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ABSTRACT

The Bregman divergence, which is generated from a convex function, is com-
monly used as a pseudo-distance for comparing vectors or functions in continu-
ous spaces. In contrast, defining an analog of the Bregman divergence for discrete
spaces is nontrivial. Iyer & Bilmes (2012b) considered Bregman divergences on
discrete domains using submodular functions as generating functions, the discrete
analogs of convex functions. In this paper, we further generalize this framework to
cases where the generating function is neither submodular nor supermodular, thus
increasing the flexibility and representational capacity of the resulting divergence,
which we term the difference-of-submodular Bregman divergence. Additionally,
we introduce a learnable form of this divergence using permutation-invariant neu-
ral networks (NNs) and demonstrate through experiments that it effectively cap-
tures key structural properties in discrete data. As a result, the proposed method
significantly improves the performance of existing methods on tasks such as clus-
tering and set retrieval problems. This work addresses the challenge of defining
meaningful divergences in discrete settings and provides a new tool for tasks re-
quiring structure-preserving distance measures.

1 INTRODUCTION

A divergence is a principal concept that determines the geometric structure of a space of interest,
which is formally defined as follows:
Definition 1.1. Let Ω be a set. A function D : Ω×Ω → R is called a divergence on Ω if D satisfies
the following conditions: for all x, y ∈ Ω,

D(x, y) ≥ 0, and
D(x, y) = 0 ⇐⇒ x = y.

The Bregman divergence is a class of divergences that measure dissimilarity between two points
based on a strictly convex function. Given a strictly convex and differentiable function f , the Breg-
man divergence Df between two points x and y in a convex set Ω ⊆ Rd is defined as:

Df (x,y) = f(x)− f(y)− ⟨∇f(y),x− y⟩ (1)

where ∇f(y) is the gradient of f evaluated at y and ⟨·, ·⟩ denotes the inner product. It generalizes
the squared Euclidean distance and the Kullback–Leibler divergence (Kullback & Leibler, 1951).
Typically, divergences are defined on differential manifolds, such as a Euclidean space and a family
of distributions. Compared to these continuous spaces, it is more challenging to define a reasonable
and capable metric on discrete spaces, such as 2V with V = {1, . . . , N} being a finite ground set.
Although there are numerous choices for measuring a distance or similarity between subsets X,Y ∈
2V , most known metrics in the literature are constructed by counting the sizes of X ∩Y,X \Y , and
other simple set operations (Choi et al., 2010). Such classical metrics easily become less meaningful
when the ground set V is large because rarely do same elements co-occur in two subsets of V .

The submodular-Bregman divergence (Iyer & Bilmes, 2012b) is the first to tackle this problem with
the theory of submodular set functions. It is based on the fact that subgradients and supergradients
can be defined for any submodular function. Therefore, a Bregman-like divergence can be defined
through a submodular function f in the way analogous to the standard Bregman divergence (1).
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Although the submodular-Bregman divergence is quite natural and intuitive, it is not clear whether
it satisfies the definition of divergences. This problem comes from identifiability of the divergence:
D(x, y) = 0 =⇒ x = y in Definition 1.1. In the usual Bregman divergence (1), the strict convexity
is required for f to guarantee the identifiability. Similar to the usual Bregman divergence, the sub-
gradients or supergradients are insufficient to make it a divergence; it may be necessary to assume
the existence of strict subgradients or strict supergradients.

Another issue in the submodular-Bregman divergence is that the choice of the submodular function
is ad-hoc. Although Iyer & Bilmes (2012b) introduces several concrete examples of the submodular
function, the resulting divergences are again the forms with respect to simple set operations. So it is
unclear whether they actually overcome the difficulty of the classical metrics between sets. There-
fore, a more flexible framework for handling the submodular-Bregman divergence is necessary, and
it would be even better if we could extend the capability of submodular-Bregman divergence.

Our contribution. In this paper, we introduce a novel class of divergences on discrete spaces that
is strictly more expressive than submodular Bregman divergences and propose a learning framework
of the divergences through permutation-invariant NNs. First, we formally show that the submodular-
Bregman divergence is indeed a divergence if f is strictly submodular. By extending this observa-
tion, we further propose a new class of divergences that can be defined even if f is neither sub-
modular nor supermodular. Since the concrete way to compose the divergence depends on the
difference-of-submodular decomposition (Narasimhan & Bilmes, 2005; Iyer & Bilmes, 2012b; Li
& Du, 2020), we call it difference-of-submodular Bregman divergences. We show that the expressive
power of difference-of-submodular Bregman divergences defined by set function f gets richer if the
class of the underlying set function f gets larger. We then propose a learnable form of difference-
of-submodular Bregman divergences based on submodular permutation-invariant NNs. Numerical
experiment shows that learnable difference-of-submodular Bregman divergences can capture the
crucial structure and significantly improves the performance of existing methods in downstream
tasks.

Related work. Bregman divergences play a central role in various areas of statistics and machine
learning, including clustering, regression, and optimization. For example, the classical k-means al-
gorithm is a special case of Bregman k-means clustering, where the squared Euclidean distance is
replaced with a Bregman divergence. This generalization allows for clustering based on different
divergence measures, providing more flexibility (Banerjee et al., 2005). The Bregman divergence
is closely related to the exponential family of distributions and generalized linear models. The di-
vergence can be derived from the convex conjugate of the log-partition function of the exponential
family (Wainwright & Jordan, 2008). In information geometry, it is used to define the geometry of
statistical models and provides a framework for understanding various divergence measures (Amari,
2016). The Bregman divergence is also appeared in matrix factorization techniques, such as non-
negative matrix factorization with a Bregman divergence, which allows different divergence mea-
sures to be used in the factorization process (Cichocki & Amari, 2010). In optimization, it is used in
mirror descent algorithms and other first-order optimization methods. These methods benefit from
the divergence’s properties to achieve better convergence (Beck & Teboulle, 2003). In variational
inference, the Bregman divergence measures the difference between the true posterior distribution
and the variational approximation (Blei et al., 2017). Faust et al. (2023) elaborates the theory of
difference-of-convex algorithms through the lens of the Bregman divergence. By considering Breg-
man divergences on a discrete space, it is expected that the wealth of knowledge provided by these
studies can be utilized.

Distance metric learning (DML (Ye et al., 2018; Wang & Sun, 2014)) is a technique used to learn
a distance metric that can effectively measure the similarity or dissimilarity between instances.
This is crucial for improving the performance of various machine learning tasks such as classifi-
cation (Weinberger et al., 2005; Davis et al., 2007; Goldberger et al., 2005), clustering (Xing et al.,
2002; Kulis et al., 2005; Ye et al., 2007), and information retrieval (Song et al., 2016; Schroff et al.,
2015; Wang et al., 2014). Min et al. (2009) and Salakhutdinov & Hinton (2007) used NNs to learn
representations that make metric learning easier. There is also research in distance metric learning
that aims to learn Bregman divergences from data (Li et al., 2023; Rezaei et al., 2023; Lu et al.,
2023; Siahkamari et al., 2020). However, to the best of our knowledge, there is no research that
learns Bregman divergences over discrete sets.
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2 PRELIMINARIES

In this section, we introduce submodular and supermodular functions and their differentials, the
concept of strict modularity, and permutation-invariant NNs necessary for the flexible realization of
submodular and supermodular functions, as the building blocks of the divergence proposed in this
paper.

2.1 SUBMODULAR FUNCTIONS AND SEMIDIFFERENTIALS

Definition 2.1. A set function f : 2V → R is said to be submodular if
f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y )

holds for every X,Y ⊆ V . In addition, f is supermodular if −f is submodular, and f is modular if
f is both submodular and supermodular.

A modular function m : 2V → R is known to be written by m(X) =
∑

i∈X m(i), and it is identified
as the vector (m1, . . . ,mN ) := (m(1), . . . ,m(N)) ∈ RN (we define m(∅) := 0). Thus, the inner
product of two modular functions m,m′ : 2V → R is calculated as the inner product of the two
vectors: ⟨m,m′⟩ :=

∑N
i=1 m(i)m′(i) =

∑N
i=1 mim

′
i.

Submodular functions are often understood as discrete versions of convex functions. Indeed, subd-
ifferentials can be defined for a submodular function f (Fujishige, 2005). Interestingly, superdiffer-
entials are also defined for a submodular function (Iyer & Bilmes, 2012b):
Definition 2.2. Let f : 2V → R be a submodular function. The set of modular functions

∂f (Y ) := {m ∈ RN : ∀X ⊆ V, m(X)−m(Y ) ≤ f(X)− f(Y )}
is called the subdifferential of f at Y ⊆ V , and hY ∈ ∂f (Y ) is called a subgradient of f at Y ⊆ V .
Similarly, the set of modular functions

∂f (Y ) := {m ∈ RN : ∀X ⊆ V, m(X)−m(Y ) ≥ f(X)− f(Y )}
is called the superdifferential of f at Y ⊆ V , and gY ∈ ∂f (Y ) is called a supergradient of f at
Y ⊆ V .

Sub- and super-differentials are together referred to as semidifferentials (Iyer et al., 2013). In gen-
eral, there are infinitely many choices to pick a subgradient hY ∈ ∂f (Y ) (see the proof of Propo-
sition A.4) and the extreme point can be obtained by a greedy algorithm (Edmonds, 1970). On the
other hand, Iyer & Bilmes (2012b) proposes three types of supergradients ĝY , ǧY , ḡY ∈ ∂f (Y ) and
they are called grow, shrink, and bar supergradients, respectively (Iyer et al., 2013). Table 1 shows
the form of these supergradients.

2.2 STRICT SUBMODULARITY

Recall that Bregman divergences are defined using strictly convex functions. We analogously need
to introduce strict submodularity for set functions.
Definition 2.3. A set function f : 2V → R is said to be strictly submodular if

f(X) + f(Y ) > f(X ∪ Y ) + f(X ∩ Y ) (2)

for every non-comparable1 X,Y ⊆ V and f is strictly supermodular if −f is strictly submodular.

For example, the facility location function is an important class of submodular functions. Let ϕij be
non-negative values for i ∈ V = {1, . . . , N} and k = 1, . . . ,K. Then, the facility location function
is written as fFC : X 7→

∑K
k=1 maxi∈X ϕik. More generally, the log-sum-exp relaxation of the

facility location function,

fFC,ε(X) := ε
K∑

k=1

log
∑
i∈X

eϕik/ε, (3)

is strictly submodular for ε > 0 (see Appendix B for the proof) and it converges to fFC as ε → 0.

For a strictly submodular function, we can define strict semidifferentials:
1X and Y are said to be non-comparable if neither X ⊆ Y nor Y ⊆ X .
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Table 1: Supergradients proposed in (Iyer & Bilmes, 2012b). We denote f(j|Y ) := f({j} ∪ Y ) −
f(Y ) for any Y ⊆ V and j ∈ V .

j ∈ Y j /∈ Y

ĝY (j) f(j|V \{j}) f(j|Y )
ǧY (j) f(j|Y \{j}) f(j|∅)
ḡY (j) f(j|V \{j}) f(j|∅)

Definition 2.4. Let f : 2V → R be a strictly submodular function. The set of modular functions

∂̃f (Y ) := {m ∈ RN : ∀X ∈ 2V \{Y }, m(X)−m(Y ) < f(X)− f(Y )} (4)

is called the strict subdifferential of f at Y ⊆ V , and h̃Y ∈ ∂̃f (Y ) is called a strict subgradient of f
at Y ⊆ V . Similarly

∂̃f (Y ) := {m ∈ RN : ∀X ∈ 2V \{Y }, m(X)−m(Y ) > f(X)− f(Y )} (5)

is called the strict superdifferential of f at Y ⊆ V , and g̃Y ∈ ∂̃f (Y ) is called a strict supergradient
of f at Y ⊆ V .

The non-emptiness of ∂̃f is shown in Appendix A. All of the three supergradients ĝY , ǧY , and ḡY
defined in Table 1 satisfy the definition of the strict supergradients if f is strictly supermodular.
Proposition 2.5 (Strict supergradients). The modular functions ĝY , ǧY , and ḡY defined in Table 1
are all the strict supergradients if f is strictly supermodular.

See Appendix A for the proof.

2.3 PERMUTATION-INVARIANT NEURAL NETWORKS

Permutation invariance is the key concept in leveraging modern NN architectures to model set-
structured data (Zaheer et al., 2017). Let V = {1, . . . , N} be the index set and XN =
{[x1, . . . ,xM ] ∈ RD×M : x1, . . . ,xM ∈ RD, M ≤ N} be the entire set of matrices with N
or fewer columns. We consider an NN fNN : XN → Y , where Y is the output space2. The permu-
tation invariance requests fNN to behave as a set function on 2V .
Definition 2.6. The function fNN is said to be permutation invariant if it satisfies

fNN([x1, . . . ,xM ]) = fNN([xπM (1), . . . ,xπM (M)])

for any M ∈ V , any inputs x1, . . . ,xM , and any permutation πM : {1, . . . ,M} → {1, . . .M}.

The permutation invariance and permutation invariant NN are first introduced along with Deep Sets
(Zaheer et al., 2017). Today, many effective permutation-invariant architectures are developed such
as PointNet (Qi et al., 2017), Set Transformer (Lee et al., 2019), Perceiver (Jaegle et al., 2021), and
SetVAE (Kim et al., 2021). See (Kimura et al., 2024) for a comprehensive review about permutation-
invariant NNs.

In particular, PointNet is convenient for modeling submodular functions. As in (3), we define the
PointNet architecture in the generalized form with log-sum-exp.
Definition 2.7. Let ϕ := [ϕ1, . . . , ϕK ] : RD → RK , γ : RK → R, ε ≥ 0, and X ⊆ V . When
ε > 0, the architecture of ε-PointNet fPN,ε is written by

fPN,ε([xi]i∈X) = γ

(ε log∑
i∈X

eϕ1(xi)/ε, . . . , ε log
∑
i∈X

eϕK(xi)/ε

)⊤
 . (6)

For ε = 0, it is defined as

fPN,0([xi]i∈X) = γ

((
max
i∈X

ϕ1(xi), . . . ,max
i∈X

ϕK(xi)

)⊤
)
.

2The elements of the input x1, . . . ,xM are not necessarily real vectors, but we consider real vectors for
simplicity.
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In ε-PointNet, the log-sum-exp or max operations realize permutation invariance. For ε > 0, fPN,ε

reduces to the vanilla PointNet (i.e., fPN,0) with the ε → 0 if γ is continuous. Since ϕ and γ are
arbitrary functions, we can design them using NNs freely. Given x1, . . . ,xN , fPN,ε([xi]i∈X) is
regarded as the set function fPN,ε(X) := fPN,ε([xi]i∈X). Especially, if ε > 0, ϕ1, . . . , ϕK are all
non-negative function, and γ is the summation function (namely, γ(x) =

∑
i xi), ε-PointNet fPN,ε

reduces to the relaxed facility location function (3), which leads to strict submodularity.

3 THEORETICAL FOUNDATIONS

3.1 SUBMODULAR-BREGMAN DIVERGENCES

The generalized Bregman divergence is the variant of the Bregman divergence (1) in which the
gradient is replaced by a subgradient. Iyer & Bilmes (2012b) introduced submodular-Bregman
divergences as a subclass of the generalized Bregman divergence. The earlier work, however, did
not explicitly mention that in order for the identifiability of the divergence to always hold, it is
necessary for the submodular functions involved to be strict. Complementarily, we consider how the
submodular-Bregman divergences become proper, satisfying Definition 1.1. Hereafter, we denote
1X as the indicator vector of a set X ⊆ V .

Theorem 3.1. Let f : 2V → R be a strictly submodular function. For every Y ⊆ V , there exist
modular functions hY , gY ∈ RN that make

Df (X,Y ) := f(X)− f(Y )− ⟨hY , 1X − 1Y ⟩, (7)

and

Df (X,Y ) := −f(X) + f(Y ) + ⟨gY , 1X − 1Y ⟩ (8)

satisfy the conditions of divergences shown in Definition 1.1, respectively.

Proof. For every Y ⊆ V , we can take a strict subgradient of f at Y for hY , i.e., hY ∈ ∂̃f (Y ). This
choice of the modular function hY leads

Df (X,Y ) = f(X)− f(Y )− ⟨hY , 1X − 1Y ⟩
= f(X)− f(Y )− hY (X) + hY (Y )

≥ f(X)− f(Y )− f(X) + f(Y ) = 0

for all X ⊆ V and the equality holds if and only if X = Y . This Df satisfies the conditions
in Definition 1.1. We can also show that Df satisfies Definition 1.1 with a strict supergradient
gY ∈ ∂̃f (Y ) in a same manner.

In Iyer & Bilmes (2012b), Df and Df are referred to as lower-bound submodular-Bregman diver-
gence and upper-bound submodular-Bregman divergence, respectively. The submodular-Bregman
divergence Df depends on the (strictly) subgradient map Hf : Y 7→ h̃Y ∈ ∂̃f (Y ) since the choice
of a (strict) subgradient in Df is not unique. Although the dependency should be clarified as DHf

f ,
we omit it for simplicity (do the same for Df ).

3.2 DISCRETE BREGMAN DIVERGENCES

Intuitively, the expressive power of f may directly affect the expressive power of the submodular-
Bregman divergences (7), (8) (in fact, this is true and will be proved in Subsection 3.3). If we
can extend the function class that can be taken as f , the flexibility of the divergence may increase.
Surprisingly, the submodular-Bregman divergences (7), (8) are well-defined even if f is a general set
function not necessarily submodular (nor supermodular). The strong DS (difference-of-submodular)
decomposition (Li & Du, 2020) is the key idea.

Theorem 3.2 (Strong DS Decomposition (Li & Du, 2020)). Every set function f : 2V → R can
be decomposed into the difference of two monotone increasing and strictly submodular functions f1

and f2, i.e., f = f1 − f2.
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Note that a set function f1 : 2V → R is said to be monotone increasing when f1(Y ) > f1(X)
for any X ⊂ Y ⊆ V . The (weak) DS decomposition is introduced in (Narasimhan & Bilmes,
2005) and proved in (Iyer & Bilmes, 2012a) rigorously and combinatorially. The proof of strong
DS decomposition provided in (Li & Du, 2020) is constructed by tweaking that in (Iyer & Bilmes,
2012a).

Once the strong DS decomposition f = f1 − f2 is obtained, the strict subgradients of f at Y ⊆ V

can be constructed by hY = h1
Y − g2Y ∈ ∂̃f (Y ) with h1

Y ∈ ∂̃f1(Y ), g2Y ∈ ∂̃f2

(Y ), even if f is
neither strictly submodular nor supermodular, and the same is true for strict supergradients gY ∈
∂̃f (Y ). This fact enables us to consider submodular-Bregman divergences with non-submodular set
functions.

Theorem 3.1′. For every set function f : 2V → R and every Y ⊆ V , there exist modular functions
hY , gY ∈ RN that make (7) and (8) satisfy the conditions in Definition 1.1, respectively.

In this paper, we call the divergences justified by Theorem 3.1′ the difference-of-submodular Breg-
man divergence (DBD) since such divergences no longer need the (strict) submodularity of f . Gen-
erally speaking, finding (strong) DS decomposition f = f1 − f2 given f takes exponential com-
plexity. One possible approach to benefit from Theorem 3.1′ is to prepare the submodular functions
f1 and f2 beforehand and to construct non-submodular f (Section 4).

3.3 EXPRESSIVE POWER OF DISCRETE BREGMAN DIVERGENCES

We extended the submodular-Bregman divergence to the DBD which bases a non-submodular set
function in general. Our question is whether the extension really improves the expressive power as a
divergence. More generally, does the expressive power of the DBD Df increase when a class of the
set function f becomes richer? For example, PointNet constitutes a superclass of facility location
functions as described in Subsection 2.3. Clearly, the class of all submodular functions is a subclass
of the class of all DS functions, or all set functions.

For precision, we define a class of set functions on 2V as a set of set functions closed under the
addition of modular functions.

Definition 3.3. Let F be a set of set functions on 2V . We denote the class of the set F as

C(F) := {f +m : f ∈ F ,m ∈ RN}

That is, f ∈ C(F) implies f + m ∈ C(F) for any modular function m ∈ RN . For example, the
set of modular, facility location, submodular, PointNet, and DS functions all induce classes of the
corresponding sets. We denote the set of all DBDs of set functions in C(F) by DC(F).

Theorem 3.4. Let F ,F ′ be sets of set functions and C := C(F), C′ := C(F ′) be the classes induced
by F and F ′, respectively. If C ⊂ C′, then DC ⊂ DC′ .

Proof. Take a set function f ′ ∈ C′\C. Suppose for the contrary that a DBD with respect to f ′ can be
represented by that of another set function f ∈ C. From Df ′(X,Y ) = Df (X,Y ) for all X,Y ⊆ V ,
we have Df ′(X, ∅) = Df (X, ∅) for all X ⊆ V . Nevertheless, Df ′(X, ∅) is the sum of f ′(X) and
a modular function, and the same for Df (X, ∅). Hence f ′(X) can be written as the sum of a set
function in C (namely f ) and a modular function, which contradicts f ′ ∈ C′\C.

Theorem 3.4 claims that the extension of the submodular-Bregman divergence to the DBD actually
increases the expressive power. This motivates us to consider non-submodular set functions to obtain
more capable divergences.

4 PROPOSED METHOD

Following Theorem 3.1′ and Theorem 3.4, we propose a capable and learnable divergence that can
adapt downstream tasks. Although Theorem 3.2 states the existence of the (strong) DS decompo-
sition such that f = f1 − f2 for any f : 2V → R, the good method to find (strictly) submodular
functions f1 and f2 is unknown.
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To avoid this difficulty, we prepare two submodular NNs a priori and take them as f1 and f2.
Given Y ⊆ V , we can find the subgradient of f1, h1

Y ∈ ∂f1(Y ), and the supergradient of f2,
g2Y ∈ ∂f2

(Y ). Then, we measure the dissimilarity between X ⊆ V and Y as

Df (X,Y ) = Df1(X,Y ) +Df2

(X,Y )

= f1(X)− f1(Y )− h1
Y (X) + h1

Y (Y )− f2(X) + f2(Y ) + g2Y (X)− g2Y (Y ). (9)

In downstream tasks, the DBD (9) can be learned by some objective function of metric learning,
such as the triplet loss Hoffer & Ailon (2018).

5 NUMERICAL EXPERIMENTS

We consider revealing the behavior of the DBD from numerical experiments. The datasets, network
architecture, and other details are as follows.

Datasets In our experiments, we use the following datasets.

• MNIST (Deng, 2012): The MNIST dataset is a collection of handwritten digits with a
training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28×28
image, making it a 784-dimensional vector. For an illustrative example (Section 5.1), we
use the MNIST dataset to develop a discrete problem setting.

• ModelNet40 (Wu et al., 2015): The ModelNet40 dataset consists of 12,311 meshes in 40
categories (such as airplane and chair), of which 9,843 are used for training, while the
rest 2,468 are reserved for testing. The corresponding point clouds are uniformly sampled
from the mesh surfaces. Such point cloud data can be regarded as a set of vectors and is
therefore suitable for the discrete problem setting that is the focus of this study. We utilize
this dataset to demonstrate the real-world applicability of our DBD (Section 5.2).

Network Architecture The choice of the NN architecture used as a component of the DBD is
arbitrary, as long as submodularity is guaranteed. In our implementation, we employ ε-PointNet
(6) with K = 1, the identity function as γ, ε = 0 or 0.001, and a fully-connected multi-layer
perceptron (MLP) as ϕ. For both f1 and f2, the MLPs consist of two hidden layers of 64 units. For
the activation functions, the ReLU is used for the hidden and final layers, which yields non-negative
outputs; thus the submodularity is guaranteed. In Section 5.2, we also experiment on the DBD
without DS decomposition as the ablation study. For fairness, the MLP within the model without
decomposition is adjusted to have 64× 128 units in the two hidden layers.

Learning Procedure For learning the DBD, we use the triplet loss (Hoffer & Ailon, 2018):

L(f) :=
n∑

i=1

max
(
Df (X

i
A, X

i
P )−Df (X

i
A, X

i
N ), 0

)
,

where Xi
A, X

i
P , X

i
N ⊆ V are i-th anchor, positive, and negative sets, whose construction method

will be explained later. We also use Adam (Kingma & Ba, 2015) as the optimization algorithm for
the gradient update of the NNs, with a batch size of 64 and a learning rate of 0.001 unless otherwise
stated. The extreme point is taken as the subgradient h1

Y (Edmonds, 1970) as in (Iyer & Bilmes,
2012b) and the grow, shrink, and bar supergradients are taken as g2Y .

5.1 ILLUSTRATIVE EXAMPLE

First, we design a toy experiment to investigate whether our DBD works properly as a divergence.
As a divergence function, it is expected to (i) always take non-negative values for any set pair and (ii)
take smaller values for similar set pairs and larger values for those that are not. Here, (i) is clearly
ensured by Theorem 3.1′ and the implementation described in Section 4. In this subsection, we
consider a qualitative evaluation using the MNIST dataset to check the behavior of (ii). The original
MNIST dataset is a collection of handwritten digit images and we develop a discrete problem setting
from this dataset. In this toy experiment, we collect instances in the original dataset to generate n
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Figure 1: Illustrative example on MNIST dataset (Deng, 2012). The query and reference sets are
constructed from instances in the MNIST dataset, and the DBD values correspond to the divergences
between the respective set pairs.

sets of a certain size M . The collection of these sets D is considered as a new discrete version of
the dataset, which is used to train the DBD. We set n = 50,000, M = 3, 4, and learn 200 epochs.
Now consider the mapping y : x 7→ y(x) from each instance x ∈ R784 of the original dataset to its
corresponding label y(x), and consider the mapping defined as Y : X = {x1, . . . ,xM} 7→ Y(X) =
{y(x1), . . . , y(xM )}. Given the anchor set Xi

A ∈ D, the positive set Xi
P and the negative set Xi

N are
sampled with ensuring the following conditions: Xi

P ∈
{
X ∈ D : Y(Xi

A) ∩ Y(X) ̸= ∅
}
, Xi

N ∈{
X ∈ D : Y(Xi

A) ∩ Y(X) = ∅
}

.

Figure 1 shows the experimental results for this toy example with ε = 0. For each query set, DBD
values between the query and some reference sets are reported. Here, the query and reference sets
are arbitrarily chosen so that there are differences in the expected divergence values. For example,
the top row of each group of reference sets is chosen to be similar to the query set in terms of the
labels of the original dataset, while the bottom row is chosen to be far from it. From this result, we
can see that the DBD takes smaller values for similar set pairs and larger values for those that are
not.

5.2 APPLICATIONS ON REAL-WORLD DATASET

Next, we confirm the usefulness of our DBD from numerical experiments on the real-world dis-
crete dataset. To this end, we consider two applications: set clustering and set retrieval on the
ModelNet40 dataset. Here, each instance X ∈ D of the dataset D is a point cloud of size
M = 500 uniformly sampled from the mesh, and a corresponding class label y(X) is given.
Since each X ∈ D can be regarded as a set of size M , the dataset D satisfies the discrete prob-
lem setting we are interested in. Given an anchor set Xi

A ∈ D, the positive and negative sets
Xi

P ∈
{
X ∈ D : y(Xi

A) = y(X)
}
, Xi

N ∈
{
X ∈ D : y(Xi

A) ̸= y(X)
}

are sampled while learning
the DBD. In the following, the results of the quantitative evaluation are reported with the means and
standard deviations of 10 trials at different random seeds.

Set Clustering As one of the downstream tasks in the real-world dataset, we consider set clus-
tering. In this task, we perform clustering with the k-means algorithm based on the trained DBD,
which is a similar setting to the experiments of Iyer & Bilmes (2012b). Note that the k-means al-
gorithm with a Bregman divergence is justified by Banerjee et al. (2005). To investigate the impact
of the strict submodularity, which is theoretically required, we conducted experiments with ε = 0
(submodular but not strictly submodular) and ε = 0.001 (strictly submodular), respectively. As an
ablation study, the results with a single ε-PointNet as f(X) are reported as w/o decomposition, in
which f2 = g2Y ≡ 0 in (9). Also, w/ decomposition corresponds to the DBD based on the DS
decomposition.
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Table 2: Experimental results of set clustering for ModelNet40 dataset (Wu et al., 2015). Prefixes
grow, shrink, and bar correspond to the supergradients ĝY (j), ǧY (j) and ḡY (j) respectively (as
shown in Table 1). The means and standard deviations of 10 trials with different random seeds are
reported.

Df (X,Y ) f(X)
Rand index

ε = 0 ε = 0.001

grow-DBD w/ decomposition f1(X)− f2(X) 0.7942(±0.0092) 0.8015(±0.0060)
shrink-DBD w/ decomposition f1(X)− f2(X) 0.7905(±0.0088) 0.7912(±0.0047)

bar-DBD w/ decomposition f1(X)− f2(X) 0.7410(±0.0113) 0.7520(±0.0095)
grow-DBD w/o decomposition f1(X) 0.7741(±0.0097) 0.7743(±0.0092)

shrink-DBD w/o decomposition f1(X) 0.7750(±0.0098) 0.7756(±0.0080)
bar-DBD w/o decomposition f1(X) 0.7303(±0.0125) 0.7325(±0.0101)

|X \ Y |+ |Y \X| |X| 0.0225(±0.0060)
1− |X ∪ Y | /|Y | 1 0.0232(±0.0059)

1− (|Y |+ |X ∪ Y |)/2 |Y | 1/2 0.0232(±0.0059)

Table 2 shows the experimental results of the set clustering task. For the performance evaluation,
we use the Rand index between the resulting clusters and ground truth labels (e.g., airplaine and
chair), where the Rand index is a metric used to evaluate the similarity between two different clus-
terings of the same dataset. The results with some known special cases of the submodular-Bregman
divergence, found in (Iyer & Bilmes, 2012b), are also reported. First, the performance impact of the
learnable DBDs is clear because they produce significantly larger Rand index values compared to
the submodular Bregman divergences. It can be suggested that this is because the exact intersection
tends to be almost zero in many cases, as each element in the set corresponds to the coordinates of
a point cloud. In such cases, the high expressive power and learnability of NNs seem to be very
effective. Next, we turn our attention to the results of the comparison between the w/ and w/o DS
decomposition. These comparisons show that better performance is obtained by the DS decom-
position in all three types of supergradients. In addition, looking at the standard deviation of the
performance evaluation, it can be seen that the DS decomposition slightly reduces the variability
of the estimation. We also find that while the grow and shrink supergradients provide comparable
performance, the result by the bar supergradient is inferior with statistical significance. As seen in
Table 1, the bar supergradient at Y , denoted by ḡY , is independent on Y indeed, meaning that it
does not use local information around Y unlike the grow and shrink supergradients. The difference
may cause the performance gap of the supergradients. When strict submodularity is introduced with
ε = 0.001, we find a slight performance improvement compared to ε = 0, though it is not statisti-
cally significant, and the variance is also reduced. In addition, we report the results with the Softplus
activation function in Appendix C.

Set Retrieval Finally, we consider a set retrieval task for the qualitative evaluation of the DBD.
The set retrieval is a task similar to the image retrieval task, where each instance is a set. In this
task, we choose an arbitrary query set XQ ∈ D. For this query set XQ, we seek top-K similar
sets (X̃1, . . . , X̃K) that minimizes Df (XQ, Xk). If the DBD is learned as a reasonable divergence,
the resulting top-K sets should be qualitatively similar to the query set. In this experiment, we set
K = 5 and query sets are chosen from the airplane and chair classes. Figure 2 shows the experimen-
tal results of set retrieval with ε = 0. The leftmost column shows the query set and the right columns
are the corresponding top-5 similar sets. In the visualization of point cloud data, the rotation of the
camera is arbitrary, but we rotate it for the sake of clarity so that the class to which it belongs is
easily recognizable. In addition, since our DBD quantifies the differences between discrete data,
it is naturally invariant to these rotations. From the results of this experiment, shown in Fig. 2, it
can be seen that the DBD is capable of retrieving similar sets. In particular, the query set and the
corresponding similar sets are consistent in the classes to which they belong, indicating that the
learning of the DBD is achieved as expected. Also, although omitted in this figure, the divergence
between identical query sets Df (XQ, XQ) satisfies Df (XQ, XQ) < Df (XQ, Xk), ∀1 ≤ k ≤ n
and behaves as expected of the divergence, taking the smallest value between identical instances.
Additionally, we show the quantitative score on the set retrieval experiment in Table 4 (in Appendix

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 2: Experimental results of set retrieval for ModelNet40 dataset (Wu et al., 2015). For each
given query set, retrieved top-5 similar sets are listed based on the DBD.

C). Despite using only a simple MLP architecture without any pretraining, our method closely ap-
proaches the state-of-the-art method (Hamdi et al., 2021) and achieves better performance than its
previous method (Liu et al., 2019). This clearly demonstrates the capability of the DBDs.

6 CONCLUSION AND DISCUSSION

Traditional Bregman divergences are defined over continuous spaces using convex functions. In
this study, we extended this concept to discrete finite sets by proposing a difference-of-submodular
Bregman divergence. This extension enables natural handling of data structures such as point clouds
and item sets.

While previous approaches have used submodular functions—analogous to convex functions—to
define submodular Bregman divergences on discrete sets, we showed that difference-of-submodular
Bregman divergences can be defined from any set function, not necessarily submodular, by utilizing
difference-of-submodular decomposition. Theoretically, we showed that enhancing the expressive
power of the set function leads to a more expressive difference-of-submodular Bregman divergence.
This finding motivates the construction of difference-of-submodular Bregman divergences by learn-
ing flexible set functions for specific tasks.

To achieve this, we proposed an approach that learns set functions for difference-of-submodular
Bregman divergences using permutation-invariant neural networks, particularly ε-PointNet. Exper-
imentally, we confirmed that the difference-of-submodular Bregman divergence generated from a
set function defined as the difference of set functions represented by ε-PointNet is a proper diver-
gence. Furthermore, in a clustering task, the PointNet-based difference-of-submodular Bregman
divergence—learned from a small amount of ground-truth cluster data—significantly outperformed
existing submodular Bregman divergences constructed on fixed submodular functions.

For future work, the exploration of architectures for the permutation invariant NNs is an impor-
tant task. We used the simple ε-PointNet architecture in the numerical experiments, but optimal
hyperparameters (e.g., number of units and layers, dimension K, and ε) were not discussed. Fur-
thermore, novel flexible NN architectures that model submodular functions are proposed (Bilmes &
Bai, 2017; Bhatt et al., 2024). From an engineering perspective, it is important to develop a method
that performs as well as or better than the state-of-the-art methods according to our framework.

REPRODUCIBILITY

We provide the code needed to reproduce all experiments in the supplementary material attached.
The proofs omitted from the main text are presented in Appendix A and B.
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A WELL-DEFINEDNESS OF STRICT SEMIDIFFERENTIALS

In this section, we show the well-definedness of strict semidifferentials defined in (4) and (5).
First, we confirm the equivalence between the strict submodularity and the strict diminished re-
turns property as in (Nemhauser et al., 1978). Hereafter, we denote the increase of a set function
f as f(j|S) := f(S ∪ {j}) − f(S) for j ∈ V and S ⊆ V \{j} and distinguish ⊂ from ⊆ by
whether it contains an equality or not. We repeat the definition of strict submodularity for the sake
of convenience:

Definition A.1. A set function f : 2V → R is strictly submodular if

f(X) + f(Y ) > f(X ∪ Y ) + f(X ∩ Y ) (10)

for every non-comparable X,Y ⊆ V .

Lemma A.2. For a set function f : 2V → R, the strict submodularity (10) holds if and only if

f(j|S) > f(j|T ) (11)

is satisfied for all S ⊂ T ⊂ V and j ∈ V \T .

Proof.
[ (10) → (11) ]
By taking S ⊂ T, j /∈ T,X = S ∪ {j}, Y = T , we have

f(S ∪ {j}) + f(T ) > f(S ∪ {j} ∪ T ) + f((S ∪ {j}) ∩ T ) = f(T ∪ {j}) + f(S).

[ (11) → (10) ]
Let X,Y ⊂ V be any non-comparable subsets of V and denote X\Y = {j1, . . . , jr} ̸= ∅. From
(11),

f(ji|X ∩ Y ∪ {j1, . . . , ji−1}) > f(ji|Y ∪ {j1, . . . , ji−1})

holds. By summing up the above equality, the l.h.s. becomes

r∑
i=1

f(ji|X ∩ Y ∪ {j1, . . . , ji−1}) =
r∑

i=1

[f(X ∩ Y ∪ {j1, . . . , ji})− f(X ∩ Y ∪ {j1, . . . , ji−1})]

= f(X ∩ Y ∪ {j1, . . . , jr})− f(X ∩ Y ) = f(X)− f(X ∩ Y ).

and the r.h.s. becomes
r∑

i=1

f(ji|Y ∪ {j1, . . . , ji−1}) =
r∑

i=1

[f(Y ∪ {j1, . . . , ji})− f(Y ∪ {j1, . . . , ji−1})]

= f(Y ∪ {j1, . . . , jr})− f(Y ) = f(X ∪ Y )− f(Y ).

That results in strict submodularity (10).

Lemma A.2 states the strict version of the diminishing returns property with respect to strictly sub-
modular functions. We can find the following proposition from Lemma A.2.

Lemma A.3. When f : 2V → R is strictly submodular,

f(T )− f(S) <
∑

j∈T\S

f(j|S)−
∑

j∈S\T

f(j|S ∪ T\{j}) (12)

and

f(T )− f(S) <
∑

j∈T\S

f(j|S ∩ T )−
∑

j∈S\T

f(j|S\{j}) (13)

for every S, T ⊆ V (S ̸= T ).
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Proof. We use strict diminishing returns (11) to prove (12). Taking any S, T ⊆ V, (S ̸= T ) and
denoting T\S = {j1, . . . , jr}, S\T = {k1, . . . , kq}. We have

f(S ∪ T )− f(S) =

r∑
t=1

[f(S ∪ {j1, . . . , jt})− f(S ∪ {j1, . . . , jt−1})]

=

r∑
t=1

f(jt|S ∪ {j1, . . . , jt−1})

≤
r∑

t=1

f(jt|S) =
∑

j∈T\S

f(j|S) (14)

from (11) (the equality holds only if T\S = ∅). Then,

f(S ∪ T )− f(T ) =

q∑
t=1

[f(T ∪ {k1, . . . , kt} − f(T ∪ {k1, . . . , kt−1})]

=

q∑
t=1

f(kt|T ∪ {k1, . . . , kt−1})

=

q∑
t=1

f(kt|T ∪ {k1, . . . , kt}\{kt})

≥
q∑

t=1

f(kt|S ∪ T\{kt}) =
∑

j∈S\T

f(j|S ∪ T\{j}) (15)

is also obtained (the equality holds only if S\T = ∅). By subtracting (15) from (14), we can confirm
(12). Note that the inequality in (12) does not include an equality unlike (14) and (15) because at
least one of T\S and S\T is non-empty by the condition S ̸= T .

Inequality (13) can be derived in a similar manner. We can obtain

f(T )− f(S ∩ T ) =

r∑
t=1

[f((S ∩ T ) ∪ {j1, . . . , jt})− f((S ∩ T ) ∪ {j1, . . . , jt−1})]

=

r∑
t=1

f(jt|(S ∩ T ) ∪ {j1, . . . , jt−1})

≤
r∑

t=1

f(jt|S ∩ T ) =
∑

j∈T\S

f(j|S ∩ T ) (16)

and

f(S)− f(S ∩ T ) =

q∑
t=1

[f((S ∩ T ) ∪ {k1, . . . , kt} − f((S ∩ T ) ∪ {k1, . . . , kt−1})]

=

q∑
t=1

f(kt|(S ∩ T ) ∪ {k1, . . . , kt−1})

=

q∑
t=1

f(kt|(S ∩ T ) ∪ {k1, . . . , kt}\{kt})

≥
q∑

t=1

f(kt|((S ∩ T ) ∪ {k1, . . . , kq})\{kt})

=

q∑
t=1

f(kt|S\{kt}) =
∑

j∈S\T

f(j|S\{j}), (17)

where the equalities in (16) and (17) hold only if T\S = ∅ and S\T = ∅, respectively. Inequality
(13) is obtained from (16) and (17).
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We may also be able to show the sufficiency of (12) and (13) for the strict submodularity (10) in a
similar way to (Nemhauser et al., 1978, Proposition 2.1), but we omit it because it is not necessary
for our methodology.

Now we show the existence of strictly subgradients of strict submodular functions.

Proposition A.4 (Existence of strict subgradients). Suppose that f : 2V → R satisfies the strict
submodularity (2). Then, the strict subdifferential of f at Y ⊆ V is non-empty.

Proof. We show the existence by directly composing specific examples of the subgradients as in
(Stobbe, 2013, Section 3.3.1). Let λ ∈ RN be some modular function and t ∈ R be some real value.
We define a modular function hY ∈ RN as

hY := λ+ t(1Y − 1V \Y ).

For any X ⊆ V , we can find

hY (X)− hY (Y ) = ⟨hY , 1X − 1Y ⟩ = ⟨λ, 1X − 1Y ⟩+ t⟨1Y − 1V \Y , 1X − 1Y ⟩

and the rightmost term can be rewritten as

⟨1Y − 1V \Y , 1X − 1Y ⟩ = 2⟨1Y , 1X − 1Y ⟩ − ⟨1Y + 1V \Y , 1X − 1Y ⟩
= 2|X ∩ Y |−2|Y |−|X|+|Y |
= −(|X|+|Y |−2|X ∩ Y |).

Since the r.h.s. is the negative of the size of the set of X and Y XORed, it takes a negative value
when X ̸= Y . Therefore, we can have

∀X ∈ 2V \{Y }, hY (X)− hY (Y ) = ⟨λ, 1X − 1Y ⟩+ t⟨1Y − 1V \Y , 1X − 1Y ⟩ < f(X)− f(Y )

by taking sufficiently large t > 0. To be precise, we obtain

hY = λ+ t(1Y − 1V \Y ) ∈ ∂̃f (Y ) ⇔ t > max
X∈2V \{Y }

f(Y )− f(X) + λ(X)− λ(Y )

|X|+|Y |−2|X ∩ Y |
.

Next, let us prove the non-emptiness of strict superdifferentials.

Proposition 2.5 (Strict supergradients). The modular functions ĝY , ǧY , and ḡY defined in Table 1
are all the strict supergradients if f is strictly supermodular.

Proof. For all X ⊆ V , we have

ĝY (X) =
∑
j∈X

ĝY (j) =
∑

j∈X\Y

f(j|Y ) +
∑

j∈X∩Y

f(j|V \{j}),

ĝY (Y ) =
∑
j∈Y

ĝY (j) =
∑

j∈Y \X

f(j|V \{j}) +
∑

j∈X∩Y

f(j|V \{j}),

by definition. If X ̸= Y , it can be found that

ĝY (X)− ĝY (Y ) =
∑

j∈X\Y

f(j|Y )−
∑

j∈Y \X

f(j|V \{j})

≥
∑

j∈X\Y

f(j|Y )−
∑

j∈Y \X

f(j|X ∪ Y \{j}) (∵ Lemma A.2)

> f(X)− f(Y ) (∵ Lemma A.3).
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holds. This indicates ĝY ∈ ∂̃f (Y ). Similarly, we have

ḡY (X)− ḡY (Y ) =
∑

j∈X\Y

f(j|∅)−
∑

j∈Y \X

f(j|V \{j})

≥
∑

j∈X\Y

f(j|∅)−
∑

j∈Y \X

f(j|Y \{j})

︸ ︷︷ ︸
= ǧY (X)− ǧY (Y )

(∵ Lemma A.2)

≥
∑

j∈X\Y

f(j|X ∩ Y )−
∑

j∈Y \X

f(j|Y \{j}) (∵ Lemma A.2)

> f(X)− f(Y ) (∵ Lemma A.3)

for X ̸= Y . Thus ǧY , ḡY ∈ ∂̃f (Y ) is also obtained.

B STRICT SUBMODULARITY OF THE RELAXED FACILITY LOCATION
FUNCTION

Proposition B.1. The relaxed facility location function fFC,ε defined in (3) is strictly submodular
for ε > 0.

Proof. For every X ⊂ V and every j ∈ V \X , we have

fFC,ε(j|X) = ε

K∑
k=1

log

(∑
i∈X

eϕik/ε + eϕjk/ε

)
− ε

K∑
k=1

log
∑
i∈X

eϕik/ε

= ε

K∑
k=1

log

(
1 +

eϕjk/ε∑
i∈X eϕik/ε

)
(18)

Now, consider X,Y ⊂ V such that X ⊂ Y ⊂ V and j ∈ V \Y . Then,

fFC,ε(j|X) = ε

K∑
k=1

log

(
1 +

eϕjk/ε∑
i∈X eϕik/ε

)

> ε

K∑
k=1

log

(
1 +

eϕjk/ε∑
i∈Y eϕik/ε

)
= fFC,ε(j|Y )

holds from (18). By Lemma A.2, the strict submodularity of fFC,ε is shown.

C ADDITIONAL EXPERIMENTS

C.1 ANOTHER ACTIVATION FUNCTION

Additionally, we report the results of experiments where the activation function in the final layer
of ε-PointNet’s MLP was changed from ReLU to Softplus. Table 3 shows the results with ε = 0.
No significant difference was observed compared to the results obtained with ReLU, as reported in
Table 2.

C.2 QUANTITATIVE EVALUATION FOR SET RETRIEVAL

Table 4 shows the result of the quantitative score of the set retrieval experiment in Section 5.2.
Retrieval mean Average Precision (mAP) is employed as the metric as in (Hamdi et al., 2021). We
compare the performance of the proposed DBD with PointNet (see Section 5 for the architecture)
with two baseline methods, Densepoint (Liu et al., 2019) and the multi-view transformation network
(MVTN) (Hamdi et al., 2021). For MVTN, we report the score shown in the original paper (Hamdi
et al., 2021) because we failed to reproduce the result.
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Table 3: Experimental results of set clustering for ModelNet40 dataset (Wu et al., 2015) with the
softplus activation function. Prefixes grow, shrink, and bar correspond to the supergradients ĝY (j),
ǧY (j) and ḡY (j) respectively (as shown in Table 1). The means and standard deviations of 10 trials
with different random seeds are reported.

Df (X,Y ) f(X) Rand index

grow-DBD (softplus) w/ decomposition f1(X)− f2(X) 0.7940(±0.0089)
shrink-DBD (softplus) w/ decomposition f1(X)− f2(X) 0.7911(±0.0090)

bar-DBD (softplus) w/ decomposition f1(X)− f2(X) 0.7424(±0.0107)
grow-DBD (softplus) w/o decomposition f1(X) 0.7743(±0.0095)

shrink-DBD (softplus) w/o decomposition f1(X) 0.7756(±0.0094)
bar-DBD (softplus) w/o decomposition f1(X) 0.7295(±0.0120)

Table 4: Experimental results of set retrieval for ModelNet40 dataset (Wu et al., 2015). Prefixes
grow, shrink, and bar correspond to the supergradients ĝY (j), ǧY (j) and ḡY (j) respectively (as
shown in Table 1). The means and standard deviations of 10 trials with different random seeds are
reported, except ∗. Note that the evaluation result with ∗ is borrowed from the original paper.

Method mAP

grow-DBD w/ decomposition 90.13(±0.75)
shrink-DBD w/ decomposition 90.20(±0.77)

bar-DBD w/ decomposition 86.09(±0.85)
grow-DBD w/o decomposition 88.12(±0.80)

shrink-DBD w/o decomposition 88.20(±0.81)
bar-DBD w/o decomposition 83.57(±0.97)
Densepoint (Liu et al., 2019) 89.68(±0.88)
MVTN (Hamdi et al., 2021) 92.9∗
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