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Abstract

Consistent pose-driven character animation has achieved remarkable progress in
single-character scenarios. However, extending these advances to multi-character
settings is non-trivial, especially when position swap is involved. Beyond mere
scaling, the core challenge lies in enforcing correct Identity Correspondence (IC)
between characters in reference and generated frames. To address this, we introduce
EverybodyDance, a systematic solution targeting IC correctness in multi-character
animation. EverybodyDance is built around the Identity Matching Graph (IMG),
which models characters in the generated and reference frames as two node sets in
a weighted complete bipartite graph. Edge weights, computed via our proposed
Mask–Query Attention (MQA), quantify the affinity between each pair of charac-
ters. Our key insight is to formalize IC correctness as a graph structural metric
and to optimize it during training. We also propose a series of targeted strategies
tailored for multi-character animation, including identity-embedded guidance, a
multi-scale matching strategy, and pre-classified sampling, which work synergisti-
cally. Finally, to evaluate IC performance, we curate the Identity Correspondence
Evaluation benchmark, dedicated to multi-character IC correctness. Extensive
experiments demonstrate that EverybodyDance substantially outperforms state-of-
the-art baselines in both IC and visual fidelity.

1 Introduction

Character animation aims to generate video sequences from still images guided by specific pose
sequences [1; 2]. Unlike text-driven generation focusing mainly on high-level semantic alignment
[3; 4], it requires a dual fidelity: maintaining consistent visual appearance—including fine-grained
details and accurately performing complex motion sequences [5; 6]. This requirement has generated
significant research interest [7; 8; 9; 10; 11; 12].

Despite significant advances in single character animation generation (e.g. [8; 9; 13; 14; 12]),
extending these methods to multi-character scenarios introduces unique challenges (see Figure 1).
The key challenges are twofold. First, in multi-character scenarios, characters can swap relative
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Figure 1: The left panel highlights the challenges of extending existing methods to multi-character
scenarios. The yellow box indicates feature interference between characters, while the red box marks
identity mismatches. The right panel illustrates our method’s accurate identity correspondence.

positions, leading to identity confusion. Furthermore, the appearances of different characters can
interfere with one another. Existing single-character animation approaches [14; 13; 9; 10; 12] are
mainly based on implicit data-driven paradigms. In multi-character scenarios, such paradigm struggles
to guarantee accurate one-to-one correspondence between generated and reference characters (see
Section 4.3). Empirical results demonstrate that state-of-the-art methods often struggle to to achieve
satisfactory Identity Correspondence (IC) under these conditions (see Section 4.2).

To address these limitations, we propose an explicit modeling framework, which directly captures the
correspondence between generated characters and their reference counterparts. Our method enforces
correct IC between characters during training. Specifically, we introduce a weighted complete
bipartite graph, Identity Matching Graph (IMG), whose two node sets represent generated/reference
characters. Edge weights, derived by our proposed Mask–Query Attention (MQA), quantify the
affinity between each generated/reference pair. A global matching score derived from the IMG
provides a direct, optimizable objective for IC correctness. Integrating IMG into training achieves
disentanglement of multiple characters and yields more accurate IC for multi-character animations.
The construction process of IMG is dynamic, making it scalable for any number of characters.

To resolve the ambiguity of motion guidance in multi-character scenarios, we designed Identity
Embedded Guidance (IEG). IEG provides clear anchors for each character throughout both training
and inference. During the training phase, IEG and IMG work synergistically to create a guidance-
supervision loop. To further strengthen the robustness of IC, we employ a suite of targeted im-
provements. First, to enforce the correct correspondence across the entire feature hierarchy, we
introduce a multi-scale matching strategy. In addition, to address the long-tail distribution of the
multi-character dataset, we propose a pre-classified sampling strategy to ensure that difficult and in-
frequent position-swap samples receive sufficient emphasis during training. To rigorously evaluate IC
performance under complex multi-character conditions, we also present the Identity Correspondence
Evaluation (ICE) benchmark, designed to challenge and compare SOTA methods on their ability to
maintain correct IC.

Our main contributions are summarized as follows: (1) Graph-Based IC Modeling: We propose
the Identity Matching Graph (IMG), a weighted complete bipartite graph that explicitly models
IC in multi-character animation, whose edge weights are computed via our proposed Mask–Query
Attention (MQA). (2) Targeted Strategies: We propose a series of targeted strategies, including
identity-embedded pose guidance, a multi-scale matching strategy and a pre-classified sampling
strategy, all tailored to multi-character animation. (3) ICE Benchmark: We curate the benchmark,
ICE, for comprehensive evaluation in multi-character animation. Extensive evaluations demonstrate
that our approach significantly outperforms SOTA baselines in both IC accuracy and visual fidelity.

2 Related Work

2.1 Diffusion Models

Diffusion Models gradually corrupt data by adding Gaussian noise and learn a reverse denoising
process to model complex distributions [15; 16; 17; 18]. At inference, samples are generated by
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starting from pure noise and iteratively denoising with the trained model [19; 20]. Extensions to
latent diffusion operate in compressed feature spaces for efficient high-resolution and text-to-image
generation [21]. Beyond images, diffusion frameworks produce temporally coherent videos for facial
expression and dance generation [22; 9; 11]. Conditional diffusion enables flexible generation by
guiding the reverse process with model-free or classifier-free cues [20; 23].

2.2 Video Generation

Early video synthesis relied on GAN-based [24] frameworks (e.g., TGAN [25]), which introduced
temporal shift modules to enforce frame-to-frame coherence. Diffusion-based approaches [26] extend
image diffusion models by integrating spatio-temporal conditioning or specialized temporal attention
layers, as seen in Tune-A-Video’s[27] tailored spatio-temporal attention and MagicVideo’s [28]
directed temporal attention module in latent space. Transformer-centric models such as Video
Diffusion Transformer (VDT) [29] and Matten [30] leverage modular temporal and spatial attention
(e.g., Mamba-Attention [31]) to capture long-range dependencies and global video context. Training-
free extensions such as FreeLong [32] employ a SpectralBlend temporal attention mechanism to adapt
pretrained short-clip diffusion models for long-video generation, maintaining both global consistency
and local detail without additional training. Recent video super-resolution and editing techniques
employ temporal-consistent diffusion priors to reduce flicker and preserve object appearance, further
enhancing smoothness in tasks from animation to real-world scene synthesis [33].

2.3 Human Image Animation

Early GAN-based methods [34; 6; 35; 36; 37; 38; 39; 40] used appearance flow for feature warping
but suffered from adversarial training issues such as mode collapse and motion inaccuracy [9]. More
recent work [12; 9; 10; 7; 8; 11; 13; 41; 42; 43; 44; 45; 46] based on diffusion models, which offers
stable training [47]. Disco [8] uses ControlNet [48] for disentangled pose–foreground–background
control. ReferenceNet [9] improves fine-detailed consistency by injecting the appearance of a
reference frame into the denoising UNet. Recent work has also made valuable contributions to
multi-character scenarios. Ingredients [49] focuses on text-controlled multi-character layout, Follow-
Your-Pose-V2 [50] focuses on scenes where characters maintain fixed relative positions.

3 Method

Identity Correspondence (IC), a one-to-one matching between each generated character and its
counterpart in the reference frame, becomes especially critical when characters swap positions.
Existing character animation methods [8; 9; 11; 13] typically rely on end-to-end training losses that
capture only global similarity, often failing to enforce correct IC in such scenarios (see Section 4.3).

Section 3.1 introduces our formulation of the Identity Matching Graph (IMG). Section 3.2 explains
how the IMG is constructed. Section 3.3 presents our targeted strategies for multi-character animation.

3.1 Problem Formulation

Concretely, we construct a weighted complete bipartite graph between the reference (ref) and the
generated (gen) characters in each frame. The node setR = {r1, . . . , rm} represents m characters
ordered from left to right in the reference frame (numbered 1 to m), while the node set G =
{g1, . . . , gn} with n ≤ m describes n characters in the generated frame. We define the Identity
Matching Graph (IMG) as the following bipartite graph:

BID = (R, G, E, w), E = {(ri, gj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, (1)
where the edge weight w(ri, gj) ≥ 0 represents the affinity (potential correspondence) between ri
and gj (see left panel of the Figure 2). During training, for each generated frame we construct its
IMG, yielding the set Ê of n×m edges (i.e., all possible correspondences between characters). We
denote the edge set of n ground-truth correspondences byM∗. Since the edges inM∗ represent the
correct IC, our objective is to increase their weights by training the UNet [51]. Therefore, we use the
following ratio C to quantify the correctness of IC as:

C =
∑

(ri,gj)∈M∗ w(ri, gj)∑
(ri,gj)∈Ê w(ri, gj)

∈ [0, 1],M∗ ⊆ Ê. (2)
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Figure 2: The left panel illustrates what is the IMG. The target (tgt) frame indicates the ground truth
correspondence, indicating which edges belong to the setM∗. The right panel shows how we build
the IMG. Since the regions inR do not overlap spatially, we sum all {ri}mi=1 representations into rall.

Lower C indicates a more severe ambiguity. Optimizing C will force the model to learn correct IC,
which will serve as a loss term during the training of the diffusion model. For example, in the left
panel of Figure 2, if the left generated character g1 has a higher affinity to reference character r1 than
its true counterpart r2, by the IMG construction in Section 3.2, the edge weight for (r2, g1) will be
a low value. Under the total loss defined in Equation 8, this low-weighted pairing incurs a penalty,
thereby driving the model to learn the correct inter-character correspondence.

3.2 Identity Matching Graph Construction

Node Construction. During training, the reference and generated frames are encoded into the latent
space [47]. Therefore, we propose to use the corresponding masked regions in the latent space to
represent each character, and then build the IMG nodes from those regions. We denote {M r

i}mi=1 as
the instance segmentation [52] masks of the m reference characters, and {M g

j }nj=1 represents the
masks of the n (n ≤ m) generated characters. Since instance segmentation is performed offline on
the training set, we extract the masks for the generated frames from their corresponding ground-truth
target frames. This approach circumvents potential drawbacks in both efficiency and accuracy.

In a chosen UNet [51] layer ℓ, we extract the intermediate reference and generated feature, denoted as
f r ∈ Rc×hr×wr

, f g ∈ Rc×hg×wg
, respectively. (hr, wr) and (hg, wg) are the sizes of the reference

and generated latent maps. Each mask is interpolated to match the spatial resolution of the correspond-
ing latent feature map: M̃ r

i = Interp(M r
i) ∈ {0, 1}h

r×wr
, M̃ g

j = Interp(M g
j ) ∈ {0, 1}h

g×wg
. The

latent regions corresponding to these segmentation masks are treated as graph nodes ri, gj as:

ri = f r ⊙ M̃ r
i , gj = f g ⊙ M̃ g

j , (3)

⊙ denotes the Hadamard product, yielding reference nodes {ri}1:m and generated nodes {gj}1:n.

Edge Construction. To compute the edge weight w(ri, gj) of the IMG, we propose the Mask–Query
Attention to estimate the affinity between gj and ri. It exploits the ability of the attention mechanism’s
[53; 9] to capture spatial dependence. Each generated character {gj}1:nj=1 is transformed into a query
matrix Qj ∈ R(hg·wg)×d, and transfer each reference character {ri}mi=1 to a key Ki ∈ R(hr·wr)×d.
The attention map Aj

i between ri and gj is calculated as:

Aj
i = softmax

(
Qj Ki

⊤
√
d

)
∈ R(hg·wg)×(hr·wr). (4)

Aj
i [p, q] denotes the dependence from the p-th patch of gj to the q-th patch of ri. We use the score

Sj
i to reflect the affinity between generated character gj and reference character ri:

Sj
i =

∑
q∈V r

i

∑
p∈Vg

j

Aj
i [p, q], Vg

j = {p | M̃ g
j [p] = 1}, V r

i = {q | M̃ r
i [q] = 1} (5)
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Figure 3: Training pipeline of EverybodyDance. We only construct the IMG during training. We
additionally input the IEG of the reference image. ReferenceNet binds character identity by fusing
the reference image’s appearance to create identity-aware features that guide the DenoisingNet.

Equation 5 aggregates patch-level dependency Aj
i into a node-level affinity score Sj

i , which reflects
the overall correlation between the generated character gj and the reference character ri. In the
attention map Aj

i , each row corresponds to a patch in the generated latent gj , and each column
corresponds to a patch in the reference latent ri. To quantify the relative affinity between gj and
each reference character {ri}mi=1, we first compute the set of affinity scores {Sj

i }mi=1. Each score Sj
i

aggregates patch-level attention scores from Aj
i across the masked regions defined by M̃ g

j and M̃ r
i .

We then normalize these scores to obtain the final edge weights {w(ri, gj)}mi=1:

w(ri, gj) =
Sj
i∑m

i=1 S
j
i + γ

∈ [0, 1), γ = 10−8. (6)

Computing the pair-wise attention Aj
i for all m× n pairs is inefficient. As shown in Figure 2 , we

aggregate all reference nodes into a single representation, rall =
∑m

i=1 ri. Each generated node gj
then computes attention against rall. This optimization reduces the computational complexity from
O(m ·n) toO(n). Since m and n are dynamically determined by the number of segmentation masks,
the IMG is built in a fully dynamic process that can be extended to any number of characters.

3.3 Targeted Strategies

Identity-Embedded Guidance Existing methods rely solely on pose guidance without incorporating
explicit identity information [54; 55; 35; 56], which complicates multi-character animation by lacking
reliable identity cues for correct Identity Correspondence (IC). To resolve this, we introduce Identity-
Embedded Guidance (IEG), which embeds identity into DWPose [54] by color-coding each skeleton
(see Appendix for details). The IEG from each reference frame is also injected into its feature space.

These colored skeletons serve to mark reference characters and guide the placement of corresponding
characters during generation, thereby enabling the model to differentiate identities during training
and inference. We provide explicit input cues (IEG) and a matching loss (IMG). Both originate from
the same segmentation masks to ensure alignment between guidance and supervision.

Multi-Scale Matching To improve training robustness and ensure correct IC across different feature
spaces, we perform Multi-Scale Matching (MSM) at N selected UNet [51] layers {ℓ}Nℓ=1. At each

5



Table 1: Quantitative comparison on the ICE benchmark. Arrows indicate optimal direction (↓=lower
better, ↑=higher better). AnimateAnyone* denotes the model fine-tuned on our dataset.

Frame Quality Video Quality

Method SSIM↑ PSNR*↑ LPIPS↓ L1↓ FID↓ FID-VID↓ FVD↓

AnimateAnyone [9] 0.616 14.97 0.339 5.16E-05 59.19 32.057 364.85
AnimateAnyone* [9] 0.596 14.67 0.342 5.35E-05 54.71 31.274 358.31
MimicMotion [14] 0.621 15.00 0.338 5.48E-05 60.77 26.490 381.69
MagicDance [12] 0.508 13.81 0.424 1.33E-04 53.30 47.127 471.71
MagicAnimate [10] 0.614 13.95 0.369 6.36E-05 76.28 42.257 521.67
UniAnimate [13] 0.623 15.66 0.328 3.41E-05 44.38 26.696 295.56
EverybodyDance 0.654 16.93 0.304 2.86E-05 40.19 23.584 225.06

layer ℓ we construct its IMG B(ℓ)ID and compute layer-level IC score according to Equation 2:

C(ℓ) =
∑

(ri,gj)∈M∗ w(ℓ)(ri, gj)∑
(ri,gj)∈Ê(ℓ) w(ℓ)(ri, gj)

∈ [0, 1], (7)

where w(ℓ)(ri, gj) are the edge weights at layer ℓ,M∗ are the ground-truth correspondences, and
Ê(ℓ) is the full bipartite edge set at that layer. We then use the average of {−Cℓ}1:N over all N layers
to be the matching loss Lmatch. Minimizing Lmatch thus encourages the model to maximize IC
correctness across all chosen scales, yielding more robust multi-character generation with accurate IC.
The full pipeline is illustrated in Figure 3. The final training objective consists of standard diffusion
reconstruction loss Ldiff and Lmatch, denoted as:

L = Ldiff + λLmatch, λ > 0, (8)

where λ balances the frame quality against IC correctness.

Pre-Classified Sampling Existing methods [11; 9; 10] typically select reference–target frame pairs
randomly from a training video. However, in multi-character scenarios, challenging sample pairs,
such as those involving position swaps, are relatively rare. To address this, we extract the position of
each character. Then, with probability ρ we draw from the pre-classified challenging swap pairs, and
with probability 1− ρ we conduct random sampling.

4 Experiment

4.1 Settings

Quantitative Metrics. To quantitatively evaluate the performance of different methods, we employ
several widely used metrics, including L1 [57], PSNR* [58; 6], SSIM [59], LPIPS [60], FID [24],
FID-VID [24], and FVD [61]. These metrics jointly provide a comprehensive evaluation.

Baselines. To validate the superiority of our method, we conduct extensive comparisons against
several SOTA methods: MagicAnimate [10], AnimateAnyone [9], MagicPose [12], MimicMotion
[14], Follow-Your-Pose-V2 [50] and UniAnimate [13].

Dataset and Other Details. We curated a custom multi-character dataset comprising approximately
800 video clips. For IC correctness evaluation, we introduce the ICE-bench, which contains 3,200
video frames. Our model is fine-tuned based on the AnimateAnyone framework using this dataset.
For full descriptions of the training dataset and ICE-bench, other experiments, please refer to the
Appendix.

4.2 Comparison Study

We evaluate our method, EverybodyDance, on the ICE-Bench using both quantitative metrics and
qualitative showcases. As reported in Table 1, EverybodyDance achieves substantial improvements
over its backbone model, AnimateAnyone: it reduces the FVD score by 38.3%, indicating signifi-
cantly improved video fidelity. To ensure these gains stem from our proposed targeted enhancements
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Figure 4: We compare our method with several state-of-the-art baselines. The last three rows illustrate
three particularly challenging scenarios: (1) reference images exhibiting complex, non-standard poses;
(2) target poses involving fewer character than the corresponding reference images; and (3) reference
characters undergoing severe occlusion. Under these difficult conditions, our method consistently
outperforms existing approaches, demonstrating accurate IC.

rather than dataset-specific biases, we additionally fine-tuned AnimateAnyone on our dataset; even
so, it still fails to match the performance of EverybodyDance. Qualitatively, as shown in Figure 4 our
approach consistently achieves accurate character identity correspondences in challenging scenarios
such as position swaps, where existing methods often produce identity confusion or mismatches.

4.3 Ablation Study

To elucidate how our method enforces correct IC, we conduct a series of ablation experiments,
summarized in Table 2. The experiments are categorized into the following three groups:

Effectiveness of the Identity Matching Graph We compare our IMG-based approach against several
ablation variants: 1) t/w IEG: We fine-tune the backbone model using IEG rather than DWPose. 2)
End2End: We provide the IEG of reference image, allowing the model to learn IC in an end-to-end
scheme. 3) End2End-M: We further use masks over each character’s region to enforce the model to
focus on the corresponding region (see details in the Appendix).

As shown in the first group, introducing IEG alone yields some gains, while embedding identity cues
(End2End and End2End-M) into the reference image’s feature space enables partial performance
improvements but remains insufficient. Only when IMG is incorporated to explicitly supervise
character-to-character correspondence, the model achieves a dramatic improvement.

We also present qualitative comparison results in Figure 5. Figure 6 visualizes attention maps for both
the IMG-based and end-to-end paradigms. We present visualizations of rall alongside each generated
character gj in Section 3.2. For each g1 and g2, arranged from left to right, we display its affinity
scores with all reference characters. To enable direct comparison, we include the corresponding
attention map visualizations from the End2End-M model. In the table, the columns labeled IMG-gj
and End2End-M-gj respectively illustrate the attention maps of g1 and g2 over the reference image.

Effectiveness of Multi-Scale Matching As demonstrated in the second group of experiments, a
progressive increase in the number of matching layers leads to consistent improvements in overall
performance.
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Table 2: To facilitate analysis, the table is divided into three groups. MSM-N refers to building the
IMG using the last N layers of the UNet, while PCS-ρ denotes selecting pre-classified hard samples
with a sampling ratio of ρ. In the Full setting, we set N = 5 and ρ = 0.3.

Experiment
Group

Experiment
Settings

Frame Quality Video Quality

SSIM↑ PSNR*↑ LPIPS↓ L1↓ FID↓ FID-VID↓ FVD↓
IM

G
E

ffe
ct

iv
en

es
s Full 0.654 16.93 0.304 2.86E-05 40.19 23.584 225.06

Finetune 0.596 14.67 0.342 5.35E-05 54.71 31.274 358.31
t/w IEG 0.615 15.42 0.340 3.85E-05 48.78 29.804 319.96
End2End-M 0.634 15.84 0.338 3.32E-05 45.05 28.464 285.09
End2End 0.630 15.74 0.337 3.41E-05 45.23 28.789 289.69

M
SM

Se
tti

ng
s MSM-4 0.649 16.81 0.308 2.96E-05 40.54 23.704 232.59

MSM-3 0.644 16.80 0.313 2.98E-05 40.49 24.566 232.47
MSM-2 0.641 16.68 0.317 3.02E-05 42.58 24.935 236.10
w/o MSM 0.637 16.50 0.321 3.14E-05 41.26 25.507 256.01

PC
S

Se
tti

ng
s

PCS-0.5 0.654 16.88 0.311 2.95E-05 40.56 24.603 228.19
PCS-0.4 0.650 16.89 0.312 2.99E-05 41.73 23.708 234.56
PCS-0.2 0.652 16.72 0.311 2.96E-05 40.99 24.072 226.89
PCS-0.1 0.654 16.94 0.309 2.95E-05 40.47 23.592 227.32
w/o PCS 0.632 16.23 0.329 3.07E-05 43.79 25.146 252.33

λ
Se

tti
ng

s

λ-0.05 0.637 16.59 0.322 3.01E-05 41.76 23.243 233.34
λ-0.10 0.653 16.80 0.309 2.99E-05 42.04 23.691 234.35
λ-0.15 0.649 16.77 0.308 2.89E-05 42.62 24.093 234.44
λ-0.20 0.654 16.93 0.304 2.86E-05 40.19 23.584 225.06
λ-0.25 0.653 16.71 0.316 2.98E-05 40.47 23.156 230.18

Ref Img Tgt Pose Finetune w/o MSM w/o PCS End2End-M End2End Full GT

Figure 5: Qualitative comparison against different variants. Red boxes highlight cases of identity
switch, while yellow boxes indicate instances of feature contamination.

Effectiveness of Pre-Classified Sampling. By comparing PCS under different sampling ratios, we
find that a ratio of 0.3 achieves an optimal trade-off between hard sample abundance and diversity.
This setting yields the best performance and effectively alleviates the long-tail data problem.

Hyper-Parameters Analysis on the λ. We conduct a sensitivity analysis on the hyper-parameter λ
introduced in Equation (8). Setting λ to 0.20 achieves the best overall performance. This value offers
an optimal trade-off between the diffusion reconstruction loss and the identity matching loss. Higher
values cause the IC accuracy to plateau while slightly degrading the visual quality.

Effectiveness of MQA. We conduct an experiment in the Appendix to compare MQA with other
similarity-based affinity calculation methods.
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Ref Img g1 IMG-g1  End2End-M-g1 g2 IMG-g2r!"" Tgt Img End2End-M-g2

Figure 6: Ideally, the attention distribution should be primarily concentrated on the corresponding
reference character located on the opposite side of gj .

Table 3: Quantitative comparison on frame and video quality metrics. For more details about settings
of this benchmark, please refer to [50].

Frame Quality Video Quality

Method SSIM↑ PSNR↑ LPIPS↓ L1↓ FID↓ FID-VID↓ FVD↓
DisCo [8] 0.793 29.65 0.239 7.64E-05 77.61 104.57 1367.47
MagicAnime [10] 0.819 29.01 0.183 6.28E-05 40.02 19.42 223.82
MagicPose [12] 0.806 31.81 0.217 4.41E-05 31.06 30.95 312.65
AnimateAnyone [9] 0.795 31.44 0.213 5.02E-05 33.04 22.98 272.98
Follow-Your-Pose-V2 [50] 0.830 31.86 0.173 4.01E-05 26.95 14.56 142.76
EverybodyDance (Ours) 0.879 32.49 0.151 0.92E-05 26.01 12.68 127.36

4.4 Generalizability

On Public Multi-character Benchmark. To validate the generalizability of our method, we also
conducted comparisons with the publicly available benchmark provided by Follow-Your-Pose-V2 [50].
This benchmark is distinguished by frequent inter-person occlusions. As shown in Table 3, our method
outperforms Follow-Your-Pose-V2 and other SOTA methods across all quality metrics. It should
be noted that these metrics primarily reflect overall video fidelity. Since our method lacks explicit
occlusion modeling, the foreground-background order during occlusions will be determined randomly.

In Diverse Scenarios. We conducted a comprehensive quantitative evaluation to assess our method’s
capabilities in diverse scenarios. Specifically, we benchmarked its performance on challenging multi-
character videos containing 3 to 5 individuals, and on the widely-used single-character TikTok [62]
benchmark. As shown in Table 4, our proposed method demonstrates superior performance over all
competing methods across all key metrics. For qualitative results, please refer to the Appendix.

Cross-Video Motion Transfer. To assess the generalizability of our method for real-world applications,
we conduct a cross-video motion transfer experiment. In this setting, a source video provides the
motion template used to animate a diverse set of reference images. Moreover, we test the model’s
flexibility by reassigning character positions. We reorder the color-coded identities in the target
IEG. The result, depicted in Figure 7, is a correctly rendered sequence where the characters’ relative
positions are swapped, underscoring our model’s capacity for robust and flexible identity control.

5 Conclusion and Limitation

In this work, we introduce Everybody Dance, a framework that addresses the critical challenge of
Identity Correspondence (IC) in multi-character animation. The core of our method is the Identity
Matching Graph (IMG), which formalizes the ambiguous problem of IC correctness into an explicit,
optimizable graph-structural metric. To construct this graph, our Mask-Query Attention (MQA)
efficiently computes edge weights. This graph-based loss works in synergy with our Identity-
Embedded Guidance (IEG) together, they form a cohesive guidance-supervision architecture. Finally,
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Table 4: Quantitative comparison on multi-character and single-character benchmarks. We group
metrics into Frame Quality and Video Quality. Best results are in bold.

Scene Method Frame Quality Video Quality

SSIM↑ PSNR*↑ LPIPS↓ FID↓ FID-VID↓ FVD↓
M

or
e

C
ha

ra
ct

er AnimateAnyone [9] 0.606 14.70 0.370 56.66 35.356 401.51
AnimateAnyone* [9] 0.607 14.92 0.363 64.34 36.308 406.08
UniAnimate [13] 0.640 15.62 0.338 57.75 29.030 348.91
Ours 0.671 16.68 0.315 42.84 23.571 261.01

Si
ng

le
C

ha
ra

ct
er AnimateAnyone [9] 0.768 17.85 0.280 52.15 25.864 209.14

AnimateAnyone* [9] 0.764 17.19 0.291 62.52 25.943 213.68
End2End 0.770 17.65 0.288 45.25 22.515 186.34
Ours 0.772 17.78 0.279 40.56 20.294 163.85

Tgt Pose

Tgt Pose

Figure 7: We employ a multi-person video clip as the source pose and use various references to
generate animations. We also swap the relative positions of characters in the target pose.

we enhance IC robustness through two targeted strategies: Multi-Scale Matching (MSM) enforces
correctness across multiple feature hierarchies, while Pre-Classified Sampling (PCS) addresses
challenging, rare training samples. These contributions enable our model to significantly improve
identity consistency and visual quality in complex multi-character scenes.

However, our current method is unable to effectively handle scenarios with severe inter-character
occlusion. Incorporating 3D datasets [63; 64; 65] presents a promising direction for future work to
address this. Furthermore, the performance of our method depends on the accuracy of the upstream
instance segmentation model. Finally, our current quantitative evaluation still relies on proxy metrics
that measure overall video fidelity. Designing dedicated metrics that can directly and quantitatively
evaluate IC correctness remains a significant open problem.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly discuss the limitations of existing methods
in multi-character scenarios and analyze their shortcomings at a conceptual level. These
points align well with the paper’s actual contributions and set the scope appropriately for
the proposed approach.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper discusses the limitations of the proposed method, primar-
ily highlighting the lack of high-quality datasets specifically curated for multi-character
scenarios.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include formal theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details are thoroughly described in the main text (Sec-
tion 3.2), and all hyperparameter configurations are provided. This ensures that the main
experimental results can be fully reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code after publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We conducted extensive ablation studies and hyperparameter sensitivity exper-
iments. All relevant training and testing details, optimizer types, and parameter settings, are
clearly specified in the experimental section and further elaborated in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We don’t have experiment need to report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information regarding the computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We ensure full compliance with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This work offers significant positive societal impacts. It greatly reduces
production costs and time, enabling more creators to produce high-quality animations
efficiently and fostering innovation in digital entertainment. The technology enhances user
experience across gaming, virtual reality, and film industries. While there are potential risks,
such as misuse for creating deceptive or deepfake content, these concerns can be mitigated
through access control.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We have considered potential misuse risks of our models and data. To ensure
responsible release, we plan to implement usage guidelines and access restrictions.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We have properly cited the original papers for all the code, data, and models
used in our work, respecting their licenses and usage terms.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: New assets will be released after publication.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We provide detailed instructions given to participants and related information
in the appendix.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We conducted only low-risk anonymous questionnaires, which do not involve
sensitive personal data or pose risks to participants.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research does not involve the use of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Preliminary: ReferenceNet Based Character Animation

Character animation aims to synthesize realistic character videos from a single reference image and a
driving pose sequence. Formally, given a reference image xref and a target pose sequence {pt}Lt=1,
the goal is to generate a video {xt}Lt=1 where each frame xt maintains visual consistency with xref
while conforming to the pose pt.

Most of character animation approach [12; 10; 9; 11; 13] builds upon the Stable Diffusion [47]
framework, which performs denoising in the latent space. Let Enc and Dec denote the encoder and
decoder of the latent diffusion model. The reference image is first encoded into a latent representation
zref = Enc(xref), and each frame is generated from noisy latent inputs zT ∼ N (0, I) through a
conditional denoising process:

z0 = Denoise(zT , {pt}Lt=1, xref), (9)

where the denoising process is iteratively performed by a UNet-based network to recover z0, which
is then decoded by Dec(z0) to reconstruct the video frame.

To preserve the appearance consistency of xref, [9] introduce ReferenceNet, a UNet-like structure
R− Net designed to extract spatially detailed features from the reference image. Specifically,
R− Net produces intermediate features fref ∈ RH×W×C , which are fused into the main denoising
UNet ϵθ via a spatial-attention mechanism:

Attnspatial(x1, x2) = SelfAttention (Concat(x1,Repeat(x2, t))) . (10)

Here, x1 ∈ Rt×h×w×c is the feature from the denoising UNet, and x2 ∈ Rh×w×c from ReferenceNet.
The operation repeats x2 along the temporal axis and performs attention, then extracts the first half as
the refined output, ensuring that spatial detail flows from the reference into each frame.

In addition, high-level semantic features from the CLIP image encoder are used in cross-attention to
condition the denoising on global content, complementing ReferenceNet’s local details.

By aligning both low-level and high-level cues from the reference image, and integrating them into
the diffusion denoising pipeline, the ReferenceNet significantly enhances the temporal and spatial
fidelity of character animations. Its design ensures efficient inference, as R− Net is executed only
once per sequence, while maintaining consistency across all video frames.

B Other Details

B.1 Identity-Embedded Guidance

Although AlphaPose [55] provides built-in identity tracking alongside multi-character pose estimation,
we observed that its tracking module is not sufficiently reliable for complex multi-character scenarios.
In particular, we encountered the following common failure cases: (1) Identity Confusion: Different
individuals are incorrectly assigned the same identity label due to visual similarity (e.g., similar
clothing); (2) Cross-identity Misassignment: Skeletal data from multiple individuals are incorrectly
associated, resulting in identity mismatches; (3) Temporal Inconsistency: The identity assigned to a
person changes from frame to frame, often due to occlusion or tracking errors.

These identity-related failures can severely hinder the downstream learning of accurate identity
correspondence by introducing noisy supervision and temporal jitter. To mitigate such tracking errors,
we decouple pose estimation and identity assignment: multi-character pose maps are extracted using
DWPose [54], while consistent identity anchors are derived from instance-level bounding boxes
produced by SAM2 [52]. This hybrid approach yields pose embeddings that are structurally faithful
and identity-discriminative, reducing errors caused by tracking failures.

We utilize DWPose to extract multi-character poses from individual image frames, where each
detected pose is represented by a set of 2D keypoints with corresponding confidence scores. However,
the output poses are unordered and lack explicit identity labels. To address this limitation, we use
SAM2 to generate instance-level bounding boxes, with each bounding box assigned a unique identity
label, which will serve as a persistent identity label between frames.
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Figure 8: AlphaPose exhibits severe identity inconsistency. Using the skeleton color from frame 1 as
identity reference, the same female character is mistakenly reassigned from green (frame 1) to blue
(frame 131), and the male character from red to blue (frame 279). In contrast, our IEG maintains
consistent identity assignment throughout the sequence.

For each candidate pose, we calculate the proportion of its keypoints that fall within each bounding
box. A pose-box pairing is accepted only if the ratio of enclosed keypoints exceeds a predefined
threshold, ensuring robustness in cluttered or partially occluded scenes. This strategy effectively
preserves the temporal continuity of identity embeddings (see Figure 8).

Each matched skeleton is labeled with an identity-specific color to distinguish different characters.
This color-encoded representation serves as our Identity-Embedded Guidance (IEG). This strategy
obviates the need for additional training or hyperparameter tuning, exhibits strong robustness in
complex multi-character scenarios involving position swaps, and retains high generalizability across
different pose estimation backbones and instance-level segmentation frameworks.

B.2 Training Pipeline

To formally revisit the core training pipeline described in the main text, we summarize the overall
procedure as follows. During training, the model learns to generate multi-character video frames
with correct IC by jointly optimizing the diffusion reconstruction loss and the identity matching
graph (IMG)–based IC loss. Initially, the target frame sequence x0 is passed through a VAE encoder
to obtain the latent representation z0, and instance segmentation masks {Mr

i }mi=1 are extracted
via SAM [52]. At each diffusion timestep t, noise ε is injected into z0 to produce zt, which,
alongside identity-embedded pose guidance cr, ct and semantic features sr of the reference image
(according to [9]; we additionally include cr to inject identity information), is processed by the UNet
backbone to predict ε̂. Concurrently, at N selected UNet layers, the intermediate features fr, fg and
interpolated masks M̃r, M̃g are used to construct IMG nodes ri, gj . Mask–Query Attention computes
affinities w(ℓ)(ri, gj), from which the layer-wise consistency score C(ℓ) is derived and aggregated
into the matching loss Lmatch. With probability ρ, challenging swap-pair samples are selected via
pre-classified sampling to emphasize identity-switch scenarios. As shown in the Algorithm 1.

B.3 Inference Pipeline

During inference, EverybodyDance generates multi-character video frames conditioned on a reference
frame, a reference pose, and a driving pose sequence, without constructing the IMG or computing
any matching loss. The pose guidance is pre-processed in IEG cr, ct to indicate character identities.
The driving pose ct is added with initial noise to predict ε̂. The iterative denoising process follows
the standard DDIM schedule, gradually refining zt back to z0. Finally, the VAE decoder reconstructs
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Algorithm 1 Training Pipeline of EverybodyDance

Require: Target frame x0, IEG cr, ct, masks {Mr
i }, sampling ratio ρ, reference image, total training

steps S.
Ensure: Model parameters θ

1: for step = 1 to S do
2: Sample challenging pair w.p. ρ else random
3: z0 ← VAE.Encode(x0)
4: Extract reference semantic features sr by R− Net
5: ε ∼ N (0, I), zt ←

√
ᾱt z0 +

√
1− ᾱt ε

6: ε̂← UNetθ(zt, c
r, ct, sr, t)

7: Ldiff = ∥ε− ε̂∥2
8: for ℓ = 1 to N do
9: Extract fr, fg , interpolate masks, construct nodes {ri = fr ⊙ M̃r

i }mi=1.
10: for j = 1 to n do
11: gj = fg ⊙ M̃g

j , rall =
∑m

i=1 ri

12: Compute {w(ℓ)(ri, gj)}mi=1 = MQA(rall, gj).
13: end for
14: Compute C(ℓ)
15: end for
16: Lmatch = 1

N

∑
ℓ−C(ℓ)

17: Update θ ← θ − η∇θ(Ldiff + λLmatch)
18: end for

Algorithm 2 Inference Pipeline of EverybodyDance

Require: Reference image, driving poses IEG {ct}Tt=1, reference IEG cr

Ensure: Generated frames {x̂t}Tt=1
1: zt ← N (0, I)
2: Extract semantic features sr by R− Net
3: for t = T to 1 do
4: Sample ε̂← UNetθ(zt, c

r, ct, sr, t)
5: Compute zt−1 via DDIM [20]
6: end for
7: x̂t ← VAE.Decode(z0)

the RGB frame, producing a temporally coherent multi-character video with accurate IC. As shown
in the Algorithm 2.

B.4 End2End & End2End-M

We introduce two alternative training strategies to assess the effectiveness of the Identity Matching
Graph (IMG). End2End refers to a fully end-to-end training pipeline where the IMG construction is
not involved, and the model is trained solely with standard video generation losses. End2End-M, on
the other hand, replaces the original Identity Correspondence (IC) loss derived from the IMG with
a simplified constraint: an L2 loss computed over the masked region of the reference image. This
provides a coarse form of identity guidance without constructing the full identity matching graph.
These two strategies represent training without identity constraints (End2End) and with weak identity
constraints (End2End-M), respectively.

C ICE-Bench

Although Follow-Your-Pose-V2 [50] introduced the Multi-Character benchmark for multi-character
animation, it features relatively simple character interactions and only limited occlusion scenarios. To
address this critical gap, we introduce Identity Correspondence Evaluation benchmark (ICE-Bench),
the first multi-character benchmark to evaluate IC performance in multi-character animation tasks.
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ICE-Bench consists of carefully curated video clips dance video clips totaling more than 3,200 frames.
ICE-Bench is deliberately designed to stress test identity correspondence in challenging interaction
scenarios. We adopt a multi-criteria filtering strategy to ensure that the benchmark presents sufficient
challenges. We first select clips that exhibit clear multi-character interactions, such as positional
exchanges and occlusions, discarding those with minimal interaction. Second, we retain videos
with stable lighting, minimal blur, and clear joint visibility to ensure visual quality and reliable
pose extraction. Finally, we balance diversity and difficulty by including varied dance genres and
environments.

D More Experiment Details

D.1 Implementation Details

We employ the Animate Anyone [9] as the backbone for our animation pipeline. In our setup, both
the ReferenceNet and DenoisingNet utilize a shared pose guider. The construction of the IMG does
not involve adding any additional modules; we directly leverage the original spatial attention blocks
already present in the DenoisingNet. The training process is divided into two stages. Stage 1 focuses
on single-frame spatial quality, while Stage 2 prioritizes temporal coherence in video sequences.
Stage 1 was trained for 5,000 steps while Stage 2 was trained for 1,000 steps, with the VAE [66]
encoder and CLIP [67] encoder frozen throughout. In Stage 1, the ReferenceNet, DenoisingNet, and
Pose Guider are trainable. A batch size of 32 is applied, using center-cropped 768×768 resolution
images. For Stage 2, only the temporal attention modules are trainable, with a batch size of 8 and
training sequences comprising 24 consecutive frames sampled at 3-frame intervals. Video frames
are processed at 512×512 resolution. We set the learning rate at 2.0× e−5 and use the Adam [68]
optimizer. During the inference phase, we employ the DDIM scheduler with 50 denoising steps. We
set the classifier-free guidance [69] scale to 3.5.

D.2 Dataset

We construct MultiDance dataset, a dataset tailored for multi-character animation. Existing datasets
are predominantly designed for single-person motion transfer and lack both rich multi-character
interaction. MultiDance comprises 814 multi-character dance video clips at 1080p resolution,
totaling 257K frames. It covers a diverse range of challenging scenarios, including dynamic position
exchange and partial occlusion. Notably, approximately 30% of the frames contain relatively complex
interactions (e.g. positional swaps or occlusion). Dance styles span various categories such as
pop dance, street dance, aerobics, and ballet, filmed in both indoor (well lit) and outdoor (evenly
illuminated) environments.

E More Experiments

E.1 Training Curve

We record the IC score (cooresponding to the matching loss Lmatch) curve throughout the training
process. As shown in Figure 10, which clearly reflects the model’s progressively improving ability to
capture identity correspondences — increasing from 0.55 to approximately 0.70.

E.2 More Characters

To further evaluate the effectiveness of our method in more complex settings, we increase the number
of characters involved in the generation process. To assess generalization capability, we employ a
video clip as the source of the pose sequence and use a single reference image to guide the generation
of an entire video. Importantly, the relative spatial arrangements of the characters differ between the
reference image and the target poses, presenting a more challenging scenario for preserving accurate
identity correspondences. The qualitative results are presented in Figure 11.
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Figure 9: Our performance on Follow-Your-Pose-V2 Multi-Character pulic benchmark.
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Figure 10: Identity correspondence score during stage 1 training.
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Figure 11: Even with more character identities, our method consistently maintains accurate identity
correspondence.
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Table 5: Quantitative comparison of different affinity computation methods on our ICE benchmark.
Our proposed IMG+MQA approach demonstrates superior performance in both frame-level quality
and temporal video consistency.

Method SSIM ↑ PSNR* ↑ LPIPS ↓ FID ↓ FID-VID ↓ FVD ↓
CrossAttn-Based 0.648 15.69 0.315 45.82 29.22 306.75
Sim-Based 0.629 16.25 0.329 47.09 24.35 269.14
Ours (IMG+MQA) 0.654 16.93 0.304 40.19 23.58 225.06

F Further Analysis on Affinity Computation

While our primary approach utilizes the Identity Matching Graph (IMG) with Mask-Query Attention
(MQA), we also explored alternative paradigms for affinity computation to further validate our design
choices. One inspiring direction comes from methods like Ingredients [49], which use per-character
CLIP embeddings for layout control. We designed and evaluated two alternative variants optimized
with a standard cross-entropy classification loss. The implementation details are as follows:

• CrossAttn-Based: In this variant, we first segment the reference image and encode each
of the m characters into distinct identity features using a CLIP encoder. Within the Cross-
Attention layers of our model, instead of attending to a single CLIP embedding for the
entire image, we compute the affinity between the latent features of the generated frame
and each of the m individual character embeddings. After applying a softmax function and
masking the background, this process yields an affinity map of shape [HW,m], where each
entry represents the probability of a given latent patch belonging to one of the reference
characters.

• Sim-Based: This approach relies on direct feature similarity. We use segmentation masks to
extract intermediate features for the m reference characters and n generated characters. We
then compute an [n,m] affinity matrix by taking the dot-product between each generated
and reference character’s feature representation, followed by a softmax operation. Each
entry (i, j) in this matrix indicates the similarity score between the i-th generated character
and the j-th reference character.

As shown in Table 5, our proposed IMG+MQA framework outperforms both variants across all
quantitative metrics. The CrossAttn-Based method, while reasonable, relies on an external CLIP
space that is not inherently tied to the generative model’s internal feature representation, creating
a disconnect. The Sim-Based approach performs worse, particularly struggling to differentiate
between characters with visually similar features. We chose the IMG+MQA paradigm because it
computes affinity using the model’s native spatial attention scores, which are intrinsically coupled
with the denoising and generation process. This inherent coupling ensures that the supervision signal
for identity correspondence directly influences the most relevant parts of the network responsible for
spatial layout and appearance, leading to superior performance.

G User Study

To comprehensively evaluate the perceptual quality of the generated multi-character videos, we
conduct a user study from three complementary perspectives: fidelity, coherence, and identity
correspondence (IC) accuracy.

For the study, we collected approximately 200 sets of human feedback from a group of university-
educated participants. In each evaluation session, participants were shown the video clips generated
by all competing methods for the same input. They were then asked to score each video on a scale
from 1 (worst) to 5 (best) for the three criteria independently. The final user preference scores are
aggregated to provide a quantitative comparison, as shown in Table 6.

Specifically, fidelity measures how realistic and visually appealing each frame appears; coherence
assesses the temporal consistency and motion smoothness across frames; and IC accuracy evaluates
whether the identity correspondences between the generated video and the reference images are
correctly maintained as expected.
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Table 6: User study results based on three quality dimensions: Fidelity, Coherence, and Identity
Correspondence (IC) Accuracy.

Method Fidelity Coherence IC Accuracy

Mean Var. Mean Var. Mean Var.

EverybodyDance 4.40 0.48 4.32 0.55 4.57 0.38

UniAnimate 3.01 1.22 3.61 1.09 2.12 0.80
MagicDance 3.73 1.20 2.80 1.34 1.99 0.87
AnimateAnyone 3.05 1.31 3.25 1.28 2.33 1.07
MagicAnimate 2.13 1.14 2.25 1.26 1.83 0.69

In the user study, participants are shown a series of video clips generated by different methods and are
asked to score them on a scale from 1 (worst) to 5 (best) for each of the three criteria independently.
The final user preference scores are then aggregated to provide a quantitative comparison across
different methods, as shown in Table 6.
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