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Abstract

Text-to-image (T2I) models are often touted for their supposed ability to create1

compositional images with many components. However, these models can fail2

to faithfully generate images when presented with prompts containing just two3

or three entities. In this work, we seek an explanation for such failures with4

respect to the training data. We introduce the training appearance ratio, which5

compares the number of training images depicting specific entities vs. the number6

of training captions mentioning those same entities, and examine how well this7

measure correlates with generation success rates. We find positive and significant8

correlations between these ratios and successful image generations. Furthermore,9

our proposed measure yields stronger correlations with model success rates than10

existing training data frequency measures. These associations suggest that our11

proposed measure (training appearance ratio) better captures the relationship12

between training data statistics and generation success.13

1 Introduction14

When asked to generate an image of “a bicycle and a skateboard”, Stable Diffusion, a popular15

text-to-image (T2I) model [Rombach et al., 2022], succeeds only 8% of the time. Despite “bicycle”16

and “skateboard” being common objects that are generated separately nearly 100% of the time, the17

model fails to generate both jointly. The inability of models to handle such simple cases showcase18

their weak compositional capabilities.19

In this work, we aim to explain models’ failures with respect to their training data properties.20

Drawing from previous works that have shown that pretraining data frequencies correlate with model21

performance [Razeghi et al., 2022, Kandpal et al., 2023, Udandarao et al., 2024], we first seek to22

replicate such findings for our setup of generating multiple common entities. However, our results23

indicate that simple caption frequencies correlate poorly with models’ generation success rates. Upon24

digging into the training data, we observe that captions mentioning entities may pair with images that25

only showcase a subset of those entities, or none at all, as shown in Figure 1b. For instance, there26

are more than 9,000 captions in LAION2B-en [Schuhmann et al., 2022] that mention both “bicycle”27

and “skateboard”, but only 9% of corresponding images actually contain both objects. These findings28

indicate that captions alone provide an inaccurate measure of how often entities are actually depicted29

in training images.30

Based on these findings, we adjust our frequencies to only consider training examples for which both31

the captions and images contain all specified entities, similar to Udandarao et al. [2024]. While these32

adjusted frequencies correlate better with models’ generation success rates, they do not account for33

how T2I models are trained and utilized in practice (i.e., images are conditioned on texts). Therefore,34

we consider the ratio between entities appearance in training images vs. captions, which explicitly35
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(a) Generated images for the prompt “a bicycle and a skateboard”.
The model (SD1.5) mostly generates one of the two objects (primarily
bicycles).

(b) Training images where either skateboard or bicycle are shown, but
not both. Many of these images depict parks and outdoors spaces that are
suitable for both skateboarding and bicycling, but only include one.

Figure 1: Examples of generated/training images where prompts/captions mention “skateboard” and
“bicycle”, but corresponding images do not include both.

incorporates this conditioning, and formalize this measure to be the training appearance ratio. We36

find that this ratio exhibits stronger correlations with model generation capabilities across various37

combinations of models, prompts, and entities (ρ = 0.43 vs. 0.27 for 2 entities, and ρ = 0.31 vs.38

0.19 for 3 entities, averaged). These stronger correlations show that our measure better associates39

success in generating images with the training data.40

In summary, our work demonstrates that models are poor at basic compositional generations, and41

proposes a new training data measure that correlates better with models’ success rates than existing42

approaches. Our findings suggest that simple training appearance ratios help better understand model43

behavior, at least in part, and establish a foundation for future work that investigates concrete and44

comprehensive explanations for model failures and successes.45

2 Explaining Successes Through Training Data Statistics46

T2I models often fail to generate images following simple prompts with multiple common entities.47

Our main goal in this study is to investigate to what extent models’ ability to faithfully generate48

images from prompts can be attributed to statistics from their training data. To address this objective,49

we need to first define how we measure and compare training data statistics and image generation50

success. Consider a training dataset D = {(x1, y1), (x2, y2), ..., (xN , yN )} consisting of N (image,51

caption) pairs. We also assume a prompt p that instructs the model to generate some entities52

e = {e1, e2, ..., ek}, where ∀i, ei ∈ p. To identify relevant examples from D we select training53

captions that mention the entities e specified in p. For example, for the prompt “a bicycle and a54

skateboard”, we query from D and choose image-caption pairs whose captions include the entities55

“bicycle” and “skateboard”.56

Note that while entities e may appear in a caption yi, the image xi corresponding to that caption57

may not contain all entities (sometimes even none), as depicted in Figure 1, and as was observed58

in Udandarao et al. [2024].1 Since raw counts provide a biased estimation of entity occurrences59

in images, we instead propose measuring the proportion of captions whose images also contain all60

specified entities.61

1Table 5 (Appendix) shows example image-caption pairs that fall under these cases.
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We define this quantity to be the training appearance ratio (tare,ic):62

tare,ic =
|De,i|
|De,c|

where De,c is the subset of D whose captions contain entities e, and De,i is the subset of D whose63

captions and images contain entities e. A higher value of tare,ic indicates that image-caption pairs64

that mention a set of entities in captions also tend to include those entities in images.65

After computing tare,ic, we generate images for prompt p using a T2I model to obtain generated66

images Ge,p. We calculate the proportion of images that depict all entities, which we call the67

generation appearance ratio (gare,ip).68

gare,ip =
|Ge,i|
|Ge,p|

Similar to above, Ge,i is the subset of generated images whose prompts and images contain entities69

e. We then examine whether the generation appearance ratio of generated entities that are explicitly70

specified in prompts (gare,ip) correlates with corresponding ratios from the training data (tare,ic).71

While previous works highlight correlations between model behavior and frequencies in the data72

[Razeghi et al., 2022, Kandpal et al., 2023, Udandarao et al., 2024], we hypothesize that training73

appearance ratios exhibit stronger associations with model generation capabilities, since tare,ic74

directly captures discrepancies in how often entities occur in training images vs. texts (similar to75

how gare,ip captures discrepancies in how often entities occur in generated images vs. prompts). In76

other words, we argue that tare,ic more closely matches what we measure at generation, resulting in77

stronger correlations as we show in Section 4.78

3 Experimental Setup79

Entities We select entities from the MS COCO dataset [Lin et al., 2014] classes in addition to80

manually added entities (e.g., fruits, vegetables) as shown in Table 3 (Appendix), resulting in 8481

entities. We intentionally focus on frequent entities that models succeed in generating individually,82

and whose presence or absence are easy to evaluate.83

Automated Image Evaluation To determine whether an image contains specified entities, we84

utilize an automated approach. We use visual question answering (VQA) and employ PaliGemma85

[Google, 2024] as our VQA model. More specifically, we ask the model whether an image contains a86

given entity, which is done for all entities in the prompt, and consider an image to contain all entities87

if the model answers “yes” for every entity. Note that PaliGemma achieves 91% on human annotated88

images, as discussed in Appendix A.5.89

Entity Caption Occurrences We use WIMBD [Elazar et al., 2024] to retrieve counts of entities90

from the training data. Specifically, we extract captions that mention a set of entities (De,c), and91

randomly sample up to 1, 000 image-caption pairs. Based on the corresponding images, we calculate92

the proportion of images that depict the specified entities to measure tare,ic. We multiply the number93

of captions (|De,c|) by the ratios computed previously, tare,ic, to estimate the number of training94

examples that both mention entities in captions and include them in images.95

Prompts We prompt the model to generate images with one, two, and three entities using the96

prompts shown in Table 4 in Appendix A.1. For each prompt, we generate 50 images using different97

random seeds, resulting in 100 images total for single entity prompts and 200 images total for double98

and triple entity prompts.99

Data & Models We focus on Stable Diffusion [Rombach et al., 2022], a popular set of text-to-image100

models. Specifically, we use SD1.1 and SD1.5, which are both trained on 2.3 billion image-caption101

pairs filtered to contain only English captions (LAION2B-en). Additionally we use SD2.1, which is102

trained on LAION-5B [Schuhmann et al., 2022], a dataset of 5.9 billion multilingual image-captions103

pairs (including LAION2B-en). Notably, we use Stable Diffusion models for our study because104

they are the only models with publicly available training datasets, which is necessary for deriving105

connections between training dataset properties and model behavior.106
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(a) 1 Entity (b) 2 Entities (c) 3 Entities

Figure 2: Correlations between generation appearance ratios (gare,ip) and training appearance ratios
(tare,ic) for 1, 2, and 3 entities, shown for SD1.1 and prompt 1. We bin examples into 10 equally-
sized groups or deciles based on tare,ic and compute median tare,ic and gare,ip values for each bin,
which correspond to the navy blue points.

Model 1 Entity 2 Entities 3 Entities

SD1.1 0.98 0.44 0.18
SD1.5 0.99 0.50 0.21
SD2.1 0.96 0.66 0.32

Table 1: Generation appearance ratios (gare,ip) for different models and # of entities, averaged across
prompts.

4 Results107

Generation Appearance Ratios How good are models at compositional generation? To answer108

this question, we examine generation appearance ratios (gare,ip), which capture the success rate of109

generating images with all specified entities, for different models and number of entities (Table 1).110

We find that all models successfully generate single entities > 96% of the time, validating that models111

are capable of generating common individual entities. However, models exhibit massive drops when112

generating two and three entities – for example, both SD1.1 and SD1.5 models generate two entities113

<= 50% of the time. Although SD2.1 is notably better at generating two entities (at nearly 66%), it114

still struggles in this simple compositional setting. In summary, we see that models fail increasingly115

as prompts depict more entities. We do not go beyond 3 entities, since Stable Diffusion generates116

four entities < 5% of the time.117

Correlations between Model Behavior and Training Data Statistics We wish to explain model118

success rates in generating various entities with respect to the training data. To do so, we first analyze119

frequency-based approaches, building on related work that explores the impact of training data in120

different settings [Razeghi et al., 2022, Udandarao et al., 2024]. We then show that our proposed121

measure (tare,ic) is more strongly correlated with model behavior.122

Baselines: Frequency-based Approaches As baselines, we compute Pearson’s correlation be-123

tween gare,ip and (1) frequencies of entities in captions and (2) estimated frequencies of entities in124

images (counts multiplied by tare,ic). Following Udandarao et al. [2024], we compute the log10 of125

frequencies to capture log-linear associations, and refer to the resulting correlations as ρcap and ρim.126

Results are presented in the first two sections of Table 2 for various models and number of entities,127

averaged across prompts.128

We find that ρcap is not statistically significant (significance level < 0.01) across all combinations of129

models, prompts, and number of entities except for SD1.1 with one entity. For the overwhelming130

majority of cases, raw captions counts do not correlate with gare,ip. These results are unsurprising,131

since raw caption counts are poor indicators of how often entities actually occur in training images.132

We observe negative correlations for ρcap in the three entity case, which is somewhat surprising, but133

these values are not statistically significant. In contrast, ρim exhibits consistently positive correlations134

for two and three entities, and is statistically significant across all prompts and models in the two135

entity case. When comparing ρim values for two and three entities, we observe a clear reduction136

in ρim across models (0.08 absolute decrease). This reduction may be due to models exhibiting137
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Corr Model
Number of Entities

1 2 3

ρcap
SD1.1 **0.37 0.06 -0.12
SD1.5 0.12 0.07 -0.06
SD2.1 0.20 0.02 -0.06

ρim
SD1.1 **0.40 **0.31 0.20
SD1.5 0.18 **0.28 0.17
SD2.1 0.26 **0.23 0.21

ρratio
(ours)

SD1.1 0.17 **0.47 **0.34
SD1.5 0.29 **0.42 **0.28
SD2.1 0.23 **0.40 **0.30

Table 2: Pearson’s correlation coefficients between generation appearance ratios and various training
data measures: (1) frequency of entities in captions (ρcap) as a baseline, (2) estimated frequency of
entities in images (ρim) as another baseline, and (3) our proposed measure (ρratio), averaged across
prompts. We compute the log10 of frequencies for (1) and (2) to capture log-linear associations. **

indicates correlations are statistically significant (significance level < 0.01) for all prompts.

poor generation capabilities as a whole for three entities. Overall, these findings indicate that138

frequency-based measures may not be effective in capturing generation success for multiple entities.139

Proposed Measure: Training Appearance Ratios We present correlation results between gare,ip140

and tare,ic in the last section of Table 2 (ρratio). We find that all models exhibit positive, but not141

statistically significant correlations for single entities. Since we select frequently occurring entities142

by design, we can expect models to generate them successfully irrespective of tare,ic.143

For prompts with two and three entities, we observe positive and statistically significant correlations144

across all models, prompts, and number of entities. Both Figures 2b (two entities, and 2c (three enti-145

ties) show linear associations between generation and training appearance ratios. These associations146

become much clearer when data points are binned into deciles based on tare,ic, with ρratio=0.95 for147

2 entities and ρratio=0.90 for 3 entities. We observe some variability across prompts with σ ≤ 0.07148

for two entities and σ ≤ 0.06 for three entities. Similar to ρim, we see a decrease in ρratio going149

from two to three entities (0.12 absolute decrease). That being said, ρratio consistently exhibits150

statistical significance and higher values relative to ρim. Overall, these results suggest ρratio is a151

stronger indicator of successful generations for compositional prompts depicting multiple entities.152

5 Conclusion153

This work studies the connection between models’ generation success and training appearance154

ratios. Although numerous studies have shown that model performance strongly correlates with155

the frequency of entities [Razeghi et al., 2022, Kandpal et al., 2023, Udandarao et al., 2024], we156

show that for image generation, successful generations correlate better with the proportion of training157

captions that depict specified entities. Our findings are complemented by Seshadri et al. [2024], who158

also show that model generations are associated with ratios from the training data in the context of159

gender-occupation biases. Our results emphasize the need for improving data quality by limiting160

image-caption mismatches and further necessitate open access to pretraining corpuses to be able to161

characterize model behaviors and their flaws.162
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Limitations240

We compare properties in the training data with model behavior using correlational analysis and241

observe clear trends: higher training appearance ratios are associated with higher generation successes.242

However, we cannot assert that our measure explains or definitively impacts model behavior without243

employing a causal approach, and leave this important direction to future work.244

Our results suggest that different entity combinations with similar training appearance ratios can245

have variable generation success rates. Although correlations between training appearance ratios and246

model success rates are consistently positive and significant in the two and three entity settings, they247

are weakly to moderately positive. These results suggest that simple training appearance ratios offer248

some insights into models’ generation capabilities, but do not provide the full story. Perhaps there249

are more nuanced training data measures to consider, or other factors beyond the data such as model250

scale, architecture, and training.251

Along these lines, it is worth noting that closed models such as DALL-E 2 [Ramesh et al., 2022], and252

especially DALL-E 3 [Betker et al., 2023], are much better at handling compositional prompts. While253

we do not know the exact factors that contribute to this improvement, we speculate that training data254

quality and curation play a huge role. Perhaps the image-caption pairs used to train such models255

were filtered or augmented to have much higher training appearance ratios as a whole. However,256

without access to such datasets, it is unclear to what extent training appearance ratios are a driving257

force behind more capable models.258

In addition, we focus on the specific setup of generating between 1-3 entities, which is a fundamental259

aspect of compositional understanding. As we show, models fail considerably even in this simple260

setting. However, there are other well-known failure modes [Ghosh et al., 2023, Huang et al., 2023,261

Rassin et al., 2023] in text-to-image generation that should be considered, as well as more complex262

compositions [Wu et al., 2024]. Furthermore, our study focuses exclusively on English prompts. We263

encourage researchers to study the association between training data and text-to-image generation264

for other languages. This study is among the first to investigate text-to-image failure modes with265

respect to training data, and we hope that it motivates future work to further probe and expand on266

these findings.267
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Entities
airplane apple asparagus backpack banana
bear bed beet bench bicycle
bird boat book bottle bowl
broccoli bus cake car carrot
cat chair clock coconut corn
couch cow cup daisy dog
donut elephant fork garlic giraffe
grapes handbag horse hydrangea iris
kale keyboard kite knife laptop
lily lime mango microwave motorcycle
onion orchid oven peony pineapple
pizza pomegranate refrigerator remote rose
sandwich sheep sink skateboard skis
snowboard spoon strawberry suitcase sunflower
surfboard tie toaster toilet tomato
toothbrush train truck tulip tv
umbrella vase watermelon zebra

Table 3: List of 84 common entities used to study models’ ability to generate multiple entities.

A Appendix268

A.1 Prompts269

The prompts used for generating images are presented in Table 4. For each prompt, we have the270

following number of instances (i.e., entity combinations after filling in [E1], [E2], [E3]): we have 84271

instances for 1 entity, 440 instances for 2 entities, and 440 instances for 3 entities.

# Entities Prompt

1 1. a/an [E1]
2. a photo of a/an [E1]

2

1. a/an [E1] and a/an [E2]
2. a photo of a/an [E1] and a/an [E2]
3. [E1], [E2]
4. a/an [E1] next to a/an [E2]

3

1. a/an [E1] and a/an [E2] and a/an [E3]
2. a photo of a/an [E1] and a/an [E2] and a/an [E3]
3. [E1], [E2], [E3]
4. a/an [E1] next to a/an [E2] and a/an [E3]

Table 4: Image generation prompts for single, double, and triple entities. [E1], [E2], and [E3] are
replaced with various entities (e.g., elephant, zebra, and giraffe).

272

A.2 Image Generation273

This work uses 3 Stable Diffusion versions: SD1.1 and SD1.5 (trained on LAION2B-en) and SD2.1274

(trained on LAION-5B). We use the default generation parameters of 50 inference steps and a275

guidance scale of 7.5. We specify a batch size of 4. For a given instance of a prompt (i.e., filled in276

with entities) and model version, we generate 50 images using different random seeds. In total, our277

generations have taken ∼600 hours in total on a single TITAN RTX GPU.278
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(a) Single Entity (ρ = 0.95) (b) Double Entities (ρ = 0.99) (c) Triple Entities (ρ = 0.99)

Figure 3: Correlations between training appearance ratios (tare,ic) for LAION2B-en and LAION-5B
for 1, 2, and 3 entities. We observe strong correlations for all three.

A.3 Entities279

The entities used to fill in prompts are presented in Table 3. We include 84 entities in total. The280

minimum count in in the dataset is for the word “beet” with 123,134 caption mentions for LAION2B-281

en and 194,530 caption mention for LAION5B. The maximum count is for the word “book” with282

21,353,659 caption mentions in LAION2B-en and 28,379,268 for LAION5B.283

A.4 VQA284

For performing automated image evaluation, a common choice is to use CLIPScore [Hessel et al.,285

2021]. However, CLIP [Radford et al., 2021], its underlying model, struggles with compositional286

understanding [Hu et al., 2023, Yuksekgonul et al., 2023] and performs poorly for such prompts. As287

a result, we turn to Visual Question Answering (VQA). We ask a separate question for each entity288

using the following format: “Is there a/an [entity] in this image, yes or no?”, which is then asked289

for all entities in the prompt. If the model responds “yes” to each of the questions, we consider the290

image to contain all specified entities. This approach is used for both training and generated images.291

A.5 Human Evaluation292

We perform human evaluation to assess whether our VQA approach is appropriate and effective for293

evaluating the presence of entities in images. The authors of this paper labeled 400 randomly selected294

generated images in the two entity setting, providing annotations for entity1 and entity2. We find295

that PaliGemma predictions match human annotations in 90.88% of cases, which indicates strong296

performance. The biggest disagreements between human annotations and model predictions tend to297

be cases for which entities are similar in appearance and use cases (e.g., backpack and handbag), as298

well as large size differences (e.g., toothbrush and snowboard).299

A.6 Comparing Training Appearance Ratios300

As shown in Figure 3, training appearance ratios calculated using LAION2B-en and LAION5B are301

highly correlated. While this is perhaps not surprising given that we focus exclusively on English and302

LAION2B-en is a subset of LAION5B, it is worth noting that these ratios are preserved across both303

datasets for the entity combinations we consider.304
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(a) Generated images using SD2.1 with the prompt
“a toothbrush and a sink” (gare,ip=0.44).

(b) Training images whose captions mention both
“sink” and “toothbrush” (tare,ic=0.44).

Figure 4: We sample generated and training images for the prompt “a toothbrush and a sink”. Both
the generation and training appearance ratios are the same. We see that generated images depicting
one entity tend to show sinks, while training images depicting one entity show both toothbrush and
sink individually.

(a) Generated images using SD2.1 with the prompt
“a watermelon and a handbag” (gare,ip=0.48).

(b) Training images whose captions mention both
“watermelon” and “handbag” (tare,ic=0.46).

Figure 5: We sample generated and training images for the prompt “a watermelon and a handbag”.
Both the generation and training appearance ratios are very similar. We see that generated images seem
to always depict watermelons, and sometimes handbags (with appearances similar to a watermelon).
While some training images are watermelon handbags, other examples may depict accessories or
watermelon-colored handbags.
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(a) Generated images using SD2.1 with the prompt
“a giraffe and a bear” (gare,ip=0.46).

(b) Training images whose captions mention both
“giraffe” and “bear” (tare,ic=0.43).

Figure 6: We sample generated and training images for the prompt “a giraffe and a bear”. We observe
that while the generation and training appearance ratios are highly similar, the ways in which entities
are depicted at generation and training differ quite noticeably (e.g., training images mostly show toys
or cartoons).

(a) Generated images using SD1.5 with the prompt
“a motorcycle and a bench” (gare,ip=0.08).

(b) Training images whose captions mention both
“motorcycle” and “bench” (tare,ic=0.08).

Figure 7: We sample generated and training images for the prompt “a motorcycle and a bench”. The
generation and training appearance ratios are identical. At generation, the model generates images
of motorcycles individually a clear majority of the time. The training data, however, also includes
images of benches individually as well as images without either entity.

12



(a) Generated images using SD1.5 with the prompt
“a photo of a bus and a horse” (gare,ip=0.18).

(b) Training images whose captions mention both
“motorcycle” and “bench” (tare,ic=0.21).

Figure 8: We sample generated and training images for the prompt “a photo of a bus and a horse”.
The generation and training appearance ratios are very close. At generation, the model often generates
buses individually, specifically red buses. While training images also depict buses individually in
several cases, they seem to capture a more diverse set of buses.

(a) Generated images using SD1.5 with the prompt
“elephant, daisy” (gare,ip=0.24).

(b) Training images whose captions mention both
“elephant” and “daisy” (tare,ic=0.30).

Figure 9: We sample generated and training images for the prompt “elephant, daisy”. The generation
and training appearance ratios are fairly close. At generation, the model mostly depicts elephants
individually, and they look reasonably realistic. In training images, we mainly see artistic renditions
of elephants.
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(a) Generated images using SD1.5 with the prompt
“boat, chair” (gare,ip=0.16).

(b) Training images whose captions mention both
“boat” and “chair” (tare,ic=0.19).

Figure 10: We sample generated and training images for the prompt “boat, chair”. The generation
and training appearance ratios are fairly close. At generation, the model primarily depicts a boat or
chair, often individually, in an outdoor setting. In training images, while we see some entities in
outdoor setting, many just depict a chair in a staged setting.
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Image Caption VQA Predictions

How To Make An Asparagus Bed asparagus: yes, bed:
no

Bluetooth Speaker Panda with Remote Shutter Release White
4.3x4.5cm

panda: yes, remote:
no

Candy apple Red Volkswagen bus for couple and bridal party
at waterfront wedding

apple: no, bus: yes

Sweet potato, coconut and tomato lentil dahl in a bowl beside
a bowl of cherry tomatoes

coconut: no, tomato:
yes

Extreme BMX Bicycle Riding in Concrete Skateboard Park -
Bar spin to tire tap Stock Footage

bicycle: yes, skate-
board: no

Lily the Borzoi chasing other dog lily: no, dog: yes

LED Waterproof RGB Colorful Wedding Party Vase Base
Light Submersible+Remote

vase: no, remote: yes

An elephant cow taking a dust bath with her calf (Kruger
National Park, South Africa).

elephant: yes, cow: no

Collapsible Chair From Skis Ski Woodcraft Pinterest chair: yes, skis: no

Jungle Animal Shapes - Cake Toppers or Party Decorations
monkey giraffe lion elephant tiger zebra snake hippo baby
shower birthday party

cake: no, giraffe: yes

Table 5: Example training images and captions for which captions mention two specified entities
(captions may mention other entities as well), but images only depict one of the specified entities
clearly. Specified entities are in bold. One potential explanation for such occurrences is the ambiguity
of words (e.g., “Lily” is both a name and a flower). Another explanation is that a combination of
entities may have their own meaning (e.g., “asparagus bed” is not the same as “asparagus” + “bed”).
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