2UC San Diego

http://touchdexterity.github.io

Training Test in real world

Generalize to Unseen Test Objects

Simulation

Real

Fig. 1: We propose Touch Dexterity, a new dexterous manipulation system to perform in-hand object rotation with only touch
sensing. On the left, we show our hardware setup with 16 FSR sensors attached to an Allegro hand. We train our policy in
simulation on rotating diverse objects around different axes. Our trained policy can be directly transferred to the real robot
hand and can rotate novel/unseen objects successfully.

Abstract—Tactile information plays a critical role in human
dexterity. It reveals useful contact information that may not be
inferred directly from vision. In fact, humans can even perform
in-hand dexterous manipulation without using vision. Can we
enable the same ability for the multi-finger robot hand? In
this paper, we present Touch Dexterity, a new system that can
perform in-hand object rotation using only touching without
seeing the object. Instead of relying on precise tactile sensing
in a small region, we introduce a new system design using dense
binary force sensors (touch or no touch) overlaying one side
of the whole robot hand (palm, finger links, fingertips). Such a
design is low-cost, giving a larger coverage of the object, and
minimizing the Sim2Real gap at the same time. We train an in-
hand rotation policy using Reinforcement Learning on diverse
objects in simulation. Relying on touch-only sensing, we can

∗ The first two authors contributed equally.
† Work done while an intern at UC San Diego.

directly deploy the policy in a real robot hand and rotate novel
objects that are not presented in training. Extensive ablations are
performed on how tactile information help in-hand manipulation.

I. INTRODUCTION

Imagine we are washing the used pan in the kitchen after
dinner. Suddenly, the power is cut off unexpectedly, and all
the lights go out. What would we do? Most of us may stop
the work, put down the pan in the sink, and then probably
find our phone in the pocket to light up the way. Simple
as it may seem, this sequence of actions actually requires
precise execution of in-hand dexterous manipulation in the dark,
where we receive no vision input for guidance. Even in normal
situations with lights on, the manipulation of objects in hand
often comes with heavy occlusions. Without relying on vision,
we humans are still very good at feeling and manipulating

ar
X

iv
:2

30
3.

10
88

0v
4

 [
cs

.R
O

]
 2

7
M

ar
 2

02
3

http://touchdexterity.github.io

objects by hand, which is made possible by the tactile (touch)
information coming from our skin. Previous studies in biology
also confirm the vital importance of touch information for
dexterous manipulation [30]. Can we enable robots with such
dexterity with touch sensing?

Indeed, tactile sensing has been a long-standing topic in
robotics. With different designs of tactile sensors, robots
are able to manipulate objects more precisely using contact
information [19, 31, 20] and even complete tasks in a touch-
only setup [35, 42]. However, it is still very challenging for
touch-only approaches to achieve complex and high degree-
of-freedom (DOF) in-hand manipulation. While most current
literature focuses on modeling precise and fine-grained contact
using increasingly high-quality sensors, it introduces two
challenges to in-hand manipulation: (i) Most approaches are
only able to attach the expensive sensors to the finger-tips of
the gripper or hands instead of covering the whole manipulator,
limiting the range of tasks to perform; (ii) It often requires a
large number of training samples for complex tasks, but it is
hard to leverage a simulator given the Sim2Real gap is usually
very large for a delicate sensor.

In this paper, we present Touch Dexterity, a new system
design and learning pipeline for in-hand rotation using only
touching. Instead of using a few sensors on finger-tips that give
high-quality patterns [75, 33, 46], we propose the alternative:
Use a lot of low-cost binary force sensors (touch or no touch)
attached over one side of the hand (fingertips, links, and palm)
as shown in Fig. 1 (left). Specifically, we attach the Force-
Sensing Resistor (FSR) sensors, which cost around $12 each
on Amazon1, to the Allegro robot hand. Our insight is that,
while one single binary force sensor cannot do much, the
combination of 16 of them has a strong representation power
(216 types of states in maximum), which might allow the robot
hand to “feel” the object state without seeing. Importantly, the
Sim2Real gap by using such a binary sensor is minimized
to the extreme, which allows large-scale sample collection in
simulation for training.

With this system setup, we focus on the task of rotating an
“unseen” object around the x, y, and z-axis using the multi-
finger hand as shown in Fig. 1 (right). Here “unseen” not
only indicates there is no vision, but also means the object
is not presented during training time. While this task is a
simplified version of the in-hand re-orientation task, it is still
very challenging as all the fingers are moving with a relatively
large motion to rotate the object and prevent it from falling
off the palm at the same time. We believe the same pipeline
can be directly extended to more complex tasks in the future.
We train our policy on multiple objects in parallel in the
IsaacGym simulator [38] using Reinforcement Learning (RL),
and the learned policy can be directly deployed on the real robot
manipulating diverse unseen objects. The key to achieving such
generalization across objects and to the real robot is our touch
sensors. Our RL policy takes both the binary touch sensing
information and the robot’s internal state as input and predicts

1https://www.amazon.com/s?k=fsr+sensor

the action in each time step for closed-loop control. With a
large coverage over the object using the touch sensors, our
hypothesis is that the policy implicitly learns to understand
the 3D structure and pose of the object and perform rotation
accordingly.

In our experiments, we test the real-world system with 10
diverse objects. Our method shows surprising robustness in
rotating unseen objects using only touch sensing. For example,
we can rotate the rubber duck for two cycles without falling,
even if it is never presented in training (last row in Fig. 1).
We perform extensive ablations on our sensor to validate our
design, including disabling all the touch sensors, disabling
part of them, and using continuous signals instead of binary
signals.

II. RELATED WORK

Dexterous Manipulation Dexterous manipulation has been a
long-standing problem in robotics [56, 45, 17, 27, 1, 16, 26,
25, 10, 21, 59, 12, 69, 2]. Among these works, dexterous
in-hand manipulation receives a lot of attention in recent
years [32, 6, 5, 41, 2]. Several early methods propose to tackle
the in-hand manipulation problem with analytical model-based
approaches [32, 5]. Nevertheless, they pose certain hypotheses
about the objects and the controllers, which makes it hard to
scale to more complex tasks. To overcome this limitation, deep
Reinforcement Learning has been applied recently on dexterous
manipulation [2, 28, 15, 52, 14, 51]. Building on these works,
incorporating demonstrations in with imitation learning also
leads to better sample efficiency and more natural manipulation
behaviors [54, 55, 4, 53, 71, 74, 37, 48, 3]. However, most
in-hand manipulation methods are still highly relying on visual
inputs [2, 28, 14]. For example, Chen et al. [14] propose to
perform in-hand object re-orientation using depth image input,
and new hardware is designed to avoid heavy occlusion. Instead
of relying on vision which faces the occlusion problem with
general hardware, recently, several works [51, 61, 50] propose
to perform in-hand object rotation without both visual and
explicit tactile sensing. The idea of these works is that we
can infer the object’s information from the implicit tactile
information inside proprioception data. However, these works
either only consider object rotation on the fingertip with
relatively small finger motion, or the rotation of a limited
set of objects. Compared to these works, our system explicitly
use touch sensors to percept hand-object interaction, and can
solve the object rotation problem on the palm for diverse types
of objects, which involves complex object motion and is more
challenging. We also find that using explicit tactile sensing
enables our touch-based policy to generalize to unseen objects,
which is not shown by previous works.
Tactile Robotic Manipulation Biological evidence suggests
that tactile information is crucial for the success of human
dexterity [30]. This basic observation naturally motivates the
research of tactile robotic manipulation [13, 40, 19, 7, 44, 76,
47, 65, 64, 73, 63, 70, 67, 62, 29, 47, 42, 66, 34, 23, 8]. A
fundamental question is what kind of touch information is
essential. Existing works propose to extract local geometry,

https://www.amazon.com/s?k=fsr+sensor

force and torque, contact event, and material properties with
various sensors to help manipulation [35]. Different from these
works, we find that even using the simplest binary contact
signal provided by a sparse sensor array can be helpful for a
high-dimensional manipulator. This is also found in [49, 22, 36]
where binary contact signals are used for manipulation, object
tracking and exploration. However, they focus on low-DOF
manipulators rather than a multi-finger robot hand. In the
dexterous hand research, Buescher et al. [11] develop a skin-
based tactile sensing system on the Shadow hand, which has a
similar but denser sensor layout over the palm compared with
our work. However, it is still unclear how to use it with a control
method to solve in-hand rotation as in our work. Another
important question in tactile robotic manipulation is how to
simulate the tactile event so as to perform Sim2Real transfer.
Researchers have proposed many approaches and strategies
for tactile simulation [39, 24, 72, 18, 60, 9]. For example, Xu
et al. [72] propose a method to simulate normal and shear
tactile force field on the contact surface. Compared with these
works, our method does not require any extra simulation design
but can leverage the built-in contact simulation of an existing
physics simulator.

III. TACTILE DEXTEROUS MANIPULATION SYSTEM

A. Real-word System Setup

Our hardware setup consists of a XArm robot arm and a
16-DOF Allegro Hand with a contact sensor array. The array
consists of 16 contact sensors, which are attached to different
parts of the allegro hand including the palm and tips as shown
in Figure 1(left). The used contact sensors are based on Force-
Sensing Resistors (FSR), whose resistance will change when
an external force is applied to its surface. These sensors are
very sensitive to force and widely used in robotics. We use an
STM32F microcontroller to collect the analog voltage signals
of each sensor and then forward digital signals to the host.

While these contact sensors are able to output the con-
tinuous contact force measurement, the signals are usually
nonlinear and noisy. As a result, it should undergo necessary
preprocessing before being used for control. We binarize these
measurements with respect to a selected threshold θth and
use this binary contact signal for control. The advantage of
using binary signals is that it can reduce the gap between
the simulation and the real robot, and simplify the Sim2Real
transfer procedure. When using the exact force measurement
as observation, it is difficult to align the measurement between
the simulation and the real robot, especially since there are
still errors in aligning the analog voltage signals to the exact
force measurement. In contrast, we can easily calibrate the
binarized measurement by adjusting the threshold.

B. Simulation Setup

In this paper, we use the IsaacGym simulator [38] for the
training of our tactile manipulation system. The simulation
setup is shown in Figure 1(left). We simulate each contact
sensor as a fixed link on the finger and palm links. We fetch
the net contact force F = [Fx, Fy, Fz] over each sensor link

Sensing In-Hand Position Sensing Critical Contact

Fig. 2: Two major functionalities of our sensors: sensing (i) the
objects’ in-hand position, and (ii) the critical contact during
the dexterous manipulation process. Note that we use finger
cots to increase the friction and we still have force-sensing
resistors inside the finger cots.

provided by the simulator at each simulation step, and use
‖F‖ as the simulated contact force measurement. Then, we
binarize the measurement with another threshold θ̃th, Note
that the force provided by the sensor’s parent link does not
contribute to the net contact force. We adjust the threshold θ̃th
of these sensors to ensure that they have similar behavior to
that in the real. We use a θ̃th = 0.01N in simulation.

C. Benchmark Problem: In-hand Rotation

In this paper, we study the dexterity of our system by using
it to solve an in-hand rotation task. In this in-hand rotation
task, an object is initialized in the palm and the robot hand is
then required to rotate this object around a given rotation axis.

When we are doing in-hand object rotation, the object motion
is more complex than that in finger-tip rotation mentioned in
section II and brings additional challenges. Specifically, the
object can slide or roll in the palm during in-hand manipulation.
Due to this complex motion pattern, explicit feedback from
tactile or vision becomes necessary for successful manipulation.
Otherwise, we are unable to infer the current state of the object
and fail to push and rotate it in a secure way.

D. Discussion: What information can sensors provide?

We summarize two kinds of information our system can
provide for control as follows, though its sensing is sparser
than that of a real human hand.

Position information. The contact sensors can inform the
policy where the object is at each time step. One example
is shown in Figure 2 (left). In this example, a cuboid is
placed on the palm without contacting any fingertip. At this
moment, the only way to infer the position of the object is by
reading the measurement of the contact sensors on the palm.
This measurement can provide an estimation of the object’s
position (i.e., at the center), based on which the controller can
decide the approximate movement of each finger, for example,
driving the thumb toward the center. Without this information,
the thumb can move to the right and can not come into contact
with the object to initiate a rotation.

Interaction information. During in-hand object rotation,
it is essential to ensure that the fingertip in charge of the

MCU

Contact Signals

Robot Proprioception

Previous Target

Stacked States

�� ∈ ℝ16

�� ∈ 0,1 16

Policy
Action ��

EMA

Next
Target

Torque

PD Controller

Fig. 3: Overview of the control process. The state contains
tactile information, joint position, previous target, and task
information like rotation axis (not shown in the figure). The
policy then uses the stacked state to get the relative action, and
the next target joint position is calculated. The new target is
then fed to a PD controller.

rotation is indeed interacting with the object, see Figure 2
(right). Otherwise, the finger may not be able to push against
the object leading to a failure, which may cause the object to
move to an unstable position, and even fall out of the hand.

IV. LEARNING TOUCH DEXTERITY

A. Problem Formulation

We formulate the in-hand rotation problem as a Markov
Decision Process M = (S,A,R,P). Here, S is the state
space, A is the action space, R is the reward function, and
P is the transition dynamics. R and P are unknown to the
robot. The robot agent observes state st at each step t and
take action at = π(st) calculated by the current policy π, then
it will receive a reward rt = R(st, at, st+1). The goal of the
agent is to maximize the γ discounted return

∑T
t=0 γ

trt. The
definition of these elements is as follows.

1) State: The state of the system consists of the joint position
of the Allegro hand qt ∈ R16, the sensor observation ot ∈
{0, 1}16, the previous position target q̃t ∈ R16, and the rotation
axis k ∈ S2. Since the state at one step may not be sufficient
for control, we also stack it with other 3 historical states as
the input when we use an MLP as the policy network.

2) Action: At each step, the action produced by the policy
network is a relative control command at ∈ R16. A PD
controller then drives the hand to reach the joint position
target q̃t+1 = q̃t + at at the next step. However, using this
target directly may lead to non-smooth finger motion, since the
actions of two consecutive steps may conflict with each other.
Therefore, in practice, we use an exponential moving average as
the target: q̃t+1 = q̃t + ãt, where ãt = ηat +(1−η)ãt−1, t ≥ 1
and ã0 = 0. We find that η = 0.8 works well in the experiments.
This PD controller operates at a control frequency of 10Hz
both in the simulation and the real.

Rotation

Axis

Normal

Plane

Rotation Angle

Rotated vector

Fig. 4: Illustration of the calculation of rotation angle ∆θ: The
object rotates alone Axis k and here we visualize the rotation
angle ∆θ in the Normal Plane.

3) Reward: We design a reward function that is able to
make the dexterous hand rotate the object in a smooth and
transferable way. The reward function used in this paper is a
weighted mixture of several components:

rt = w1rrot+w2rvel+w3rfall+w4rwork+w5rtorque+w6rdist.
(1)

The first term rrot is the rotation reward defined as the rotated
angle ∆θ of a sampled unit vector in the normal plane Π of
the rotation axis k:

rrot = clip(∆θ,−c1, c1). (2)

The detailed calculation of ∆θ is shown in Figure 4. First,
we sample a unit vector v in Π randomly and we may as
well imagine it is attached to the object. Then we fetch its
corresponding vector v′ at the next state and project it to
Π: v′p = Proj(v′,Π). ∆θ ∈ [−π, π) is defined as the signed
distance between v′p and v with respect to the axis k. Note that
[51] uses 〈ω, k〉 as the rotation reward, where ω is the angular
velocity returned by the simulator. Nevertheless, we find that
the angular velocity provided by the simulator in our setting is
very noisy since the motion of the object is very complex. As
a result, using this angular velocity in the reward can usually
lead to very undesirable object motion patterns, like vibrating
around a specific pose. We find that using this finite difference
as the reward can produce consistent rotation behavior across
different runs. The second term is a penalty on the object’s
velocity rvel = −‖vt‖. This encourages the hand to rotate the
object in a stable manner and increases the transferability of
the trained policy. The third reward rfall is a negative falling
penalty when the object falls out of the palm. The fourth
reward rwork penalize the work of controller, which is defined
as rwork = −〈|τ |, |q̇t|〉. Here, τ is the outputted torque of
the PD controller at step t. This penalty helps to improve the
smoothness of finger motion. The fifth term rtorque = −‖τ‖
penalizes the large torque. Finally, rdist = mean(clip(1/(ε+
d(xtip, xobj)), c2, c3)) is a distance reward, which encourages
the fingertip to come close to the object and interact with it.

4) Reset Strategy: We design several reset strategies to
reduce unnecessary exploration and speed up the learning
process. First, we reset the episode when the object deviates

too much from its initial position (i.e., the center of the palm).
Moreover, we reset the episode when the major axis of the
object deviates too much from the rotation axis, this reduces
the exploration of an undesired rotation direction.

B. Domain Randomization

We use a wide variety of domain randomization [68] to
improve the Sim2real transfer.

1) Physics randomization: We randomize the object’s initial
position, mass, shape, and friction to ensure that the learned
policy can deal with different kinds of objects.

Moreover, we randomize the gain of the PD controller to
model the uncertainty of the PD controller in real. Besides, we
consider randomizing each tactile sensor. For each activated
contact sensor that outputs 1, with probability p we flip its
output to 0. We also model the signal delay of the contact
sensor by an exponential delay used in [28].

2) Non-physics randomization: We use a set of non-physics
randomization to further improve the robustness of the trained
policy. We inject white noises into the observation of the policy,
and its outputted action to ensure that it is robust to small
perturbations.

C. Training Procedure

We use the proximal policy optimization (PPO) [58] al-
gorithm to train our control policy and multilayer percep-
tron (MLP) for both of the policy and value networks. We
use the advantage clip threshold ε = 0.2 and the KL threshold
of 0.02. We use ELU [43] as the activation function in these
networks. The policy network outputs a Gaussian distribution
with a learnable state-independent standard deviation. Like [28],
in order to reduce the training difficulty, we also use asymmetric
observation for the policy and value network. Concretely, for
the value network, we add privileged information such as the
contact force over each link, the object’s ground-truth pose, and
physical parameters to its input. This privileged information is
not accessible by the policy network. For the policy network,
we only stack the current state with 3 historical states as the
input.

For the IsaacGym simulation, we set dt = 0.01667s with
2 simulation substeps. We use 8192 parallel environments.
The action (control target) outputted by the policy network is
executed by 6 steps, corresponding to a 10Hz control frequency
in real.

V. EXPERIMENTS

In this part, we compare our Touch Dexterity system
to several baselines in both the simulation and the real.
Specifically, we are interested in the following questions:

1) How much benefit does tactile information offer com-
pared to the baseline in training?

2) Using simulation as an ideal setup, does the usage
of tactile information lead to better robustness and
generalization?

3) How well does our tactile manipulation system perform
and generalize compared with other methods in the real?

Object Set A

Object Set B

Irregular cubes

Irregular cylinders,
Large aspect-ratio
objects

Simulation
Object Dataset

Real-world Object Dataset Samples (Object Set C)

Fig. 5: The object sets used in our experiments. The full object
set in the real world can be found in the supplementary material.

4) How well does tactile perception in simulation align with
that in real? How does it improve performance in real?

We answer these questions through an extensive case study on
the z-axis rotation. Then, we demonstrate that our system can
also learn the rotation skill along all the other axes.

A. Experiment Setup
1) Object Dataset: For the simulation experiments, we

train and evaluate our policy on a set of artificial objects of
common geometries, such as cuboids, cylinders, and balls.
Some examples of these objects are shown in Figure 5.
Despite their simplicity, their diverse geometry can be used to
approximate a large set of common daily objects. For the real
experiments, we bring in some unseen real-world objects like
a rubber duck, lego box for evaluation as shown in Figure 5.

2) Evaluation Metric: To evaluate the performance of a
trained policy, we introduce the following metric as suggested
by [51].

1) Cumulative Rotation Reward (CRR). We calculated
the cumulative rotation reward to evaluate the rotation
capability of a policy in the simulation. This metric is
only used in the simulation.

2) Cumulative Rotation Angle (CRA). We count the
cumulative rotation angle (by rounds) to evaluate the
rotation capability of a policy in the real. This metric is
counted by a human.

3) Time-to-Fall (TTF/Duration). We measure the time (by
seconds) of an object staying in the palm before falling
down the hand. This metric can be used both in the
simulation and in real.

0 1K 2K 3K 4K 5K
Training Steps

0

250

500

750

1000

1250

Cu
m

ul
at

iv
e

Ro
ta

tio
n

Re
wa

rd
Single Object Training

0 1K 2K 3K 4K 5K
Training Steps

0

10

20

30

40

50

60

TT
F

Single Object Training

0 1K 2K 3K 4K 5K
Training Steps

0

200

400

600

800

1000

Cu
m

ul
at

iv
e

Ro
ta

tio
n

Re
wa

rd

Multi Object Training

0 1K 2K 3K 4K 5K
Training Steps

0

10

20

30

40

50

TT
F

Multi Object Training
w Sensor (Ours)
No Sensor

0 1K 2K 3K 4K 5K
Training Steps

0

250

500

750

1000

1250

Cu
m

ul
at

iv
e

Ro
ta

tio
n

Re
wa

rd

Single Object Training

0 1K 2K 3K 4K 5K
Training Steps

0

10

20

30

40

50
TT

F

Single Object Training

0 1K 2K 3K 4K 5K
Training Steps

0

200

400

600

800

1000

Cu
m

ul
at

iv
e

Ro
ta

tio
n

Re
wa

rd

Multi Object Training

0 1K 2K 3K 4K 5K
Training Steps

0

10

20

30

40

50

TT
F

Multi Object Training
High Sensitivity (Ours)
Low Sensitivity (LS-Sensor)

Fig. 6: Top: Policy training curve with and without sensors. Bottom: Policy training curve with sensors of different sensitivities.
The results are averaged on 3 seeds. The shaded area shows the standard deviation.

B. Baselines

In the experiments, we mainly compare our methods with
the following baselines.

1) No-Sensor. We train a PPO policy to control the hand
with no tactile information available. The only way
to infer the object-hand interaction information is by
comparing the current joint position to the desired, target
joint position. For example, when a finger (e.g. thumb)
is pressing the top surface of a cuboid, we can observe
a difference between these two quantities, indicating the
existence of pressing behavior.

2) LS-Sensor. We set a higher sensor activation threshold
θth = 0.2N and train another PPO policy. In other words,
the sensors now have lower sensitivity to the contact,
and we call this policy LS-Sensor. Under this setup, the
hand is no longer able to sense some slight contacts.

3) DS-Sensor. This policy is used for ablation purposes. Its
only difference from our policy is that it will disable
all the tactile input during evaluation. This is used to
test to which extent the trained tactile policy uses tactile
information.

In the real-world experiments, we also introduce additional
two policy baselines:

1) Openloop Policy. We collect several successful object
rotation trajectories in the simulation and execute these
trajectories on the robot. This is to study whether the
considered task is complex enough.

2) CT-Sensor. We train a policy that uses a continuous-
valued sensor input rather than the binarized version.
This is to study if using continuous signals will lead to
Sim2Real difficulty.

Note that there also exist some vision-based dexterous manipu-
lation baselines like [14, 28]. However, we do not compare our
method to theirs as they require a collection of a very large

amount of visual simulation data, which takes significantly
longer real-world time.

C. Sim: Policy learning with different sensing capabilities.

In this section, we study whether our tactile policy and
the considered baseline policies are able to succeed in the
training environments in the simulation. We study both the
single and multi objects setup. We use the cuboid as the object
in single-object training, which is common in the previous
works [2, 28]. We use object set A for multi-object training.
The results are shown in Figure 6. We find that in the single
object setup, both the No-Sense and LS-Sensor policies have a
lower rotation reward compared with our policy. Interestingly,
we find that LS-Sensor can achieve a higher duration (TTF)
compared with No-Sensor and can match that of our full system.
This result suggests that tactile sensors of low sensitivity may
still be useful to make the motion more secure. For the multi-
object training, we find that our tactile policy outperforms
the baseline policies by a large margin. The baseline policies
fail completely in this case, while our policy is still able to
succeed. This result indicates that using tactile information is
essential to tame touch-only multi-object rotation. The failure
of the LS-Sensor in the multi-object training case suggests that
having a high-sensitivity sensor to sense the slightest contact
is important.

D. Sim: Is a tactile policy robust and generalizable?

Though our tactile policy and the baseline policies can
succeed in some cases during training, so far it remains
unknown whether they are robust and generalizable. We
consider a policy robust if it can perform well on the unseen
physics parameter setup on the same set of objects. We consider
a policy generalizable if it can perform well on an unseen set
of objects.

TABLE I: Performance of different methods on the multi-object rotation task on the real robot. The results are averaged on 3
policies trained on 3 seeds. Each trial lasts 30 seconds. The CRA metric is measured by the number of turned rounds. The TTF
metric is measured in seconds. Our proposed method can rotate both the seen and unseen objects.

Seen Object C1 Object C2 Object C3 Object C4 Object C5
CRA TTF CRA TTF CRA TTF CRA TTF CRA TTF

OL 0.58±0.14 13.30±7.77 0.08±0.14 4.67±8.08 0.75±0.66 18.67±16.29 0.50±0 24.00±5.29 0.83±1.04 13.67±15.18

No-Sensor 0.25±0.25 7.67±6.80 0.33±0.28 14.7±15.01 0.08±0.144 3.67±6.35 0.42±0.14 16.00±12.17 0.25±0.25 12.67±15.53

CT-Sensor 2.50±3.25 20.00±8.66 0.75±0.66 17.67±10.79 2.42±2.10 15.33±15.01 1.92±1.46 23.00±12.12 1.00±0.87 17.00±15.39

Ours 4.91±0.52 30.00±0.00 2.83±1.26 28.67±2.31 2.92±1.38 30.00±0 .00 4.50±1.73 30.00±0.00 2.00±0.00 26.67±5.77

Unseen Tomato Apple Orange Soupcan Rubber Duck
CRA TTF CRA TTF CRA TTF CRA TTF CRA TTF

OL 0.25±0.25 20.00±17.32 0.67±0.76 20.00±17.32 0.5±0.87 10.00±17.32 1.5±1.32 20.00±17.32 0.33±0.29 20.00±17.32

No-Sensor 0.00±0.00 0.00±0.00 0.33±0.58 10.00±17.32 0.75±1.09 12.33±15.70 0.08±0.14 2.00±3.46 0.33±0.29 20.00±17.32

CT-Sensor 0.33±0.29 12.33±15.70 0.42±0.52 15.33±15.01 2.08±2.10 24.33±4.93 2.08±2.79 19.33±16.77 1.50±0.75 30.00±0.00

Ours 1.08±0.14 27.33±4.62 2.67±1.04 30.00±0.00 3.00±1.32 30.00±0.00 4.25±1.56 27.33±4.62 1.42±0.38 29.00±1.73

TABLE II: Performance of different methods on the single-
object rotation task with physics distribution shift in simulation.
The results are averaged on 3 seeds.

Method Seen Physics Setup Unseen Physics Setup
CRR TTF CRR TTF

No-Sensor 689.3±141.5 33.3±4.7 369.0±129.1 23.5±6.1

Sensor 963.8±377.8 42.2±4.1 919.3±338.0 40.0±4.3

DS-Sensor 904.2±408.6 39.1±6.3 615.5±293.2 31.2±8.0

LS-Sensor 860.0±348.7 38.8±6.9 796.5±366.7 37.4±8.4

We test the robustness of the single-object setting. To do this,
we sample from a smaller, unseen range of friction and mass
parameters, and perform rollout. In this case, the object is more
likely to slide in the hand, requiring the hand to manipulate it
in a more careful manner. The results are shown in Table II.
We find that there is little performance drop in our full method.
However, for No-Sensor and DS-Sensor, we can observe a
clear performance drop. We also find that the low-sensitivity
policy LS-Sensor also performs well in the unseen physics
setup. This suggests that a low-sensitivity tactile sensing ability
is sufficient for the robustness of the single object rotation.

The generalization testing result is shown in Table III. We
train the policies on object set A and test them on object set B.
Since No-Sensor and LS-Sensor baseline does not work on the
multi-object training setup, we only compare our method with
DS-Sensor. We find that disabling the sensor input will lead
to a significant performance drop both in the seen and unseen
object setup. This result suggests that tactile information is
indeed important for generalization.

E. Real: Dexterity without Vision

We have seen that our tactile policy can achieve superior
performance in the ideal simulation setup. Now, we transfer the
trained tactile policy to the real robot and verify if it still offers

TABLE III: Performance of different methods on the multi-
object rotation task in simulation. The results are averaged on
3 seeds.

Method Seen Object Setup Unseen Object Setup
CRR TTF CRR TTF

Sensor 976.1±86.5 42.1±0.6 594.4±63.2 28.2±2.7

DS-Sensor 351.5±28.0 18.6±0.7 186.5±16.1 10.7±1.4

the demonstrated benefit. In real-world experiments, we train
the baselines on object sets A and B and evaluate these policies
on object set C. We evaluate each method using 3 different
seeds for each object. The results are shown in Table I.

Our method can outperform all the baselines. It can not only
perform rotation on the seen, artificial training objects but also
generalize to unseen real-world objects like apples and tomatoes.
The method with continuous tactile sensor signals also performs
better than the other two methods without feedback. We observe
that both the no-sensor and the open-loop policy can at most
rotate the object for 180 degrees on the evaluated objects, after
which they will get stuck or push the object off the palm,
resulting in a failure. In addition, by studying the behavior of
our policy and baselines, we find that our policy can adjust
the finger motion immediately when objects get to positions
that are easy to get stuck or fall. In contrast, the baselines
without sensors do not have such kind of adaptive behavior.
This result suggests that it is crucial to have a dose of tactile
feedback in the considered in-hand object manipulation setup.
By comparing the methods with continuous contact signals
and binarized contact signals, we find that the latter has better
performance. Even though the policy with continuous signals
can perform well in some objects, it has poor generalizability
and huge variance between different objects. This may be due
to the huge gap in force measurement between simulation and
the real world.

Fig. 7: Visualization of contact signals in 400 steps in the simulation and real-world experiments on a cuboid. We also show
some typical frames during the rotation process. We can see that the contact signals in the simulation and the real world in
general align. This accounts for successful Sim2Real transfer.

F. Qualitative Analysis: Sensor Response

To understand why Sim2Real can be successful, we conduct
a case study on cuboid rotation to analyze the sensor response.
We visualize two 40 seconds test trajectories recorded in the
simulation and real in Figure 7 during the test. It is worthwhile
mentioning that different runs in real will produce different
patterns, and we put more cases in the appendix. We find
that the contact signals in the simulation are slightly denser
(along the temporal x-axis) and richer (along the sensor y-
axis) compared with that of the real. Some sensors are also
more likely to be activated (e.g., sensors 1 and 10) in the
simulation, but the overall patterns of the simulation and the
real are similar. This can explain why our Sim2Real transfer
is successful. Moreover, when looking at local windows used
by our policy (0.4s) in simulation, we observe that there are
various, diverse sensor activation patterns. We hypothesize that
learning from such a diverse distribution could also help the
policy to transfer to the sensor observation in the real world.

G. Ablation Study I: Importance Analysis of Sensors

Then, we perform ablation studies of the system on the real
robot to see which sensors are more important for a successful
rotation. We divide the sensors into two groups: Fingertip and
Palm. We disable these two groups of sensors and train two
policies (No-Fingertip and No-Palm). Then we compare them
to our full policy and DS-Sensor, see Table IV. We find that
neither of the two considered policies can compare to our
full policy. They achieve a similar performance as DS-Sensor,
which suggests that both groups of sensors are essential for
the success of in-hand object rotation.

H. Ablation Study II: A Shape Understanding Perspective

So far, we have seen that the tactile information is essential
for successful object rotation. In this part, our goal is to
understand its success from a shape understanding perspective.
We study whether our tactile information can reveal the shape
information of the object, which may be helpful for learning

Fig. 8: With the learned rotation primitives around x, y, and z axis, we can perform human-robot shared control to reorient an
object. In this example, a human operator uses a keyboard to rotate a cuboid around x, y, z, y axes consecutively. We also
visualize the contact signal throughout this 600-step process (60 seconds).

GT

Prediction

w/o touch

Prediction

w/ touch

(Ours)

Fig. 9: Qualitative mesh reconstruction results in simulation.
When the touch information does not present, we can not
infer the shape of the rotated object accurately. In contrast,
our method is able to reconstruct the groundtruth object by a
20-second rotation.

robust and adaptive rotation behavior across different objects.
Specifically, we would like to see if it is possible to predict the
shape of the object using the rollout of a rotation policy. For
simplicity, we focus on the z-axis rotation of column-shaped
objects. We first train a z-axis rotation policy on 125 different
irregular, column-shaped objects. Then, we use this policy to
collect 55000 policy rollouts of rotating these objects, and each
of these rollouts lasts 200 control steps (20 seconds). Next,
we split these collected rollouts into a training dataset and
a test dataset. The objects in the test dataset do not present
in the training dataset. We train a temporal-CNN model to

TABLE IV: Ablation analysis of the system. We train policies
on different sensor setups and test their performance. The
results are averaged on 3 seeds.

Method Cuboid Rubber Duck
CRR TTF CRR TTF

Sensor 4.91±0.52 30.00±0.00 1.42±0.38 29.00±1.73

DS-Sensor 0.25±0.25 7.67±6.80 0.33±0.29 20.00±17.32

No-Fingertip 0.17±0.29 3.33±5.77 0.42±0.14 17.00±2.64

No-Palm 0.42±0.38 17.00±14.73 0.42±0.14 16.67±11.72

predict the shape of the object using the full rollout trajectory
as input, and then we use the trained model to reconstruct
the shape of objects in the test dataset. We compare our
model to another ablated model, which discards all the tactile
observation in the rollout during prediction (by setting them
to 0). The shape reconstruction mean squared error (MSE) of
our model is 0.22, while that of the ablated model is 0.45.
This suggest that using tactile infomation can indeed help
shape understanding. Moreover, we provide visualization of
predicted object shapes are in Figure 9. With the tactile sensors,
our model can reconstruct object shape much better than the
ablated model. The shape understanding results suggest that
the binarized tactile information is indeed important for the
robot to percept the object and interact with it in a meaningful
way.

I. Rotation Around Other Axes

Besides the rotation around the z axis, we also test whether
our system is able to perform rotation around other axes. Here,
we study the rotation around the x and y axes. To do so, we
train our policy on the object set A and B as in the previous

TABLE V: Summary of rotation performance around different
axes. We provide the averaged results over the object set on
the x, y, and z axis rotations. The results are averaged on 3
seeds.

Rotation Seen Obj Unseen Obj
CRR TTF CRR TTF

x-axis 1.68±0.78 24.13±6.04 2.71±1.37 18.2±9.19

y-axis 1.88±0.38 22.46±4.81 1.05±0.56 23.13±3.01

z-axis 3.43±1.22 29.06±1.45 2.48±1.27 28.73±1.34

experiments. The results are shown in Table V. We find that our
system is still able to rotate most of the objects successfully,
though it may have difficulty rotation some particular objects
which results in lower CRAs. We observe that rotation around
x and y axes involves many critical contacts between the object
and the side of finger links. This may explain why failures
can occur since the layout of our current sensor array does
not support this feature. We hypothesis that a denser contact
sensor array over each finger link can remedy this problem.

The rotation around x, y, and z axis provides a useful set
of primitives. This enables human to use high-level commands
to control the rotation behavior, as shown in Figure 8. In
this example, A human operator presses the keyboard to send
different rotation commands (i.e. around x, y, or z). The robot
hand is then able to execute the desired rotation, reorienting
the object to different poses.

VI. CONCLUSION

In this paper, we have presented Touch Dexterity, a new
dexterous manipulation system that is able to rotate different
objects through touch without vision. We showed an end-
to-end reinforcement learning framework to learn dexterous
manipulation skills on the proposed system. We carried out
experiments both in simulation and real to demonstrate its
effectiveness. Our work demonstrated that we are able to
achieve touch-only dexterity as humans in real for the first time.
In the future, there are many promising future directions to
investigate, such as exploring the use of a more dense contact
sensor array and scaling up the system to solve more diverse
tasks. We hope that our work can pave the way for more
intelligent robot hands.

REFERENCES

[1] Y. Aiyama, M. Inaba, and H. Inoue. Pivoting: A
new method of graspless manipulation of object by
robot fingers. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 1993.

[2] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pachocki,
Arthur Petron, Matthias Plappert, Glenn Powell, Alex
Ray, et al. Learning dexterous in-hand manipulation. The
International Journal of Robotics Research (IJRR), 39(1):
3–20, 2020.

[3] Sridhar Pandian Arunachalam, Irmak Güzey, Soumith
Chintala, and Lerrel Pinto. Holo-dex: Teaching dex-
terity with immersive mixed reality. arXiv preprint
arXiv:2210.06463, 2022.

[4] Sridhar Pandian Arunachalam, Sneha Silwal, Ben Evans,
and Lerrel Pinto. Dexterous imitation made easy: A
learning-based framework for efficient dexterous manipu-
lation. arXiv preprint arXiv:2203.13251, 2022.

[5] Yunfei Bai and C. Karen Liu. Dexterous manipulation
using both palm and fingers. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages
1560–1565, 2014. doi: 10.1109/ICRA.2014.6907059.

[6] Aditya Bhatt, Adrian Sieler, Steffen Puhlmann, and Oliver
Brock. Surprisingly robust in-hand manipulation: An
empirical study. In Robotics: Science and Systems (RSS),
2021.

[7] Tapomayukh Bhattacharjee, Joshua Wade, and Charles C
Kemp. Material recognition from heat transfer given
varying initial conditions and short-duration contact. In
Robotics: Science and Systems (RSS), 2015.

[8] Raunaq Bhirangi, Tess Hellebrekers, Carmel Majidi, and
Abhinav Gupta. Reskin:versatile, replaceable, lasting
tactile skins. In Conference on Robot Learning (CoRL),
2021.

[9] Thomas Bi, Carmelo Sferrazza, and Raffaello D’Andrea.
Zero-shot sim-to-real transfer of tactile control policies
for aggressive swing-up manipulation. IEEE Robotics
and Automation Letters, 6(3):5761–5768, 2021.

[10] A. Bicchi and R. Sorrentino. Dexterous manipulation
through rolling. In Proceedings of 1995 IEEE Interna-
tional Conference on Robotics and Automation, volume 1,
pages 452–457 vol.1, 1995. doi: 10.1109/ROBOT.1995.
525325.

[11] Gereon Buescher, Martin Meier, Guillaume Walck, Robert
Haschke, and Helge J Ritter. Augmenting curved robot
surfaces with soft tactile skin. In 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2015.

[12] Nikhil Chavan-Dafle and Alberto Rodriguez. Sampling-
based planning of in-hand manipulation with external
pushes. In Robotics Research: The 18th International
Symposium ISRR, pages 523–539. Springer, 2020.

[13] Yevgen Chebotar, Oliver Kroemer, and Jan Peters. Learn-
ing robot tactile sensing for object manipulation. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2014.

[14] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar,
Edward Adelson, and Pulkit Agrawal. Visual dexterity: In-
hand dexterous manipulation from depth. arXiv preprint
arXiv:2211.11744, 2022.

[15] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for
general in-hand object re-orientation. In Conference on
Robot Learning (CoRL), pages 297–307, 2022.

[16] Moëz Cherif and Kamal K Gupta. Planning quasi-static
fingertip manipulations for reconfiguring objects. IEEE
Transactions on Robotics and Automation, 15(5):837–848,

1999.
[17] Moëz Cherif and Kamal K Gupta. Planning quasi-static

fingertip manipulations for reconfiguring objects. IEEE
Transactions on Robotics and Automation, 15(5):837–848,
1999.

[18] Alex Church, John Lloyd, Nathan F Lepora, et al.
Tactile sim-to-real policy transfer via real-to-sim image
translation. In Conference on Robot Learning (CoRL),
2022.

[19] Siyuan Dong, Devesh K Jha, Diego Romeres, Sangwoon
Kim, Daniel Nikovski, and Alberto Rodriguez. Tactile-
rl for insertion: Generalization to objects of unknown
geometry. In IEEE International Conference on Robotics
and Automation (ICRA), 2021.

[20] Neel Doshi, Orion Taylor, and Alberto Rodriguez. Ma-
nipulation of unknown objects via contact configuration
regulation. In International Conference on Robotics and
Automation (ICRA), 2022.

[21] Zoe Doulgeri and Leonidas Droukas. On rolling contact
motion by robotic fingers via prescribed performance
control. In IEEE International Conference on Robotics
and Automation (ICRA), 2013.

[22] Danny Driess, Peter Englert, and Marc Toussaint. Ac-
tive learning with query paths for tactile object shape
exploration. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017.

[23] Ruohan Gao, Zilin Si, Yen-Yu Chang, Samuel Clarke,
Jeannette Bohg, Li Fei-Fei, Wenzhen Yuan, and Jiajun
Wu. Objectfolder 2.0: A multisensory object dataset
for sim2real transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10598–10608, 2022.

[24] Ahsan Habib, Isura Ranatunga, Kyle Shook, and Dan O
Popa. Skinsim: A simulation environment for multimodal
robot skin. In IEEE International Conference on Automa-
tion Science and Engineering (CASE), 2014.

[25] L. Han and J.C. Trinkle. Dextrous manipulation by rolling
and finger gaiting. In IEEE International Conference on
Robotics and Automation (ICRA), 1998.

[26] Li Han, Yi-Sheng Guan, ZX Li, Q Shi, and Jeffrey C
Trinkle. Dextrous manipulation with rolling contacts.
In IEEE International Conference on Robotics and
Automation (ICRA), 1997.

[27] Li Han, Yi-Sheng Guan, ZX Li, Q Shi, and Jeffrey C
Trinkle. Dextrous manipulation with rolling contacts.
In International Conference on Robotics and Automa-
tion (ICRA), 1997.

[28] Ankur Handa, Arthur Allshire, Viktor Makoviychuk,
Aleksei Petrenko, Ritvik Singh, Jingzhou Liu, Denys
Makoviichuk, Karl Van Wyk, Alexander Zhurkevich,
Balakumar Sundaralingam, et al. Dextreme: Transfer
of agile in-hand manipulation from simulation to reality.
In International Conference on Robotics and Automation
(ICRA), 2023.

[29] Francois R Hogan, Jose Ballester, Siyuan Dong, and
Alberto Rodriguez. Tactile dexterity: Manipulation

primitives with tactile feedback. In IEEE International
Conference on Robotics and Automation (ICRA), 2020.

[30] Roland S Johansson and Goran Westling. Roles of
glabrous skin receptors and sensorimotor memory in
automatic control of precision grip when lifting rougher
or more slippery objects. Experimental brain research,
56:550–564, 1984.

[31] Raj Kolamuri, Zilin Si, Yufan Zhang, Arpit Agarwal, and
Wenzhen Yuan. Improving grasp stability with rotation
measurement from tactile sensing. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2021.

[32] Vikash Kumar, Yuval Tassa, Tom Erez, and Emanuel
Todorov. Real-time behaviour synthesis for dynamic hand-
manipulation. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 6808–6815.
IEEE, 2014.

[33] Mike Lambeta, Po-Wei Chou, Stephen Tian, Brian Yang,
Benjamin Maloon, Victoria Rose Most, Dave Stroud,
Raymond Santos, Ahmad Byagowi, Gregg Kammerer,
et al. Digit: A novel design for a low-cost compact
high-resolution tactile sensor with application to in-hand
manipulation. IEEE Robotics and Automation Letters, 5
(3):3838–3845, 2020.

[34] Michelle A. Lee, Yuke Zhu, Peter Zachares, Matthew Tan,
Krishnan Srinivasan, Silvio Savarese, Li Fei-Fei, Animesh
Garg, and Jeannette Bohg. Making sense of vision and
touch: Learning multimodal representations for contact-
rich tasks, 2019. URL https://arxiv.org/abs/1907.13098.

[35] Qiang Li, Oliver Kroemer, Zhe Su, Filipe Fernandes Veiga,
Mohsen Kaboli, and Helge Joachim Ritter. A review of
tactile information: Perception and action through touch.
IEEE Transactions on Robotics, 36(6):1619–1634, 2020.

[36] Jacky Liang, Ankur Handa, Karl Van Wyk, Viktor
Makoviychuk, Oliver Kroemer, and Dieter Fox. In-
hand object pose tracking via contact feedback and gpu-
accelerated robotic simulation. In IEEE International
Conference on Robotics and Automation (ICRA), pages
6203–6209. IEEE, 2020.

[37] Xingyu Liu, Deepak Pathak, and Kris M Kitani. Herd:
Continuous human-to-robot evolution for learning from
human demonstration. arXiv preprint arXiv:2212.04359,
2022.

[38] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac
gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[39] Sami Moisio, Beatriz León, Pasi Korkealaakso, and
Antonio Morales. Model of tactile sensors using soft
contacts and its application in robot grasping simulation.
Robotics and Autonomous Systems, 61(1):1–12, 2013.

[40] Artem Molchanov, Oliver Kroemer, Zhe Su, and Gaurav S
Sukhatme. Contact localization on grasped objects using
tactile sensing. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016.

https://arxiv.org/abs/1907.13098

[41] Andrew S. Morgan, Kaiyu Hang, Bowen Wen, Kostas
Bekris, and Aaron M. Dollar. Complex in-hand manipu-
lation via compliance-enabled finger gaiting and multi-
modal planning. IEEE Robotics and Automation Letters,
7(2):4821–4828, 2022. doi: 10.1109/LRA.2022.3145961.

[42] Adithyavairavan Murali, Yin Li, Dhiraj Gandhi, and
Abhinav Gupta. Learning to grasp without seeing. In
Proceedings of the 2018 International Symposium on
Experimental Robotics, pages 375–386. Springer, 2020.

[43] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In International
Conference on Machine Learning (ICML), 2010.

[44] Benjamin Navarro, Prajval Kumar, Aicha Fonte, Philippe
Fraisse, Gérard Poisson, and Andrea Cherubini. Active
calibration of tactile sensors mounted on a robotic hand. In
Intelligent RObots and Systems Workshop on Multimodal
sensor-based robot control for HRI and soft manipulation,
2015.

[45] Allison M Okamura, Niels Smaby, and Mark R Cutkosky.
An overview of dexterous manipulation. In IEEE
International Conference on Robotics and Automation.
Symposia Proceedings, 2000.

[46] Akhil Padmanabha, Frederik Ebert, Stephen Tian, Roberto
Calandra, Chelsea Finn, and Sergey Levine. Omnitact:
A multi-directional high-resolution touch sensor. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 618–624. IEEE, 2020.

[47] Chaoyi Pan, Marion Lepert, Shenli Yuan, Rika Antonova,
and Jeannette Bohg. Task-driven in-hand manipulation
of unknown objects with tactile sensing. arXiv preprint
arXiv:2210.13403, 2022.

[48] Austin Patel, Andrew Wang, Ilija Radosavovic, and
Jitendra Malik. Learning to imitate object interactions
from internet videos. arXiv preprint arXiv:2211.13225,
2022.

[49] Anna Petrovskaya and Oussama Khatib. Global localiza-
tion of objects via touch. IEEE Transactions on Robotics,
27(3):569–585, 2011.

[50] Johannes Pitz, Lennart Röstel, Leon Sievers, and Berthold
Bäuml. Dextrous tactile in-hand manipulation using
a modular reinforcement learning architecture. In
IEEE International Conference on Robotics and Automa-
tion (ICRA), 2023.

[51] Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and
Jitendra Malik. In-hand object rotation via rapid motor
adaptation. In Conference on Robot Learning (CoRL),
2022.

[52] Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Hao Su,
and Xiaolong Wang. Dexpoint: Generalizable point
cloud reinforcement learning for sim-to-real dexterous
manipulation. In Conference on Robot Learning (CoRL),
2022.

[53] Yuzhe Qin, Hao Su, and Xiaolong Wang. From one
hand to multiple hands: Imitation learning for dexterous
manipulation from single-camera teleoperation. IEEE
Robotics and Automation Letters, 7(4):10873–10881,

2022.
[54] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang,

Ruihan Yang, Yang Fu, and Xiaolong Wang. Dexmv:
Imitation learning for dexterous manipulation from hu-
man videos. In European Conference on Computer
Vision (ECCV), 2022.

[55] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
Giulia Vezzani, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations. In
Robotics: Science and Systems (RSS), 2018.

[56] Daniela Rus. In-hand dexterous manipulation of
piecewise-smooth 3-d objects. The International Journal
of Robotics Research (IJRR), 18(4):355–381, 1999.

[57] John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[58] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[59] Jian Shi, J. Zachary Woodruff, Paul B. Umbanhowar, and
Kevin M. Lynch. Dynamic in-hand sliding manipulation.
IEEE Transactions on Robotics, 33(4):778–795, 2017.

[60] Zilin Si and Wenzhen Yuan. Taxim: An example-based
simulation model for gelsight tactile sensors. IEEE
Robotics and Automation Letters, 7(2):2361–2368, 2022.

[61] Leon Sievers, Johannes Pitz, and Berthold Bäuml. Learn-
ing purely tactile in-hand manipulation with a torque-
controlled hand. In IEEE International Conference on
Robotics and Automation (ICRA), 2022.

[62] Edward Smith, David Meger, Luis Pineda, Roberto
Calandra, Jitendra Malik, Adriana Romero Soriano, and
Michal Drozdzal. Active 3d shape reconstruction from
vision and touch. Advances in Neural Information
Processing Systems, 34:16064–16078, 2021.

[63] Paloma Sodhi, Michael Kaess, Mustafa Mukadanr, and
Stuart Anderson. Patchgraph: In-hand tactile tracking with
learned surface normals. In International Conference on
Robotics and Automation (ICRA), 2022.

[64] Sudharshan Suresh, Maria Bauza, Kuan-Ting Yu,
Joshua G Mangelson, Alberto Rodriguez, and Michael
Kaess. Tactile slam: Real-time inference of shape and pose
from planar pushing. In IEEE International Conference
on Robotics and Automation (ICRA), 2021.

[65] Sudharshan Suresh, Zilin Si, Stuart Anderson, Michael
Kaess, and Mustafa Mukadam. Midastouch: Monte-carlo
inference over distributions across sliding touch. In
Conference on Robot Learning (CoRL), 2022.

[66] Ian H Taylor, Siyuan Dong, and Alberto Rodriguez.
Gelslim 3.0: High-resolution measurement of shape,
force and slip in a compact tactile-sensing finger. In
International Conference on Robotics and Automation
(ICRA), 2022.

[67] Stephen Tian, Frederik Ebert, Dinesh Jayaraman, Mayur
Mudigonda, Chelsea Finn, Roberto Calandra, and Sergey

Levine. Manipulation by feel: Touch-based control with
deep predictive models. In International Conference on
Robotics and Automation (ICRA), 2019.

[68] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to
the real world. In IEEE/RSJ international conference on
intelligent robots and systems (IROS), 2017.

[69] Pierre Tournassoud, Tomás Lozano-Pérez, and Emmanuel
Mazer. Regrasping. In IEEE International Conference
on Robotics and Automation (ICRA), 1987.

[70] Herke Van Hoof, Nutan Chen, Maximilian Karl, Patrick
van der Smagt, and Jan Peters. Stable reinforcement
learning with autoencoders for tactile and visual data. In
IEEE/RSJ international conference on intelligent robots
and systems (IROS), 2016.

[71] Yueh-Hua Wu, Jiashun Wang, and Xiaolong Wang.
Learning generalizable dexterous manipulation from
human grasp affordance. In Conference on Robot
Learning (CoRL), 2022.

[72] Jie Xu, Sangwoon Kim, Tao Chen, Alberto Rodriguez
Garcia, Pulkit Agrawal, Wojciech Matusik, and Shinjiro
Sueda. Efficient tactile simulation with differentiability
for robotic manipulation. In Conference on Robot
Learning (CoRL).

[73] Jingxi Xu, Shuran Song, and Matei Ciocarlie. Tandem:
Learning joint exploration and decision making with
tactile sensors. IEEE Robotics and Automation Letters, 7
(4):10391–10398, 2022.

[74] Jianglong Ye, Jiashun Wang, Binghao Huang, Yuzhe Qin,
and Xiaolong Wang. Learning continuous grasping func-
tion with a dexterous hand from human demonstrations.
arXiv preprint arXiv:2207.05053, 2022.

[75] Wenzhen Yuan, Siyuan Dong, and Edward H Adelson.
Gelsight: High-resolution robot tactile sensors for esti-
mating geometry and force. Sensors, 17(12):2762, 2017.

[76] Xinghao Zhu, Siddarth Jain, Masayoshi Tomizuka, and
Jeroen Van Baar. Learning to synthesize volumetric
meshes from vision-based tactile imprints. In Interna-
tional Conference on Robotics and Automation (ICRA),
2022.

APPENDIX

A. System Video Demo

We provide a video demo of our system at http://
touchdexterity.github.io. The raw video demo can
also be founded in the submitted files.

B. PPO Training Hyperparameters

We use the proximal policy optimization (PPO) algorithm
to train our control policy. The setup of the PPO algorithm is
as follows. We use an advantage clipping coefficient ε = 0.2.
We use a horizon length of 16, with γ = 0.99 and generalized
advantage estimator (GAE) [57] coefficient τ = 0.95. The
policy network is a three-layer MLP with ELU activation. Its
hidden layer is [512, 256, 256]. The policy network’s learning
rate is set to 1e-4, with an adaptive KL threshold of 0.02.
The value network is a four-layer MLP with ELU activation.
Its hidden layer is [512, 512, 256, 256]. The value network’s
learning rate is set to 5e-4, with an adaptive KL threshold
of 0.016. We normalize the state input, value, and advantage
during training. We use a gradient norm of 1.0. The minibatch
size is set to 16384.

C. Improving Sim2Real Transfer

Domain Randomization We use several domain randomiza-
tion techniques to improve the Sim2Real transfer. The details
are shown in Table VI.

TABLE VI: Domain Randomization Setup

Object: Mass (kg) [0.2, 0.6]
Object: Friction [0.3, 3.0]
Object: Shape ×U(0.95, 1.05)
Object: Initial Position (cm) +U(−0.015, 0.015)
Hand: Friction [0.3, 3.0]

PD Controller: P Gain ×U(0.66, 1.33)
PD Controller: D Gain ×U(0.80, 1.20)

Sensor: Lag Probability 0.25
Sensor: Drop Rate 0.1

Random Force: Scale 0.2
Random Force: Probability [0.2, 0.25]
Random Force: Decay Coeff. and Interval 0.99 every 0.1s

Joint Observation Noise. +U(−0.05, 0.05)
Action Noise. +U(−0.06, 0.06)

System Identification We apply system identification to align
the behavior of the PD controller in simulation to that in the
real. We tune the PD coefficients to ensure that the responses of
the controllers to the impulse and sinusoidal inputs are aligned.
We find this step crucial for successful Sim2Real transfer.

D. Reward Design

Rotation Reward

rrot = clip(∆θ,−0.157, 0.157). (3)

Velocity Reward
rvel = −‖vt‖. (4)

Fig. 10: Contact sensor map.

Falling Reward (Penalty)

rfall = −50.0. (5)

Work Reward (Penalty)

rwork = −〈|τ |, |q̇t|〉. (6)

Torque Reward (Penalty)

rtorque = −‖τ‖. (7)

Distance Reward

rdist = meani=0,1,2,3(clip(0.1/(0.02 + 4d(xitip, xobj)), 0, 1)).
(8)

The overall reward function is

rt = w1rrot+w2rvel+w3rfall+w4rwork+w5rtorque+w6rdist.
(9)

The setup of each weight: w1 = 20.0, w2 = 0.1, w3 =
1.0, w4 = 0.0003, w5 = 0.0003, w6 = 0.1.

E. More Sensor Response Examples

We show more examples of sensor activation trajectories
collected in real-world experiments in Figure 11. These
trajectories are collected on different objects. We can observe
different activation patterns in the trajectories.

http://touchdexterity.github.io
http://touchdexterity.github.io

Fig. 11: More sensor activation trajectories in the real world experiments. The curves are collected on different objects and
display different patterns.

	I Introduction
	II Related Work
	III Tactile Dexterous Manipulation System
	III-A Real-word System Setup
	III-B Simulation Setup
	III-C Benchmark Problem: In-hand Rotation
	III-D Discussion: What information can sensors provide?

	IV Learning Touch Dexterity
	IV-A Problem Formulation
	IV-A1 State
	IV-A2 Action
	IV-A3 Reward
	IV-A4 Reset Strategy

	IV-B Domain Randomization
	IV-B1 Physics randomization
	IV-B2 Non-physics randomization

	IV-C Training Procedure

	V Experiments
	V-A Experiment Setup
	V-A1 Object Dataset
	V-A2 Evaluation Metric

	V-B Baselines
	V-C Sim: Policy learning with different sensing capabilities.
	V-D Sim: Is a tactile policy robust and generalizable?
	V-E Real: Dexterity without Vision
	V-F Qualitative Analysis: Sensor Response
	V-G Ablation Study I: Importance Analysis of Sensors
	V-H Ablation Study II: A Shape Understanding Perspective
	V-I Rotation Around Other Axes

	VI Conclusion
	Appendix
	A System Video Demo
	B PPO Training Hyperparameters
	C Improving Sim2Real Transfer
	D Reward Design
	E More Sensor Response Examples

