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Abstract

This work establishes that sparse Bayesian neural networks achieve optimal pos-
terior contraction rates over anisotropic Besov spaces and their hierarchical com-
positions. These structures reflect the intrinsic dimensionality of the underlying
function, thereby mitigating the curse of dimensionality. Our analysis shows that
Bayesian neural networks equipped with either sparse or continuous shrinkage
priors attain the optimal rates which are dependent on the intrinsic dimension of
the true structures. Moreover, we show that these priors enable rate adaptation,
allowing the posterior to contract at the optimal rate even when the smoothness
level of the true function is unknown. The proposed framework accommodates
a broad class of functions, including additive and multiplicative Besov functions
as special cases. These results advance the theoretical foundations of Bayesian
neural networks and provide rigorous justification for their practical effectiveness
in high-dimensional, structured estimation problems.

1 Introduction

Neural networks (NNs) have been widely used to extract features from complex datasets, such as
visual recognition and language modeling [1]. Due to their approximation ability [2–7], NNs exhibit
remarkable flexibility in representing complex multivariate functions. Given their network structure,
NNs are trained by minimizing empirical risk defined through a suitable loss function, which can
be viewed as maximum likelihood estimation from a statistical perspective [8]. However, such a fre-
quentist approach may lead to miscalibration and overconfidence [9], particularly when the model
is trained on out-of-distribution samples [10]. On the other hand, the Bayesian approach quantifies
predictive uncertainty via the posterior distribution [11, 12] and can improve calibration and robust-
ness in many cases [13, 14]. Another key advantage of the Bayesian perspective is that, unlike their
frequentist counterparts, Bayesian neural networks (BNNs) can easily achieve the optimal rate of
convergence without knowledge of the smoothness of the function. This property, known as rate
adaptation, is inherently attained by the nature of Bayesian inference.

To capture the flexibility of NNs, it is desirable to consider function classes that are richer than
the intuitively smooth ones, such as Hölder or Sobolev spaces. In particular, Besov spaces, which
encompass non-smooth or even discontinuous functions, are well suited for this purpose. For exam-
ple, images often exhibit local inhomogeneities and sharp edges naturally represented within Besov
spaces [15]. Moreover, additional flexibility arises from accounting for intrinsic dimensionality,
which helps explain the robustness of NNs to the curse of dimensionality. For instance, images
frequently possess low intrinsic dimensionality [16]. Such an intrinsic dimensional structure can be
implicitly modeled through anisotropy or composite function constructions. Although frequentist
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approaches have extensively investigated theoretical properties in these complex settings [17, 18],
Bayesian analyses remain largely limited to simpler cases [19–22]. This study aims to fill this gap
by establishing that BNNs achieve optimal posterior contraction and exhibit rate adaptation under
the fully Bayesian paradigm in such complex scenarios.

1.1 Related works and our contribution

Rates of convergence provide a fundamental means of assessing the quality of estimation procedures
in both frequentist and Bayesian inference. While frequentist analyses focus on the convergence
rates of estimators, Bayesian approaches examine the contraction rates of posterior distributions,
which describe how quickly the posterior concentrates around the truth. In the deep neural network
(DNN) literature, such notions of optimality have been investigated under a variety of settings from
both frequentist and Bayesian perspectives.

Frequentist works. Under the frequentist paradigm, Schmidt-Hieber [8] showed that a carefully
constructed DNN estimator achieves the near-minimax optimal rate over Hölder classes, provided
that the network architecture has sufficient depth and sparsity adapted to the underlying function
complexity. Their result extends to composite structures, encompassing a wide range of structured
function classes, including additive models. Suzuki [17] further extended these results to Besov
spaces, and Suzuki and Nitanda [18] demonstrated that DNNs mitigate the curse of dimensionality
by adapting to anisotropic smoothness and composite structures in Besov spaces. In contrast to
the aforementioned works that utilize sparse networks, Kohler and Langer [23] investigated dense
NNs for composite Hölder spaces. Collectively, these frequentist results demonstrate that DNNs can
achieve optimal convergence rates under appropriately specified conditions. However, attaining such
optimality requires careful tuning of the network architecture to the underlying function complexity,
and rate-adaptive results are currently not available.

Bayesian works. The Bayesian literature remains comparatively limited. A pioneering contribution
by Polson and Ročková [21] established that BNNs equipped with spike-and-slab priors achieve op-
timal posterior contraction over Hölder classes. This work was extended to Besov spaces by Lee and
Lee [20], who considered both spike-and-slab and continuous shrinkage priors, although the appli-
cation of shrinkage priors remains largely limited. Kong and Kim [19] obtained similar results using
dense networks with non-sparse priors, further extending the theory to composite Hölder spaces. To
the best of our knowledge, the only Bayesian study that considers anisotropic Besov spaces is Egels
and Castillo [22]. However, that work primarily employs the fractional posterior approach [24, 25],
and the standard posterior under the fully Bayesian framework has been investigated only under
strong restrictions. Moreover, they focused on Hölder classes in the composite setting, and, to our
knowledge, no Bayesian study has yet considered composite structures within anisotropic Besov
spaces. Despite this limited scope, these Bayesian approaches achieve rate adaptation, attaining
optimal posterior contraction without prior knowledge of the smoothness level.

Our contribution. We establish that sparse BNNs achieve the near-minimax optimal rates over
anisotropic and composite Besov spaces. This result demonstrates that BNNs adapt to intrinsic
dimensional structures, thereby avoiding the curse of dimensionality. We show that sparse BNNs
can accommodate a broader class of realistic functions that have not been fully addressed in earlier
works. Compared to Egels and Castillo [22], we adopt the pure Bayesian framework, relying on
the standard posterior distribution for inference. This choice aligns more closely with conventional
Bayesian practice and facilitates broader acceptance within the Bayesian community. Furthermore,
we show that sparse BNNs adapt to the underlying model complexity and attain the optimal rate for
the target function without requiring oracle knowledge. As a result, users are not required to specify
the exact network architecture; rate adaptation is achieved through an appropriately designed prior
distribution. A summary of related works and our contributions is provided in Table 1.

2 Preliminaries

2.1 Setup

Notation. For a ∈ R, let bac and dae denote the floor and ceiling functions, respectively. For n ∈ N,
the notation [n] stands for the set {1, 2, · · · , n}. For a, b ∈ R, we write a ∨ b and a ∧ b to denote
max{a, b} and min{a, b}, respectively. For a real vector v, ‖v‖p denotes the `p-norm for p ∈ [1,∞],

2



Table 1: Summary of related works and this study. The abbreviations Iso., Aniso., and Ada. denote
isotropic, anisotropic, and adaptation, respectively.

Single Function Composite Function

Study Approach Architecture Function Space Ada. Function Space Ada.

Schmidt-Hieber [8] Frequentist Sparse Iso. Hölder 7 Iso. Hölder 7
Kohler and Langer [23] Frequentist Dense Iso. Hölder 7 Iso. Hölder 7
Suzuki [17] Frequentist Sparse Iso. Besov 7 - -
Suzuki and Nitanda [18] Frequentist Sparse Aniso. Besov 7 Aniso. Besov 7
Polson and Ročková [21] Bayesian Sparse Iso. Hölder 3 - -
Kong and Kim [19] Bayesian Dense Iso. Hölder 3 Iso. Hölder 3
Lee and Lee [20] Bayesian Sparse Iso. Besov 3 - -
Egels and Castillo [22] Bayesian∗ Dense Aniso. Besov∗∗ 3 Iso. Hölder 3
This work Bayesian Sparse Aniso. Besov 3 Aniso. Besov 3

∗ Egels and Castillo [22] primarily employ the fractional posterior to circumvent issues of model complexity.
∗∗ Egels and Castillo [22] impose stronger restrictions on the smoothness parameter than other studies on anisotropic Besov spaces (see
Section 3.1 for details).

and ‖v‖0 denotes the number of nonzero components. For a measurable function f : [0, 1]d → R
and a measure µ, define ‖f‖Lp(µ) = (

∫
[0,1]d

|f |pdµ)1/p for p ∈ (0,∞). When µ is the Lebesgue
measure, we write ‖f‖Lp for brevity. For p = ∞, we define ‖f‖L∞ = ess supx∈[0,1]d |f(x)|. We
also define the supremum norm by ‖f‖∞ = supx∈[0,1]d |f(x)|. The Dirac delta at zero is denoted
by δ0, and the indicator function of a set A is denoted by I(A). For sequences an and bn, we write
an ≲ bn and an ≳ bn to mean that an ≤ Cbn for some universal constant C > 0. If an ≲ bn ≲ an,
we write an � bn. Let UB = {f : [0, 1]d → R; ‖f‖∞ ≤ 1} denote the family of uniformly bounded
functions. For a normed space F , U(F) denotes the unit ball of F .

Model. We consider a nonparametric regression problem with a d-dimensional input variable Xi ∈
[0, 1]d and an output variable Yi ∈ R, for i ∈ [n]. The observations Dn = {(Xi, Yi)}ni=1 are
independent and identically distributed according to the model,

Yi = f0(Xi) + ξi, Xi ∼ PX , ξi ∼ N(0, σ2
0), i ∈ [n], (1)

where f0 : [0, 1]d → R is the true regression function, σ2
0 > 0 is the noise variance, and PX is the

distribution of Xi. We denote the joint distribution of Dn under this model by P (n)
f0,σ0

.

Neural network. We denote the ReLU activation function by ζ(·) and use the same notation for its
vectorized version. The parameter space of L-layered NNs with B-bounded and S-sparse weights
is defined as

Θ(L,D, S,B) =
{
θ =

(
W (1), b(1), . . . ,W (L+1), b(L+1)

)
:W (l) ∈ Rdl×dl−1 , b(l) ∈ Rdl ,

dl = D, l ∈ [L], d0 = d, dL+1 = 1, ‖θ‖0 ≤ S, ‖θ‖∞ ≤ B
}
.

Let fθ(·) = (W (L+1)(·) + b(L+1)) ◦ ζ ◦ · · · ◦ ζ ◦ (W (1)(·) + b(1)) : [0, 1]d → R be the
input-output mapping of an L-layered NN. We define the corresponding feedforward NN class as
Φ(L,D, S,B) = {clip ◦ fθ : θ ∈ Θ(L,D, S,B)}, where clip(x) = min{1,max{−1, x}} clips
its input to the interval [−1, 1]. We also define the unbounded sparse and unbounded dense pa-
rameter spaces as Θ(L,D, S) = limB→∞ Θ(L,D, S,B) and Θ(L,D) = limS→∞ Θ(L,D, S),
respectively. By further taking union over the width, we define Θ(L) =

⋃∞
D=1 Θ(L,D). The

corresponding NN classes are defined analogously as Φ(L,D, S) = limB→∞ Φ(L,D, S,B),
Φ(L,D) = limS→∞ Φ(L,D,B), and Φ(L) =

⋃∞
D=1 Φ(L,D).

2.2 Anisotropic Besov spaces

We first consider anisotropic Besov spaces, which accommodate varying smoothness across different
directional components [26, 18]. Let s = (s1, . . . , sd) ∈ Rd

++, 0 < p, q ≤ ∞, and r = bmaxj sjc+
1. For h ∈ Rd, the r-th order difference is defined as ∆r

h(f)(x) =
∑r

j=0

(
r
j

)
(−1)r−jf(x + jh)

if x, x + rh ∈ [0, 1]d, and 0 otherwise. Given t = (t1, . . . , td) ∈ Rd
++, the anisotropic modu-

lus of smoothness is defined as wr,p(f, t) = suph∈Rd:|hj |≤tj ‖∆
r
h(f)‖Lp . The anisotropic Besov
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Figure 1: We illustrate two example functions, f1(x) = I({x1 ∈ [1/2, 1]}) + sin(2πx2) and
f2(x) = |x1 − 1/2|+ (x2 − 1/2)2, and their rotated counterparts f ′1 and f ′2.

seminorm is then defined as ‖f‖Bs
p,q

:= ‖f‖Lp + ‖f‖∗Bs
p,q

, where

‖f‖∗Bs
p,q

=


(∑∞

k=0

[
2kwr,p(f, (2

−k/s1 , . . . , 2−k/sd))
]q)1/q

if q <∞,

supk≥0

[
2kwr,p(f, (2

−k/s1 , . . . , 2−k/sd))
]

if q = ∞.

The anisotropic Besov space Bs
p,q is the collection of all functions f ∈ Lp such that ‖f‖Bs

p,q
is finite.

For an anisotropic smoothness parameter s, we define the smallest smoothness as s = minj sj , the
largest smoothness as s = maxj sj , and the intrinsic smoothness (exponent of global smoothness)
as s̃ = (

∑d
j=1 s

−1
j )−1. In the special case where s = (s0, . . . , s0) for some s0 > 0, the space Bs

p,q

reduces to an isotropic Besov space. Besov spaces generalize classical notions of differentiability
and continuity and are more flexible than Hölder spaces, which can be viewed as particular subspaces
of Besov spaces. For further discussion of the continuous embedding properties, see Remark B.2.

It is well known that the minimax optimal rate of convergence over isotropic Besov classes with
smoothness s0 is n−s0/(2s0+d) [27, 28]. For anisotropic Besov spaces, the minimax rate is given
by n−s̃/(2s̃+1) [29, 30], which can also be expressed as n−s/(2s+d∗), where d∗ := s/s̃. This form
resembles the minimax rate over isotropic Besov spaces with smoothness s and dimension d∗, in
which the anisotropic space is continuously embedded. In this sense, d∗ can be interpreted as an
intrinsic dimension associated with anisotropic Besov spaces [18]. For example, the two functions
f1 and f2 in Figure 1 belong to B(s1,s2)

1,∞ for any 0 < s1 < 1 and s2 > s1. The anisotropic

Besov space B(s1,s2)
1,∞ is continuously embedded in the isotropic Besov space with s1. By accounting

for anisotropy, the rate exponent can be improved from s1/(2s1 + 2) to s̃/(2s̃ + 1), where s̃ =
s1s2/(s1 + s2). The intrinsic dimension satisfies d∗ = s1/s̃ = s1/s2 +1 < 2, indicating a reduced
effective dimension compared to the ambient dimension d = 2.

2.3 Composite Besov spaces

Beyond anisotropic spaces, we consider composite function spaces in which functions are rep-
resented as hierarchical compositions of simpler components. For a composite function f =
fH ◦ · · · ◦ f1 : [0, 1]d → R with composition depth H , each intermediate function fh maps between
successive spaces, potentially involving dimension reduction through sparse connectivity. This com-
positional structure naturally aligns with the layered architecture of NNs, where each layer progres-
sively transforms its inputs into higher-level representations. Figure 1 presents examples in which
rotated functions can be interpreted as compositions of Besov functions with affine transformations.
Compositional function spaces offer a useful framework for understanding the ability of NNs to
approximate high-dimensional functions without suffering from the curse of dimensionality.

Let d◦ = (d(0), d(1), . . . , d(H)) be a sequence of dimensions with d(0) = d and d(H) = 1. Let
t◦ = (t(1), . . . , t(H)) denote the effective dimensions, where each t(h) satisfies 1 ≤ t(h) ≤ d(h−1).
Let s◦ = (s(1), . . . , s(H)) be a sequence of anisotropic smoothness vectors, where each s(h) ∈ Rt(h)

++ .
We define the composite anisotropic Besov space Bd◦,t◦,s◦

p,q as the collection of composite functions
f = fH ◦ · · · ◦ f1 : [0, 1]d → R such that the intermediate functions fh = (fh,1, . . . , fh,d(h)) :

[0, 1]d
(h−1) → [0, 1]d

(h)

for h = 1, . . . , H − 1, and fH : [0, 1]d
(H−1) → R satisfy the following

condition: for each h and each j ∈ [d(h)], there exists a subset Ih,j ⊂ [d(h−1)] with |Ih,j | = t(h)
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Figure 2: Illustration of additive (f(x) =
∑d

i=1 gi(xi)) and multiplicative (f(x) =
∏d

i=1 gi(xi))
composite Besov functions. Each component function gi depends on a single input dimension
(t(1) = 1), although the ambient dimension d(0) = d may be much larger.

and a function f̃h,j ∈ U(Bs(h)

p,q ) such that fh,j(x) = f̃h,j(xIh,j
), where xI denotes the subvector

of x restricted to the coordinates in I . Additive and multiplicative Besov spaces serve as simple
examples of composite Besov spaces, as illustrated in Figure 2.

Note that Suzuki and Nitanda [18] did not impose effective low-dimensionality in their definition of
composite Besov spaces. In contrast, our definition aligns more with the composite Hölder spaces
introduced by Schmidt-Hieber [8], and it is well suited for analyzing functions approximated by
NNs, where dimension reduction may occur within layers. By incorporating anisotropy within each
fh, the framework captures low-dimensional structures even when the ambient or latent dimensions
are high. This interplay between compositional structure and anisotropy enables efficient function
representation.

3 Main results

In this section, we present our main results on posterior contraction. Table 2 summarizes the corre-
sponding assumptions and theorems for the anisotropic and composite anisotropic Besov spaces.

3.1 Posterior contraction in anisotropic Besov spaces

We first establish theoretical results for anisotropic Besov spaces. The following assumptions are
imposed.

(A1) The true regression function f0 satisfies f0 ∈ U(Bs
p,q) ∩ UB for some 0 < p, q ≤ ∞ and

s ∈ Rd
++, such that (1/p− 1/2)+ < s̃.

(A2) The distribution PX has a bounded density pX such that ‖pX‖∞ ≤ R for some constant
R > 0.

(A3) The true standard deviation σ0 satisfies σ < σ0 < σ for some constants σ and σ, and the prior
for σ is supported on [σ, σ] with a positive density throughout.

Assumption (A1) states that f0 lies in a bounded Besov class. The condition (1/p − 1/2)+ <
s̃ aligns with those in other theoretical studies on Besov spaces [20, 17, 18], whereas Egels and
Castillo [22] impose a stronger requirement 1/p < s̃ to achieve a sharper approximation result.
Assumption (A2) is minor given that the dimension d is fixed. Assumption (A3) ensures that the
prior for σ is supported on a compact interval containing σ0. We first show that the optimal rate is
achieved by suitably specified spike-and-slab and shrinkage priors, and then demonstrate that rate
adaptation can be attained for both priors with slight modifications.

3.1.1 Spike-and-slab prior

Our results rely on the fact that for every f0 ∈ U(Bs
p,q), there exists a NN approximator f̂ ∈

Φ(L1n, D1n, S1n, B1) achieving the optimal approximation error, where the network parameters
satisfy

L1n � log n, D1n � Nn, S1n � Nn log n, B1 ∝ 1, (2)
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Table 2: Summary of the main results. Along with the listed assumptions, all results also require
Assumptions (A2) and (A3), which are taken as common assumptions.

Anisotropic Besov Composite Anisotropic Besov

Prior Assumptions Result Assumptions Result

Spike-and-Slab (A1), (B1), (B2) Theorem 3.3 (A4)/(A5), (B1), (B2) Theorem 3.14(i)
Shrinkage (A1), (C1)–(C3) Theorem 3.8 (A4)/(A5), (C1)–(C3) Theorem 3.14(ii)
Adaptive Spike-and-Slab (A1), (B1), (B2) Theorem 3.9(i) (A4)/(A5), (B1), (B2) Theorem 3.14(i)
Adaptive Shrinkage (A1), (C1)–(C3) Theorem 3.9(ii) (A4)/(A5), (C1)–(C3) Theorem 3.14(ii)

with Nn = dn1/(2s̃+1)e. These network parameters depend on the unknown Besov parameters s̃
and p. See Lemma B.4 and Remark B.6 for details.

We place a spike-and-slab prior over Θ(L1n, D1n, S1n) using the network parameters in (2). This
implies that the network structure is determined based on the smoothness parameter and thus the
procedure does not attain rate adaptation. A spike-and-slab prior for θ is given by

π(θ | γ, L,D, S) =
T∏

j=1

[γj π̃SL(θj) + (1− γj)δ0(θj)] ,

π(γ | L,D, S) = 1(
T
S

)I(γ ∈ {0, 1}T , ‖γ‖0 = S),

(3)

where π̃SL is the slab density for the nonzero components and T = |Θ(L,D)|. The slab distribution
is required to satisfy the following assumptions.

(B1) log
∫
|u|>Kn

π̃SL(u)du ≲ −Kn for any Kn → ∞.

(B2) log inf |u|≤B1
π̃SL(u) ≳ −(log n)2.

Assumption (B1) implies that π̃SL has exponential tails on both sides. From a nonparametric
Bayesian perspective, this condition is necessary to control the prior mass outside a chosen sieve.
Assumption (B2) requires that π̃SL to place sufficient mass around the NN approximator, which is
essential for ensuring adequate prior concentration in a Kullback-Leibler neighborhood. If π̃SL is
independent of n and bounded away from zero on [−B1, B1], then the assumption holds trivially.

Example 3.1 (Uniform slab prior [20, 21]). If π̃SL is the density of the uniform distribution
U(−Cu, Cu) for Cu > B1, then π̃SL satisfies Assumptions (B1)–(B2).

Example 3.2 (Gaussian slab prior). If π̃SL is the density of a zero-mean Gaussian distribution with
fixed variance, then π̃SL satisfies Assumptions (B1)–(B2).

Example 3.1 is simple but has the drawback that the prior depends on B1. Example 3.2 mitigates
this issue. We now present the posterior contraction result.

Theorem 3.3 (Spike-and-slab prior). Suppose that Assumptions (A1)–(A3) hold, and that the
prior distribution in (3) is placed over Θ(L1n, D1n, S1n). Assume further that the slab density
π̃SL satisfies Assumptions (B1)–(B2). Then, the posterior distribution concentrates at the rate
εn = n−s̃/(2s̃+1)(log n)3/2, in the sense that

Π
(
(f, σ) ∈ Φ(L1n, D1n, S1n)× [σ, σ] : ‖f − f0‖L2(PX) + |σ2 − σ2

0 | > Mnεn | Dn

)
→ 0

in P (n)
f0,σ0

-probability as n→ ∞ for any Mn → ∞.

Proof. See Appendix C.8.

The contraction rate εn is near-minimax rate and only depends on intrinsic smoothness s̃ of the
function. Suzuki and Nitanda [18] showed that the empirical risk minimizer under the squared loss
achieves the same rate εn. Therefore, BNNs attain the same theoretical optimality as their frequentist
counterpart for anisotropic Besov spaces.
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Remark 3.4. The exponential tail condition in (B1) is imposed to effectively control model com-
plexity, as measured by the metric entropy of a suitably chosen sieve [31, 32]. If one instead uses a
polynomial-tailed density, the entropy calculation can be bypassed using the Vapnik-Chervonenkis
(VC)-dimension technique [33]. In that case, the posterior contraction rate is slightly degraded to
n−s̃/(2s̃+1)(log n)2. See Appendix C.9 for further details.

3.1.2 Shrinkage prior

The main bottleneck in using spike-and-slab priors lies in the computational burden introduced by
the point-mass component of the prior. To address this issue, we extend the results to continu-
ous shrinkage priors, which offer a more computationally efficient alternative. These priors retain
the sparsity-promoting nature of spike-and-slab priors while avoiding the complexity of variable-
dimensional posterior inference. This leads to scalable and practical Bayesian procedures suitable
for high-dimensional settings, where computational tractability is essential.

Using the network parameters in (2), we place a prior over Θ(L1n, D1n). That is, sparsity is not
imposed explicitly but is instead induced implicitly through the use of shrinkage priors. We express
a shrinkage prior as

π(θ | L,D) =
T∏

j=1

π̃SH(θj), (4)

where π̃SH is a density on R and T = |Θ(L,D)|. Specifically, π̃SH is assumed to satisfy the
following assumptions.

(C1) log
∫
|u|>Kn

π̃SH(u)du ≲ −Kn for any Kn → ∞.

(C2) log inf |u|≤B1
π̃SH(u) ≳ −(log n)2.

(C3) log
∫
|u|>an

π̃SH(u)du ≤ −CA(log n)
2 for a sufficiently large constant CA > 0, where an =

e−2L1n log n.

Assumptions (C1)–(C2) serve similar roles to Assumptions (B1)–(B2). Assumption (C3) imposes
an additional constraint that serves as a continuous analogue of the spike component in spike-and-
slab priors. This assumption is indeed restrictive: for rapidly decreasing an, it requires the prior to
concentrate nearly all its mass on [−an, an]. As a result, widely used shrinkage priors such as the
horseshoe [34] do not satisfy Assumptions (C1)–(C3) directly. Nevertheless, the assumptions can be
satisfied by designing priors that place most of their mass near zero, as required in Assumption (C3),
while also satisfying the exponential tail decay in Assumption (C1). The following examples illus-
trate such constructions, with verification given in Appendices C.10 and C.11.
Example 3.5 (Relaxed spike-and-slab [20]). Let ϕk denote a sub-Weibull density with tail index
0 < k ≤ 1 [35] satisfying

∫
|u|>K

ϕk(u) du ≤ C1 exp(−C2K
1/k) for any K > 0 and some

constants C1, C2 > 0. For Cu > B1, define π̃SH as

π̃SH(u) = π1n
1

σ1n
ϕk

(
u

σ1n

)
+ π2nU(u;−Cu, Cu), (5)

where π1n = 1− e−2CA(log n)2 , π2n = e−2CA(log n)2 , σ1n = an(2CA(log n)
2)−k and a sufficiently

large CA > 0. Then, π̃SH satisfies Assumptions (C1)–(C3).
Example 3.6 (Relaxed spike-and-slab; Gaussian slab). If the uniform component in (5) is replaced
by the density of a zero-mean Gaussian distribution with fixed variance, then π̃SH satisfies Assump-
tions (C1)–(C3).
Remark 3.7. For k = 1, a sub-Weibull density ϕk corresponds to a sub-exponential density. For
k = 1/2, it corresponds to a sub-Gaussian density. In particular, if ϕk is chosen as a Gaussian
density, the prior in Example 3.6 becomes a Gaussian mixture prior.

Note that the mixture weight π1n in (5) approaches 1. Although this may be practically undesirable,
it ensures that Assumption (C3) is satisfied. Similar constraints have also been adopted in the liter-
ature on sparse BNNs with shrinkage priors [36, 20]. We now formalize the contraction result for
shrinkage priors. The following theorem shows that BNNs equipped with shrinkage priors achieve
the near-minimax rate.
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Theorem 3.8 (Shrinkage prior). Suppose that Assumptions (A1)–(A3) hold, and that the prior
distribution in (4) is placed over Θ(L1n, D1n). Assume further that the continuous density
π̃SH satisfies Assumptions (C1)–(C3). Then, the posterior distribution concentrates at the rate
εn = n−s̃/(2s̃+1)(log n)3/2, in the sense that

Π
(
(f, σ) ∈ Φ(L1n, D1n)× [σ, σ] : ‖f − f0‖L2(PX) + |σ2 − σ2

0 | > Mnεn | Dn

)
→ 0

in P (n)
f0,σ0

-probability as n→ ∞ for any Mn → ∞.

Proof. See Appendix C.12.

3.1.3 Rate adaptation

In Section 3.1.1 and Section 3.1.2, the priors depend on the smoothness parameter s, indicating
that the procedures are not rate-adaptive. By placing suitable priors on the network parameters,
the results can be extended to achieve rate adaptation. Therefore, the optimal contraction rate is
achieved without knowing the characteristics of the true function.

Specifically, instead of the network parameters in (2), we consider the depth L̃n = dCL log ne for
a sufficiently large CL > 0 and the priors πD and πS on the width D and sparsity S, respectively,
given by

πD(D) ∝ e−λDD(logD)3 , πS(S) ∝ e−λSS(log S)2 , (6)

for constants λD > 0 and λS > 0.
Theorem 3.9 (Adaptation). Suppose that Assumptions (A1)–(A3) hold, and that the prior distribu-
tions satisfy either one of the following conditions:

(i) The priors πD and πS in (6) are assigned to (D,S), respectively, and the prior in (3) is placed
over Θ(L̃n, D, S) conditional on (D,S). The slab part π̃SL satisfies Assumptions (B1)–(B2).

(ii) The prior πD in (6) is assigned to D, and the prior in (4) is placed over Θ(L̃n, D) conditional
on D. The continuous density π̃SH satisfies Assumptions (C1)–(C3).

If CL is sufficiently large so that L̃n ≥ L1n, then the posterior distribution concentrates at the rate
εn = n−s̃/(2s̃+1)(log n)3/2, in the sense that

Π
(
(f, σ) ∈ Φ(L̃n)× [σ, σ] : ‖f − f0‖L2(PX) + |σ2 − σ2

0 | > Mnεn | Dn

)
→ 0

in P (n)
f0,σ0

-probability as n→ ∞ for any Mn → ∞.

Proof. See Appendix C.13.

In both cases, the priors are placed over Θ(L̃n), and the procedures achieve rate adaptation once CL

is chosen sufficiently large. Although the priors do not depend on the Besov parameters for the true
function, the conditions on π̃SL and π̃SH still involve these unknown quantities. Nevertheless, the
required conditions can be satisfied without explicit knowledge of them. Specifically, if Example 3.1
and Example 3.5 are defined with a sufficiently large constant Cv such that Cv > B1, the conditions
hold regardless of the value ofB1, which depends on the Besov parameters. In contrast, Example 3.2
and Example 3.6 are already independent of these parameters. Therefore, rate adaptation can be
readily achieved in practice.

3.2 Posterior contraction in composite Besov spaces

In this section, we show that BNNs attain the minimax optimal rate over composite Besov classes. In
other words, we demonstrate that BNNs outperform traditional statistical approaches by achieving
the minimax optimal convergence rate. Following Suzuki and Nitanda [18], we assume that the true
regression function satisfies one of the following two structural conditions.

(A4) The true regression function f0 satisfies f0 ∈ Bd◦,t◦,s◦
p,q ∩ UB for some 0 < p, q ≤ ∞, d◦, t◦,

and s◦, such that s̃(1) > (1/p− 1/2)+ and s̃(h) > 1/p for h = 2, . . . , H .
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(A5) The true regression function f0 is defined as f0 = f2 ◦ f1, where f1 = A · +b with A ∈
Rd(1)×d(0)

and b ∈ Rd(1)

such that d(1) ≤ d(0) and f1(x) ∈ [0, 1]d
(1)

for all x ∈ [0, 1]d
(0)

, and
f2 ∈ U(Bs(2)

p,q ) ∩ UB with 0 < p, q ≤ ∞, and s(2) ∈ Rd(1)

++ such that s̃(2) > (1/p− 1/2)+.

Assumption (A4) corresponds to the composite Besov space defined in Section 2.3. We note
that our assumptions are comparable to those in Suzuki and Nitanda [18]. Assumption (A5)
defines a nontrivial Besov class involving an affine transformation, which is a specific case of
the general class Bd◦,t◦,s◦

p,q . However, it is not contained within Assumption (A4) owing to the
relaxed smoothness requirement on s̃(2). Under Assumption (A4), define t∗(h) = s(h)/s̃(h),
s̃∗(h) = s̃(h)

∏H
k=h+1{(s(k) − t∗(k)/p) ∧ 1}, h ∈ [H], and h∗ = argminh∈[H] s̃

∗(h). We define the
intrinsic dimension as t∗ = t(h

∗) and the intrinsic smoothness as s̃∗ = s̃∗(h
∗). For Assumption (A5),

we adopt the same definitions with h∗ = 2. Suzuki and Nitanda [18] obtained a lower bound of
the minimax risk that roughly matches n−s̃∗/(2s̃∗+1). The following examples illustrate practically
relevant functions that are covered by either Assumption (A4) or Assumption (A5).

Example 3.10 (Additive function; Figure 2a). Suppose f(x) =
∑d

i=1 gi(xi), where gi ∈ U(Bs0
p,q)

for s0 > (1/p−1/2)+. Then, f is covered by Assumption (A4) in the form f ∈ B(d,d,1),(1,d),(s0,s
(2))

p,q

for s(2) such that s̃(2) can be taken arbitrarily large, reflecting the additive structure.

Example 3.11 (Multiplicative function; Figure 2b). Suppose f(x) =
∏d

i=1 gi(xi), where gi ∈
U(Bs0

p,q) for s0 > (1/p− 1/2)+. This f is also covered by Assumption (A4), similar to the additive
case in Example 3.10.

Example 3.12 (Rotation; Figure 1). Let Rτ ∈ Rd×d be the rotation matrix by angle τ . Suppose
f = g ◦ (A ·+b), where g ∈ U(Bs(2)

p,q )∩UB, A = Rτ/
√
d and b = (I −Rτ )(1/2, · · · , 1/2)T . This

f is covered by Assumption (A5).

Example 3.13 (Piecewise function). The indicator function of a hyper-rectangle lies in Bs
p,∞ if s ≤

1/p for 1 ≤ p <∞ [37]. For hyper-rectanglesAi ⊂ [0, 1]d, suppose f(x) =
∑H

i=1 I(x ∈ Ai) gi(x),
where gi ∈ U(Bs0

p,∞) for (1/p− 1/2)+ < s̃0 and s0 ≤ 1/p. This f is covered by Assumption (A4)
using Examples 3.10 and 3.11.

We now establish posterior contraction properties for the composite Besov spaces. Similar to
the anisotropic Besov case, our results rely on the existence of an optimal NN approximator
f̂ ∈ Φ(L2n, D2n, S2n, B2) under Assumption (A4), and f̂ ∈ Φ(L3n, D3n, S3n, B3) under As-
sumption (A5), where

Lkn � log n, Dkn � N∗
n, Skn � N∗

n log n, Bk ∝ 1, k = 2, 3,

with N∗
n = dn1/(2s̃(∗)+1)e. Therefore, the network parameters share the same asymptotic orders for

k = 2, 3, although their specific values differ. For further details, see Lemma B.4 and Remark B.6.
The posterior contraction results are formalized below.

Theorem 3.14 (Composite anisotropic Besov). Suppose that Assumptions (A2)–(A3) hold, and that
either Assumption (A4) or Assumption (A5) is satisfied as follows.

(i) If Assumption (A4) holds, assume that the priors and conditions in one of Theorems 3.3, 3.8,
and 3.9 are satisfied with (L2n, D2n, S2n) in place of (L1n, D1n, S1n).

(ii) If Assumption (A5) holds, assume that the priors and conditions in one of Theorems 3.3, 3.8,
and 3.9 are satisfied with (L3n, D3n, S3n) in place of (L1n, D1n, S1n).

Then, the posterior distribution concentrates at the rate εn = n−s̃∗/(2s̃∗+1)(log n)3/2.

Proof. See Appendix C.14.

The contraction rate in Theorem 3.14 matches that of Suzuki and Nitanda [18], indicating that BNNs
attain the same level of optimality. However, achieving the optimal rate in Suzuki and Nitanda [18]
requires a correctly specified network structure. In contrast, our Bayesian procedure offers a clear
advantage by learning the unknown compositional depth, connectivity, and anisotropic smoothness
directly from data, without requiring prior structural knowledge.
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4 Discussion

In this paper, we have established that sparse BNNs achieve optimal posterior contraction rates over
anisotropic Besov spaces and their hierarchical compositions. We show that BNNs equipped with
either spike-and-slab or continuous shrinkage priors attain a near-minimax rate that depends only
on the intrinsic dimension, thereby overcoming the curse of dimensionality. Furthermore, BNNs are
shown to achieve rate adaptation over both anisotropic and composite Besov classes.

Practice meets theory. Our work provides a rigorous theoretical foundation for the empirical suc-
cess of NNs on complex real-world data. By establishing optimal rates over anisotropic Besov
spaces, we shed light on why NNs perform well in high-dimensional settings where classical
smoothness-based theory falls short. Although our analysis focuses on BNNs, which additionally
offer rate adaptation and uncertainty quantification, the insights extend more broadly to understand-
ing NN performance. The results provide actionable guidance: practitioners dealing with such data
may benefit from employing sparse architectures with sparsity-inducing priors, potentially inspiring
new algorithmic advances for efficient inference.

Extension. Our theoretical results are established under the Gaussian nonparametric regression
model in (1). These results are readily extended to other statistical models in which the Hellinger
distance can be translated into an L2-type distance for the underlying function. As one such exten-
sion, we present posterior contraction results for nonparametric binary classification. We also show
that the same contraction rates derived for the L2-norm with respect to PX hold for the empirical
L2-norm by applying empirical process theory. See Appendix A for details.

Future work. This study has several limitations that suggest promising directions for future re-
search. While the spike-and-slab prior offers desirable theoretical properties, its practical implemen-
tation is hampered by the point mass at zero, which introduces substantial computational challenges.
Variational approximations may partially alleviate this burden [38, 39]. Shrinkage priors address
the issue differently, but our theoretical framework does not accommodate widely used choices such
as the horseshoe prior [34]. Extending our results to incorporate such popular shrinkage priors is
an important direction. Furthermore, a natural direction for future work is to extend our theoretical
framework to modern deep learning architectures widely used in practice. Recent developments in
the statistical theory of convolutional NNs [40, 41] and transformers [42, 43] offer valuable founda-
tions for establishing posterior contraction results beyond fully connected architectures.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state our main theoretical contributions
on posterior contraction rates for Bayesian neural networks over anisotropic and composite
Besov spaces.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of the work in Section 4, including computational
challenges, theoretical constraints, and the necessity to extend our framework to modern
DNN architectures. Furthermore, we provide future avenues for research based on these
limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theorems in the paper explicitly state assumptions, which are clearly la-
beled throughout the manuscript. Each theoretical result is presented with comprehensive
statements that reference these assumptions. Complete proofs of all theoretical results are
provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper focuses on the theoretical analysis of posterior contraction rates
for Bayesian neural networks. As no numerical experiments were conducted, this question
is not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The main contribution of our work is to establish the theoretical properties of
BNNs, making it purely mathematical; thus, this question is not applicable.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Since the paper does not include numerical experiments, there is no need to
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• The full details can be provided either with the code, in appendix, or as supplemental
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7. Experiment statistical significance
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ate information about the statistical significance of the experiments?
Answer: [NA]
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contraction rates. As no experiments were conducted, error bars and statistical significance
analyses are not applicable.
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the main claims of the paper.
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
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Answer: [NA]
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12. Licenses for existing assets
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• The answer NA means that the paper does not release new assets.
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tion, or other labor should be paid at least the minimum wage in the country of the
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A Supplement on posterior contraction

A.1 Nonparametric regression

In this section, we present theorems that apply to general settings with independent and identically
distributed (IID) data. For a semi-metric space (A, ρ), we let N (ε, A, ρ) denote the ε-covering
number. The following result builds on the foundational work of Ghosal et al. [32] and Ghosal and
van der Vaart [31].
Lemma A.1. Consider model (1) with f0 ∈ UB and σ0 ∈ [σ, σ] for constants 0 < σ ≤ σ. The
prior for σ is supported on [σ, σ]. For F ⊂ UB, define

Aϵ =
{
(f, σ) ∈ F × [σ, σ] : ‖f − f0‖L2(PX) ≤

ε

2
, |σ − σ0| ≤

ε

2

}
.

Suppose there exist a subset Fn ⊂ F and a sequence εn → 0 with nε2n → ∞ such that

logN
(
εn,Fn, ‖·‖L2(PX)

)
≲ nε2n, (S1)

− log Π(Aϵn) ≲ nε2n, (S2)

sup
σ∈[σ,σ]

Π(F \ Fn | σ) = o
(
e−Cnϵ2n

)
, (S3)

for a sufficiently large C > 0. Then, the posterior satisfies

Π
(
(f, σ) ∈ F × [σ, σ] : ‖f − f0‖L2(PX) + |σ2 − σ2

0 | > Mnεn | Dn

)
→ 0

in P (n)
f0,σ0

-probability as n→ ∞ for any Mn → ∞.

Proof. See Appendix C.1.

We focus on the case where Π(F \ Fn | σ) is invariant with respect to σ, and we write it simply as
Π(F \ Fn).

A.2 Nonparametric binary classification

Suppose we have a set of n input-output observations, where each pair is an independent random
sample from a binary classification model with a d-dimensional input variable Xi ∈ [0, 1]d and an
output variable Yi ∈ {0, 1}:

P (Yi = 1 | Xi) = 1− P (Yi = 0 | Xi) = (ψM ◦ f0)(Xi), Xi ∼ PX , i ∈ [n], (S4)

where ψM is the sigmoid function ψM (x) = (1 + e−Mx)−1 for a large M > 0 and f0 : [0, 1]d →
R denotes the true regression function. The scaling factor M is introduced because f0 and the
prior support are restricted to UB, whose elements have unit sup-norm. Let P (n)

f denote the joint
distribution of Dn with a regression function f .
Lemma A.2. Consider model (S4) with f0 ∈ UB. For F ⊂ UB, define

A′
ϵ =

{
f ∈ F : ‖f − f0‖L2(PX) ≤ ε

}
.

Suppose there exist a subset Fn ⊂ F and a sequence εn → 0 with nε2n → ∞ such that

logN
(
εn,Fn, ‖·‖L2(PX)

)
≲ nε2n,

− log Π(A′
ϵn) ≲ nε2n,

Π(F \ Fn) = o
(
e−Cnϵ2n

)
,

for a sufficiently large C > 0. Then, the posterior satisfies

Π
(
f ∈ F : ‖(ψM ◦ f)− (ψM ◦ f0)‖L2(PX) > Mnεn | Dn

)
→ 0

in P (n)
f0

-probability as n→ ∞ for any Mn → ∞.
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Proof. See Appendix C.2.

The following theorem shows that a plug-in classifier can achieve results analogous to those in
Theorems 3.3, 3.8, 3.9 and 3.14 for classification problems, under the same assumptions and notation
as in Section 3. The proof closely parallels that of the Gaussian case and is therefore omitted.
Theorem A.3 (Nonparametric classification). Consider model (S4) with the same prior specifica-
tions and assumptions as in Theorem 3.3 (or in Theorems 3.8, 3.9 and 3.14), except for Assump-
tion (A3). Then, the posterior distribution concentrates at the rate εn = n−s̃/(2s̃+1)(log n)3/2, in
the sense that

Π
(
f ∈ Φ : ‖(ψM ◦ f)− (ψM ◦ f0)‖L2(PX) > Mnεn | Dn

)
→ 0

in P (n)
f0

-probability as n→ ∞ for any sequence Mn → ∞, where Φ denotes the corresponding NN
model space defined in the referenced theorem.

It can be shown that the minimax rate is also attained for the excess risk for the misclassification
error, defined as

E(f0, f) := Ef0 [I(Y 6= I((ψM ◦ f)(X) ≥ 1/2))]− Ef0 [I(Y 6= I((ψM ◦ f0)(X) ≥ 1/2))],

implying that optimal performance is achieved in general nonparametric classification settings. It is
well known that [44] the excess risk satisfies

E(f0, f) ≤ 2‖(ψM ◦ f)− (ψM ◦ f0)‖L2(PX).

This provides the posterior contraction rate with respect to the misclassification error as follows.
Corollary A.4 (Nonparametric classification with respect to the misclassification error). Consider
model (S4) with the same prior specifications and assumptions as in Theorem 3.3 (or in Theo-
rems 3.8, 3.9 and 3.14), except for Assumption (A3). Then, the posterior distribution concentrates
at the rate εn = n−s̃/(2s̃+1)(log n)3/2, such that

Π(f ∈ Φ : E(f0, f) > Mnεn | Dn) → 0

in P (n)
f0

-probability as n→ ∞ for any sequence Mn → ∞, where Φ denotes the corresponding NN
model space defined in the referenced theorem.
Remark A.5. This result can be extended to achieve optimal convergence rates under boundary
conditions, particularly under Tsybakov’s margin condition [45], as demonstrated in frequentist ap-
proaches [46]. However, incorporating the likelihood corresponding to this loss function poses
substantial challenges, and we leave this extension for future work.

A.3 Empirical norm

The following lemma describes the relationship between expectations of empirical processes.
Lemma A.6 (Theorem 19.3 of Györfi et al. [47]). LetX, X1, · · · , Xn ∈ Rd be IID random vectors
drawn from the distribution PX . Let K1, K2 ≥ 1 be constants and let G be a class of functions
g : Rd → R such that

|g(x)| ≤ K1, E[g(X)2] ≤ K2E[g(X)].

For 0 < α < 1 and ε > 0, assume that
√
nα

√
1− α

√
ε ≥ 288max

{
2K1,

√
2K2

}
,

and that, for all x1, · · · , xn ∈ Rd and for all t ≥ ε/8,

√
nα(1− α)t

96
√
2max{K1, 2K2}

≥
∫ √

t

α(1−α)t
16max{K1,2K2}

√√√√logN

(
u,

{
g ∈ G :

1

n

n∑
i=1

g(xi)2 ≤ 16t

}
, ‖·‖1,n

)
du,

where ‖g‖1,n = 1
n

∑n
i=1|g(Xi)|. Then,

Pr

(
sup
g∈G

∣∣E[g(X)]− 1
n

∑n
i=1 g(Xi)

∣∣
ε+ E[g(X)]

> α

)
≤ 60 exp

(
− nεα2(1− α)

128 · 2304max{K2
1 ,K2}

)
.
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For a function f : [0, 1]d → R, we define the empirical L2-norm as ‖f‖n =

(n−1
∑n

i=1 |f(Xi)|2)1/2. As a corollary of Lemma A.6, we present the following result, adapted
from Kong et al. [48], which establishes a relationship between the empirical norm ‖·‖n and the
population norm ‖·‖L2(PX).

Lemma A.7 (Change of norm). Let Nn = dn1/(2s̃+1)e, εn = n−s̃/(2s̃+1)(log n)3/2, and Φ be an
NN model space in Theorem 3.3 (or in Theorems 3.8, 3.9 and 3.14). Then,

P
(n)
f0,σ0

sup
f∈Φ

∣∣∣‖f − f0‖2L2(PX) − ‖f − f0‖2n
∣∣∣

M0ε2n + ‖f − f0‖2L2(PX)

>
1

2

 ≤ 60 exp

(
− nM0ε

2
n

8 · 128 · 2304 · 16

)
holds for a sufficiently large constant M0 > 0 and sufficiently large n.

Proof. See Appendix C.3.

Using Lemma A.7, we deduce that for any f ∈ Φ and all sufficiently large n, the following inequal-
ities hold with probability 1− exp

(
−M∗

0nε
2
n

)
, for some M∗

0 > 0:

‖f − f0‖2n ≤ 3

2
‖f − f0‖2L2(PX) +

M0

2
ε2n,

‖f − f0‖2L2(PX) ≤ 2‖f − f0‖2n +M0ε
2
n.

This yields a contraction rate with respect to the empirical norm.
Theorem A.8 (Contraction rate with respect to the empirical norm). Consider model (1), prior
and the assumptions as in Theorem 3.3 (or in Theorems 3.8, 3.9 and 3.14). Then, the posterior
distribution concentrates at the rate εn = n−s̃/(2s̃+1)(log n)3/2, in the sense that

Π
(
(f, σ) ∈ Φ× [σ, σ] : ‖f − f0‖n + |σ2 − σ2

0 | > Mnεn | Dn

)
→ 0

in P (n)
f0,σ0

-probability as n → ∞ for any sequence Mn → ∞, where Φ denotes the corresponding
NN model space defined in the referenced theorem.

Proof. See Appendix C.4.

B Properties of ReLU networks for Besov spaces

This section describes key properties of ReLU networks, highlighting their capacity to approxi-
mate a broad class of functions. In particular, ReLU networks exhibit the universal approximation
property: with sufficient depth or width, they can approximate any anisotropic Besov function on
[0, 1]d to arbitrary accuracy. We develop the theoretical foundations of this property and discuss
its implications for both the design and theoretical understanding of deep learning models. Let
Φ̃(·) = {fθ : θ ∈ Θ(·)} denote the NN model space without the clip function.

For the first step, note that a ReLU NN can approximate a cardinal B-spline with arbitrary precision
[18, 17]. Define ψ(x) = 1 for x ∈ [0, 1] and ψ(x) = 0 otherwise. The cardinal B-spline of order m
is obtained recursively by convolution:

ψm(x) =

{
(ψ ∗ ψm−1)(x) for m > 0,

ψ(x) for m = 0,

where (f ∗ g)(x) :=
∫
f(x− t)g(t)dt. For k ∈ Z+ and j = (j1, . . . , jd) ∈ Zd

+, define

Md,m
k,j (x) =

d∏
i=1

ψm(2⌊ks
−1
i ⌋xi − ji),

for x ∈ Rd. Here, s = (s1, . . . , sd) ∈ Rd
++ denotes the smoothness parameter, k controls the spatial

resolution, and j determines the location at which the basis function is centered. A function f in an
anisotropic Besov space can thus be approximated by a superposition of Md,m

k,j (x), which is closely
related to wavelet basis functions [49]. The following lemma establishes the approximation of the
cardinal B-spline basis by ReLU activations.

23



Lemma B.1 (Approximation of B-spline basis by NNs; Lemma 1 of Suzuki and Nitanda [18]).
There exists a constant c(d,m), depending only on d and m, and an NN M̂ ∈ Φ̃(L0, D0, S0, B0)
with

L0 := 3 + 2

⌈
log2

(
3d∨m

εc(d,m)

)
+ 5

⌉
dlog2(d ∨m)e ,

D0 := 6dm(m+ 2) + 2d,

S0 := L0D
2
0,

B0 := 2(m+ 1)m

that satisfies M̂(x) = 0 for all x /∈ [0,m+ 1]d and ‖Md,m
0,0 − M̂‖∞ ≤ ε for all ε > 0.

For order m ∈ N of the cardinal B-spline bases, define

J(k) :=

d∏
j=1

Jj(k), Ji(k) = {−m,−m+ 1, · · · , 2⌊ks
−1
i ⌋},

and define the quasi-norm (Besov sequence norm) of the sequence (αk,j)k∈Z+,j∈J(k) as

∥∥∥(αk,j)k,j

∥∥∥
bsp,q

=


∞∑
k=0

2k[s−(∑d
i=1⌊ks

−1
i ⌋/k)/p]

 ∑
j∈J(k)

|αk,j |p
1/p


q

1/q

. (S5)

For p = ∞ or q = ∞, the norm is modified in the standard way.

As noted in Remark B.2, anisotropic Besov spaces admit useful continuous embeddings.
Remark B.2 (Continuous embeddings in anisotropic Besov spaces; Proposition 1 of Suzuki and
Nitanda [18]). Let s = (s1, · · · , sd) ∈ Rd

++, Then, the following continuous embeddings hold on a
bounded domain Ω ⊂ Rd.

• If s1 = · · · = sd = s0 /∈ N, then Cs0(Ω) = B(s0,...,s0)
∞,∞ (Ω).

• For 0 < p1 ≤ p2 ≤ ∞, 0 < q ≤ ∞, if s̃ >
(
1/p1−1/p2

)
+
, then Bs

p1,q(Ω) ↪→ Bγ s
p2,q(Ω), γ =

1 − (1/p1 − 1/p2)+/s̃.

• For 0 < p ≤ ∞ and 0 < q1 < q2 ≤ ∞, Bs
p,q1(Ω) ↪→ Bs

p,q2(Ω).

• If 0 < p, q ≤ ∞ and s̃ > 1/p, Bs
p,q(Ω) ↪→ C0(Ω).

The notation ↪→ denotes a continuous embedding from the space on the left into the space on the
right. In particular, if s̃ > 1/p, then Bs

p,q(Ω) ↪→ Cγs(Ω) with γ = 1 − 1/(s̃p). In this case,
every function in Bs

p,q(Ω) is continuous. Otherwise, the functions may display discontinuities or
non-smooth behavior such as jumps or spikes.

Building on these embedding properties, the following lemma establishes the approximation of
anisotropic Besov functions by a cardinal B-spline basis, thereby extending the classical spline ap-
proximation results for isotropic Besov spaces [17] to the anisotropic setting.
Lemma B.3 (Approximation of anisotropic Besov function by cardinal B-spline basis; Lemma 2
of Suzuki and Nitanda [18]). Suppose that 0 < p, q, r ≤ ∞, ω := (1/p − 1/r)+ < s̃, and ν =
(s̃−ω)/(2ω). Assume that 0 < s < min{m,m−1+1/p}, wherem ∈ N is the order of the cardinal
B-spline bases. For any f ∈ Bs

p,q and N > 0, define K(N) such that 2
∑d

i=1⌊K(N)s/sj⌋ = N and
K∗(N) = dK(N)(1 + 1/ν)e. Then, there exist EN ⊂ {(k, j) : 1 ≤ k ≤ K∗(N), j ∈ J(k)} with
|EN | ≤ N and fN such that

fN (x) =
∑

(k,j)∈EN

αk,jM
d,m
k,j (x),

‖f − fN‖Lr ≲ N−s̃‖f‖Bs
p,q
,

where the coefficient (αk,j) yields the following norm equivalence

‖f‖Bs
p,q

' ‖(αk,j)k,j‖bsp,q . (S6)
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The following lemma extends Proposition 2 of Suzuki and Nitanda [18], establishing that for any
function f0 in an anisotropic Besov space, there exist NNs that approximate f0 with arbitrary accu-
racy. In this version, the dependence of the hyperparameter B on N in the original proposition is
removed.
Lemma B.4 (Approximation of anisotropic Besov functions by NNs). Suppose that 0 < p, q, r ≤
∞, ω := (1/p − 1/r)+ < s̃ and ν = (s̃ − ω)/(2ω). Assume that N ∈ N is sufficiently large and
m ∈ N satisfies 0 < s < min{m,m− 1 + 1/p}. Then,

sup
f0∈U(Bs

p,q([0,1]
d))∩UB

inf
f∈Φ(L1,D1,S1,B1)

‖f0 − f‖Lr ≲ N−s̃

with

L1 = L1(d,m, p, r, s,N) := 3 + 3

⌈
log2

(
3d∨m

εc(d,m)

)
+ 5

⌉
dlog2(d ∨m)e ,

D1 = D1(d,m,N) := ND0,

S1 = S1(d,m, p, r, s,N) := L1D
2
0N,

B1 = B1(d,m, p, r, s) := B0 exp

(
(1 + ν−1)[(1/s) ∨ (1/p− s̃)+] log 2

ds̃ log2(d ∨m)e

) (S7)

where D0 = D0(d,m) := 6dm(m + 2) + 2d, B0 = B0(m) := 2(m + 1)m, ε =

N−s̃−(1+ν−1)(1/p−s̃)+ log(N)−1, and constant c(d,m) does not depend on N .

Proof. See Appendix C.5

Remark B.5. The key strength of Lemma B.4 lies in that the approximation accuracy depends not
on the ambient dimension d but on the intrinsic dimension. When NN models are employed, if the
target function exhibits anisotropic smoothness, the approximation rate is governed by the intrinsic
rather than the ambient dimension. This leads to minimax-optimal performance in estimation theory
and illustrates how NNs can mitigate the curse of dimensionality. In the isotropic case where s =
(s0, s0, . . . , s0), we have s̃ = s0/d, recovering the classical results for ordinary Besov functions in
Suzuki [17].
Remark B.6. Note that the NN space Φ(L,D, S,B) is monotonically increasing with respect to L,
D, S, and B. Thus, the parameters in (S7) can be replaced by

L1 = CL logN, D1 = CDN, S1 = CSN logN, B1 = CB

for sufficiently large constants CL, CD, CS , and CB .

NN models with ReLU activation permit redistribution of weights across layers without altering the
output function. The following lemma formalizes this property, which will be used to redistribute
the magnitudes of the parameters.
Lemma B.7 (Re-scaling Lemma for ReLU NNs; Lemma A.1 of Kong and Kim [19]). Let L ≥ 3
and D ≥ 3. For positive constants c1, · · · , cL+1, we define

W̃ (l) := clW
(l), b̃(l) =

(
l∏

l′=1

cl′

)
b(l)

for l ∈ [L + 1] and define θ̃ = (W̃ (1), b̃(1), . . . , W̃ (L+1), b̃(L+1)). If
∏L+1

l=1 cl = 1, fθ(x) = fθ̃(x)
holds for every x.
Remark B.8. The clipping function can be implemented using a simple ReLU network. Specifi-
cally,

clip(x) = max{min{x, 1},−1} = ζ (x+ 1)− ζ (x− 1)− 1,

where ζ(·) denotes the ReLU activation. Consequently, the clipped network space Φ(·) is contained
in the unrestricted network space Φ̃(·). Furthermore, to ensure that each partial block of a composite
Besov function produces outputs within [0, 1], we apply

clip[0,1](x) := ζ(x)− ζ(x− 1) = max{x, 0} −max{x− 1, 0}.

With this construction, ReLU networks are capable of approximating composite Besov functions.
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The following lemma extends Theorem 1 of Suzuki and Nitanda [18], which establishes an approxi-
mation bound for any f0 in a composite anisotropic Besov space by NNs. Unlike their setting, which
imposes no restriction on the input dimension of each component, we adopt the composite Hölder
framework of Schmidt-Hieber [8] and assume that each layer map depends only on a small subset of
its inputs. By combining this effective low-dimensionality constraint with anisotropic smoothness,
we exploit both compositional structure and reduced intrinsic dimension to efficiently approximate
functions in high ambient dimensions.

Lemma B.9. Suppose that s̃(1) > (1/p − 1/r)+ for some r > 0 and s̃(h) > 1/p for all h ≥ 2.
Then, the approximation error over the composite anisotropic Besov space is bounded as

sup
f0∈Bd◦,t◦,s◦

p,q

inf
f∈Φ(L2,D2,S2,B2)

‖f0 − f‖Lr ≲ N−s̃∗ ,

where s̃∗(h) = s̃(h)
∏H

k=h+1{(s(k) − t∗(k)/p) ∧ 1}, s̃∗ = minh∈[h] s̃
∗(h) and

L2 =

H∑
h=1

{
L1(t

(h),m(h), p, r(h), s(h), N) + 1
}
,

D2 = max
h≥1

{D1(t
(h),m(h), N) ∨ t(h+1)},

S2 =

H∑
h=1

d(h){S1(t
(h),m(h), p, r(h), s(h), N) + 4},

B2 = max
h≥1

B1(t
(h),m(h), p, r(h), s(h)).

Here, r(1) = r, r(h) = ∞ for h ≥ 2, andm(h) ∈ N satisfies 0 < s̃(h) < min{m(h),m(h)−1+1/p}.

Proof. See Appendix C.6.

Lemma B.10 (Theorem 6 of Suzuki and Nitanda [18]). Suppose that d(1) ≤ d(0) and s(2) ∈
Rd(1)

++ , s̃
(2) > (1/p− 1/r)+ for some r > 0. Consider the anisotropic Besov space that involves an

affine transformation

F :=
{
f2 ◦ f1 : f1 = A ·+b, A ∈ Rd(1)×d(0)

, b ∈ Rd(0)

, ‖A‖∞ ∨ ‖b‖∞ ≤ Ca, f2 ∈ Bs(2)

p,q

}
.

Then, the approximation error on the function space is bounded as

sup
f0∈F

inf
f∈Φ(L3,D3,S3,B3)

‖f0 − f‖Lr ≲ N−s̃(2) ,

where
L3 = L1(d

(1),m(2), p, r, s(2), N),

D3 = D1(d
(1),m(2), N),

S3 = S1(d
(1),m(2), p, r, s(2), N),

B3 = (Cad
(1) + 1)B1(d

(1),m(2), p, r, s(2))

for m(2) ∈ N satisfying 0 < s̃(2) < min{m(2),m(2) − 1 + 1/p}.

To apply Lemma A.1, we require results concerning the complexity of the model space and the
asymptotic properties of neural network models. By the Lipschitz continuity of clip,

|(clip ◦ f1)(x)− (clip ◦ f2)(x)| ≤ |f1(x)− f2(x)|.

It follows that the covering number of the clipped network class can be bounded by that of the
unrestricted class.

Lemma B.11 (Covering number; Lemma 3 of Suzuki [17]). For any ε > 0, D ≥ 3, and L ≥ 3.

logN
(
ε, Φ̃(L,D, S,B), ‖·‖∞

)
≤ (S + 1) log

(
2ε−1L(B ∨ 1)L(D + 1)2L

)
.
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To allow for relaxed sparsity with a margin a > 0, we define
Θ(L,D, S,B, a) =

{
θ : (θiI(|θi| > a))Ti=1 ∈ Θ(L,D, S,B)

}
, (S8)

where T = |Θ(L,D)|, and denote the corresponding NN class by Φ̃(L,D, S,B, a) and
Φ(L,D, S,B, a).
Lemma B.12 (Lemma 5 of Lee and Lee [20]). For all ε ≥ 2aL(B ∨ 1)L−1(D + 1)L, D ≥ 3, and
L ≥ 3.

logN
(
ε, Φ̃(L,D, S,B, a), ‖·‖∞

)
≤ (S + 1) log

(
2ε−1L(B ∨ 1)L(D + 1)2L

)
.

The following lemma, introduced by Schmidt-Hieber [8], plays a key role in the proofs of
Lemma B.11 and Lemma B.12. It characterizes the distance between NN models in terms of their
parameters.
Lemma B.13. For any ε > 0 and θ, θ∗ ∈ Θ(L,D, S,B) satisfying ‖θ − θ∗‖∞ < ε,

‖fθ − fθ∗‖∞ ≤ εL(B ∨ 1)L−1(D + 1)L.

Proof. See Appendix C.7.

C Proofs of the technical results

C.1 Proof of Lemma A.1

Proof. We follow the proof of Theorem 2 in Jeong and Ročková [50]. Since there exist upper and
lower bounds for σ2

0 and σ2, the rate for |σ2 − σ2
0 | is equivalent to that for |σ − σ0|; hence we use

the latter. For every (f1, σ1), (f2, σ2) ∈ F × [σ, σ], define

ρ2L((f1, σ1), (f2, σ2)) := ‖f1 − f2‖2L2(PX) + |σ1 − σ2|2.
By direct calculation, it is straightforward to verify that for some CH > 1,

C−1
H ρL((f1, σ1), (f2, σ2)) ≤ ρH(pf1,σ1

, pf2,σ2
) ≤ CHρL((f1, σ1), (f2, σ2), (S9)

where ρH denotes the Hellinger distance and pf,σ is the density with f and σ. Therefore, the
Hellinger distance is equivalent to ρL up to a constant factor and it suffices to establish the theorem
with respect to the Hellinger distance, which admits an exponentially powerful test function.

Using (S9), the Hellinger entropy can instead be estimated by replacing it with ρL. Note that
ρL((f1, σ1), (f2, σ2)) ≤ ε holds if ‖f1 − f2‖L2(PX) ≤ ε/2 and |σ1 − σ2| ≤ ε/2. Hence, by (S1),

logN (εn,Fn × [σ, σ], ρL) ≲ logN
(
εn/2,Fn, ‖·‖L2(PX)

)
− log(εn/2) + log σ ≲ nε2n

for all sufficiently large n. Using (S2), there exists C ′ > 0 such that Π(Aϵn) ≥ exp
(
−C ′nε2n

)
.

Moreover, by Lemma B.2 of Xie and Xu [51],

max

−Ef0,σ0

[
log

p
(n)
f,σ

p
(n)
f0,σ0

]
,Ef0,σ0

(log p
(n)
f,σ

p
(n)
f0,σ0

)2
 ≤ C ′′ρ2L((f, σ), (f0, σ0))

for some constant C ′′ > C ′/(C − 4) and all sufficiently large n. We obtain

Π

max

−Ef0,σ0

[
log

p
(n)
f,σ

p
(n)
f0,σ0

]
,Ef0,σ0

(log p
(n)
f,σ

p
(n)
f0,σ0

)2
 ≤ ε2n


≥ Π

(
ρ2L((f, σ), (f0, σ0)} ≤ ε2n/C

′′)
≥ Π(Aϵn/

√
C′′)

≥ exp
(
−nε2nC ′/C ′′)

≥ exp
(
−(C − 4)nε2n

)
for all sufficiently large n. In addition, (S3) implies

Π(F \ Fn) =

∫
Π(F \ Fn | σ2)dΠ(σ2) = o(e−Cnϵ2n).

We get the desired result using Theorem 2.1 of Ghosal et al. [32].
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C.2 Proof of Lemma A.2

Proof. Let ρL(f1, f2) = ‖(ψM ◦ f1)− (ψM ◦ f2)‖L2(PX) for f1, f2 ∈ F . The proof proceeds by
first establishing the equivalence between the Hellinger distance ρH and ρL, and then deriving the
contraction rate with respect to ρH . For any f1, f2 ∈ F , let η1 = ψM ◦ f1 and η2 = ψM ◦ f2. Then,

ρ2L(f1, f2) =
1

2

∫ (√
η1(x)−

√
η2(x)

)2 (√
η1(x) +

√
η2(x)

)2
PX(dx)

+
1

2

∫ (√
1− η1(x)−

√
1− η2(x)

)2 (√
1− η1(x) +

√
1− η2(x)

)2
PX(dx).

Since both η1 and η2 lie in [δ, 1− δ] for some δ > 0, there exists a constant CH > 0 such that

C−1
H ρL(f1, f2) ≤ ρH(pf1 , pf2) ≤ CHρL(f1, f2).

Hence, it suffices to work with the Hellinger distance. Since the sigmoid function ψM is M/4-
Lipschitz, we obtain

ρL(f1, f2) = ‖η1 − η2‖L2(PX) ≤
M

4
‖f1 − f2‖L2(PX).

Consequently, the Hellinger entropy is bounded by logN (εn,Fn, ρL) ≲ log(εn,Fn, ‖·‖L2(PX)) ≲
nε2n. Let p(n)f denote the joint density under model (S4) with f . By Lemma 2.8 of Ghosal and
van der Vaart [52], for any measurable functions f1 and f2,

max

−Ef1

[
log

p
(n)
f1

p
(n)
f2

]
,Ef1

(log p(n)f1

p
(n)
f2

)2
 ≲ ‖f1 − f2‖L2(PX).

The remainder of the proof follows the same argument as in Lemma A.1.

C.3 Proof of Lemma A.7

Proof. We prove the case corresponding to Theorem 3.3; the remaining cases follow by analogous
arguments. For Lemma A.6, set α = 1/2, ε =M0ε

2
n, K1 = K2 = 4, and

G =
{
g(x) = (f(x)− f0(x))

2 : f ∈ Φ
}
,

where Φ = Φ(L1n, D1n, S1n). The choice K1 = K2 = 4 is justified because
|g(x)| ≤ 4, E[g(X)2] ≤ 4E[g(X)]

for every g ∈ G. Since nε2n → ∞, we have
√
nα

√
1− α

√
ε2n ≥ 288max

{
2K1,

√
2K2

}
for all sufficiently large n. Moreover, for any f1, f2 ∈ Φ,∥∥(f1 − f0)

2 − (f2 − f0)
2
∥∥
1,n

≤ 4‖f1 − f2‖1,n,
which implies

logN

(
u,

{
g ∈ G :

1

n

n∑
i=1

g(xi)
2 ≤ 16t

}
, ‖·‖1,n

)
≤ logN

(
u/4,Φ, ‖·‖1,n

)
.

Using Lemma B.11, we obtain for every u ≳ ε2n,

logN
(
u/4,Φ, ‖·‖1,n

)
≤ logN (u/4,Φ, ‖·‖∞)

≤ (Sn + 1)
(
logLn + Ln log

(
(Bn ∨ 1)(Dn + 1)2

)
− log

u

8

)
≲ Nn(log n)

3

≲ nε2n.

Therefore, for all t ≥M2
0 ε

2
n/8,∫ √

t

α(1−α)t
16max{K1,2K2}

√√√√logN

(
u,

{
g ∈ G :

1

n

n∑
i=1

g(xi)2 ≤ 16t

}
, ‖·‖1,n

)
du ≲

√
tnε2n.

Since
√
ε2n/t ≤

√
8/M2

0 is sufficiently small, we conclude the desired result.
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C.4 Proof of Theorem A.8

Proof. Let En denote the event

En =

sup
f∈Φ

∣∣∣‖f − f0‖2L2(PX) − ‖f − f0‖2n
∣∣∣

M0ε2n + ‖f − f0‖2L2(PX)

≤ 1

2

 .

Then P (n)
f0,σ0

(Ec
n) ≲ exp(−Cnε2n) for some constant C > 0 by Lemma A.7. On the event En, for

any f ∈ Φ,

‖f − f0‖n ≤
√

3

2
‖f − f0‖2L2(PX) +

M0

2
ε2n ≤ 2‖f − f0‖L2(PX) +

√
M0

2
εn.

We now express
Π
(
‖f − f0‖n +

∣∣σ2 − σ2
0

∣∣ > Mnεn | Dn

)
= Π

(
‖f − f0‖n +

∣∣σ2 − σ2
0

∣∣ > Mnεn | Dn

)
I(En)

+ Π
(
‖f − f0‖n +

∣∣σ2 − σ2
0

∣∣ > Mnεn | Dn

)
I(Ec

n).

For the first term, observe that
Π
(
‖f − f0‖n +

∣∣σ2 − σ2
0

∣∣ > Mnεn | Dn

)
I(En)

≤ Π
(
‖f − f0‖L2(PX) +

∣∣σ2 − σ2
0

∣∣ > (Mn − C ′)εn/2 | Dn

)
I(En)

for some constant C ′ > 0. By Theorem 3.3 (or in Theorems 3.8, 3.9 and 3.14), this converges to 0
in P (n)

f0,σ0
-probability as n → ∞ for any Mn → ∞. For the second term, since P (n)

f0,σ0
(Ec

n) → 0, it

also converges to 0 in P (n)
f0,σ0

-probability as n→ ∞. This proves the assertion.

C.5 Proof of Lemma B.4

Proof. Using Lemma B.3, for K = K(N), K∗ = dK(1 + ν−1)e, and EN with |EN | ≤ N , there
exists fN such that

fN (x) =
∑

(k,j)∈EN

αk,jM
d,m
k,j (x),

‖f − fN‖Lr ≲ N−s̃.

Since for every k and j,

Md,m
k,j (x) =Md,m

0,0 (2⌊ks
−1
1 ⌋x1 − j1, . . . , 2

⌊ks−1
d ⌋xd − jd), (S10)

Lemma B.1 implies that there exists an NN approximator M̂d,m
k,j satisfying ‖Md,m

k,j − M̂d,m
k,j ‖∞ ≤ ε

for any ε > 0. By the definition of B-splines, it follows that∑
(k,j)∈EN

I
(
Md,m

k,j (x) 6= 0
)
≤ (m+ 1)d(K∗ + 1).

Moreover, using (S5), (S6), and the inequality N = 2
∑d

j=1⌊Ks/sj⌋ ≳ 2Kd∗
, we obtain

|αk,j | ≲ 2K
∗d∗(1/p−s̃)+ ≲ N (1+ν−1)(1/p−s̃)+ . (S11)

We now define the approximator

f̂ =
∑

(k,j)∈EN

αk,jM̂
d,m
k,j .

Combining the above bounds yields

|fN (x)− f̂(x)| ≤
∑

(k,j)∈EN

|αk,j |
∣∣∣Md,m

k,j (x)− M̂d,m
k,j (x)

∣∣∣
≤ ε

∑
(k,j)∈EN

|αk,j |I
(
Md,m

k,j (x) 6= 0
)

≲ ε(m+ 1)d(K∗ + 1)2K
∗d∗(1/p−s̃)+

≲ ε log(N)N (1+ν−1)(1/p−s̃)+

= N−s̃.
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Using the Lipschitz continuity of clip, we get the desired approximation bound:

‖f − (clip ◦ f̂)‖Lr = ‖(clip ◦ f)− (clip ◦ f̂)‖Lr ≤ ‖f − fN‖Lr + ‖fN − f̂‖Lr ≲ N−s̃.

Next, we verify that the network parameters of f̂ are given as in (S7). Since the identity function
id(x) = x can be represented using the ReLU function as id(x) = ζ(x)− ζ(−x), it follows that for
any L ∈ N,

id◦L := id ◦ · · · ◦ id︸ ︷︷ ︸
L times

= id ∈ Φ̃(L, 2, 4L, 1).

Then, using L̄0 = L̄0(N) = dlog2(d ∨m)eds̃ log2Ne, we can rewrite f̂ as

f̂(x) =
∑

(k,j)∈EN

id◦L̄0(αk,jM̂
d,m
k,j (x)), (S12)

which is also an NN approximator. Since M̂d,m
k,j requires the same depth, width, and sparsity as M̂

in Lemma B.1, each summand id◦L̄0(αk,jM̂
d,m
k,j (x)) has depth L0 + L̄0, width D0, and sparsity

L0D
2
0 + 4L̄0 + 1. Therefore, f̂ expressed as in (S12) requires depth L0 + L̄0 ≤ L1, width ND0,

and sparsity (L0D
2
0 + 4L̄0 + 1)N ≤ S1. To evaluate the magnitude of the network parameters,

note from (S10) that the magnitudes of the parameters in the first layer of M̂d,m
k,j are bounded by

2K
∗s̃ ≤ C11N

(1+ν−1)/s for some constant C11 > 0. All remaining layers have the same magnitude
as those of M̂ , namely B0. In addition, by (S11), the magnitudes of the parameters in the first
layer of t 7→ id◦L̄0(αk,jt) are bounded by C12N

(1+ν−1)(1/p−s̃)+ for some constant C12 > 0. Let
B11(N) = C11N

(1+ν−1)/sBL0
0 and B12(N) = C12N

(1+ν−1)(1/p−s̃)+BL̄0
0 , and define

c1l =

{
B11(N)(L0+1)−1

/(C11N
(1+ν−1)/s), l = 1,

B11(N)(L0+1)−1

/B0 l = 2, . . . , L0 + 1,

c2l =

{
B12(N)(L̄0+1)−1

/(C12N
(1+ν−1)(1/p−s̃)+), l = 1,

B12(N)(L̄0+1)−1

/B0 l = 2, . . . , L̄0 + 1.

It is easy to verify that
∏l

l′=1 c1l′ ≤ 1 and
∏l

l′=1 c2l′ ≤ 1 for any l and sufficiently large N .
Therefore, by Lemma B.7, the rescaled ĥ has parameter magnitudes bounded by B11(N)(L0+1)−1 ∨
B12(N)(L0+1)−1

. Since L0(d,m,N) ≥ L̄0 = dlog2(d ∨ m)eds̃ log2Ne for sufficiently large N ,
we obtain

B11(N)(L0+1)−1

∨B12(N)(L̄0+1)−1

≤ B0

(
(C11 ∨ C12)N

(1+ν−1)[(1/s)∨(1/p−s̃)+]
)(L̄0+1)−1

≤ B0N
(1+ν−1)[(1/s)∨(1/p−s̃)+]L̄−1

0

≤ B0 exp

(
(1 + ν−1)[(1/s) ∨ (1/p− s̃)+] log 2

ds̃ log2(d ∨m)e

)
= B1,

which concludes f̂ ∈ Φ(L1, D1, S1, B1).

C.6 Proof of Lemma B.9

Proof. Our proof is similar to the proof of Theorem 1 in Suzuki and Nitanda [18]. Let f0 = f0,H ◦
f0,H−1 · · · ◦ f0,1. Since s̃(h) > 1/p for h ≥ 2, by Lemma B.4, for each f0,h,k there exists

fh,k ∈ Φ(L1(t
(h),m(h), p,∞, s(h), N), D1(t

(h),m(h), N),

S1(t
(h),m(h), p,∞, s(h), N), B1(t

(h),m(h), p,∞, s(h)))

such that ‖f0,h,k − fh,k‖∞ ≲ N−s̃(h)

. For h = 1, each f0,1,k there exists

f1,k ∈ Φ(L1(d
(1),m(1), p, r, s(1), N), D1(d

(1),m(1), N),

S1(d
(1),m(1), p, r, s(1), N), B1(d

(1),m(1), p, r, s(1)))
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such that ‖f0,1,k − f1,k‖Lr ≲ N−s̃(1) . To ensure that each block produces outputs in [0, 1], we apply
the clipping function clip[0,1], as described in Remark B.8, which adds one layer to each block. Let
f = fH ◦ fH−1 · · · ◦ f1 ∈ Φ(L2, D2, S2, B2) as in Schmidt-Hieber [8]. Then,

‖f0 − f‖Lr

= ‖f0,H ◦ f0,H−1 · · · ◦ f0,1 − fH ◦ fH−1 · · · ◦ f1‖Lr

≤
H∑

h=1

‖f0,H ◦ f0,H−1 · · · ◦ f0,h ◦ fh−1 · · · f1 − f0,H ◦ f0,H−1 · · · ◦ f0,h+1 ◦ fh · · · f1‖Lr

≤
H∑

h=1

‖f0,H ◦ f0,H−1 · · · ◦ f0,h − f0,H ◦ f0,H−1 · · · ◦ f0,h+1 ◦ fh‖Lrh
,

where r1 = r and rh = ∞ for h ≥ 2. By Remark B.2,

f0,h,k ∈ Cs(h)[1−1/(ps̃(h))]∧1 = C(s(h)−t∗(h)/p)∧1 = Cγ′
h , h ≥ 2,

where γ′h := (s(h) − t∗(h)/p) ∧ 1. Therefore,

‖f0,H ◦ f0,H−1 · · · ◦ f0,h − f0,H ◦ f0,H−1 · · · ◦ f0,h+1 ◦ fh‖∞ ≲ ‖f0,h − fh‖
∏H

h′=h+1
γ′
h′

∞

≲ N−s̃(h) ∏H
h′=h+1

γ′
h′

= N−s̃∗(h)

for h ≥ 2. For h = 1,

‖f0,H ◦ f0,H−1 · · · ◦ f0,1 − f0,H ◦ f0,H−1 · · · ◦ f1‖Lr ≲ ‖f0,1 − f1‖
∏H

h′=2
γ′
h′

Lr

≲ N−s̃∗(1) .

Therefore, ‖f0 − f‖Lr ≲ maxh∈[H]N
−s̃∗(h)

= N−s̃∗ .

C.7 Proof of Lemma B.13

Proof. For f ∈ Φ(L,D, S,B) expressed as f(x) = (W (L)ζ(·) + b(L)) ◦ · · · ◦ (W (2)ζ(·) + b(2)) ◦
(W (1)x+ b(1)), define

A+
k (f)(x) = ζ ◦ (W (k−1)ζ(·) + b(k−1)) ◦ · · · ◦ (W (2)ζ(·) + b(2)) ◦ (W (1)x+ b(1)),

A−
k (f)(x) = (W (L)ζ(·) + b(L)) ◦ · · · ◦ (W (k+1)ζ(·) + b(k+1)) ◦ (W (k)x+ b(k)),

for k = 2, · · · , L, and let A−
L+1(f)(x) = A+

1 (f)(x) = x. Then,

f(x) = A−
k+1(f) ◦ (W

(k) ·+b(k)) ◦ A+
k (f)(x).

Using the definition of Φ(L,D, S,B),∥∥A+
k (f)(x)

∥∥
∞ ≤ max

j

∥∥∥W (k−1)
j,:

∥∥∥
1

∥∥A+
k−1(f)(x)

∥∥
∞ + ‖b(k−1)‖∞

≤ DB
∥∥A+

k−1(f)(x)
∥∥
∞ +B

≤ (D + 1)(B ∨ 1)
∥∥A+

k−1(f)(x)
∥∥
∞

≤ (D + 1)k−1(B ∨ 1)k−1,

where Aj,: denotes the j-th row of matrix A. Similarly,∣∣A−
k (f)(x1)−A−

k (f)(x2)
∣∣ ≤ (BD)L−k+1‖x1 − x2‖∞.
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Fix ε > 0 and θ ∈ Θ(L,D, S,B). For any θ∗ ∈ Θ(L,D, S,B) satisfying ‖θ − θ∗‖∞ < ε, we
obtain

|fθ(x)− fθ∗(x)|

=

∣∣∣∣ L∑
k=1

A−
k+1(fθ∗) ◦ (W (k) ·+b(k)) ◦ A+

k (fθ)(x)−A−
k+1(fθ∗) ◦ (W (k)∗ ·+b(k)

∗
) ◦ A+

k (fθ)(x)

∣∣∣∣
≤

L∑
k=1

(BD)L−k

∥∥∥∥(W (k) ·+b(k)) ◦ A+
k (fθ)(x)− (W (k)∗ ·+b(k)

∗
) ◦ A+

k (fθ)(x)

∥∥∥∥
∞

≤
L∑

k=1

(BD)L−kε
[
D(B ∨ 1)k−1(D + 1)k−1 + 1

]
≤

L∑
k=1

(BD)L−kε(B ∨ 1)k−1(D + 1)k

≤ εL(B ∨ 1)L−1(D + 1)L.

This proves the assertion.

C.8 Proof of Theorem 3.3

Proof. Let F = Φ(L1n, D1n, S1n). By Lemma A.1, it suffices to show that there exists a subset
Fn ⊂ F such that

(a) logN
(
εn,Fn, ‖·‖L2(PX)

)
≲ nε2n

(b) − log Π(Aϵn) ≲ nε2n

(c) supσ∈[σ,σ] Π(F \ Fn | σ) = o
(
e−Cnϵ2n

)
for a sufficiently large C. Let Fn = Φ(L1n, D1n, S1n, Bn), where Bn = n. To verify (c), observe
that

Π(F \ Fn | σ) = Π(F \ Fn) = Π(∃j : |θj | > Bn | L1n, D1n, S1n) = 1− (1− vn)
S1n ,

where vn =
∫
|u|>Bn

π̃SL(u)du. The direct calculation of the number of network parameters yields

T = |Θ(L,D)| = D2(L− 1) +D(d+ L+ 1) + 1,

which implies

T1n := |Θ(L1n, D1n)| � L1nD
2
1n. (S13)

Moreover, vn ≤ e−k1Bn for some k1 > 0 by Assumption (B1). Therefore, by Bernoulli’s inequality,
we obtain

1− (1− vn)
S1n ≤ S1nvn ≤ T1nvn ≤ e−k1Bn+log T1n = o

(
e−Cnϵ2n

)
,

for a sufficiently large C. By Lemma B.11,

logN
(
εn,Fn, ‖·‖L2(PX)

)
≤ logN (εn,Fn, ‖·‖∞)

≤ (S1n + 1)

[
logL1n + L1n log

(
(Bn ∨ 1)(D1n + 1)2

)
− log

εn
2

]
≲ Nn(log n)

3

≲ nε2n

for sufficiently large n. Thus, (a) holds. Given Lemma B.4, Remark B.6, and Assumption (A1),
there exists f̂n := fθ̂ ∈ Φ(L1n, D1n, S1n, B1) ⊂ Fn for θ̂ ∈ Θ(L1n, D1n, S1n, B1) such that

‖f̂n − f0‖L2(PX) ≤ C1N
−s̃ ≤ εn/4, (S14)
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for some C1 > 0 and all sufficiently large n. Let γ̂ denote the index set of nonzero components
in θ̂, and let θ̂γ̂ denote the corresponding nonzero values. We define Θ(γ̂;L1n, D1n, S1n, B1) ⊂
Θ(L1n, D1n, S1n, B1) as the subset of parameter space in which only the components indexed by γ̂
are nonzero. The corresponding NN space is denoted by

F̃n(γ̂) = Φ(γ̂;L1n, D1n, S1n, B1).

Using Assumption (A3), we have

log Π(|σ − σ0| ≤ εn/2) ≳ log εn ≳ − log n

and hence
Π(Aϵn) ≳ Π(f ∈ Fn : ‖f − f0‖L2(PX) ≤ εn/2)− log n.

Given (S14), there exists a constant C1 > 0 such that

Π
(
f ∈ Fn : ‖f − f0‖L2(PX) ≤ εn/2

)
≥ Π

(
f ∈ Fn : ‖f − f̂n‖L2(PX) ≤ εn/4

)
≥ Π

(
f ∈ Fn : ‖f − f̂n‖∞ ≤ εn/4

)
≥ Π

(
f ∈ F̃n(γ̂) : ‖f − f̂n‖∞ ≤ εn/4

)
.

Using Lemma B.13,

Π
(
f ∈ F̃n(γ̂) : ‖f − f̂n‖∞ ≤ εn/4

)
≥ Π

(
θ ∈ RT1n : θγ̂c = 0, ‖θγ̂‖∞ ≤ B1, ‖θ̂γ̂ − θγ̂‖∞ ≤ εn

4(D1n + 1)L1nL1n(B1 ∨ 1)L1n−1

)
≥
(
tn inf

u∈[−B1,B1]
π̃SL(u)

)S1n
(
T1n
S1n

)−1

ge

(
tn(D1n + 1)−L1n inf

u∈[−B1,B1]
π̃SL(u)

)S1n

where tn = εn/[2(D1n + 1)L1nL1n(B1 ∨ 1)L1n−1]. The last inequality follows from(
T1n
S1n

)
=
T1n(T1n − 1) · · · (T1n − S1n + 1)

S1n!
≤ TS1n

1n ≤ (D1n + 1)L1nS1n .

Using

− log tn ≤ log

(
(D1n + 1)L1nL1n(B1 ∨ 1)L1n−1

2εn

)
≲ (log n)2

and Assumption (B2), we obtain

− log Π(Aϵn) ≲ −S1n log

(
tn(D1n + 1)−L1n inf

u∈[−B1,B1]
π̃SL(u)

)
+ log n

≲ S1n(log n)
2

≲ Nn(log n)
3

≲ nε2n,

which verifies (b).

C.9 Verification of Remark 3.4

Note that Kong and Kim [19] established posterior consistency over unbounded parameter spaces.
Their analysis allows for greater flexibility in prior specification by leveraging a complexity bound,
and the result builds upon the earlier work of Kohler and Langer [23]. Motivated by their approach,
we show that posterior concentration at the rate nε2n = Nn(log n)

4 remains valid (in contrast to the
original rate nε2n = Nn(log n)

3) by employing the covering number bound stated below.
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Lemma C.1 (Covering number for sparse unbounded NNs). For all ε > 0, the following holds:

logN (ε,Φ(L,D, S), ‖·‖Lp) ≤ CV1
LS logS log

(
K

εp

)
+ log (CV2

LS logS) ,

for some positive constants CV1
> 0, CV2

> 0 and K > 0.

Proof. By Theorem 7 of Bartlett et al. [33], the VC-dimension V +
Φ(L,D,S) of the class Φ(L,D, S)

satisfies V +
Φ(L,D,S) ≤ CV LS logS for some constant CV > 0. Then, by Theorem 2.6.4 of van der

Vaart and Wellner [53], it follows that

logN (ε,Φ(L,D, S), ‖·‖Lp) ≤ log
(
C ′V +

Φ(L,D,S)(K/ε
p)

V +
Φ(L,D,S)

)
,

for some positive constants C ′ > 0 and K > 0. Therefore, the stated result follows.

Now we are ready to prove the assertion in Remark 3.4.

Proof. Let F = Φ(L1n, D1n, S1n). By Lemma A.1, it suffices to construct a set Fn ⊂ F such that
the following conditions hold:

(a) logN
(
εn,Fn, ‖·‖L2(PX)

)
≲ nε2n,

(b) − log Π(Aϵn) ≲ nε2n,

(c) supσ∈[σ,σ] Π(F \ Fn | σ) = o
(
e−Cnϵ2n

)
,

for some constant C > 0. Let Fn = Φ(L1n, D1n, S1n). Note that condition (c) is trivially satisfied.
Using Lemma C.1 and Assumption (A2), we obtain

logN
(
εn,Fn, ‖·‖L2(PX)

)
≤ logN (εn/R,Fn, ‖·‖L2)

≲ L1nS1n logS1n log ε
−1
n

≲ Nn(log n)
4

≲ nε2n,

where the last line follows since L1n � log n and S1n � Nn log n. The remaining parts follow
identically from the proof of Theorem 3.3.

C.10 Verification of Example 3.5

Assumption (C2) holds trivially. To verify Assumption (C1), observe that∫
[−Kn,Kn]c

π̃SH(u) du ≤ π1n Pr(|Z| > Kn/σ1n) ≤ C1 exp
(
−C2K

1/k
n /σ

1/k
1n

)
,

for all sufficiently large n, where Z is a random variable having density ϕk. Since σ1n is decreasing,

log

(∫
[−Kn,Kn]c

π̃SH(u) du

)
≲ −K1/k

n /σ
1/k
1n ≲ −K1/k

n ≲ −Kn,

for k ≤ 1. This verifies Assumption (C1). Next, observe that∫
[−an,an]c

π̃SH(u) du ≤ π2n

(
1− an

Cu

)
+ π1n Pr(|Z| > (2CA(log n)

2)k)

≤ 2e−2CA(log n)2

≤ e−CA(log n)2 .

Hence, Assumption (C3) is satisfied.
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C.11 Verification of Example 3.6

Assumptions (C1) and (C3) can be verified in the same manner as in Example 3.5. It therefore
suffices to verify Assumption (C2). Note that π̃SH(u) ≥ π2nσ

−1
2 φ(u/σ2), where φ denotes the

density of the standard normal distribution and σ2 is a positive standardized deviation. Therefore,

− inf
u∈[−B1,B1]

log π̃SH(u) ≤ − log π2n +
1

2
log(2πσ2

2) +
B2

1

2σ2
2

≲ (log n)2.

C.12 Proof of Theorem 3.8

Proof. Let F = Φ(L1n, D1n). By Lemma A.1, it suffices to show that there exists a subset Fn ⊂ F
such that

(a) logN
(
εn,Fn, ‖·‖L2(PX)

)
≲ nε2n

(b) − log Π(Aϵn) ≲ nε2n

(c) supσ∈[σ,σ] Π(F \ Fn | σ) = o
(
e−C′nϵ2n

)
for a sufficiently large C ′. Let Fn = Φ(L1n, D1n, S1n, Bn, an) as defined in (S8), where Bn = n.
Since B−(L1n−1)

n ≥ exp(−L1n log n) and εn/[2L1n(D1n + 1)L1n ] ≥ exp(−L1n log n), we obtain

εn/[2L1n(Bn ∨ 1)L1n−1(D1n + 1)L1n ] ≥ exp(−2L1n log n) = an (S15)

for all sufficiently large n. Hence, it is easy to show that (a) holds using Lemma B.12 as in the proof
of Theorem 3.3. Let vn =

∫
|u|>Bn

π̃SH (u) du and un =
∫
|u|>an

π̃SH(u)du. Then,

Π(F \ Fn | σ) = Π(F \ Fn)

≤ Π(∃j : |θj | > Bn | L1n, D1n) + Π

T1n∑
j=1

I(|θj | > an) > S1n | L1n, D1n


= (1− (1− vn)

T1n) + Pr(S > S1n),

where S ∼ B(T1n, un) is a binomially distributed random variable. Since vn ≤ e−k1Bn for some
k1 > 0 by Assumption (C1), we have

1− (1− vn)
T1n ≤ T1nvn ≤ e−k1Bn+log T1n = o

(
e−K2nϵ

2
n

)
for a sufficiently large K2 > 0. Let rn = S1n/(T1nun). Using the multiplicative Chernoff bound
of binomial distributions,

Pr(S > S1n) ≤ exp(−T1nun[rn log rn − (rn − 1)]) ≤ exp(−C1S1n log rn)

for some C1 > 0. By (S13) together with Assumption (C3), we have log rn ≥ K3(log n)
2 for a

sufficiently large constant K3 > 0. Therefore,

Pr(S > S1n) ≤ exp(−K3nε
2
n).

Next, as in the proof of Theorem 3.3, there is a constant C1 > 0 and fθ̂ ∈ Φ(L1n, D1n, S1n, B1) for
θ̂ ∈ Θ(L1n, D1n, S1n, B1) such that∥∥fθ̂ − f0

∥∥
L2(PX)

≤ C1N
−s̃
n ≤ εn/8

for all sufficiently large n. Let γ̂ denote the index set of nonzero components in θ̂. Define the
subset of the parameter space Θ(γ̂;L1n, D1n, S1n, B1, an) ⊂ Θ(L1n, D1n, S1n, B1, an) whose
magnitudes exceed an only at γ̂, and let F̃n(γ̂) = Φ(γ̂;L1n, D1n, S1n, B1, an) be the corresponding
NN space. Then, by (S15) and Lemma B.13, there exists θ̂(γ̂) ∈ Θ(γ̂, L1n, D1n, S1n, B1, an) such
that ‖fθ̂ − fθ̂(γ̂)‖L2(PX) ≤ εn/8. Let f̂n = fθ̂(γ̂). For all sufficiently large n, we obtain

Π
(
f ∈ Fn : ‖f − f0‖L2(PX) ≤ εn/2

)
≥ Π

(
f ∈ Fn : ‖f − f̂n‖L2(PX) ≤ εn/4

)
≥ Π

(
f ∈ F̃n(γ̂) : ‖f − f̂n‖∞ ≤ εn/4

)
.
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By Lemma B.13,

Π
(
f ∈ F̃n(γ̂) : ‖f − f̂n‖∞ ≤ εn/4

)
≥ Π

(
θγ̂c ∈ [−an, an]T1n−S1n , ‖θγ̂‖∞ ≤ B1, ‖θ̂γ̂ − θγ̂‖∞≤ εn/4

(D1n + 1)L1nL1n(B1 ∨ 1)L1n−1

)
≥ (1− un)

T1n−S1n

(
tn inf

u∈[−B1,B1]
π̃SH(u)

)S1n

,

where tn = εn/[2(D1n + 1)L1nL1n(B1 ∨ 1)L1n−1]. Therefore,

− log Π(Aϵn) ≲ −S1n log

(
tn inf

u∈[−B1,B1]
π̃SH(u)

)
− (T1n − S1n) log(1− un) + log n

≲ S1n(log n)
2 − T1n log(1− S1n/T1n) + log n

= S1n(log n)
2 + T1n (S1n/T1n + o (S1n/T1n)) + log n

≲ S1n(log n)
2 + S1n + o (S1n) + log n

≲ nε2n.

(S16)

For the second inequality, we used the fact that

− log(1− un) ≤ − log
(
1− e−CA(log n)2

)
≤ − log (1− S1n/T1n)

for sufficiently large n, as implied by Assumption (C3).

C.13 Proof of Theorem 3.9

Proof. Let F = Φ(L̃n). By Lemma A.1, it suffices to show that there exists a subset Fn ⊂ F such
that

(a) logN
(
εn,Fn, ‖·‖L2(PX)

)
≲ nε2n

(b) − log Π(Aϵn) ≲ nε2n

(c) supσ∈[σ,σ] Π(F \ Fn | σ) = o
(
e−C′′nϵ2n

)
for a sufficiently large C ′′. We first prove (i), the case corresponding to the spike-and-slab prior.
Define D̃n = CDNn and S̃n = CSNn log n for sufficiently large CD, CS > 0. Define the sieve

Fn =
⋃

D≤D̃n

⋃
S≤S̃n

Φ(L̃n, D, S,Bn),

where Bn = n. To verify the entropy bound, apply Lemma B.11 to obtain

N (εn,Fn, ‖·‖∞) ≤
∑

D≤D̃n

∑
S≤S̃n

(
2

εn
L̃n(Bn ∨ 1)L̃n(D + 1)2L̃n

)S+1

≤ D̃nS̃n

(
2

εn
L̃n(Bn ∨ 1)L̃n(D̃n + 1)2L̃n

)S̃n+1

.

(S17)

Hence, (a) holds as in the proof of Theorem 3.3. To verify (b), observe that there exists a constant
C ′′′ > 0 such that

min{πD(D̃n), πS(S̃n)} ≳ exp
(
−C ′′′nε2n

)
.

Since D1n ≤ D̃n and S1n ≤ S̃n, by Lemma B.4 and Remark B.6, there exists f̂n = fθ̂ ∈
Φ(L̃n, D̃n, S̃n, Bn) satisfying (S14). Following the proof of Theorem 3.3, it can be shown that

− log Π
(
f ∈ Fn : ‖f − f0‖L2(PX) ≤ εn/2 | D̃n, S̃n

)
≲ nε2n.
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Therefore,

− log Π(Aϵn) ≲ − log Π
(
f ∈ Fn : ‖f − f0‖L2(PX) ≤ εn/2

)
− log n

≤ − log πD(D̃n)− log πS(S̃n)

− log Π
(
f ∈ Fn : ‖f − f0‖L2(PX) ≤ εn/2 | D̃n, S̃n

)
− log n

≲ nε2n,

(S18)

which verifies (b). Now, observe that

Π(F \ Fn | σ) = Π(F \ Fn)

≤ Π(D > D̃n) + Π(S > S̃n)

+
∑

D≤D̃n

∑
S≤S̃n

πD(D)πS(S)Π
(
∃j : |θj | > Bn | L̃n, D, S

)
.

First, we bound the tail probability of D as

Π(D > D̃n) ≲
∑

D>D̃n

e−λDD(logD)3 ≤
∑

D>D̃n

e−λDD(log D̃n)
3 ≲ e−λDD̃n(log D̃n)

3

≤ e−C1nϵ
2
n ,

for a sufficiently large C1 > 0, provided that CD is large enough. Similarly, we obtain Π(S >

S̃n) ≲ e−C2nϵ
2
n for a sufficiently large C2 > 0, provided that CS is sufficiently large. Lastly,

following the argument used in the proof of Theorem 3.3,∑
D≤D̃n

∑
S≤S̃n

πD(D)πS(S)Π
(
∃j : |θj | > Bn | L̃n, D, S

)
=
∑

D≤D̃n

∑
S≤S̃n

πD(D)πS(S)[1− (1− vn)
S ]

≤ 1− (1− vn)
S̃n

= o
(
e−C3nϵ

2
n

)
,

for a sufficiently large C3 > 0. Therefore, (c) holds.

To prove (ii), define the sieve

Fn =
⋃

D≤D̃n

Φ(L̃1n, D, S1n, Bn, an).

Using Lemma B.11, (a) is verified as in (S17). Moreover, following (S16) and (S18), we obtain

− log Π(Aϵn) ≤ − log πD(D̃n)− log Π
(
f ∈ Fn : ‖f − f0‖L2(PX) ≤ εn/2 | L̃n, D̃n

)
− log n

≲ nε2n,

which verifies (b). Lastly, we obtain

Π(F \ Fn | σ)
= Π(F \ Fn)

≤ Π(D > D̃n)

+
∑

D≤D̃n

πD(D)

Π(∃j : |θj | > Bn | L̃1n, D
)
+Π

T1n∑
j=1

I(|θj | > an) > S1n | L̃1n, D

 .
Following the calculation in the proof of Theorem 3.8, we verify (c).
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C.14 Proof of Theorem 3.14

Proof. We only prove the part corresponding to Theorem 3.3 under Assumption (A4). Other argu-
ments proceed similarly. Let F = Φ(L2n, D2n, S2n) and Fn = Φ(L2n, D2n, S2n, B2). We verify
conditions (a) and (b) of Lemma A.1. Using Lemma B.11,

logN
(
εn,Fn, ‖·‖L2(PX)

)
≤ logN (εn,Fn, ‖·‖∞)

≤ (S2n + 1)

[
logL2n + L2n log

(
(B2 ∨ 1)(D2n + 1)2

)
− log

εn
2

]
≲ Nn(log n)

3

≲ nε2n

for sufficiently large n. The last inequalities hold because

L2n � log n, D2n � Nn, S2n � Nn log n

for fixed d(h). Thus, (a) holds. Using Lemma B.9 and Assumption (A1), there exists f̂n = fθ̂ ∈ Fn

such that
‖f̂n − f0‖L2(PX) ≤ C1N

−s̃∗

n ≤ εn/4

for some C1 > 0 and all sufficiently large n. Let γ̂ denote the index set of nonzero components
in θ̂, and let θ̂γ̂ denote the corresponding nonzero values. We define Θ(γ̂;L2n, D2n, S2n, B2) ⊂
Θ(L2n, D2n, S2n, B2) as the subset of parameter space in which only the components indexed by γ̂
are nonzero. The corresponding NN space is denoted by

Fn(γ̂) = Φ(γ̂;L2n, D2n, S2n, B2).

Using Assumption (A3), we have

log Π(|σ − σ0| ≤ εn/2) ≳ log εn ≳ − log n

and hence
Π(Aϵn) ≳ Π(f ∈ Fn : ‖f − f0‖L2(PX) ≤ εn/2)− log n.

Using the earlier result,

Π
(
f ∈ Fn : ‖f − f0‖L2(PX) ≤ εn/2

)
≥ Π

(
f ∈ Fn(γ̂) : ‖f − f̂n‖∞ ≤ εn/4

)
.

Using Lemma B.13,

Π

(
f ∈ Fn(γ̂) : ‖f − f̂n‖∞ ≤ εn/4

)
≥ Π

(
θ ∈ RT2n : θγ̂c = 0, ‖θγ̂‖∞ ≤ B2, ‖θ̂γ̂ − θγ̂‖∞ ≤ εn

4(D2n + 1)L2nL2n(B2 ∨ 1)L2n−1

)
≥
(
t2n inf

u∈[−B2,B2]
π̃SL(u)

)S2n
(
T2n
S2n

)−1

≥
(
t2n(D2n + 1)−L2n inf

u∈[−B2,B2]
π̃SL(u)

)S2n

,

where t2n = εn/[2(D2n + 1)L2nL2n(B2 ∨ 1)L2n−1]. Therefore,

− log Π(Aϵn) ≲ −S2n log

(
t2n(D2n + 1)−L2n inf

u∈[−B2,B2]
π̃SL(u)

)
+ log n

≤ S2n(log n)
2

≲ nε2n,

which verifies (b).
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