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ABSTRACT

The recent advent of Large Language Models (LLMs) has ushered sophisticated
reasoning capabilities into the realm of video through Video Large Language Mod-
els (VideoLLMs). However, VideoLLMs currently rely on a single vision encoder
for all of their visual processing, which limits the amount and type of visual in-
formation that can be conveyed to the LLM. Our method, MERV, Multi-Encoder
Representation of Videos, instead leverages multiple frozen visual encoders to
create a unified representation of a video, providing the VideoLLM with a compre-
hensive set of specialized visual knowledge. Spatio-temporally aligning the features
from each encoder allows us to tackle a wider range of open-ended and multiple-
choice video understanding questions and outperform prior state-of-the-art works.
MERV is up to 3.7% better in accuracy than Video-LLaVA across the standard suite
video understanding benchmarks, while also having a better Video-ChatGPT score.
We also improve upon SeViLA, the previous best on zero-shot Perception Test
accuracy, by 2.2%. MERV introduces minimal extra parameters and trains faster
than equivalent single-encoder approaches by parallelizing the visual processing.
Finally, we provide qualitative evidence that MERV successfully captures domain
knowledge from each of its encoders. Our results offer promising directions in
utilizing multiple vision encoders for comprehensive video understanding.

1 INTRODUCTION

Inspired by the sophisticated reasoning abilities of recent Large Language Models (LLMs) (8; 9;
41), researchers have focused on using them in many other domains to great success. The video
counterparts, known as Video Large Language Models (VideoLLMs) (4; 28; 31; 37; 39; 62), connect
pretrained vision encoders to LLMs by training a modality bridge from the vision space to the
language space, allowing for reasoning to happen in the highly expressive language domain.

Most multimodal LLMs, such as LLaVA (34) for images and Video-LLaVA (31) for videos, opt
for contrastively pretrained encoders like CLIP (45) and LanguageBind (70). Their vision-language
pretraining naturally lends itself as a bridge between the vision input and the LLM, circumventing
the need to train heavy vision-language alignment modules like a QFormer (27). These encoders are
almost always pretrained separately and vary in architecture, training data, and optimization strategy.
Consequently, the features extracted by these encoders exhibit unique characteristics, each with
inherent strengths and limitations. Contrastive encoders like CLIP (45) may be better suited with their
multimodal semantic alignment, but are inferior to models such as DINOv2 (42) at fine-grained object
level understanding. They also fail to take advantage of models trained specifically on videos, such
as ViViT (2). Despite this clear tension between vision backbones, previous research in VideoLLMs
has relied on only one vision encoder for visual processing as one was thought to be sufficient for
visual understanding, and already difficult enough to achieve vision-language alignment with. Any
more encoders was unnecessary and not an effective tradeoff of runtime for compute.

In this paper, we argue that this choice to not use multiple encoders in existing VideoLLMs unneces-
sarily restricts their capabilities. For example, in Figure 1 we can see cases where only one of four
different single-encoder models answers a given question correctly. While simple scene descriptions
can be answered by image-level models, other questions require temporal and action-level comprehen-
sion, benefiting from features encoded with video models like ViViT (2). Consequently, the reasoning
capabilities of these VideoLLMs are directly limited by the inherent weaknesses of their respective
pretrained encoders. Therefore, employing multiple encoders could allow us to complement one
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LB DINOv2 ViViT SigLIP MERV

 Q: Is the order of the written
 letters the same as the order of
 the letters put on the table?

 A: Yes  B: I don't know  C: No 

A. C. C. C. A.

 Q: Is the camera moving or
 static?

 A: moving  B: static or shaking 
 C: I don't know 

A. B. A. A. B.

 Q: Was the first cup placed
 facing upwards or downwards?

 A: upwards  B: downwards 
 C: I don't know 

A. A. B. A. B.

 Q: Where is the person?

 A: Kitchen  B: Outdoor 
 C: Living room or Bedroom

A. A. A. C. C.

Figure 1: Different visual experts exhibit individual strengths. We show some examples where
one single encoder model is the only model to correctly answer the Perception Test question (44).

encoder’s weaknesses with another encoder’s strengths. The wide adoption of the LLaVA paradigm
is also indication that vision-language alignment is simple to achieve, even without language-aware
vision models.

We propose MERV, a Multi-Encoder Representation of Videos, as a new method for integrating
multiple visual encoders into a single VideoLLM using a cross-attentive encoder mixer for fusing
representations. We introduce a spatio-temporally aligned representation for mixing the information
from multiple types of visual encoders. Given the computational complexity of video tasks, we
carefully experiment with optimization strategies and parallelizing the visual experts, allowing us
to combine four distinct visual encoders with minimal computational overhead. Our frozen method
outperforms all of the individual encoder methods, up to 3.7% better than prior works (31) on video
reasoning benchmarks, i.e., from 47.1% to 50.8% on ActivityNet-QA (63), and on par with the state-
of-the-art (62) on Perception Test (44), a challenging perception and reasoning diagnostic for video
models. Finetuning the full model improves MERV past SeViLA (62) by 2.2%, from 46.2% to 48.4%.
Finally, we do a detailed qualitative study of our model’s capabilities on the Something-Something
v2 dataset (15). We show that MERV can accurately capture both the contrastive encoders’ (64; 70)
strengths on general vision-language understanding, as well as ViViT’s (2) specialty on temporally-
sensitive tasks (e.g. distinguishing pushing left vs. right), without trading off performance between
these specializations as single encoder models do. 1

2 RELATED WORKS

VideoLLMs build upon the powerful reasoning capabilities of LLMs by utilizing them as language de-
coders to enable instruction-followed video understanding. Key advancements include VideoChat (28)
and Video-LLaMA (65) for chat-based video understanding, LLaMA-Adapter (66) for pre-alignment,
Valley (37) with multilingual LLMs, InternVideo (56) with a dedicated video encoder training phase,
and Video-ChatGPT (39) combining video-adapted encoders with LLMs. GPT4Video (57) supports
video understanding and generation, while MovieChat (47) focuses on long video comprehension.
Models like Chat-UniVi (20) and LLaMA-VID (30) optimize token usage for video representation.
Other notable models include Vamos (55), which flexibly uses visual embeddings, action labels,
and video captions as input; VideoChat2 (29), developed through three-stage progressive training;
Video-LLaVA (31), which aligns image and video representations before projecting them to the LLM
space; and VideoPrism (68), which also further trains a video encoder through masked distillation.
Specialized models like VTimeLLM (18) focus on fine-grained video moment understanding and
time-bound reasoning, while models like Elysium (54) and Merlin (61) can predict object trajectories.
SeViLA (62) uses LLM for frame localizer of the video for multiple-choice tasks. Finally, recently
LLaVA-Hound-DPO (67) explored using DPO and a higher quality training set for better instruction

1Our code and pretrained weights will be made public for the camera-ready version of this paper.
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inside the drawn region?”

Figure 2: Overview of MERV, a Multi-Encoder Representation of Videos. MERV proceeds in
three main stages. First, we feed in our input video into each of visual encoders to get different
representations. They are then spatio-temporally aligned before being fused by a cross-attentive
mixer. The output is a visual embedding with an additive mix of information from all of the encoders,
which is combined with the text query to produce our final generation.

following. Distinct from these aforementioned works, our approach centers on utilizing a diverse
array of visual encoders, each with its own unique strengths and especially a video encoder, to
significantly enhance the capabilities of the VideoLLM framework. By strategically utilizing these
specialized encoders, we aim to capture a broader spectrum of visual information, thus enriching
VideoLLMs’ understanding of video content.

Combining multiple encoders for multimodal LLMs is gaining attention. Eyes Wide Shut (51)
explored mixing DINOv2 and CLIP features for LLaVA, but their results signal that mixing features
effectively requires investigation. Both Mipha (71) and Prismatic-VLMs (22) found that image
encoders like CLIP and SigLIP, which are trained using vision-language contrastive loss, surpass
other image encoders such as ViT and DINOv2, with SigLIP showing further improvements over CLIP.
SPHINX-X (14) and SPHINX (32) combines multiple image encoders by concatenating features
along the channel dimension, while BRAVE (21) concatenates features from multiple encoders
sequence-wise, followed by a QFormer with masked modeling. There is also the popular body
of research on multimodal LLMs using many modalities including image, video, audio and/or 3D
(7; 16; 17; 25; 33; 36; 38; 43; 48; 49; 65). In contrast, this paper dives into the video-language domain,
exploring combining multiple image and video encoders and exploiting their structural similarities.
Our feature fusion is both performant and efficient in FLOPs, and results in an all-encompassing
additive mixture of features which previous works were unable to create without tradeoffs.

3 MERV: MULTI-ENCODER REPRESENTATION OF VIDEOS

Our goal for MERV is to systematically build a video model that leverages multiple encoders with an
LLM to process a video following the LLaVA/PrefixLM (34; 35) paradigm (see Figure 2). Unlike
previous works, our focus is not on combining multiple modalities (3; 70), but instead on combining
multiple image and video encoders trained on different datasets and objectives. We extensively ablate
three key aspects to make this possible: our selection of multiple encoders, i.e., which visual encoders
and how many to use (Sec 3.1); how we align the spatio-temporal representations of each encoder to
mix the information together, especially in an efficient manner (Sec 3.2); and our implementation
efficiencies, from the parallel visual processing to the training recipes (Sec 3.3).

3.1 MULTI-ENCODER FEATURE EXTRACTION

Our final architecture uses four distinct types of models: spatial experts, fine-grained temporal experts,
image-language experts, and video-language experts. We found experimentally that our choice of
four performed the best across all types of questions, and ablate our choices in Section 4.2. More
details about these four encoders and other encoders we considered are in Appendix Table 4.
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Spatial expert: DINOv2 (42) is trained using unsupervised learning on local-to-global correspon-
dences in image data. The resulting features have a robust understanding of object parts, as well as
semantic and low-level image understanding, but can suffer from poor language grounding.

Temporal expert: ViViT (2) is trained using supervised learning on short videos. The architecture is
designed for modeling the interactions between frames using spatial and temporal attention, which
lets it capture longer temporal dependencies than pure image models can.

Image-Language contrastive expert: SigLIP (64) is trained using sigmoid contrastive learning on
image-text pairs. The model is designed to learn a joint embedding space for images and text, which
makes it good at understanding vision-language associations. However, it can overlook the finer
details of an image which are not well described by text in its training data.

Video-Language contrastive expert: Finally, our video-language expert is LanguageBind (70). Used
by Video-LLaVA (31), LanguageBind is trained through joint multimodal learning between text and
multiple modalities, including videos, infrared, and audio, and understands the relationship between
video and text and their high-level semantics. We only use the video encoder of LanguageBind.

3.2 SPATIO-TEMPORALLY ALIGNED REPRESENTATIONS FOR FEATURE FUSION

Our input is a batch of text, image-text, or video-text queries. The visual part of the input, either
images I or videos V , is passed through each of the visual encoders to extract the respective features.
Here we describe the detailed care we took in pre-processing to prepare the features for alignment.

First, images are treated as videos with repeated frames, so assume all inputs are videos from here on
out. A video is of shape T ×H ×W , where T is the number of frames and H,W are the height and
width of the frames, and produce an output of shape te × he × we for an encoder e. One obstacle
with using different visual encoders is that each model outputs features with a different structure.
For example, given an input of shape 16× 224× 224, ViViT outputs a feature of shape 8× 14× 14
whereas LanguageBind’s features are of shape 16× 16× 16. Image-based encoders will not change
the temporal dimension, whereas ViViT downsamples the frames by a factor of 2.

For temporal alignment, as each encoder is flexible enough to handle varying input frames, we simply
choose our input T for each encoder so that each output te is the same across all encoders, i.e. t.

Pre-fusion projection. Now we need to achieve spatial alignment among the features. Naïvely
combining them is not possible as they all have different spatial shapes, and would also be prohibitively
expensive at full resolution. We design a pre-fusion projector to both align and compress them.

Suppose our feature from encoder e is ve ∈ Rt×he×we×de , where de is the dimension of encoder
e, and assume the output spatial representations are square (i.e. he = we, but we keep notation for
clarity). Our pre-fusion projector uses an adaptive 2D average pool P for each encoder to resize the
spatial dimensions to the same h× w for all encoders, where h < he and w < we. As t is the same
across each ve, this spatio-temporally aligns the representations.

Finally, we need to connect the varying embedding dimensions de to a same dimensional space. We
add a linear layer to project the features from dimension de to d, the LLM’s dimension. In total, our
pre-fusion projection is

xe := P(ve)We ∈ Rℓ×d for e ∈ Encoders (1)

where We ∈ Rde×d is each encoder’s output linear layer, and ℓ = t × h × w. This projector is
lightweight, having only d×

∑
e de trainable parameters for dimension matching, making it easy to

scale to an arbitrary number of visual encoders. For detailed ablations, see Section 4.2.1.

Feature fusion strategies. The final part of our pipeline is fusing the multi-encoder information
together using cross-attention with learnable queries to additively mix the different representations
together. The visual features determine the weights of the linear mixture, which we find sufficient for
our task. We use a single randomly initialized query Q ∈ R1×d, keys as X = [x1 . . . xN ] ∈ RN×dL ,
where xe ∈ Rd is each encoder’s features averaged over the sequence dimension ℓ for a faster
computation, and N the number of encoders, and values as X = [x1 . . . xN ] ∈ RN×ℓ×d. We
calculate our final unified feature as

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

O := Softmax

(
QX

⊤

√
d

)
X ∈ Rℓ×d. (2)

The final step is to concatenate the visual embedding and tokenized text together into the LLM. We
use the base LLaMA-2 7B model (53), which we found performs better than the chat model. We test
multiple alternate feature fusion strategies and their tradeoffs in Section 4.2.2.

3.3 IMPLEMENTATION EFFICIENCIES

Parallelized visual encoding. At a first glance, using multiple encoders seems to be a large cost
to pay when comparing the raw FLOPs and parameters. However, a key benefit of the LLaVA
style architecture is that the entire feature extraction and projection pipeline can happen in parallel.
To make this possible, we build on top of the recent powerful advances in parallel processing for
LLMs and use PyTorch’s Fully Sharded Data Parallel (69). As the video encoders themselves are
much smaller than the LLM blocks and complete in around the same time, most of the overhead in
running four encoders is already covered by having one encoder. We provide some timing numbers
in Section 4.2.3 and find that our step time is similar to that of the single-encoder methods.

Our code is built on top of the Prismatic VLM codebase (22), which efficiently implements vision-
language model (VLM) training. We add the ability to handle videos and an arbitrary number of
visual encoders, along with many useful features for training. Our training is efficient for using
multiple visual models, completing in under 24 hours using 8 L40-48GB GPUs, and down to 8 hours
using 8 H100s in limited access testing. The Video-LLaVA codebase runs Stage 2 in around 38 hours
on the same L40 setup and could not easily support multiple encoders in our initial attempts.

MERV frozen and full. Many different recommendations for training LLaVA style models have been
made since its inception. This is only made more complicated by the introduction of new datasets
with every new VideoLLM architecture, making it difficult to properly determine the best recipe for
one’s own setup. We intentionally fix our dataset to be the same as Video-LLaVA’s so we can isolate
the impacts of the training setup, from which we find two viable settings. MERV (frozen), which
performs only Stage 2 instruction tuning and achieves similar results to the original Video-LLaVA
recipe in only 43% of the time, and MERV (full), which unfreezes the LLM during Stage 1 as well
for a slight improvement on a few benchmarks. As MERV (frozen) is faster to train with similar
performance, we adopt that recipe by default for analysis, and interchangeably use MERV to refer to
it for simplicity from here on out. Detailed analysis is provided in Section 4.2.3.

4 EXPERIMENTAL RESULTS

Datasets and training procedure. Our data mix is the same as Video-LLaVA (31). The Stage 1 data
is single-turn concise captioning, with 558k (image, text) pairs from LAION filtered by LLaVA (34)
and 702k (video, text) pairs from Valley (37). The Stage 2 data is multi-turn conversations, detailed
captioning and reasoning, with 665k (image, text) pairs from LLaVA (34) and 100k (video, text)
instructions from Video-ChatGPT (39).

All the preprocessing, including frame extraction, adheres to the original method that each encoder
is trained with. We extract 16 uniformly sampled frames from each video, except for ViViT which
extracts 32 frames by default but produces a 16-frame output feature.

For MERV (frozen), we train on only Stage 2 data for 1 epoch with a learning rate of 2× 10−5 and a
batch size of 128 with gradient accumulation. For MERV (full), we first train on Stage 1 data with a
learning rate of 1× 10−4 and the projectors, feature fusion, and LLM unfrozen with similar settings.
Both recipes use an initial warmup ratio of 0.03 and a cosine schedule.

Evaluation. We evaluate our model on a comprehensive suite of video understanding benchmarks,
including the open-ended MSVD-QA (59), MSRVTT-QA (59), TGIF (19), and ActivityNet-QA (63),
as well as the multiple-choice benchmarks NExT-QA (58), VLEP (24), TVQA (23), and Perception
Test (44). We emphasize that NExT-QA, VLEP, and TVQA datasets are held-out datasets that
we did not use during our experiments, and only evaluated once after all the design is completed.
We report both accuracy and score following the Video-ChatGPT evaluation protocol (39) where
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Methods Visual Encoder MSVD-QA MSRVTT-QA TGIF-QA Perception ActivityNet-QA NExT-QA VLEP TVQA
And LLM Acc Score Acc Score Acc Score Acc Acc Score Acc Acc Acc

Alternative data mixes
Video-Chat (28) (50), (11) 56.3 2.8 45.0 2.5 - - - 26.5 2.2 - - -
LLaMA-Adapter (66) (45), (52) 54.9 3.1 43.8 2.7 - - - 34.2 2.7 - - -
Video-LLaMA (65) (50; 26), (8) 51.6 2.5 29.6 1.8 - - - 12.4 1.1 - - -
Video-ChatGPT (39) (45), (8) 64.9 3.3 49.3 2.8 - - - 35.2 2.7 - - -
SeViLA (62) (50), (26) - - - - - - 46.2 - - 63.6 64.4 38.2
LLaMA-VID-7B* (30) (13), (8) 69.30 3.74 57.84 3.24 51.31 3.26 41.64 46.45 3.22 60.61 57.65 37.43
LLaMA-VID-13B* (30) (13), (8) 70.25 3.77 58.58 3.26 51.26 3.26 41.54 46.79 3.23 60.03 61.98 41.33
Same data mixes -
Video-LLaVA* (31) (70), (8) 67.74 3.69 56.90 3.18 47.99 3.17 44.22 47.08 3.27 59.61 61.21 37.66
MERV (frozen) (70; 42; 2; 64), (53) 70.97 3.76 59.03 3.25 51.1 3.26 46.21 50.87 3.34 63.09 58.66 42.28
Gains to Video-LLaVA* +3.23 +.07 +2.13 +.07 +3.11 +.09 +1.99 +3.79 +.07 +3.48 -2.55 +4.62
MERV (full) (70; 42; 2; 64), (53) 70.48 3.79 57.25 3.24 51.39 3.28 48.41 49.93 3.33 61.36 60.07 39.42
Gains to Video-LLaVA* +2.74 +.10 +0.35 +.06 +3.40 +.11 +4.19 +2.85 +.06 +1.75 -1.14 +1.76

Table 1: Comparison of different multimodal LLMs on video reasoning benchmarks. We
employ ChatGPT to evaluate performance following Video-ChatGPT (39) where applicable (version
gpt-3.5-turbo-0613). * denotes our evaluation of using the author provided checkpoint. The
first five datasets were used as development sets; the last three were held-out for our final evaluation.

applicable, and all evaluations are done zero-shot without any dataset-specific fine-tuning. Results
using GPT-3.5-turbo for evaluation are done with the June 13th, 2023 cutoff date.

4.1 COMPARISON TO STATE OF THE ART

Table 1 tabulates the performance of MERV (frozen) and (full). We compare our model to the existing
state-of-the-art works, including Video-LLaVA (31) that share our training data mixture, and other
VideoLLMs (28; 30; 39; 62; 65; 66). We find that our method, generating video representations
using multiple visual encoders that specialize in different skills of video understanding, outperforms
Video-LLaVA across nearly all of the benchmarks, with a 3.2% gain on MSVD and a 3.7% gain
on ActivityNet. Both of our methods perform better overall than Video-LLaVA, even when using
less data with just Stage 2 as shown by the MERV numbers. While MERV (full) is not a strict
improvement to MERV, it still improves on some difficult benchmarks with its additional video-
language alignment. We believe that outside of these testing sets, MERV (full) is a better model
overall and recommend using this recipe when possible. Compared to LLaMA-VID (30), which
uses a different training mix, we also better in nearly all benchmarks, up to around 4.5% across
Perception Test, ActivityNet, and TVQA. 2 MERV (full) outperforms the previous state-of-the-art on
the Perception Test zero-shot with 48.4%, compared to SeViLa (62) with a 46.2% accuracy. Overall,
our design shows a significant improvement over Video-LLaVA and prior methods as a whole.

4.2 ABLATIONS

In this section, we justify the design choices for our our architecture, covering our projectors, feature
fusion strategies, and training recipes. Our ablations are done with the MERV (frozen) recipe.

4.2.1 PRE-FUSION PROJECTORS

The first module we investigate is our projectors, which serve to connect each encoder from its
pretrained embedding space to a common embedding space.

We test two types of projectors: image-level, which operate on frames independently, and video-level,
which aggregate information across frames. The image-level projectors are similar to those described
in MM-1 (40): 2D adaptive average pooling, a shallow attention resampler similar to a Perceiver
Resampler (1), and convolutional pooling with 3 RegNet blocks on both sides of an average pool
layer like the C-Abstractor in Honeybee (6). For video-level projectors, we use a 3D average pool,
where we pool to the same spatial dimension but furthermore pool the frame dimension by 2, and
a 3D convolution where we add a single 2 × 3 × 3 convolution before the same average pooling.
For all projectors, we project to the same number of tokens t × h × w, using an adaptive average

2Video-ChatGPT’s and Video-LLaVA’s author-reported numbers on TGIF are incomparable as they were on
a subset of the dataset. See https://github.com/PKU-YuanGroup/Video-LLaVA/issues/37.
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Projector Avg Acc Params FLOPs
257 tok 54.76 - -
class tok 52.05 - -
2D Avg 54.96 0 2.1M
2D Avg* 55.86 0 4.2M
2D Attn 52.12 12.7M 9.7G
2D Conv 54.23 237M 241G
3D Avg* 55.09 0 4.2M
3D Conv 55.42 113M 232G

(a) Pre-fusion projectors. * is
16 frames instead of 8. Top two
rows are projector-free baselines.

Tkns MSVD MSRVTT TGIF
1 61.94 54.64 41.41
4 64.47 55.72 45.32
16 67.23 56.44 47.75
64 69.08 58.00 50.01
100 68.38 57.47 48.78
144 68.65 57.73 48.81
256 68.46 57.72 48.66

(b) Pre-fusion output token. We
ablate the optimal token size per
frame for the pre-fusion projector.

Strategy Avg Acc FLOPs
Cross-Attn 56.83 17.19 T
Concat (Seq.) 54.45 43.09 T
Concat (Ch.) 56.64 16.29 T
Learnable W 55.01 16.24 T
25% - Mixed 54.19 16.39 T

(c) Feature fusion strategy. Cross-Attn
additive mixing is best overall among all
the strategies on accuracy, for its FLOPs.

Table 2: Ablating design choices. We highlight our defaults in orange and bold the best results.
Average accuracy is on MSVD, MSRVTT, TGIF, and Perception Test. Full results are in the Appendix.

pool or h× w latent tokens for the attention resampler. We report average performance across our
development sets of MSVD, MSRVTT, TGIF, and Perception Test.

Pre-fusion projector. Table 2a tabulates each projector’s average accuracy, along with their parameter
count and FLOPs, with LanguageBind as the single vision encoder and an 8 frame 64 token projection
output by default. We find that 2D average pooling is the best overall projector, surpassing that of the
full 257 token embedding (used in Video-LLaVA (31)) while also having no trainable parameters
and the fewest FLOPs. The projection serves as a form of feature selection, allowing the LLM to
efficiently reason only over the most relevant information. However, increasing the frame resolution
from 8 to 16 was a large improvement, showing that increasing temporal resolution is still important.
One result worth noting is the poor performance of the attentive resamplers, typically a popular
projector choice. They are agnostic to structure, which leads them to being weaker projectors for us.
This highlights the importance of aligning representations with their spatial and temporal structure,
especially for video models, which extract many more frames of visual information.

Projector token length. Similarly, we ablate the optimal output token size of the projector. Table 2b
tabulates performance on different token output sizes when using 2D Average Pooling with 16 frames
as the projector. We see that the performance peaks at 64 tokens, with worse performance for longer
token lengths. This balances the number of tokens used for condensing the visual embedding while
also minimizing the extra processing needed by the LLM, leading to the best overall performance.

4.2.2 FEATURE FUSION STRATEGIES

Next, we test different strategies for fusing the information from all of the features, with detailed
breakdowns in Table 2c. First, we evaluate two popular concatenation methods, in either the token
sequence dimension, or the channel dimension followed by an MLP projector for matching the
LLM dimension. While sequence-wise concatenation is widely used in multimodal LLMs (51), our
method outperforms it while using significantly less computation, with a 56.8% average accuracy
compared to 54.4%, while also using 2.5× fewer FLOPs. Concatenation channel-wise reaches a
similar performance of 56.6% and a lightweight cost. However, our cross-attention shows slightly
better performance, with the additional benefit of having accessible encoder weightings for analysis,
so we do not choose channel-wise concatenation as our final design. We also try different methods
of additive mixing as an ablation. The last two rows of Table 2c show the performance when either
learning the additive weights directly as a learnable scalar or by fixing the weights to be 0.25 for each
of 4 encoders. We see that using cross attention outperforms both methods by 1.8% and 2.6%, as our
feature fusion module can dynamically generate better fused embeddings given the visual input.

4.2.3 TRAINING RECIPES

Finally, we also compare different training recipes based on the literature and our own expertise.
Traditional rule-of-thumb follows that of the original LLaVA recipe: a Stage 1 pre-training on
captioning data to align the projectors only, and a Stage 2 instruction tuning on multi-turn complex
reasoning data for both projectors and the LLM. Many recent works have attempted some combination
of other strategies, such as unfreezing the vision encoders (12) or skipping the Stage 1 (22).
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We systematically map out this landscape, fixing our dataset to be the same as Video-LLaVA’s and
testing multiple hypotheses for the video domain. Contrary to Video-LLaVA, we found that the Stage
1 phase did not have a significant effect on the final performance when training only the projectors
and feature fusion, as can be seen in Table 5 in the Appendix. Performing only Stage 2 instruction
tuning leads to similar results in 43% of the total time, so we adopt this recipe for efficiency. The
general performances fluctuate, with the Perception accuracy of the Video-LLaVA recipe being
slightly higher by 1.2%, but MSVD, MSRVTT, and ActivityNet of ours are higher by around 0.4%.
We refer to this recipe as MERV (frozen).

This recipe is still unsatisfying as it leaves a large amount of data, approximately 1.3M vision-
text pairs, unused for training. In our empirical observations, we often found that video-language
alignment was not very strong. The distributions of language used in video datasets and benchmarks
seem to sparsely overlap based on their sentence embeddings, which could have impacted our ability
to perform well zero-shot on the downstream benchmarks. However, we found that if we unfreeze the
LLM during Stage 1 and learn alignment between the LLM and the projectors and feature fusion, our
performance improved on a few key benchmarks, especially Perception Test, by up to 2.2%.
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Figure 3: Extra encoders incur minimal step
time overhead. Here we add encoders in the order
of DINOv2, LanguageBind, SigLIP, ViViT, plotted
alongside the slowest single encoder in each group.

As another ablation, we train MERV on a single
stage comprised of the Stage 1 and Stage 2 data
mixed together (bottom of Appendix Table 5).
Surprisingly, this does worse than the explicit
two stage training recipe. We attribute this to the
explicit types of data in each stage being a form
curriculum learning, showing that these stages
are still important for optimal performance.

Finally, we provide evidence for the efficiency
of our method. We use the default FSDP shard-
ing strategy PyTorch provides; it is not currently
possible to specify explicit plans for which mod-
ules go where (but may be possible as FSDP
matures). However, even with this basic strat-
egy, our method is dominated by the slowest
single encoder present, incurring very little addi-
tional overhead from extra encoders due to this
parallelization, making it cost efficient to scale up in the number of encoders.

5 ANALYSIS

5.1 STRENGTH IN THE ENSEMBLE OF ENCODERS

The original motivation of our work was to choose encoders with complementary visual knowledge
to form a comprehensive representation for our final model. The key questions are 1) do we benefit
by using more than one encoder, and 2) do we need all four encoders, i.e. does each one meaningfully
contribute to the final performance?

Can we make use of more encoders? The conventional wisdom is to use a single encoder, typically
a contrastively trained vision-language model like CLIP, SigLIP, or LanguageBind (45; 64; 70), in
a VideoLLM. In Figure 4a, we show the four single encoder models corresponding to each of our
chosen encoders using their full embeddings. They not only all perform worse than MERV but also
use more FLOPs, as without our pre-fusion projectors, their sequence lengths are at least 4× ours.

Are each of the encoders contributing? To affirm that this set of four encoders is actually beneficial
for improving understanding, we train three-encoder VideoLLMs under the same strategy, but
removing a different encoder each time. Each of these models does worse based on the strength of the
encoder removed, meaning that MERV is using their knowledge (Fig. 4a). The minor drop in FLOPs
illustrates how most of the computation is still dominated by the LLM, not the vision encoders.

Does MERV capture visual skills of different encoders? Finally, we ask if our model effectively
captures knowledge from its encoders. We first answer through our previous open-ended QA
benchmarks. To assess the performance across different visual tasks, we create “pseudo”-skill
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Figure 4: Analysis plots supporting our design of multiple encoders, from their accuracy to
their skill specializations. Average accuracy is across MSVD, MSRVTT, TGIF, and Perception Test.
Full results are in the Appendix Tables 7, 8, 10.
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Figure 5: Single encoder vs. MERV on different types of video tasks. We plot the relative
performance of VideoLLMs with different visual encoders. While each single encoder has its strength
in different tasks, our method shows better performance than all the other single encoders in almost
every task. We only plot tasks with more than 500 samples. See Appendix for details.

categories by looking at the first word of the question sentence, which are often WH-words. They
can be viewed as a proxy of skills required to solve the task. For example, Where requires spatial
understanding and When requires temporal understanding. Figure 5 shows the relative performance
of different visual encoders. While the contrastive models generally dominate each category, no
single encoder performs best in all tasks. LanguageBind, for example, performs the best in TGIF-
What with 46.23%, while DINOv2 performs on par with the best in MSVD-Who with 82.12%. Our
method which combines different encoders into an unified representation that consistently matches or
improves the best-performing encoder. Raw numbers are in Table 9 in the Appendix.

5.2 MERV CAN INTUIT MOTION AND GENERAL UNDERSTANDING SIMULTANEOUSLY

We take an alternate angle to quantifying how well our model learns from each of its individual
encoders by looking towards classic video action recognition, from which we create detailed categories
of skills based on the class names. We turn to Something-Something v2 (15) (SSv2) dataset where
the goal of the original benchmark is to classify the video into one of 174 classes, e.g., Pulling
[something] from left to right. This allows us to analyze our model’s understanding of temporal-
spatial interaction with minimal distractions from scene understanding and real-world semantics. We
provide qualitative examples where MERV is able to simultaneously provide descriptions and motion
understanding, where it tends to align with either SigLIP (first row) or SigLIP (second row) based on
the task (Figure 11). However, evaluating SSv2 as a zero-shot VideoLLM task is difficult with many
specific categories. We repurpose the dataset as a 5-choice multiple-choice question (MCQ) dataset
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Figure 6: Single-Encoder Performance Difference in Something-Something v2 - MCQ. ViViT
shows better performance on tasks where temporal understanding is crucial, while LanguageBind
and SigLIP show better performance where task can be solved from single-frame understanding.

and fix the prompt to be "How is the object in the video being interacted with?". Incorrect choices
were randomly sampled from the 173 other classes. We call this benchmark "Something-Something
v2 - MCQ" to distinguish it from the original classification task.

We also selected 12 classes a priori from SSv2, where the action is indistinguishable if reversed in
time, e.g., Pulling [something] from left to right and Pulling [something] from right to left. Figure 4b
plots the performance of MERV and single-encoder models on this temporal subset (x-axis) against
the full dataset (y-axis). We see that ViViT, which often falls short in other Video QA benchmarks,
surprisingly performs better than other encoders at 39.77%, which is 9.19% higher than the next
closest model LanguageBind. However for the full dataset, ViViT suffers with a worse performance
of 26.78%, as ViViT’s strength is on temporal understanding despite lacking in vision-language
understanding. Contrastive encoders have the upper-hand on most other classes.

We plot the performances of 10 SSv2 classes where the performance difference between ViViT and
SigLIP is largest in Figure 6. We see that actions that cannot be inferred from a single frame are the
ones that ViViT performs better, e.g., Moving [something] down is indistinguishable from Moving
[something] up if temporal information is omitted. Meanwhile, SigLIP performs better for classes
where understanding the semantics of the scene can hint the action that is happening, e.g., if the video
contains a cup and a bottle of water, one can easily expect Showing [something] is empty without
watching the full video. See Appendix Figure 9 for sample videos of the 10 classes.

We believe that the architecture, datasets, and objective of each model causes these difference. ViViT
processes spatial-temporal tubelets for embeddings, leading to better temporal understanding despite
only being pre-trained on Kinetics-400 classification. SigLIP uses image-based ViT with no temporal
layer has limited temporal understanding, but has a greater knowledge due to its larger training set and
contrastive objective. MERV, at 42%, shows better performance compared to all these single-encoder
models via leveraging strength of all the individual encoders. MERV (full) performs better than both
VideoLLaVA (31) and the 7B and 13B variants of LLaMA-Vid (30).

6 CONCLUSION

Previous VideoLLMs have been limited to relying on a single visual model for feature extraction,
which leads to limited understanding capabilities of vastly different video tasks. In our work, we break
this paradigm and explore various fusion strategies for combining information from multiple visual
experts to generate a representation that can leverage the capabilities of different video encoders.
We find that our multi-encoder feature fusion is able to outperform comparable methods by up to
3.79% on video reasoning benchmarks. We show that the method can obtain better performance
than the best-performing single-encoder model with minimal computational overhead. Finally, we
quantitatively and qualitatively observe the skill specializations our model learns on an MCQ format
of Something-Something v2, which confirms both that encoders can be specialized and that our
model captures both axes of knowledge. Our paper proposes some initial steps in rethinking how we
approach the use of multiple encoders. We are especially excited about this trend as it could allow
our model to scale visual processing with the number of GPUs with better sharding strategies. We
can place one expert on each device and obtain visual features in parallel while still retaining similar
runtimes to having just one expert. We hope that this inspires others to also consider this problem as
potentially another direction for scaling and improving their VideoLLMs.
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Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
Florian Hoppe, Christian Thurau, Ingo Bax, and Roland Memisevic. The "something something"
video database for learning and evaluating visual common sense. In arXiv, 2017. 2, 9, 17

[16] Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao,
Peng Gao, and Xiangyu Yue. Onellm: One framework to align all modalities with language. In
CVPR, 2024. 3

[17] Jiaming Han, Renrui Zhang, Wenqi Shao, Peng Gao, Peng Xu, Han Xiao, Kaipeng Zhang, Chris
Liu, Song Wen, Ziyu Guo, et al. Imagebind-llm: Multi-modality instruction tuning. arXiv,
2023. 3

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[18] Bin Huang, Xin Wang, Hong Chen, Zihan Song, and Wenwu Zhu. Vtimellm: Empower llm to
grasp video moments. arXiv, 2023. 2

[19] Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. Tgif-qa: Toward
spatio-temporal reasoning in visual question answering. In CVPR, pages 2758–2766, 2017. 5

[20] Peng Jin, Ryuichi Takanobu, Caiwan Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified
visual representation empowers large language models with image and video understanding.
arXiv, 2023. 2
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 LIMITATIONS AND BROADER IMPACT.

Our works are based on LLaMA-2 7B model (53), and as with many other VideoLLM models,
the performance of our method is hugely dependent on the capabilities of the LLM model, and
better-performing models often demand significantly more computation. MERV requires running
multiple encoders, which can be computationally intensive and can lead to out-of-memory errors in
limited resource settings. While FSDP (69) allows us to easily and effectively train larger models
across multiple GPUs than would otherwise be possible, its generality also makes it difficult for us to
design tailored sharding strategies that would maximize the performance of our model. However,
with future improvements to data parallelism, our model can still benefit greatly and run even more
efficiently. Also, despite the improved speeds, there is still an upper bound for what constitutes a
reasonable training time that still allows us to test many of our design assumptions, which limits the
scale and number of experiments we can run.

While we show that our method can successfully leverage information from different visual encoders,
nevertheless if the encoders themselves are limited in video understanding capability, MERV cannot
fully compensate for that. Our work aims to facilitate video understanding, which can lead to
positive social impacts such as a video captioning model for low-vision users, automatic detection of
medical emergencies, or better self-driving cars. It can also lead to negative social impacts like easy
surveillance by the authorities, and human-like internet bots being used for scamming purposes. We
follow the same safeguards implemented by the original authors of the datasets, the visual models,
and the LLM models. We have not put any additional safeguards ourselves.

A.2 QUALITATIVE RESULTS

INSTRUCTION: Describe what the person is doing in the video.

MERV: The person in the video is playing a video game using a Wii remote. He is
 standing in a living room and swinging the remote around while playing.

INSTRUCTION: What game is he playing?

MERV: The man is playing a game of Wii bowling.

INSTRUCTION: What type of room is he in?

MERV: The man is in a living room.

INSTRUCTION: Is he playing alone?

MERV: No, he is not playing alone. There are other people in the room watching him
 play.

INSTRUCTION: Describe what the person is doing in the video.

MERV: The person in the video is performing a leg stretch by lifting their right leg
 up and holding it in the air while lying on the floor.

INSTRUCTION: Describe the clothes that this person is wearing.

MERV: The person is wearing a blue shirt and black pants.

INSTRUCTION: What do you think this room is?

MERV: Based on the image, the room appears to be a gym or a workout area. A man is
 seen performing a workout routine, specifically a leg lift, on a carpeted floor.
 The presence of a wooden door and a bench in the room further supports the idea
 that this is a gym or a workout space. The man is wearing a blue shirt, which
 may indicate that he is part of a group or participating in a class. The room
 seems to be designed for physical activity and exercise, with the man using the
 bench and the carpeted floor to perform his workout routine.

INSTRUCTION: Describe what the person is doing in the video.

MERV: The person in the video is dancing with a partner in a room. They are moving
 their arms and legs around while dancing.

INSTRUCTION: What is the texture of the wall?

MERV: The wall is made of bricks.

INSTRUCTION: Describe what the person is doing in the video.

MERV: The person in the video is performing a dance routine while wearing a black hat
 and a red heart-shaped balloon. He is also wearing a black shirt and black
 pants.

INSTRUCTION: What do you see on the background?

MERV: In the background, there is a large Eiffel Tower.

INSTRUCTION: What country do you think this person is performing?

MERV: Based on the image, the person is performing in France, as they are wearing a
 black hat and kneeling in front of the Eiffel Tower. The Eiffel Tower is a
 famous landmark in Paris, France, and it is a popular tourist destination. The
 person's attire and the location suggest that they are performing in a French
 setting.

INSTRUCTION: Describe what the person is doing in the video.

MERV: The person in the video is demonstrating how to do a proper exercise on a mat.
 He is standing on the mat and talking to the camera while showing how to do the
 exercise.

INSTRUCTION: What is the color of the mat?

MERV: The color of the mat is red.

INSTRUCTION: Describe what the person is doing in the video.

MERV: The person in the video is performing a workout routine on a balance board. They
 are seen kneeling on the board and moving their arms and legs around while
 maintaining their balance.

INSTRUCTION: What is the color of the shirt that the person is wearing in the video?

MERV: The person in the video is wearing a red shirt.

INSTRUCTION: What is the color of the balance board that the person is on?

MERV: The color of the balance board that the person is on is black.

INSTRUCTION: Describe the room that this person is inside of.

MERV: The person is inside a gym room, which is filled with various exercise equipment
 and gym mats.

Figure 7: Samples of MERV in video understanding
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INSTRUCTION: How is the object in the video being iteracted with?
MERV: The object in the video is being interacted with by

a person who is throwing a ball into a cup on a
table. The person is seen throwing the ball multiple
times, and the cup is knocked over each time.

ViVIT: The person in the video is using a yellow object to
interact with the table. They are seen rubbing the
object on the table, which appears to be a yellow
rubber ball, and then throwing it across the table.

SIGLIP: The object in the video is a red ball that is being
rolled across a table. The person in the video is
seen picking up the ball and throwing it back down,
indicating that they are interacting with it by
playing with it.

LanguageBind: The person in the video is using a spoon to
interact with the object in the container.

DINOv2: The object in the video is being interacted with by
a person who is seen writing on a piece of paper and
then placing it on the table.

INSTRUCTION: what hairstyle is the person in yellow
MERV: The person in yellow is bald.
ViVIT: The person in yellow is wearing a Mohawk hairstyle.
SIGLIP: The person in the yellow shirt is wearing a Mohawk

hairstyle.
LanguageBind: The person in yellow is cutting the grass with a

lawn mower.
DINOv2: The person in yellow is mowing the lawn in a

straight line, which is a common technique used to
maintain a uniform and neat appearance.

INSTRUCTION: How is the object in the video being iteracted with?
MERV: The object in the video is a toothbrush that is

being held and manipulated by a person's hand. The
hand is seen holding the toothbrush in various
positions, such as on a table and in a person's
hand. The toothbrush is also being used to clean a
countertop.

ViVIT: The person in the video is using a tool to push the
object down on the table. They are also seen using a
knife to cut the object.

SIGLIP: The object in the video is a tube of AIM brand lip
balm. The person in the video is holding the tube of
lip balm and using it to apply it to their lips.
They then proceed to rub their lips together to
spread the lip balm evenly.

LanguageBind: The person in the video is holding the object in
their hand and using it to brush their teeth. They
then put the object down on the table.

DINOv2: The object in the video is being interacted with by
being licked and then wiped down with a napkin.

INSTRUCTION: what is a man running through the woods with?
MERV: A man is running through the woods with a bow and

arrow.
ViVIT: A man is running through the woods with a

skateboard.
SIGLIP: A man is running through the woods with a

motorcycle.
LanguageBind: A man is running through the woods with a large

metal object.
DINOv2: The man is running through the woods with a dog.

INSTRUCTION: How is the object in the video being iteracted with?
MERV: The object in the video is a plastic bottle that is

being interacted with by a person. The person is
seen holding the bottle and pointing to it, while
also shaking it.

ViVIT: The person in the video is using a toothbrush to
clean the glass surface of the vase. They are seen
scrubbing the toothbrush on the glass to remove any
dirt or stains.

SIGLIP: The object in the video is a bottle of water, which
is being interacted with by a person. The person is
seen holding the bottle and pouring it into a glass,
as well as pouring it back into the bottle. The
person also uses the bottle to fill a glass with
water.

LanguageBind: The person in the video is holding the object in
their hand and squeezing it. They then pour water
into the object and shake it.

DINOv2: The person in the video is holding the object in
their hand and interacting with it by pouring water
into it and drinking from it.

INSTRUCTION: how many people are there in the video
MERV: There is only one person in the video, a man who is

lifting a barbell.
ViVIT: There are two people in the video.
SIGLIP: There are two people in the video.
LanguageBind: There are two people in the video.
DINOv2: There are two people in the video.

Figure 8: MERV examples. MERV tend to show improved understanding in temporal-heavy videos
as in Something-Something v2 dataset (15) (Top Row), while retaining the performance on scenic
understanding, seen from popular video benchmarks (59; 63) (Bottom Row).

B TRAINING DETAIL

B.0.1 BASELINE ENCODER AND LLM DETAILS

Model Visual Encoder LLM
Video-Chat (28) ViT-G (EVA-CLIP) (50) StableVicuna (11)
LLaMA-Adapter (66) CLIP (45) LLaMA-1 7B (52)
Video-LLaMA (65) ViT-G (EVA-CLIP) (50) + BLIP-2 Q-Former (26) Vicuna-7B v0 (8)
Video-ChatGPT (39) CLIP (45) Vicuna-7B v1.1 (8)
SeViLA (62) ViT-G (EVA-CLIP) (50) + BLIP-2 Q-Former (26) FlanT5-XL (3B) (10)
LLaMA-VID-7B (30) EVA-G (13) Vicuna-7B v1.5 (8)
LLaMA-VID-13B (30) EVA-G (13) Vicuna-13B v1.5 (8)
Video-LLaVA* (31) LanguageBind (70) Vicuna-7B v1.5 (8)

Table 3: Visual Encoder and LLM Information.

B.0.2 MERV ENCODER DETAILS

Model Architecture Expertise Training Datasets Training Objective
LanguageBind (70) ViT-L/14 Video+Language VIDAL-10M, five-modal video examples Contrastive
DINOv2 (42) ViT-L/14 Spatial LVD-142M Self-Supervised
ViViT (2) ViViT-B/16×2 Actions/Temporal Kinetics-400/600, short videos Supervised
SigLIP (64) ViT-B/16 Image+Language 4B curated image/text pairs Contrastive

Table 4: Encoder Information. Detailed information about the four encoders used in our experiments.
They represent a broad coverage of visual information and training objectives.

Here, we detail the visual encoder details, LLM, and the training objectives. We plan to release the
code for the camera-ready version of the paper.

LanguageBind We use the code from the original author, using the pre-trained weight
LanguageBind/LanguageBind_Video_merge uploaded on huggingface.

DINOv2 As DINOv2 is an image-model, we get embedding per frame, and concatenate
them to be a video embedding. We use ViTLarge model, pre-trained on LVD-142M
dataset, and take the penultimate layer for the embeddings. Specifically, we use timm’s
vit_large_patch14_reg4_dinov2l̇vd142m
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ViViT We use ViTbase as our backbone, pre-trained on Kinetics-400 dataset. Specifically, we
use google/vivit-b-16x2-kinetics400 uploaded on huggingface. We use featurizer
output as the video embedding.

SigLIP As SigLIP is an image-model, we get embedding per frame, and concatenate them to be
a video embedding. We use ViTbase as our backbone, and take the penultimate layer for the
embeddings. Specifically, we use timm’s vit_base_patch16_siglip_224

We also considered multiple other options for encoders, such as CLIP-ViP (60) for our video-
language contrastive expert, V-JEPA (5) and Hiera (46) for our pure video model, and CLIP (45) for
our image-language contrastive expert, but found that our choices performed better overall.

B.1 DETAILED EXPERIMENTAL RESULTS.

Here we tabulate the full experimental results that was abbreviated from the main paper. The first
table (Table 5) ablates the different training recipes we tried for MERV, with extended discussion in
Section 4.2.3.

Methods MSVD-QA MSRVTT-QA TGIF-QA Perception ActivityNet-QA
Acc Score Acc Score Acc Score Acc Acc Score

MERV (frozen) 70.97 3.76 59.03 3.25 51.1 3.26 46.21 50.87 3.34
MERV, Video-LLaVA recipe 70.92 3.78 58.74 3.25 51.67 3.27 47.48 50.42 3.33
MERV (full) 70.48 3.79 57.25 3.24 51.39 3.28 48.41 49.93 3.33
MERV, mixed Stage 1+2 69.9 3.73 55.14 3.08 51.53 3.26 45.65 39.98 2.95

Table 5: Ablation of training stage recipes. We explore different training recipe strategies, starting
with the standard LLaVA recipe which Video-LLaVA adopted, along with some other variations.

We also provide the full numbers for our ablations in Sections 4.2.1 and 4.2.2.

Projector MSVD MSRVTT TGIF Perc. Params FLOPs
257 tok 68.47 55.81 48.62 46.14 - -
class tok 65.98 55 43.7 43.51 - -
2D Avg 68.23 56.92 48.99 45.69 0 2.1M
2D Avg* 69.08 58 50.01 46.34 0 4.2M
2D Attn 65.76 55.23 43.35 44.14 12.7M 9.7G
2D Conv 67.48 56.78 47.6 45.04 237M 241G
3D Avg* 68.62 57.2 49.59 44.95 0 4.2M
3D Conv 68.56 57.03 49.28 46.81 113M 232G

(a) Pre-fusion projectors. * is 16 frames instead of 8. Top two
rows are projector-free baselines.

Tkns MSVD MSRVTT TGIF Perc.
1 61.94 54.64 41.41 42.85
4 64.47 55.72 45.32 43.31
16 67.23 56.44 47.75 43.18
64 69.08 58.00 50.01 46.34
100 68.38 57.47 48.78 45.56
144 68.65 57.73 48.81 43.94
256 68.46 57.72 48.66 43.51

(b) Pre-fusion output token. We ablate
the optimal token size per frame for the
pre-fusion projector.

Strategy MSVD MSRVTT TGIF Perc. FLOPs
Cross-Attn 70.97 59.03 51.1 46.21 17.19 T
Concat (Seq.) 66.99 56.95 48.20 45.67 43.09 T
Concat (Ch.) 70.02 58.08 51.1 47.36 16.29 T
Learnable W 68.06 56.54 48.82 46.6 16.24 T
25% - Mixed 68.38 56.99 47.71 43.66 16.39 T

(c) Feature fusion strategy. We compare our feature fusion strategy with concatenating the visual
embeddings in either token sequence dimension or the channel dimension, learning an optimal
embedding mixture weights, and training with equal 25% mixture of visual embeddings.

Table 6: Full design choice ablation numbers. Detailed experimental results of Tables 2a, 2b, 2c.
We highlight our defaults in orange and bold the best results.

B.2 SOMETHING SOMETHING V2 DETAILS

B.2.1 SOMETHING-SOMETHING V2 - OPENENDED.

Additionally, we evaluate Something-Something V2 as an open ended QA task, where the question is
"How is the object in the video being interacted with?", and the answer is expected to be similar to
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Methods MSVD-QA MSRVTT-QA TGIF-QA Perception ActivityNet-QA Avg
Acc Score Acc Score Acc Score Acc Acc Score Acc

All 4 encoders 70.97 3.76 59.03 3.25 51.10 3.26 46.21 50.87 3.34 55.64
w/o LanguageBind 68.52 3.69 57.10 3.19 50.20 3.23 45.23 49.78 3.31 54.17
w/o DINOv2 69.75 3.74 57.70 3.23 49.94 3.23 46.57 51.43 3.34 55.08
w/o ViViT 70.12 3.75 58.26 3.23 50.45 3.22 46.94 51.36 3.33 55.43
w/o SigLIP 69.85 3.74 57.55 3.22 50.27 3.22 46.20 50.06 3.32 54.79

Table 7: Effect of Each Encoder. Detailed results of Figure 4a

Methods MSVD-QA MSRVTT-QA TGIF-QA Perception ActivityNet-QA Avg Params
Acc Score Acc Score Acc Score Acc Acc Score Acc FLOPs Overall

MERV 70.97 3.76 59.03 3.25 51.10 3.26 46.21 50.87 3.34 55.64 17.19 T 7686.0 M

LangBind 68.47 3.71 55.81 3.16 48.62 3.19 46.14 44.72 3.17 52.75 41.3 T 7147.0 M
DINOv2 65.44 3.62 53.46 3.09 41.53 2.96 42.73 43.39 3.09 49.31 40.88 T 7046.0 M
ViViT 59.95 3.43 51.81 3.05 38.1 2.84 40.2 43.98 3.16 46.81 27.12 T 6830.0 M
SigLIP 66.68 3.64 56.41 3.16 48.22 3.16 45.09 49.41 3.31 53.16 31.08 T 6834.0 M

Table 8: MERV Captures Single Encoder Performances. Detailed experimental results of Fig-
ure 4a.

MSRVTT-what MSRVTT-who MSRVTT-how MSRVTT-when MSVD-what MSVD-who TGIF-what TGIF-how TGIF-where

MERV 50.62 77.17 83.96 72.23 62.68 84.62 49.44 53.33 65.34
ViViT 43.06 70.43 78.90 68.54 50.10 75.90 32.90 50.10 50.62
DINOv2 44.54 73.00 76.95 65.73 55.71 82.12 37.14 50.69 58.40
LanguageBind 46.89 74.86 83.41 72.53 59.66 82.95 46.23 53.24 59.92
SigLIP 47.96 74.41 84.21 71.20 57.17 82.23 45.65 53.25 60.21

Table 9: Performance on WH-words. Detailed experimental results of Figure 5

Pushing [something]
so that it slightly moves

Pushing [something] 
from right to left

Pushing [something] 
from left to right Moving [something] down Moving [something] up

Showing that [something] is empty
Stuffing [something]

into [something]
Taking [one of many similar

things on the table]
Covering [something]

with [something] Plugging [something] into [something]

Figure 9: Example video of Something-Something V2. We see that ViViT show better performance
in classes where temporal movement is critical for solving the task (Top row), while SigLIP performs
better when the action can be inferred from the image without temporal information (Bottom row).

MERV MERV-Full LanguageBind DinoV2 ViViT SigLIP LLaMA-Vid-7B LLaMA-Vid-13B VideoLLaVA
Smth-Smth V2-OE-Temporal 6.82 9.13 3.63 3.88 5.50 4.25 6.07 3.94 5.57
Smth-Smth V2-OE 17.70 20.65 13.83 11.03 10.53 13.84 16.47 15.62 19.18

Smth-Smth V2-MCQ-Temporal 36.84 40.65 30.58 28.08 39.77 25.39 27.14 17.89 22.47
Smth-Smth V2-MCQ 42.01 39.76 36.82 33.06 26.78 34.86 36.63 39.43 23.14

Table 10: Performance on Something-Something V2 - OpenEnded. These are the performance in
shown Figure 4b

the class label. We use Video-ChatGPT (39)’s LLM evaluation for validating the VideoLLMs’ output.
Table 10 tabulates the results.

B.2.2 SOMETHING-SOMETHING V2 - TEMPORAL.

The 12 selected classes are as following:
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INSTRUCTION: How is the object in the video being interacted with?

MERV: The object in the video is being interacted with by a person's hand. The hand is
 seen holding the object, which is a small container with a black and orange lid,
 and then placing it on a table. The hand then picks up the container again and
 places it on the table.

Video-LLaVA: The person in the video is seen holding the object and using it to paint their
 nails. They also use it to paint their fingernails.

LLaMA-Vid: The person in the video is using a nail polish brush to paint their nails with a
 pink nail polish. They are also using a small bottle of nail polish to apply the
 color to their nails.

INSTRUCTION: How is the object in the video being interacted with?

MERV: The object in the video is a plastic bottle that is being interacted with by a
 person. The person is seen holding the bottle and pointing to it, while also
 shaking it.

Video-LLaVA: The person in the video is interacting with the object by pouring water into it
 and then drinking from it.

LLaMA-Vid: The person in the video is seen holding a bottle of water and pouring it into a
 clear glass. The person then picks up the glass and drinks from it.

INSTRUCTION: How is the object in the video being interacted with?

MERV: In the video, a person is seen interacting with a yellow bowl by pouring
 something into it and stirring it with their hand.

Video-LLaVA: The person in the video is using a spoon to interact with the object. They are
 seen scooping something out of the bowl and putting it into their mouth.

LLaMA-Vid: The person in the video is using a spoon to stir the contents of the yellow
 bowl.

INSTRUCTION: How is the object in the video being interacted with?

MERV: The object in the video is being interacted with by a person who is cutting it
 with a pair of scissors. The person is seen holding the scissors and cutting the
 object, which is a piece of paper.

Video-LLaVA: The person in the video is using a pair of scissors to cut the object. They are
 also seen using a knife to cut the object.

LLaMA-Vid: In the video, a person is seen holding a piece of paper and using a pair of
 scissors to cut the paper. The person is also seen using their hands to interact
 with the paper, possibly folding or manipulating it.

INSTRUCTION: How is the object in the video being interacted with?

MERV: The object in the video is being interacted with by a person's hand. The hand is
 seen picking up the object, which is a small metal ball, and then placing it on
 a surface. The hand then moves the object around on the surface, possibly to
 demonstrate its size or to show how it can be manipulated.

Video-LLaVA: The person in the video is using a lit match to interact with the object. They
 are seen holding the match over the object and then using it to light the object
 on fire.

LLaMA-Vid: The object in the video is being interacted with by a person who is seen placing
 a lit candle on top of it. The person then blows the candle out, and the object
 is shown again.

INSTRUCTION: How is the object in the video being interacted with?

MERV: The object in the video is a green pencil that is being held and manipulated by
 a person's hand. The person is seen holding the pencil in their hand and moving
 it around on a table.

Video-LLaVA: The person in the video is seen holding the pencil and using it to draw on a
 piece of paper. They also use the pencil to write on a wooden table.

LLaMA-Vid: The person in the video is holding the pencil in their hand and pointing it
 towards the camera. They then use the pencil to draw on a piece of paper.

INSTRUCTION: How is the object in the video being interacted with?

MERV: The object in the video is a black landline telephone that is being held by a
 person's hand. The person is pressing buttons on the phone, which is placed on a
 table.

Video-LLaVA: The person in the video is seen holding the object and pressing buttons on it.
 They also pick up the phone and hold it up to their ear.

LLaMA-Vid: The person in the video is holding the object in their hand and pressing the
 buttons on it.

INSTRUCTION: How is the object in the video being interacted with?

MERV: The object in the video is being interacted with by a person who is holding it
 open and turning the pages. The person is also seen pointing to the book while
 holding it open.

Video-LLaVA: The person in the video is seen flipping through the pages of the book and using
 a screwdriver to interact with the object.

LLaMA-Vid: The person in the video is holding the object in their hand and flipping through
 the pages of the book. They are also seen holding a remote control and a
 computer mouse, but it is unclear how they interact with these objects in the
 video.

Figure 10: Samples of MERV in SSv2. Due to our design, our method shows better temporal action
understanding than other VideoLLMs. (Top two rows) However, due to the difficulty of the task, we
see failure cases for VideoLLMs. (Bottom two rows)

• Approaching [something] with your camera

• Turning the camera downwards while filming [something]

• Turning the camera left while filming [something]

• Turning the camera right while filming [something]

• Turning the camera upwards while filming [something]

• Moving away from [something] with your camera

• Moving [something] away from the camera

• Moving [something] towards the camera

• Pulling [something] from left to right

• Pulling [something] from right to left

• Pushing [something] from left to right

• Pushing [something] from right to left
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INSTRUCTION: Describe the object.

MERV: The object is a yellow ball with a face drawn on
it, sitting on a wooden desk.

ViVIT: The object is a small toy car with a red and white
color scheme. It is placed on a wooden floor, and
there is a small ball nearby

SIGLIP: The object is a large orange ball that is sitting
on a wooden table.

INSTRUCTION: How is the object in the video being iteracted with?

GT: Moving an object across a surface until it falls
down

MERV: In the video, a person is seen interacting with the
yellow ball by placing their hand on it and moving
it around. The ball is also seen rolling on a table
and being placed on a computer monitor.

ViVIT: The object in the video is a small toy car that is
being interacted with by a person's hand. The hand
is seen pushing the car around on a table, and the
car is also seen moving on its own.

SIGLIP: The object in the video is being interacted with by
a person who is seen holding it and throwing it back
and forth. The person also hits the ball with their
hand and throws it into a goal.

INSTRUCTION: Describe the object.

MERV: The object is a small, square box with a pink
flower on top of it. The box is made of cardboard
and has a window on the top, revealing the pink
flower inside.

ViVIT: The object is a brown box with a white label on it.
It is sitting on a wooden floor.

SIGLIP: The object is a small box with a pink flower on
top, which is sitting on a carpet.

INSTRUCTION: How is the object in the video being iteracted with?

GT: Opening an object

MERV: In the video, a person is interacting with the
object by opening the box and taking out a pink item
from it. The person then proceeds to close the box
and put it back down.

ViVIT: The person in the video is interacting with the
object by opening the box and taking out the item
inside. They then proceed to unwrap the item and
hold it up to the camera.

SIGLIP: The object in the video is being interacted with by
a person who is seen holding it and placing it on a
carpet. The person then proceeds to wrap the object
in wrapping paper and tape it shut.

INSTRUCTION: Describe the object.

MERV: The object in the image is a green paper, which is
being held by a person. The person is using the
paper to wrap a box, possibly for a gift

ViVIT: The object is a small, square-shaped piece of paper
with a green and white design on it. It is being
held by a hand.

SIGLIP: The object is a green piece of paper that is being
held up by a person

INSTRUCTION: How is the object in the video being iteracted with?

GT: Tearing an object into two pieces

MERV: The object in the video is being interacted with by
a person who is holding it and using it to cut a
piece of paper. The person is seen holding the
object in their hand and using it to cut the paper,
which is then shown in a close-up shot.

ViVIT: The person in the video is using a pair of scissors
to cut the object, which is a piece of paper.

SIGLIP: The object in the video is being interacted with by
a person who is holding it up and then wrapping it
in green paper. The person then tapes the paper
around the object and cuts the excess paper.

Figure 11: Example VideoLLM output on Something-Something v2. While SigLIP performs
better on object and scene recognition, it fails to understand temporal actions. ViViT fails on the
details of object recognition, but has better understanding in temporal movements.

C ADDITIONAL ANALYSIS

C.1 ATTENTION WEIGHTS

We look at the attention weight on our 4 benchmark datasets (MSRVTT, TGIF, MSVD, and Perception
Test), and visualize the videos that have the highest attention weight for each of the encoders on
Figure 12. As expected, ViViT attention weights are highest on videos with large motion, as
ViViT have strong temporal motion understanding. Meanwhile, SigLIP, as they are vision-language
contrastively trained, is preferred by videos that have textual data in the video. DINOv2 and Language-
Bind are both preferred by videos with static scenes, but Language-Bind, as it is contrastively trained
with video and language, is preferred by video with some foreground motion.
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LanguageBind

DINOv2

ViViT

SigLIP

Figure 12: Videos that give the highest attention weight for each of the encoders. The right-most
column shows the average frame of the video.
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