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ABSTRACT

Kolmogorov-Arnold Networks (KANs) replace scalar weights with per-edge vec-
tors of basis coefficients, thereby boosting expressivity and accuracy but at the
same time resulting in a multiplicative increase in parameters and memory. We
propose MetaCluster, a framework that makes KANs highly compressible without
sacrificing accuracy. Specifically, a lightweight meta-learner, trained jointly with
the KAN, is used to map low-dimensional embedding to coefficient vectors, shap-
ing them to lie on a low-dimensional manifold that is amenable to clustering. We
then run K-means in coefficient space and replace per-edge vectors with shared
centroids. Afterwards, the meta-learner can be discarded, and a brief fine-tuning
of the centroid codebook recovers any residual accuracy loss. The resulting model
stores only a small codebook and per-edge indices, exploiting the vector nature of
KAN parameters to amortize storage across multiple coefficients. On MNIST,
CIFAR-10, and CIFAR-100, across standard KANs and ConvKANs using multi-
ple basis functions, MetaCluster achieves a reduction of up to 80× in parameter
storage, with no loss in accuracy. Code will be released upon publication.

1 INTRODUCTION

Kolmogorov–Arnold Networks (KANs) have recently emerged as a compelling alternative to
multi-layer perceptrons (MLPs), delivering strong results in equation modeling and scientific ma-
chine learning, often with improved task performance at comparable or lower parameter counts in
those settings (Liu et al., 2024; Li et al., 2025; Coffman & Chen, 2025; Koenig et al., 2024). Re-
cently, KANs have also begun to show promise in computer vision (Yang & Wang, 2024; Raffel &
Chen, 2025). However, unlike equation modeling, at larger scales, KANs frequently incur a sub-
stantial parameter overhead relative to MLPs (Yu et al., 2024). This overhead stems from KANs
per-edge degrees of freedom: each connection carries a vector of basis coefficients (e.g., B-spline
weights) rather than a single scalar weight, resulting in a multiplicative increase in parameters.

One approach that targets this multiplicative increase in parameters is weight sharing, which clus-
ters parameters into a codebook that stores compact indices. Unfortunately, naively applying
weight sharing to KANs is ineffective. Instead of clustering scalars (as in MLPs), we must cluster
high-dimensional coefficient vectors in KANs. In such high-dimensional spaces, absolute distances
grow but also concentrate (nearest and farthest become similar). With such an effect brought by
the curse of dimensionality, typical clustering methods struggle to form tight clusters (Beyer et al.,
1999; Donoho et al., 2000).

We address this challenge with MetaCluster, a three-stage compression framework that merges
meta-learning with weight sharing. First, a small meta-learner maps low-dimensional embeddings
into per-edge coefficient vectors, constraining KAN activations to a low-dimensional manifold while
training on the task loss. This manifold shaping makes the coefficient vectors highly clusterable.
Second, we run K-means on the generated coefficients, replacing per-edge weights with codebook
centroids indexed with compact codes. Finally, we discard the meta-learner and embeddings, and
lightly fine-tune the centroids to recover any accuracy loss. Since each centroid stores an entire
coefficient vector, the codebook amortizes over many scalars, yielding a much higher compression
factor for KANs than for MLPs at the same number of clusters.

We validate MetaCluster on two model families consisting of a fully-connected KAN (Liu et al.,
2024) and a convolutional KAN (ConvKAN) (Bodner et al., 2024; Drokin, 2024). For each of these
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models, we test the efficacy of using B-Splines, radial basis functions (RBFs), and Gram polyno-
mials as the bases (Liu et al., 2024; Li, 2024; SS et al., 2024). To further verify the robustness of
our approach, we validate it across MNIST (Deng, 2012), CIFAR-10, and CIFAR-100 (Krizhevsky,
2009). From our experiments, we find that MetaCluster achieves a reduction of up to 80× in param-
eter storage relative to the uncompressed KAN without degrading accuracy, is robust across various
architectures and datasets, and ablations confirm that enforcing a low-dimensional manifold is key
to high-quality clustering.

The main contributions of this paper are:

1. We identify the potential of weight-sharing for reducing the KANs memory footprint and,
to our knowledge, provide the first effective weight-sharing method tailored to KANs.

2. We propose a meta-learning approach that shapes per-edge KAN coefficients to lie on a
low-dimensional manifold, enabling effective clustering in high dimensions.

3. We provide extensive experiments demonstrating up to 80× memory reduction with no loss
in accuracy, along with extensive ablations.

2 PRELIMINARIES AND MOTIVATION

2.1 KOLMOGOROV-ARNOLD NETWORK

KANs have gained attention as an alternative to conventional MLPs (Liu et al., 2024). Their design is
motivated by the Kolmogorov–Arnold representation theorem, which guarantees that any continuous
multivariate function on a bounded domain, f : [0, 1]n → R, can be expressed as a finite sum of
compositions of univariate continuous functions, ϕq,p : [0, 1] → R and ϕq : R → R such that

f(x) = f(x1, ..., xn) =

2n+1∑
q=1

ϕq(

n∑
p=1

ϕq,p(xp)). (1)

While Equation 1 captures the classical theoretical form, Liu et al. (2024) demonstrates a practical
generalization that permits arbitrary width and depth tailored to the task. We can express such a
formulation with L layers as

f(x) = (ΦL ◦ ΦL−1 ◦ ... ◦ Φ1)x, Φl =

 ϕl,1,1( · ) · · · ϕl,1,nl
( · )

...
. . .

...
ϕl,nl+1,1( · ) · · · ϕl,nl+1,nl

( · )

 (2)

In Equation 2, we let nl denote the number of inputs to layer l, with inputs xl,i. Each edge from
input i to output j in layer l is equipped with a learnable univariate activation ϕl,j,i(·), for i ∈ [1, nl]
and j ∈ [1, nl+1].

The most common choice for implementing ϕl,j,i(·) has been through a weighted summation of
basis functions Bi(·) represented as,

ϕl,j,i(·) =
|w|∑
i=1

wiBi(·). (3)

In Equation 3, the weighted summation of basis functions is parameterized with learnable coeffi-
cients, w = [w1, ..., w|w|].

From its increased representation power compared to the MLP, the KAN has offered impressive
results on equation modeling tasks for scientific applications (Li, 2024; Li et al., 2025; Coffman
& Chen, 2025; Koenig et al., 2024) and has even started to extend its reach into computer vision
(Raffel & Chen, 2025; Yang & Wang, 2024). Despite these gains, widespread adoption in modern
large-scale architectures has been hindered by memory inefficiency (Yu et al., 2024). The root cause
is structural: each KAN edge carries a vector of basis coefficients (e.g., B-spline weights), whereas
an MLP edge carries a single scalar. Ignoring biases, an arbitrary MLP with L layers will possess∑L−1

l=0 (nl ×nl+1) parameters, whereas a KAN will possess
∑L−1

l=0 (nl ×nl+1)× (|w|) parameters.
Thus, for identical topologies, a KAN is approximately |w| times larger than its MLP counterpart.
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2.2 MOTIVATIONS AND CHALLENGES OF WEIGHT SHARING FOR KAN

These observations motivate a compression strategy that targets the dimensionality of the vector of
basis coefficients. Weight sharing is one method that reduces dimensionality directly by clustering
parameters into a small codebook and storing compact indices. In its classical form for MLPs,
one applies K-means to the set of scalar weights W = w1, w2, . . . , wn, obtaining centroids C =
c1, c2, . . . , ck and assignments that minimize within-cluster sum of squares (Han et al., 2015):

argmin
C

k∑
i=1

∑
w∈Ci

(w − ci)
2 (4)

Weight sharing has repeatedly been shown to preserve accuracy while substantially reducing the
number of parameters (Han et al., 2015; Cho et al., 2021). In MLPs, however, their effectiveness is
constrained by the need to store, for every weight, an index that maps back to a codebook centroid;
an overhead that limits the ultimate compression. Under a simple model with n weights, a codebook
of k centroids stored at b bits per scalar, the achievable compression factor is

r =
nb

n log2(k) + kb
(5)

The dominant term in the denominator, n log2 k, represents the per-weight index cost required to
record the mapping from each original weight to its corresponding centroid. When extending weight
sharing to KANs, the index mapping is still required, but its relative cost can be significantly reduced
because we cluster |w|-dimensional coefficient vectors per edge. Thus, each centroid stores |w|
scalars, amortizing the codebook over many parameters while the index cost remains n log2 k. We
detail this amortization and its impact on compression in Section 3.4.

While weight sharing is promising to save substantial storage for KANs, directly applying it to
KANs for model compression is nontrivial. For instance, since each edge on a KAN is defined by
|w| weights rather than 1 as in the MLP, the dimensionality of the points we must cluster is far
greater. In increasing the dimensionality, the vector space becomes sparser and points become more
equally spaced apart, making clustering points more difficult (Beyer et al., 1999; Donoho et al.,
2000). Therefore, to effectively cluster the KAN activations, we require a fundamentally different
method for transforming the high-dimensional vector into a more manageable space.

3 METHODS

This section presents MetaCluster, a three-stage framework that makes per-edge KAN activation
coefficients amenable to clustering and compression. First, we train a single meta-learner that turns
compact embeddings into full activation-coefficient vectors, forcing them onto a task-aligned low-
dimensional manifold. Next, we run K-means on those vectors and record, for each edge, which
centroid it belongs to in that layer. Finally, we discard the meta-learner and embeddings, replace
per-edge weights with their assigned centroids via a lookup table, and briefly fine-tune the network
to recover any lost accuracy.

3.1 MANIFOLD LEARNING THROUGH A META-LEARNER

Clustering the weights of a KAN is challenging due to the high dimensionality of each weight
vector. To address this, we introduce a single meta-learner, Mθ, which maps a lower-dimensional
embedding zi ∈ Rdemb to the full KAN weights wi ∈ R|w|, constraining them to lie on a low-
dimensional manifold. Formally, the mapping is defined as:

Mθ(zi) = W2σ(W1zi + b1) + b2 = wi, (6)

where W1 ∈ Rdhidden×demb , W2 ∈ R|w|×dhidden , and σ(·) is a ReLU activation. The meta-learner is
trained jointly with the KAN using standard backpropagation for α epochs, so that the generated
weights wi both lie on a meaningful manifold and optimize the task-specific loss.

3
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(a) Meta-learner when demb = 1 (b) Meta-learner when demb = 2 (c) KAN

Figure 1: T-SNE visualization of KAN activation weights with and without the meta-learner Mθ.
(a) With a 1D embedding, the MetaKAN learns a nearly one-dimensional manifold, (b) with a 2D
embedding, it learns a structured two-dimensional manifold, while (c) the baseline KAN without a
meta-learner fails to organize the weights into a coherent low-dimensional structure.

To demonstrate the manifold-shaping effect of the meta-learner, we train a two-layer KAN with a
B-spline basis on CIFAR-10 Krizhevsky (2009) for one epoch under three settings: (i) a meta-learner
with demb = 1, (ii) a meta-learner with demb = 2, and (iii) a baseline KAN without a meta-learner.
We collect all per-edge activation coefficient vectors wi and visualize them with t-SNE. Each point
corresponds to wi ∈ R|w|, where |w| = G + k + 1 with G = 5 and k = 3, yielding |w| = 9.
As shown in Figure 1a, when demb = 1 the model organizes coefficients along an effectively
one-dimensional manifold. Increasing to demb = 2 produces the well-structured two-dimensional
sheet shown in Figure 1b, indicating that the meta-learner concentrates variability onto task-relevant
directions. In contrast, the baseline KAN provided in Figure 1c yields a diffuse cloud without
coherent low-dimensional structure, which hampers downstream clustering. These visualizations
substantiate our premise: shaping coefficient vectors via a low-dimensional embedding makes them
markedly more clusterable, a property we later translate into the higher compression at fixed accu-
racy shown in Section 4.3.

3.2 KAN ACTIVATION COMPRESSION WITH K-MEANS METACLUSTERING

We will now outline our method for clustering the weights Mθ(zi) using K-means. Unlike Equation
4, the weights Mθ(zi) lie in R|w| rather than R as with the scalar weights wi. Accordingly, each
centroid ci also resides in R|w|. Therefore, our K-means objective must be adapted as follows:

argmin
C

k∑
i=1

∑
Mθ(z)∈Ci

∥∥Mθ(z)− ci
∥∥2
2
, (7)

where ci ∈ R|w| denotes the centroid of cluster Ci.

The centroids are updated iteratively according to the standard K-means update rule:

ci =
1

|Ci|
∑

Mθ(zj)∈Ci

Mθ(zj), (8)

ensuring that each centroid represents the mean of the weight vectors assigned to its cluster.

To record assignments, we define an index mapping vector I ∈ {1, 2, . . . , k}N , where the j-th entry
indicates the cluster index of Mθ(zj). Formally,

Ij = arg min
i∈{1,...,k}

∥∥Mθ(zj)− ci
∥∥2
2
, (9)

so that the mapping is expressed as Mθ(zj) 7→ cIj .

3.3 ACCURACY RECOVERY WITH BRIEF FINE-TUNING

Once we have determined the mapping I and the centroids C, we can remove the meta-learner
Mθ and the embeddings z from the network as they are no longer needed (saving more memory in
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addition to compression). Since the clustered weights are an approximation of the original weights,
we can recover any lost performance by fine-tuning the network. The fine-tuning process consists
of an identical procedure to the original training, in which we optimized the centroid codebook for
the task-specific loss for β epochs, where β << α (the number of training epochs).

3.4 STORAGE ANALYSIS

The compression factor relative to KAN is given by:

r =
n|w|b

n log2(k) + |w|kb
=

nb

n log2(k)/|w|+ kb
(10)

As in Equation 5, n denotes the number of connections, k the number of centroids, and b the number
of bits used to represent each edge. Notably, the term |w| in the denominator reduces the relative
contribution of n log2(k) to the overall storage. Intuitively, this happens because each centroid
stores more weight information (|w| entries per centroid), so the overhead of indexing and storing
the centroids becomes proportionally smaller. As a result, KAN benefits more from the compression
scheme than a standard MLP.

4 EXPERIMENTS

To evaluate the capabilities of MetaCluster, we conduct extensive experiments and an ablation study
on both fully-connected and convolutional architectures. In Section 4.1, we report the experimental
setup, and in Section 4.2, we report the results of the fully-connected and convolutional architecture
on MNIST, CIFAR10, and CIFAR100 (Deng, 2012; Krizhevsky, 2009). Then, in Section 4.3, we
provide the ablation study for our approach, covering the influence of the KAN meta-learner em-
bedding size, basis coefficient vector sizes, and the cluster count on CIFAR10 (Krizhevsky, 2009).

4.1 EXPERIMENTAL SETUP

For all our experiments, we did a 90/10 training/validation split of the training data. We apply data
augmentation to the train set for the convolutional architecture, following an identical procedure
to Drokin (2024). We compare our approach across 24 model schemes. The base model for each
scheme consists of KAN (B-spline basis) (Liu et al., 2024), FastKAN (RBF basis) (Li, 2024), and
GramKAN (Gram polynomial basis)(Drokin, 2024). In our naming conventions, we include Clus-
ter to designate a clustered model, Meta to designate a model using a meta-learner, a design that
originates from Zhao et al. (2025), and Conv to designate a model with a convolutional architecture
(Bodner et al., 2024; Drokin, 2024).

4.1.1 FULLY-CONNECTED SETUP

Our fully-connected architecture follows Zhao et al. (2025) in that we stack two fully-connected
KAN layers, with a 32-dimensional hidden state between them. Each KAN variant uses a SiLU
activation (Elfwing et al., 2018). The meta-learner variants contained a meta-learner with a hidden
dimension of 32. Concretely:

• KAN: degree–3 B-splines, grid range [−1, 1], grid size 5 (Liu et al., 2024).
• FastKAN: 8 RBFs over [−2, 2] (Li, 2024).
• GramKAN: degree–3 polynomial (Drokin, 2024).

We train with AdamW (Loshchilov & Hutter, 2017) and for at most 50 epochs, with early stopping
(patience = 10). After the final epoch, we cluster the learned weights into 16 groups, then fine-tune
for an additional 5 epochs.The full list of hyperparameters is given in Appendix A.1. We report
performance in terms of classification accuracy and model memory footprint.

4.1.2 CONVOLUTIONAL SETUP

Our convolutional architecture is taken from Drokin (2024): four convolutional layers with channel
progression [32, 64, 128, 512], each using 3 × 3 kernels, stride 1, and padding 1. As with the fully-
connected experiments, each KAN variant uses a SiLU activation (Elfwing et al., 2018) and the
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Table 1: Classification accuracy and memory (KB) comparison of a fully-connected network.

MODEL MNIST CIFAR-10 CIFAR-100

MEMORY ACC. MEMORY ACC. MEMORY ACC.

KAN 1,031.44 95.36 3,064.95 47.52 3,177.45 17.90
METAKAN 141.32 96.45 410.82 46.99 422.08 20.08
CLUSTERKAN 13.84 63.47 38.34 29.82 39.75 7.32

+ FINE-TUNE 13.84 93.34 38.34 43.73 39.75 12.54
METACLUSTERKAN 13.84 96.02 38.34 46.39 39.75 19.03

+ FINE-TUNE 13.84 96.45 38.34 46.59 39.75 19.43

FASTKAN 900.56 96.75 2,676.83 49.28 2,778.08 20.76
METAFASTKAN 108.09 96.29 316.35 47.41 327.60 19.89
CLUSTERFASTKAN 20.54 32.85 57.30 23.53 58.71 7.63

+ FINE-TUNE 20.54 87.37 57.30 38.26 58.71 12.85
METACLUSTERFASTKAN 20.54 96.28 57.30 47.46 58.71 19.65

+ FINE-TUNE 20.54 96.58 57.30 47.35 58.71 19.54

GRAMKAN 497.46 96.11 1,477.48 51.15 1,534.43 21.92
METAGRAMKAN 101.49 95.83 297.49 49.31 309.45 19.74
CLUSTERGRAMKAN 13.96 48.16 38.46 30.32 40.58 5.61

+ FINE-TUNE 13.96 85.22 38.46 45.36 40.58 14.51
METACLUSTERGRAMKAN 14.15 95.22 38.65 49.06 40.76 18.87

+ FINE-TUNE 14.15 95.82 38.65 49.31 40.76 19.46

meta-learner versions use a meta-learner with a hidden dimension of 32. We replace the usual
activation with our kernels:

• KANConv: degree–3 B-splines, grid range [−3, 3], grid size 5 (Liu et al., 2024).
• FastKANConv: 8 RBFs on [−3, 3] (Li, 2024).
• GramKANConv: degree–3 polynomial (Drokin, 2024).

Training again uses AdamW for up to 150 epochs with early stopping (patience = 10). Final weights
are clustered into 16 groups and fine-tuned for 5 epochs. See Appendix A.1 for the complete hyper-
parameter sweep. Evaluation metrics are classification accuracy and model memory footprint.

4.2 RESULTS

The main results are reported in Tables 1 and 2. The general observation is that Meta variants
have limited memory reduction but achieve classification accuracy comparable to their non-Meta
counterparts, whereas clustering alone yields much higher memory compression, but at the cost of
large accuracy drops. Our MetaCluster models retain the high accuracy of the Meta variants while
achieving the memory compression of clustering.

4.2.1 FULLY-CONNECTED NETWORK

Table 1 demonstrates the high classification accuracy and compression factor of fully-connected
MetaCluster models across all datasets and basis functions. For example, in the case of Meta-
ClusterKAN, we can see that on Cifar-10, it achieves a compression factor of up to 10.7× (from
410.82KB to 38.32KB) compared to the MetaKAN, and up to 79.9× (from 3064.95 KB to 38.32KB)
compared to the KAN. Furthermore, it achieves this compression factor while matching the classi-
fication accuracy of MetaKAN. Although the Meta variants are capable of achieving high accu-
racy without fine-tuning, this is not the case for the non-Meta variants. For example, in the case
of GramKAN, it experiences a decrease in classification accuracy of up to 3.9× (from 21.92% to
5.61%), which, when recovered with fine-tuning, remains a 1.5× decrease in accuracy (from 21.92%
to 14.51 %). Such results showcase the importance of leveraging a meta-learner to learn a set of ac-
tivations that sit on a lower-dimensional subspace to aid in classification accuracy after clustering in
fully-connected models.
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Table 2: Classification accuracy and memory (KB) comparison of a convolutional network.

MODEL MNIST CIFAR-10 CIFAR-100

MEMORY ACC. MEMORY ACC. MEMORY ACC.

KANCONV 13,634.00 99.55 13,654.27 73.15 13,744.62 21.46
METAKANCONV 3,048.40 99.25 3,052.90 72.45 3,143.25 43.59
CLUSTERKANCONV 429.95 94.81 430.51 33.98 520.87 11.32

+ FINE-TUNE 429.95 99.35 430.51 57.59 520.87 20.85
METACLUSTERKANCONV 434.77 99.21 435.34 67.50 525.70 37.06

+ FINE-TUNE 434.77 99.11 435.34 71.67 525.70 43.31

FASTKANCONV 13,632.09 99.27 13,652.37 76.06 13,742.72 45.40
METAFASTKANCONV 3,041.57 99.06 3,046.08 71.42 3,136.43 41.97
CLUSTERFASTKANCONV 428.03 72.87 428.61 14.24 518.97 6.47

+ FINE-TUNE 428.03 97.35 428.61 55.14 518.97 23.59
METACLUSTERFASTKANCONV 427.97 99.07 428.55 71.06 518.91 41.39

+ FINE-TUNE 427.97 99.06 428.55 71.38 518.91 41.60

GRAMKANCONV 7,586.47 99.25 7,597.72 80.92 7,688.07 47.10
METAGRAMKANCONV 3,047.93 99.50 3,052.43 81.88 3,142.79 53.26
CLUSTERGRAMKANCONV 418.93 84.83 419.49 12.44 509.85 2.39

+ FINE-TUNE 418.93 99.37 419.49 76.35 509.85 43.77
METACLUSTERGRAMKANCONV 418.81 99.48 419.38 79.36 509.73 51.56

+ FINE-TUNE 418.81 99.53 419.38 81.37 509.73 52.63

4.2.2 CONVOLUTIONAL NETWORK

Table 2 demonstrates that, aside from MetaFastKANConv, the Meta variants match or exceed the
classification accuracy of all the non-Meta variants at a reduced memory cost. For example, in
the case of MetaKANConv on Cifar-10, the reduced memory cost is up to 4.5× (from 13.7 MB to
3.1 MB) compared to KANConv. Upon clustering, we find that the compression factor increases
by a factor of 7.1× (from 3.1 MB to 435.34 KB). In total, compared to the KANConv, the Meta-
ClusterKANConv achieves a reduction of up to 31.7× (from 13.7 MB to 435.34 KB). For such a
reduction in storage cost, after fine-tuning, we find there is a negligible impact on the downstream
classification accuracy when comparing KANConv to MetaKANConv.

Although the non-Meta variants recover accuracy from the fine-tuning step, the recovery still leaves
them far behind their original state. For instance, upon clustering, FastKANConv experiences up
to a 5.3× decrease (from 76.06% to 14.24 % ) in classification accuracy. Then, when recovered
with fine-tuning, it still retains a 1.4× decrease (from 76.06% to 55.14 %) in classification accuracy.
Once again, as with the fully-connected architecture, these results demonstrate the importance of
our MetaCluster framework for maintaining accuracy with a high compression factor.

4.3 ABLATION STUDY

4.3.1 BASIS COEFFICIENT COUNT

We investigate the impact of the basis coefficient count (i.e., the number of radial basis functions)
on downstream clustering performance. Since our technique employs a meta-learner to learn a
lower-dimensional subspace, our approach should be resilient to changes in the basis coefficients we
cluster. From Table 3, we can see that the initial accuracy of MetaFastKAN and MetaFastKANConv
accuracy peaks at a coefficient count of 5 before dropping. However, even with these variations in
accuracy for the coefficient count, the relative percentage change remains the same. This indicates
that, regardless of the coefficient count, our MetaCluster framework remains capable of learning a
lower-dimensional manifold, which facilitates easier clustering of weights.

4.3.2 CLUSTER COUNT

We verify that the MetaCluster framework scales well with the cluster count by comparing its cluster
scaling properties with those of a non-meta KAN. As shown in Figure 2b, MetaCluster maintains
accuracy well as clusters are reduced, especially after fine-tuning. For the convolutional model,
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Table 3: Impact of basis coefficient count on memory footprint and classification accuracy.

METAFASTKAN
METACLUSTER

FASTKAN
META

FASTKANCONV
METACLUSTER

FASTKANCONV

COEFF COUNT MEMORY ACC% MEMORY ACC% %CHG MEMORY ACC% MEMORY ACC% %CHG

5 316.35 47.41 57.30 47.46 0.11 3,046.08 71.42 428.55 71.06 -0.50
8 316.76 47.62 57.68 46.96 -1.39 3,046.52 69.61 440.61 68.66 -1.36
10 317.03 46.91 57.93 47.04 0.28 3,046.81 66.78 448.64 66.58 -0.30
15 317.71 45.88 58.55 45.15 -1.59 3,047.54 64.24 468.72 63.99 -0.39
20 318.40 43.57 59.18 43.75 0.41 3,048.26 54.41 488.80 54.45 0.07

decreasing the cluster count from 256 to 32 lowers MetaClusterFastKANConv accuracy by only
2%, whereas ClusterFastKANConv drops by 21.39% over the same range. Such results demonstrate
that our approach has the capability of achieving even greater levels of compression, albeit at the
expense of a minor accuracy impact.
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(a) Fully-connected KAN variants.
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Figure 2: Classification accuracy vs. number of clusters for FastKAN model variants.

4.3.3 META-LEARNER EMBEDDING SIZE

The embedding size of the metalearner directly influences the ease of clustering the meta-learner
generated weights. The general trend is that as the embedding dimension increases, it becomes
increasingly difficult to cluster the generated weights appropriately. While we have qualitatively
demonstrated this in Figure 1, where we see that increasing embedding dimension causes the plot to
become less structured, we provide a quantitative analysis of the effect in Appendix A.2.2.

5 RELATED WORKS

5.1 KOLMOGOROV-ARNOLD NETWORKS

The KAN has emerged as a popular alternative to the MLP (Liu et al., 2024). The most popular vari-
ant has used a weighted summation of a B-spline basis to represent the activations on each edge (Liu
et al., 2024). However, since its rise to popularity, there have been numerous alternative variations
of the KAN, such as using a host of basis functions, such as RBFs, Chebyshev polynomials, Leg-
endre Polynomials, Gram polynomials, wavelets, and rational functions (Li, 2024; SS et al., 2024;
Bozorgasl & Chen, 2024; Aghaei, 2024).

Although KAN has primarily achieved success in scientific applications and equation modeling
tasks (Li et al., 2025; Wang et al., 2024; 2025; Coffman & Chen, 2025; Koenig et al., 2024), it has
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recently shown promise in the realm of computer vision with the introduction of the Kolmogorov-
Arnold Transformer (Yang & Wang, 2024; Raffel & Chen, 2025). However, despite its successes,
the KAN has struggled with shortcomings such as increased training instability, computational cost,
and parameter count (Yu et al., 2024; Chen et al., 2024). Our work directly targets the memory
scaling obstacle of KANs, creating topologically identical KANs that are smaller than comparable
MLPs while maintaining accuracy.

5.2 HYPERNETWORKS

Hypernetworks reduce trainable parameter counts by replacing task or instance-specific weights
with a shared generator that predicts them on demand. The idea originates from early meta-learning
works such as Ba et al. (2016), where a small network generates classifier weights from context,
and Bertinetto et al. (2016), which learns to emit a one-shot tracker’s parameters conditioned on a
single exemplar. Ha et al. (2016) then formalized HyperNetworks for CNNs and RNNs, showing
that a compact hypernetwork can match the accuracy of a standard model while drastically cutting
the number of directly optimized parameters. Later extensions use task embeddings to condition a
single hypernetwork for multi-task or multi-objective weight generation (Savarese & Maire, 2019),
(Navon et al., 2020) .

MetaKANs (Zhao et al., 2025) bring this paradigm to Kolmogorov–Arnold Networks by observing
that the dominant cost in a KAN is storing the coefficients of every univariate activation. Instead
of optimizing all coefficients directly, a small meta-learner maps per-activation embeddings to basis
coefficients, capturing a shared rule for weight generation across activations (Zhao et al., 2025). In
contrast, our method uses the meta-learner only during training to impose a clusterable geometry on
per-edge coefficient embeddings. Then, at inference, we dispense with any hypernetwork, incurring
zero runtime overhead while achieving even greater parameter efficiency.

5.3 WEIGHT SHARING

Weight sharing compresses networks by restricting each layer’s parameters to a small set of shared
centroids and storing a codebook, along with per-weight indices. Han et al. (2015) popularized the
practice with their practical pipeline consisting of magnitude pruning and K-means weight sharing.
Subsequent theory linked quantization error to loss curvature and leveraged a Hessian-weighted
K-means (Choi et al., 2016). Another line integrates clustering into training. For instance, dif-
ferentiable K-means (DKM) optimizes centroids and assignments jointly with task loss, producing
strong models in both vision and NLP (Cho et al., 2021). Building on prior work, our MetaCluster
framework is the first to apply weight sharing to KANs successfully.

It is worth noting that, while weight-sharing is one avenue for model compression, bit-width quan-
tization is an alternative avenue, which is largely orthogonal and complementary to the proposed
approach. Applying quantization on top of MetaCluster (e.g., quantizing the code-book of cen-
troids) has the potential to achieve a further reduction in the memory footprint.

6 CONCLUSION

We introduced MetaCluster, a compression framework that makes Kolmogorov–Arnold Networks
practical at scale by introducing the novel combination of meta-learned manifold shaping with
weight sharing. A lightweight meta-learner maps low-dimensional embeddings to per-edge basis
coefficients, constraining KAN activations to lie on a compact manifold that is amenable to clus-
tering. We then apply K-means in coefficient space, replace per-edge parameters with codebook
centroids and compact indices, discard the meta-learner, and briefly fine-tune centroids to recover
any loss. This design directly targets the dimensionality driver of KAN memory, yielding a storage
advantage that grows with the number of coefficients per edge.

Across standard KANs and ConvKANs on MNIST, CIFAR-10, and CIFAR-100, MetaCluster
achieves up to 80× reduction in parameter storage without degrading accuracy. Visualizations and
ablations demonstrate that manifold shaping is crucial for high-quality clustering in high dimen-
sions, and that KANs benefit particularly from weight sharing compared to MLPs, as each centroid
amortizes many coefficients.
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A APPENDIX

A.1 HYPERPARAMETERS

We report the complete set of hyperparameters for our experiments in Tables 4, 5, 6, and 7. For our
fully-connected architecture experiments Table 5 reports the hyperparameters for our KAN variants
and Table 5 reports the hyperparameters for our MetaKAN variants. Then for our convolutional
architecture experiments Table 6 reports the hyperparameters for our KAN variants and Table 7
reports the hyperparameters for our MetaKAN variants.

Table 4: Hyperparameters for fully-connected KAN variants.

Hyperparameter KAN FastKAN GramKAN

Hidden dimension 32 32 32
Activation SiLU SiLU SiLU
Degree 3 (Spline) - 3
Grid range [−1, 1] [−2, 2] -
Grid size 5 8(Num grids) -
Optimizer AdamW AdamW AdamW
Learning rate 1× 10−4 1× 10−3 1× 10−3

Learning rate for
finetuning (lr c) 1× 10−4 1× 10−4 1× 10−4

Batch size 128 128 128
Epochs 50 50 50
Early stopping patience 10 10 10
Clustered training epochs 5 5 5
Early stopping patience (fine-tuning) 3 3 3
Number of clusters 16 16 16

Table 5: Hyperparameters for fully-connected MetaKAN variants.

Hyperparameter MetaKAN MetaFastKAN MetaGramKAN

Hidden dimension 32 32 32
Embedding dimension 1 1 1
Activation SiLU SiLU SiLU
Degree 3 (Spline) - 3
Grid range [−1, 1] [−2, 2] -
Grid size 5 8(Num-grids) -
Optimizer set double double double
Optimizer AdamW AdamW AdamW
Learning rate for meta-learner (lr h) 5× 10−4 1× 10−3 1× 10−4

Learning rate for embeddings (lr c) 5× 10−3 1× 10−2 1× 10−3

Learning rate for
finetuning (lr c) 1× 10−4 1× 10−4 1× 10−4

Batch size 128 128 128
Epochs 50 50 50
Clustered training epochs 5 5 5
Early stopping patience 10 10 10
Early stopping patience (fine-tuning) 3 3 3
Number of clusters 16 16 16
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Table 6: Hyperparameters for convolutional non-meta KAN variants.

Hyperparameter KAN FastKAN KAGN

Hidden dimension [32, 64, 128, 256] [32, 64, 128, 256] [32, 64, 128, 256]
Activation SiLU SiLU SiLU
Degree 3 (Spline) - 3
Grid range [−3, 3] [−3, 3] -
Grid size 5 8(Num-Grids) -
Dropout 0.25 0.25 0.25
Dropout (linear layers) 0.5 0.5 0.5
Optimizer AdamW AdamW AdamW
Learning rate for
finetuning (lr c) 1× 10−5 1× 10−5 1× 10−5

learning rate (lr) 1× 10−3 1× 10−3 1× 10−3

Batch size 128 128 128
Epochs 150 150 150
Clustered training epochs 5 5 5
Early stopping patience 10 10 10
Early stopping patience

(fine-tuning) 3 3 3
Number of clusters 256 256 256
Convolution Groups 1 1 1

Table 7: Hyperparameters for convolutional MetaKAN variants.

Hyperparameter MetaKAN MetaFastKAN MetaKAGN

Hidden dimension [32, 64, 128, 256] [32, 64, 128, 256] [32, 64, 128, 256]
Embedding dimension 2 2 1
Activation SiLU SiLU SiLU
Degree 3 (Spline) - 3
Grid range [−3, 3] [−3, 3] -
Grid size 5 8(Num-grid) -
Optimizer set double double double
Optimizer AdamW AdamW AdamW

Learning rate
for Metalearner (lr h) 1× 10−4 1× 10−4 1× 10−4

Learning rate embedding (lr e) 5× 10−3 5× 10−3 5× 10−3

Learning rate for
finetuning (lr c) 1× 10−5 1× 10−5 1× 10−5

Global learning rate (lr) 1× 10−3 5× 10−3 5× 10−3

Batch size 128 128 128
Epochs 150 150 150
Clustered training epochs 5 5 5
Early stopping patience 10 10 10
Early stopping patience

(fine-tuning) 3 3 3
Number of clusters 256 256 256
Embedding scheduler Yes Yes Yes
Hypernet scheduler Yes Yes Yes
Dropout 0.25 0.25 0.25
Dropout (linear layers) 0.5 0.5 0.5
Convolution Groups 1 1 1
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A.2 ABLATIONS EXTENDED

We present this extended ablation study to provide a more detailed analysis of the impact of various
hyperparameters on accuracy and the effectiveness of fine-tuning across different settings. These
extended results provide further insight into how variations in embedding size and coefficient count,
along with fine-tuning, influence performance differences in clustering across the different KAN
model variants and network architectures.

A.2.1 BASIS COEFFICIENT COUNT EXTENDED

Table 8 provides detailed insight into the influence of the fine-tuning stage of the MetaCluster frame-
work on different basis coefficient counts (i.e. the grid size or number of radial basis functions). We
can see that since all the original classification accuracy is retained after clustering, there are minimal
additional accuracy gains offered by fine-tuning the clustered model.

Model Grid Size Grid Range
Embed

Dim
#

Clusters
Model

Accuracy
Clustered
Accuracy

Fine-tuned
Accuracy

Mem Before
Clustering (KB)

Mem After
Clustering (KB)

MetaClusterFastKAN 5 -2,2 1 16 47.41 47.46 47.35 316.35 57.30
MetaClusterFastKAN 8 -2,2 1 16 47.62 46.96 47.80 316.76 57.68
MetaClusterFastKAN 10 -2,2 1 16 46.91 47.04 47.49 317.03 57.93
MetaClusterFastKAN 15 -2,2 1 16 45.88 45.15 45.74 317.71 58.55
MetaClusterFastKAN 20 -2,2 1 16 43.57 43.75 44.31 318.40 59.18

MetaClusterFastKANConv 5 -3,3 2 256 71.42 71.06 71.38 3,046.08 428.55
MetaClusterFastKANConv 8 -3,3 2 256 69.61 68.66 69.24 3,046.52 440.61
MetaClusterFastKANConv 10 -3,3 2 256 66.78 66.58 66.74 3,046.81 448.64
MetaClusterFastKANConv 15 -3,3 2 256 64.24 63.99 64.33 3,047.54 468.72
MetaClusterFastKANConv 20 -3,3 2 256 54.41 54.45 54.48 3,048.26 488.80

Table 8: Detailed results of grid sizes versus accuracy and memory for both fully-connected and
convolutional MetaFastKAN networks on Cifar-10.

A.2.2 META-LEARNER EMBEDDING SIZE EXTENDED

Our ablation exploring the influence of the embedding dimension aims to quantify the influence of
the embedding size on the downstream clustering performance. We report these results in Table
9. From Table 9, we can see that in both the fully-connected and convolutional architectures, as the
embedding dimension increases, the classification accuracy after clustering decreases. This validates
our assumption, which we developed based on Figure 1, that finding a lower-dimensional subspace
improves downstream clustering performance. During the fine-tuning stage, we can recover most of
the accuracy decrease experienced by choosing a higher-dimensional embedding. Furthermore, the
higher-dimensional choice of embedding does not affect the MetaCluster model memory footprint.

Model Num-grid Grid Range
Embed

Dim
#

Clusters
Model

Accuracy
Clustered
Accuracy

Fine-tuned
Accuracy

Mem Before
Clustering (KB)

Mem After
Clustering (KB)

MetaClusterFastKAN 5 -2,2 4 16 48.66 38.28 44.63 1,202.50 57.30
MetaClusterFastKAN 5 -2,2 3 16 47.28 39.11 45.20 907.10 57.30
MetaClusterFastKAN 5 -2,2 2 16 48.19 45.48 47.29 611.72 57.30

MetaClusterFastKANConv 5 -3,3 4 256 71.16 66.46 69.58 6,077.09 428.55
MetaClusterFastKANConv 5 -3,3 3 256 73.78 70.21 72.39 4,561.59 428.55
MetaClusterFastKANConv 5 -3,3 2 256 71.42 71.05 71.33 3,046.08 428.55

Table 9: Detailed results of embedding dimension versus accuracy for both fully-connected and
convolutional MetaFastKAN networks on Cifar-10.

A.3 LLM DISCLOSURE

We used large language models to assist in drafting and revising the manuscript.
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