
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENCE-OF-SUBMODULAR BREGMAN DIVER-
GENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The Bregman divergence, which is generated from a convex function, is com-
monly used as a pseudo-distance for comparing vectors or functions in continu-
ous spaces. In contrast, defining an analog of the Bregman divergence for discrete
spaces is nontrivial. Iyer & Bilmes (2012b) considered Bregman divergences on
discrete domains using submodular functions as generating functions, the discrete
analogs of convex functions. In this paper, we further generalize this framework to
cases where the generating function is neither submodular nor supermodular, thus
increasing the flexibility and representational capacity of the resulting divergence,
which we term the difference-of-submodular Bregman divergence. Additionally,
we introduce a learnable form of this divergence using permutation-invariant neu-
ral networks (NNs) and demonstrate through experiments that it effectively cap-
tures key structural properties in discrete data. As a result, the proposed method
significantly improves the performance of existing methods on tasks such as clus-
tering and set retrieval problems. This work addresses the challenge of defining
meaningful divergences in discrete settings and provides a new tool for tasks re-
quiring structure-preserving distance measures.

1 INTRODUCTION

A divergence is a principal concept that determines the geometric structure of a space of interest,
which is formally defined as follows:
Definition 1.1. Let Ω be a set. A function D : Ω×Ω → R is called a divergence on Ω if D satisfies
the following conditions: for all x, y ∈ Ω,

D(x, y) ≥ 0, and
D(x, y) = 0 ⇐⇒ x = y.

The Bregman divergence is a class of divergences that measure dissimilarity between two points
based on a strictly convex function. Given a strictly convex and differentiable function f , the Breg-
man divergence Df between two points x and y in a convex set Ω ⊆ Rd is defined as:

Df (x,y) = f(x)− f(y)− ⟨∇f(y),x− y⟩ (1)

where ∇f(y) is the gradient of f evaluated at y and ⟨·, ·⟩ denotes the inner product. It generalizes
the squared Euclidean distance and the Kullback–Leibler divergence (Kullback & Leibler, 1951).
Typically, divergences are defined on differential manifolds, such as a Euclidean space and a family
of distributions. Compared to these continuous spaces, it is more challenging to define a reasonable
and capable metric on discrete spaces, such as 2V with V = {1, . . . , N} being a finite ground set.
Although there are numerous choices for measuring a distance or similarity between subsets X,Y ∈
2V , most known metrics in the literature are constructed by counting the sizes of X ∩Y,X \Y , and
other simple set operations (Choi et al., 2010). Such classical metrics easily become less meaningful
when the ground set V is large because rarely do same elements co-occur in two subsets of V .

The submodular-Bregman divergence (Iyer & Bilmes, 2012b) is the first to tackle this problem with
the theory of submodular set functions. It is based on the fact that subgradients and supergradients
can be defined for any submodular function. Therefore, a Bregman-like divergence can be defined
through a submodular function f in the way analogous to the standard Bregman divergence (1).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Although the submodular-Bregman divergence is quite natural and intuitive, it is not clear whether
it satisfies the definition of divergences. This problem comes from identifiability of the divergence:
D(x, y) = 0 =⇒ x = y in Definition 1.1. In the usual Bregman divergence (1), the strict convexity
is required for f to guarantee the identifiability. Similar to the usual Bregman divergence, the sub-
gradients or supergradients are insufficient to make it a divergence; it may be necessary to assume
the existence of strict subgradients or strict supergradients.

Another issue in the submodular-Bregman divergence is that the choice of the submodular function
is ad-hoc. Although Iyer & Bilmes (2012b) introduces several concrete examples of the submodular
function, the resulting divergences are again the forms with respect to simple set operations. So it is
unclear whether they actually overcome the difficulty of the classical metrics between sets. There-
fore, a more flexible framework for handling the submodular-Bregman divergence is necessary, and
it would be even better if we could extend the capability of submodular-Bregman divergence.

Our contribution. In this paper, we introduce a novel class of divergences on discrete spaces that
is strictly more expressive than submodular Bregman divergences and propose a learning framework
of the divergences through permutation-invariant NNs. First, we formally show that the submodular-
Bregman divergence is indeed a divergence if f is strictly submodular. By extending this observa-
tion, we further propose a new class of divergences that can be defined even if f is neither sub-
modular nor supermodular. Since the concrete way to compose the divergence depends on the
difference-of-submodular decomposition (Narasimhan & Bilmes, 2005; Iyer & Bilmes, 2012b; Li
& Du, 2020), we call it difference-of-submodular Bregman divergences. We show that the expressive
power of difference-of-submodular Bregman divergences defined by set function f gets richer if the
class of the underlying set function f gets larger. We then propose a learnable form of difference-
of-submodular Bregman divergences based on submodular permutation-invariant NNs. Numerical
experiment shows that learnable difference-of-submodular Bregman divergences can capture the
crucial structure and significantly improves the performance of existing methods in downstream
tasks.

Related work. Bregman divergences play a central role in various areas of statistics and machine
learning, including clustering, regression, and optimization. For example, the classical k-means al-
gorithm is a special case of Bregman k-means clustering, where the squared Euclidean distance is
replaced with a Bregman divergence. This generalization allows for clustering based on different
divergence measures, providing more flexibility (Banerjee et al., 2005). The Bregman divergence
is closely related to the exponential family of distributions and generalized linear models. The di-
vergence can be derived from the convex conjugate of the log-partition function of the exponential
family (Wainwright & Jordan, 2008). In information geometry, it is used to define the geometry of
statistical models and provides a framework for understanding various divergence measures (Amari,
2016). The Bregman divergence is also appeared in matrix factorization techniques, such as non-
negative matrix factorization with a Bregman divergence, which allows different divergence mea-
sures to be used in the factorization process (Cichocki & Amari, 2010). In optimization, it is used in
mirror descent algorithms and other first-order optimization methods. These methods benefit from
the divergence’s properties to achieve better convergence (Beck & Teboulle, 2003). In variational
inference, the Bregman divergence measures the difference between the true posterior distribution
and the variational approximation (Blei et al., 2017). Faust et al. (2023) elaborates the theory of
difference-of-convex algorithms through the lens of the Bregman divergence. By considering Breg-
man divergences on a discrete space, it is expected that the wealth of knowledge provided by these
studies can be utilized.

Distance metric learning (DML (Ye et al., 2018; Wang & Sun, 2014)) is a technique used to learn
a distance metric that can effectively measure the similarity or dissimilarity between instances.
This is crucial for improving the performance of various machine learning tasks such as classifi-
cation (Weinberger et al., 2005; Davis et al., 2007; Goldberger et al., 2005), clustering (Xing et al.,
2002; Kulis et al., 2005; Ye et al., 2007), and information retrieval (Song et al., 2016; Schroff et al.,
2015; Wang et al., 2014). Min et al. (2009) and Salakhutdinov & Hinton (2007) used NNs to learn
representations that make metric learning easier. There is also research in distance metric learning
that aims to learn Bregman divergences from data (Li et al., 2023; Rezaei et al., 2023; Lu et al.,
2023; Siahkamari et al., 2020). However, to the best of our knowledge, there is no research that
learns Bregman divergences over discrete sets.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

In this section, we introduce submodular and supermodular functions and their differentials, the
concept of strict modularity, and permutation-invariant NNs necessary for the flexible realization of
submodular and supermodular functions, as the building blocks of the divergence proposed in this
paper.

2.1 SUBMODULAR FUNCTIONS AND SEMIDIFFERENTIALS

Definition 2.1. A set function f : 2V → R is said to be submodular if
f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y)

holds for every X,Y ⊆ V . In addition, f is supermodular if −f is submodular, and f is modular if
f is both submodular and supermodular.

A modular function m : 2V → R is known to be written by m(X) =
∑

i∈X m(i), and it is identified
as the vector (m1, . . . ,mN) := (m(1), . . . ,m(N)) ∈ RN (we define m(∅) := 0). Thus, the inner
product of two modular functions m,m′ : 2V → R is calculated as the inner product of the two
vectors: ⟨m,m′⟩ :=

∑N
i=1 m(i)m′(i) =

∑N
i=1 mim

′
i.

Submodular functions are often understood as discrete versions of convex functions. Indeed, subd-
ifferentials can be defined for a submodular function f (Fujishige, 2005). Interestingly, superdiffer-
entials are also defined for a submodular function (Iyer & Bilmes, 2012b):
Definition 2.2. Let f : 2V → R be a submodular function. The set of modular functions

∂f (Y) := {m ∈ RN : ∀X ⊆ V, m(X)−m(Y) ≤ f(X)− f(Y)}
is called the subdifferential of f at Y ⊆ V , and hY ∈ ∂f (Y) is called a subgradient of f at Y ⊆ V .
Similarly, the set of modular functions

∂f (Y) := {m ∈ RN : ∀X ⊆ V, m(X)−m(Y) ≥ f(X)− f(Y)}
is called the superdifferential of f at Y ⊆ V , and gY ∈ ∂f (Y) is called a supergradient of f at
Y ⊆ V .

Sub- and super-differentials are together referred to as semidifferentials (Iyer et al., 2013). In gen-
eral, there are infinitely many choices to pick a subgradient hY ∈ ∂f (Y) (see the proof of Propo-
sition A.4) and the extreme point can be obtained by a greedy algorithm (Edmonds, 1970). On the
other hand, Iyer & Bilmes (2012b) proposes three types of supergradients ĝY , ǧY , ḡY ∈ ∂f (Y) and
they are called grow, shrink, and bar supergradients, respectively (Iyer et al., 2013). Table 1 shows
the form of these supergradients.

2.2 STRICT SUBMODULARITY

Recall that Bregman divergences are defined using strictly convex functions. We analogously need
to introduce strict submodularity for set functions.
Definition 2.3. A set function f : 2V → R is said to be strictly submodular if

f(X) + f(Y) > f(X ∪ Y) + f(X ∩ Y) (2)

for every non-comparable1 X,Y ⊆ V and f is strictly supermodular if −f is strictly submodular.

For example, the facility location function is an important class of submodular functions. Let ϕij be
non-negative values for i ∈ V = {1, . . . , N} and k = 1, . . . ,K. Then, the facility location function
is written as fFC : X 7→

∑K
k=1 maxi∈X ϕik. More generally, the log-sum-exp relaxation of the

facility location function,

fFC,ε(X) := ε
K∑

k=1

log
∑
i∈X

eϕik/ε, (3)

is strictly submodular for ε > 0 (see Appendix B for the proof) and it converges to fFC as ε → 0.

For a strictly submodular function, we can define strict semidifferentials:
1X and Y are said to be non-comparable if neither X ⊆ Y nor Y ⊆ X .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Supergradients proposed in (Iyer & Bilmes, 2012b). We denote f(j|Y) := f({j} ∪ Y) −
f(Y) for any Y ⊆ V and j ∈ V .

j ∈ Y j /∈ Y

ĝY (j) f(j|V \{j}) f(j|Y)
ǧY (j) f(j|Y \{j}) f(j|∅)
ḡY (j) f(j|V \{j}) f(j|∅)

Definition 2.4. Let f : 2V → R be a strictly submodular function. The set of modular functions

∂̃f (Y) := {m ∈ RN : ∀X ∈ 2V \{Y }, m(X)−m(Y) < f(X)− f(Y)} (4)

is called the strict subdifferential of f at Y ⊆ V , and h̃Y ∈ ∂̃f (Y) is called a strict subgradient of f
at Y ⊆ V . Similarly

∂̃f (Y) := {m ∈ RN : ∀X ∈ 2V \{Y }, m(X)−m(Y) > f(X)− f(Y)} (5)

is called the strict superdifferential of f at Y ⊆ V , and g̃Y ∈ ∂̃f (Y) is called a strict supergradient
of f at Y ⊆ V .

The non-emptiness of ∂̃f is shown in Appendix A. All of the three supergradients ĝY , ǧY , and ḡY
defined in Table 1 satisfy the definition of the strict supergradients if f is strictly supermodular.
Proposition 2.5 (Strict supergradients). The modular functions ĝY , ǧY , and ḡY defined in Table 1
are all the strict supergradients if f is strictly supermodular.

See Appendix A for the proof.

2.3 PERMUTATION-INVARIANT NEURAL NETWORKS

Permutation invariance is the key concept in leveraging modern NN architectures to model set-
structured data (Zaheer et al., 2017). Let V = {1, . . . , N} be the index set and XN =
{[x1, . . . ,xM] ∈ RD×M : x1, . . . ,xM ∈ RD, M ≤ N} be the entire set of matrices with N
or fewer columns. We consider an NN fNN : XN → Y , where Y is the output space2. The permu-
tation invariance requests fNN to behave as a set function on 2V .
Definition 2.6. The function fNN is said to be permutation invariant if it satisfies

fNN([x1, . . . ,xM]) = fNN([xπM (1), . . . ,xπM (M)])

for any M ∈ V , any inputs x1, . . . ,xM , and any permutation πM : {1, . . . ,M} → {1, . . .M}.

The permutation invariance and permutation invariant NN are first introduced along with Deep Sets
(Zaheer et al., 2017). Today, many effective permutation-invariant architectures are developed such
as PointNet (Qi et al., 2017), Set Transformer (Lee et al., 2019), Perceiver (Jaegle et al., 2021), and
SetVAE (Kim et al., 2021). See (Kimura et al., 2024) for a comprehensive review about permutation-
invariant NNs.

In particular, PointNet is convenient for modeling submodular functions. As in (3), we define the
PointNet architecture in the generalized form with log-sum-exp.
Definition 2.7. Let ϕ := [ϕ1, . . . , ϕK] : RD → RK , γ : RK → R, ε ≥ 0, and X ⊆ V . When
ε > 0, the architecture of ε-PointNet fPN,ε is written by

fPN,ε([xi]i∈X) = γ

(ε log∑
i∈X

eϕ1(xi)/ε, . . . , ε log
∑
i∈X

eϕK(xi)/ε

)⊤
 . (6)

For ε = 0, it is defined as

fPN,0([xi]i∈X) = γ

((
max
i∈X

ϕ1(xi), . . . ,max
i∈X

ϕK(xi)

)⊤
)
.

2The elements of the input x1, . . . ,xM are not necessarily real vectors, but we consider real vectors for
simplicity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In ε-PointNet, the log-sum-exp or max operations realize permutation invariance. For ε > 0, fPN,ε

reduces to the vanilla PointNet (i.e., fPN,0) with the ε → 0 if γ is continuous. Since ϕ and γ are
arbitrary functions, we can design them using NNs freely. Given x1, . . . ,xN , fPN,ε([xi]i∈X) is
regarded as the set function fPN,ε(X) := fPN,ε([xi]i∈X). Especially, if ε > 0, ϕ1, . . . , ϕK are all
non-negative function, and γ is the summation function (namely, γ(x) =

∑
i xi), ε-PointNet fPN,ε

reduces to the relaxed facility location function (3), which leads to strict submodularity.

3 THEORETICAL FOUNDATIONS

3.1 SUBMODULAR-BREGMAN DIVERGENCES

The generalized Bregman divergence is the variant of the Bregman divergence (1) in which the
gradient is replaced by a subgradient. Iyer & Bilmes (2012b) introduced submodular-Bregman
divergences as a subclass of the generalized Bregman divergence. The earlier work, however, did
not explicitly mention that in order for the identifiability of the divergence to always hold, it is
necessary for the submodular functions involved to be strict. Complementarily, we consider how the
submodular-Bregman divergences become proper, satisfying Definition 1.1. Hereafter, we denote
1X as the indicator vector of a set X ⊆ V .

Theorem 3.1. Let f : 2V → R be a strictly submodular function. For every Y ⊆ V , there exist
modular functions hY , gY ∈ RN that make

Df (X,Y) := f(X)− f(Y)− ⟨hY , 1X − 1Y ⟩, (7)

and

Df (X,Y) := −f(X) + f(Y) + ⟨gY , 1X − 1Y ⟩ (8)

satisfy the conditions of divergences shown in Definition 1.1, respectively.

Proof. For every Y ⊆ V , we can take a strict subgradient of f at Y for hY , i.e., hY ∈ ∂̃f (Y). This
choice of the modular function hY leads

Df (X,Y) = f(X)− f(Y)− ⟨hY , 1X − 1Y ⟩
= f(X)− f(Y)− hY (X) + hY (Y)

≥ f(X)− f(Y)− f(X) + f(Y) = 0

for all X ⊆ V and the equality holds if and only if X = Y . This Df satisfies the conditions
in Definition 1.1. We can also show that Df satisfies Definition 1.1 with a strict supergradient
gY ∈ ∂̃f (Y) in a same manner.

In Iyer & Bilmes (2012b), Df and Df are referred to as lower-bound submodular-Bregman diver-
gence and upper-bound submodular-Bregman divergence, respectively. The submodular-Bregman
divergence Df depends on the (strictly) subgradient map Hf : Y 7→ h̃Y ∈ ∂̃f (Y) since the choice
of a (strict) subgradient in Df is not unique. Although the dependency should be clarified as DHf

f ,
we omit it for simplicity (do the same for Df).

3.2 DISCRETE BREGMAN DIVERGENCES

Intuitively, the expressive power of f may directly affect the expressive power of the submodular-
Bregman divergences (7), (8) (in fact, this is true and will be proved in Subsection 3.3). If we
can extend the function class that can be taken as f , the flexibility of the divergence may increase.
Surprisingly, the submodular-Bregman divergences (7), (8) are well-defined even if f is a general set
function not necessarily submodular (nor supermodular). The strong DS (difference-of-submodular)
decomposition (Li & Du, 2020) is the key idea.

Theorem 3.2 (Strong DS Decomposition (Li & Du, 2020)). Every set function f : 2V → R can
be decomposed into the difference of two monotone increasing and strictly submodular functions f1

and f2, i.e., f = f1 − f2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Note that a set function f1 : 2V → R is said to be monotone increasing when f1(Y) > f1(X)
for any X ⊂ Y ⊆ V . The (weak) DS decomposition is introduced in (Narasimhan & Bilmes,
2005) and proved in (Iyer & Bilmes, 2012a) rigorously and combinatorially. The proof of strong
DS decomposition provided in (Li & Du, 2020) is constructed by tweaking that in (Iyer & Bilmes,
2012a).

Once the strong DS decomposition f = f1 − f2 is obtained, the strict subgradients of f at Y ⊆ V

can be constructed by hY = h1
Y − g2Y ∈ ∂̃f (Y) with h1

Y ∈ ∂̃f1(Y), g2Y ∈ ∂̃f2

(Y), even if f is
neither strictly submodular nor supermodular, and the same is true for strict supergradients gY ∈
∂̃f (Y). This fact enables us to consider submodular-Bregman divergences with non-submodular set
functions.

Theorem 3.1′. For every set function f : 2V → R and every Y ⊆ V , there exist modular functions
hY , gY ∈ RN that make (7) and (8) satisfy the conditions in Definition 1.1, respectively.

In this paper, we call the divergences justified by Theorem 3.1′ the difference-of-submodular Breg-
man divergence (DBD) since such divergences no longer need the (strict) submodularity of f . Gen-
erally speaking, finding (strong) DS decomposition f = f1 − f2 given f takes exponential com-
plexity. One possible approach to benefit from Theorem 3.1′ is to prepare the submodular functions
f1 and f2 beforehand and to construct non-submodular f (Section 4).

3.3 EXPRESSIVE POWER OF DISCRETE BREGMAN DIVERGENCES

We extended the submodular-Bregman divergence to the DBD which bases a non-submodular set
function in general. Our question is whether the extension really improves the expressive power as a
divergence. More generally, does the expressive power of the DBD Df increase when a class of the
set function f becomes richer? For example, PointNet constitutes a superclass of facility location
functions as described in Subsection 2.3. Clearly, the class of all submodular functions is a subclass
of the class of all DS functions, or all set functions.

For precision, we define a class of set functions on 2V as a set of set functions closed under the
addition of modular functions.

Definition 3.3. Let F be a set of set functions on 2V . We denote the class of the set F as

C(F) := {f +m : f ∈ F ,m ∈ RN}

That is, f ∈ C(F) implies f + m ∈ C(F) for any modular function m ∈ RN . For example, the
set of modular, facility location, submodular, PointNet, and DS functions all induce classes of the
corresponding sets. We denote the set of all DBDs of set functions in C(F) by DC(F).

Theorem 3.4. Let F ,F ′ be sets of set functions and C := C(F), C′ := C(F ′) be the classes induced
by F and F ′, respectively. If C ⊂ C′, then DC ⊂ DC′ .

Proof. Take a set function f ′ ∈ C′\C. Suppose for the contrary that a DBD with respect to f ′ can be
represented by that of another set function f ∈ C. From Df ′(X,Y) = Df (X,Y) for all X,Y ⊆ V ,
we have Df ′(X, ∅) = Df (X, ∅) for all X ⊆ V . Nevertheless, Df ′(X, ∅) is the sum of f ′(X) and
a modular function, and the same for Df (X, ∅). Hence f ′(X) can be written as the sum of a set
function in C (namely f) and a modular function, which contradicts f ′ ∈ C′\C.

Theorem 3.4 claims that the extension of the submodular-Bregman divergence to the DBD actually
increases the expressive power. This motivates us to consider non-submodular set functions to obtain
more capable divergences.

4 PROPOSED METHOD

Following Theorem 3.1′ and Theorem 3.4, we propose a capable and learnable divergence that can
adapt downstream tasks. Although Theorem 3.2 states the existence of the (strong) DS decompo-
sition such that f = f1 − f2 for any f : 2V → R, the good method to find (strictly) submodular
functions f1 and f2 is unknown.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To avoid this difficulty, we prepare two submodular NNs a priori and take them as f1 and f2.
Given Y ⊆ V , we can find the subgradient of f1, h1

Y ∈ ∂f1(Y), and the supergradient of f2,
g2Y ∈ ∂f2

(Y). Then, we measure the dissimilarity between X ⊆ V and Y as

Df (X,Y) = Df1(X,Y) +Df2

(X,Y)

= f1(X)− f1(Y)− h1
Y (X) + h1

Y (Y)− f2(X) + f2(Y) + g2Y (X)− g2Y (Y). (9)

In downstream tasks, the DBD (9) can be learned by some objective function of metric learning,
such as the triplet loss Hoffer & Ailon (2018).

5 NUMERICAL EXPERIMENTS

We consider revealing the behavior of the DBD from numerical experiments. The datasets, network
architecture, and other details are as follows.

Datasets In our experiments, we use the following datasets.

• MNIST (Deng, 2012): The MNIST dataset is a collection of handwritten digits with a
training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28×28
image, making it a 784-dimensional vector. For an illustrative example (Section 5.1), we
use the MNIST dataset to develop a discrete problem setting.

• ModelNet40 (Wu et al., 2015): The ModelNet40 dataset consists of 12,311 meshes in 40
categories (such as airplane and chair), of which 9,843 are used for training, while the
rest 2,468 are reserved for testing. The corresponding point clouds are uniformly sampled
from the mesh surfaces. Such point cloud data can be regarded as a set of vectors and is
therefore suitable for the discrete problem setting that is the focus of this study. We utilize
this dataset to demonstrate the real-world applicability of our DBD (Section 5.2).

Network Architecture The choice of the NN architecture used as a component of the DBD is
arbitrary, as long as submodularity is guaranteed. In our implementation, we employ ε-PointNet
(6) with K = 1, the identity function as γ, ε = 0 or 0.001, and a fully-connected multi-layer
perceptron (MLP) as ϕ. For both f1 and f2, the MLPs consist of two hidden layers of 64 units. For
the activation functions, the ReLU is used for the hidden and final layers, which yields non-negative
outputs; thus the submodularity is guaranteed. In Section 5.2, we also experiment on the DBD
without DS decomposition as the ablation study. For fairness, the MLP within the model without
decomposition is adjusted to have 64× 128 units in the two hidden layers.

Learning Procedure For learning the DBD, we use the triplet loss (Hoffer & Ailon, 2018):

L(f) :=
n∑

i=1

max
(
Df (X

i
A, X

i
P)−Df (X

i
A, X

i
N), 0

)
,

where Xi
A, X

i
P , X

i
N ⊆ V are i-th anchor, positive, and negative sets, whose construction method

will be explained later. We also use Adam (Kingma & Ba, 2015) as the optimization algorithm for
the gradient update of the NNs, with a batch size of 64 and a learning rate of 0.001 unless otherwise
stated. The extreme point is taken as the subgradient h1

Y (Edmonds, 1970) as in (Iyer & Bilmes,
2012b) and the grow, shrink, and bar supergradients are taken as g2Y .

5.1 ILLUSTRATIVE EXAMPLE

First, we design a toy experiment to investigate whether our DBD works properly as a divergence.
As a divergence function, it is expected to (i) always take non-negative values for any set pair and (ii)
take smaller values for similar set pairs and larger values for those that are not. Here, (i) is clearly
ensured by Theorem 3.1′ and the implementation described in Section 4. In this subsection, we
consider a qualitative evaluation using the MNIST dataset to check the behavior of (ii). The original
MNIST dataset is a collection of handwritten digit images and we develop a discrete problem setting
from this dataset. In this toy experiment, we collect instances in the original dataset to generate n

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 1: Illustrative example on MNIST dataset (Deng, 2012). The query and reference sets are
constructed from instances in the MNIST dataset, and the DBD values correspond to the divergences
between the respective set pairs.

sets of a certain size M . The collection of these sets D is considered as a new discrete version of
the dataset, which is used to train the DBD. We set n = 50,000, M = 3, 4, and learn 200 epochs.
Now consider the mapping y : x 7→ y(x) from each instance x ∈ R784 of the original dataset to its
corresponding label y(x), and consider the mapping defined as Y : X = {x1, . . . ,xM} 7→ Y(X) =
{y(x1), . . . , y(xM)}. Given the anchor set Xi

A ∈ D, the positive set Xi
P and the negative set Xi

N are
sampled with ensuring the following conditions: Xi

P ∈
{
X ∈ D : Y(Xi

A) ∩ Y(X) ̸= ∅
}
, Xi

N ∈{
X ∈ D : Y(Xi

A) ∩ Y(X) = ∅
}

.

Figure 1 shows the experimental results for this toy example with ε = 0. For each query set, DBD
values between the query and some reference sets are reported. Here, the query and reference sets
are arbitrarily chosen so that there are differences in the expected divergence values. For example,
the top row of each group of reference sets is chosen to be similar to the query set in terms of the
labels of the original dataset, while the bottom row is chosen to be far from it. From this result, we
can see that the DBD takes smaller values for similar set pairs and larger values for those that are
not.

5.2 APPLICATIONS ON REAL-WORLD DATASET

Next, we confirm the usefulness of our DBD from numerical experiments on the real-world dis-
crete dataset. To this end, we consider two applications: set clustering and set retrieval on the
ModelNet40 dataset. Here, each instance X ∈ D of the dataset D is a point cloud of size
M = 500 uniformly sampled from the mesh, and a corresponding class label y(X) is given.
Since each X ∈ D can be regarded as a set of size M , the dataset D satisfies the discrete prob-
lem setting we are interested in. Given an anchor set Xi

A ∈ D, the positive and negative sets
Xi

P ∈
{
X ∈ D : y(Xi

A) = y(X)
}
, Xi

N ∈
{
X ∈ D : y(Xi

A) ̸= y(X)
}

are sampled while learning
the DBD. In the following, the results of the quantitative evaluation are reported with the means and
standard deviations of 10 trials at different random seeds.

Set Clustering As one of the downstream tasks in the real-world dataset, we consider set clus-
tering. In this task, we perform clustering with the k-means algorithm based on the trained DBD,
which is a similar setting to the experiments of Iyer & Bilmes (2012b). Note that the k-means al-
gorithm with a Bregman divergence is justified by Banerjee et al. (2005). To investigate the impact
of the strict submodularity, which is theoretically required, we conducted experiments with ε = 0
(submodular but not strictly submodular) and ε = 0.001 (strictly submodular), respectively. As an
ablation study, the results with a single ε-PointNet as f(X) are reported as w/o decomposition, in
which f2 = g2Y ≡ 0 in (9). Also, w/ decomposition corresponds to the DBD based on the DS
decomposition.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Experimental results of set clustering for ModelNet40 dataset (Wu et al., 2015). Prefixes
grow, shrink, and bar correspond to the supergradients ĝY (j), ǧY (j) and ḡY (j) respectively (as
shown in Table 1). The means and standard deviations of 10 trials with different random seeds are
reported.

Df (X,Y) f(X)
Rand index

ε = 0 ε = 0.001

grow-DBD w/ decomposition f1(X)− f2(X) 0.7942(±0.0092) 0.8015(±0.0060)
shrink-DBD w/ decomposition f1(X)− f2(X) 0.7905(±0.0088) 0.7912(±0.0047)

bar-DBD w/ decomposition f1(X)− f2(X) 0.7410(±0.0113) 0.7520(±0.0095)
grow-DBD w/o decomposition f1(X) 0.7741(±0.0097) 0.7743(±0.0092)

shrink-DBD w/o decomposition f1(X) 0.7750(±0.0098) 0.7756(±0.0080)
bar-DBD w/o decomposition f1(X) 0.7303(±0.0125) 0.7325(±0.0101)

|X \ Y |+ |Y \X| |X| 0.0225(±0.0060)
1− |X ∪ Y | /|Y | 1 0.0232(±0.0059)

1− (|Y |+ |X ∪ Y |)/2 |Y | 1/2 0.0232(±0.0059)

Table 2 shows the experimental results of the set clustering task. For the performance evaluation,
we use the Rand index between the resulting clusters and ground truth labels (e.g., airplaine and
chair), where the Rand index is a metric used to evaluate the similarity between two different clus-
terings of the same dataset. The results with some known special cases of the submodular-Bregman
divergence, found in (Iyer & Bilmes, 2012b), are also reported. First, the performance impact of the
learnable DBDs is clear because they produce significantly larger Rand index values compared to
the submodular Bregman divergences. It can be suggested that this is because the exact intersection
tends to be almost zero in many cases, as each element in the set corresponds to the coordinates of
a point cloud. In such cases, the high expressive power and learnability of NNs seem to be very
effective. Next, we turn our attention to the results of the comparison between the w/ and w/o DS
decomposition. These comparisons show that better performance is obtained by the DS decom-
position in all three types of supergradients. In addition, looking at the standard deviation of the
performance evaluation, it can be seen that the DS decomposition slightly reduces the variability
of the estimation. We also find that while the grow and shrink supergradients provide comparable
performance, the result by the bar supergradient is inferior with statistical significance. As seen in
Table 1, the bar supergradient at Y , denoted by ḡY , is independent on Y indeed, meaning that it
does not use local information around Y unlike the grow and shrink supergradients. The difference
may cause the performance gap of the supergradients. When strict submodularity is introduced with
ε = 0.001, we find a slight performance improvement compared to ε = 0, though it is not statisti-
cally significant, and the variance is also reduced. In addition, we report the results with the Softplus
activation function in Appendix C.

Set Retrieval Finally, we consider a set retrieval task for the qualitative evaluation of the DBD.
The set retrieval is a task similar to the image retrieval task, where each instance is a set. In this
task, we choose an arbitrary query set XQ ∈ D. For this query set XQ, we seek top-K similar
sets (X̃1, . . . , X̃K) that minimizes Df (XQ, Xk). If the DBD is learned as a reasonable divergence,
the resulting top-K sets should be qualitatively similar to the query set. In this experiment, we set
K = 5 and query sets are chosen from the airplane and chair classes. Figure 2 shows the experimen-
tal results of set retrieval with ε = 0. The leftmost column shows the query set and the right columns
are the corresponding top-5 similar sets. In the visualization of point cloud data, the rotation of the
camera is arbitrary, but we rotate it for the sake of clarity so that the class to which it belongs is
easily recognizable. In addition, since our DBD quantifies the differences between discrete data,
it is naturally invariant to these rotations. From the results of this experiment, shown in Fig. 2, it
can be seen that the DBD is capable of retrieving similar sets. In particular, the query set and the
corresponding similar sets are consistent in the classes to which they belong, indicating that the
learning of the DBD is achieved as expected. Also, although omitted in this figure, the divergence
between identical query sets Df (XQ, XQ) satisfies Df (XQ, XQ) < Df (XQ, Xk), ∀1 ≤ k ≤ n
and behaves as expected of the divergence, taking the smallest value between identical instances.
Additionally, we show the quantitative score on the set retrieval experiment in Table 4 (in Appendix

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 2: Experimental results of set retrieval for ModelNet40 dataset (Wu et al., 2015). For each
given query set, retrieved top-5 similar sets are listed based on the DBD.

C). Despite using only a simple MLP architecture without any pretraining, our method closely ap-
proaches the state-of-the-art method (Hamdi et al., 2021) and achieves better performance than its
previous method (Liu et al., 2019). This clearly demonstrates the capability of the DBDs.

6 CONCLUSION AND DISCUSSION

Traditional Bregman divergences are defined over continuous spaces using convex functions. In
this study, we extended this concept to discrete finite sets by proposing a difference-of-submodular
Bregman divergence. This extension enables natural handling of data structures such as point clouds
and item sets.

While previous approaches have used submodular functions—analogous to convex functions—to
define submodular Bregman divergences on discrete sets, we showed that difference-of-submodular
Bregman divergences can be defined from any set function, not necessarily submodular, by utilizing
difference-of-submodular decomposition. Theoretically, we showed that enhancing the expressive
power of the set function leads to a more expressive difference-of-submodular Bregman divergence.
This finding motivates the construction of difference-of-submodular Bregman divergences by learn-
ing flexible set functions for specific tasks.

To achieve this, we proposed an approach that learns set functions for difference-of-submodular
Bregman divergences using permutation-invariant neural networks, particularly ε-PointNet. Exper-
imentally, we confirmed that the difference-of-submodular Bregman divergence generated from a
set function defined as the difference of set functions represented by ε-PointNet is a proper diver-
gence. Furthermore, in a clustering task, the PointNet-based difference-of-submodular Bregman
divergence—learned from a small amount of ground-truth cluster data—significantly outperformed
existing submodular Bregman divergences constructed on fixed submodular functions.

For future work, the exploration of architectures for the permutation invariant NNs is an impor-
tant task. We used the simple ε-PointNet architecture in the numerical experiments, but optimal
hyperparameters (e.g., number of units and layers, dimension K, and ε) were not discussed. Fur-
thermore, novel flexible NN architectures that model submodular functions are proposed (Bilmes &
Bai, 2017; Bhatt et al., 2024). From an engineering perspective, it is important to develop a method
that performs as well as or better than the state-of-the-art methods according to our framework.

REPRODUCIBILITY

We provide the code needed to reproduce all experiments in the supplementary material attached.
The proofs omitted from the main text are presented in Appendix A and B.

REFERENCES

Shun-ichi Amari. Information Geometry and Its Applications. 1 edition, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clustering with Breg-
man Divergences. Journal of Machine Learning Research, 6(58):1705–1749, 2005.

Amir Beck and Marc Teboulle. Mirror Descent and Nonlinear Projected Subgradient Methods for
Convex Optimization. Operations Research Letters, 31(3):167–175, 2003.

Gantavya Bhatt, Arnav Mohanty Das, and Jeff Bilmes. Deep submodular peripteral networks. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Jeffrey Bilmes and Wenruo Bai. Deep Submodular Functions, 2017.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for Statis-
ticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Seung-Seok Choi, Sung-Hyuk Cha, Charles C Tappert, et al. A survey of binary similarity and
distance measures. Journal of systemics, cybernetics and informatics, 8(1):43–48, 2010.

Andrzej Cichocki and Shun-ichi Amari. Families of Alpha- Beta- and Gamma- Divergences: Flex-
ible and Robust Measures of Similarities. Entropy, 12(6):1532–1568, 2010.

Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic
metric learning. In Proceedings of the 24th International Conference on Machine Learning, pp.
209–216. ACM, 2007.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Jack Edmonds. Submodular Functions, Matroids and Certain Polyhedra. Combinatorial Structures
and Their Applications, 1970.

Oisin Faust, Hamza Fawzi, and James Saunderson. A bregman divergence view on the difference-
of-convex algorithm. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Pro-
ceedings of The 26th International Conference on Artificial Intelligence and Statistics, volume
206 of Proceedings of Machine Learning Research, pp. 3427–3439. PMLR, 25–27 Apr 2023.

Satoru Fujishige. Submodular Functions and Optimization. 2005.

Jacob Goldberger, Sam Roweis, Geoffrey Hinton, and Ruslan Salakhutdinov. Neighbourhood com-
ponents analysis. In Advances in Neural Information Processing Systems, volume 17, pp. 513–
520. MIT Press, 2005.

Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem. MVTN: Multi-view transformation net-
work for 3d shape recognition. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1–11, 2021.

Elad Hoffer and Nir Ailon. Deep metric learning using Triplet network, 2018.

Rishabh Iyer and Jeff Bilmes. Algorithms for approximate minimization of the difference between
submodular functions, with applications. In Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, UAI’12, pp. 407–417, 2012a.

Rishabh Iyer and Jeff A Bilmes. Submodular-Bregman and the Lovász-Bregman Divergences with
Applications. In Advances in Neural Information Processing Systems, volume 25, 2012b.

Rishabh Iyer, Stefanie Jegelka, and Jeff Bilmes. Fast semidifferential-based submodular function
optimization. In Proceedings of the 30th International Conference on International Conference
on Machine Learning - Volume 28, ICML’13, 2013.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General Perception with Iterative Attention. In Proceedings of the 38th International
Conference on Machine Learning, pp. 4651–4664, 2021.

Jinwoo Kim, Jaehoon Yoo, Juho Lee, and Seunghoon Hong. SetVAE: Learning Hierarchical Com-
position for Generative Modeling of Set-Structured Data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 15059–15068, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Masanari Kimura, Ryotaro Shimizu, Yuki Hirakawa, Ryosuke Goto, and Yuki Saito. On
permutation-invariant neural networks, 2024.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Brian Kulis, Sugato Basu, Inderjit S Dhillon, and Raymond J Mooney. Learning a mahalanobis
distance metric for clustering via information maximization. In Proceedings of the 22nd Interna-
tional Conference on Machine Learning, pp. 481–488. ACM, 2005.

S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. In Pro-
ceedings of the 36th International Conference on Machine Learning, pp. 3744–3753, 2019.

Xiang Li and H. George Du. A short proof for stronger version of DS decomposition in set function
optimization. Journal of Combinatorial Optimization, 40(4):901–906, 2020.

Zhiyuan Li, Ziru Liu, Anna Zou, and Anca L. Ralescu. Learning empirical bregman divergence for
uncertain distance representation. In 2023 26th International Conference on Information Fusion
(FUSION), volume 6, pp. 1–8. IEEE, June 2023.

Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming Xiang, and Chunhong Pan. Dense-
point: Learning densely contextual representation for efficient point cloud processing. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 5239–5248, 2019.

Fred Lu, Edward Raff, and Francis Ferraro. Neural bregman divergences for distance learning. In
The Eleventh International Conference on Learning Representations, 2023.

Renqiang Min, David A. Stanley, Zineng Yuan, Anthony Bonner, and Zhaolei Zhang. A deep non-
linear feature mapping for large-margin knn classification. In 2009 Ninth IEEE International
Conference on Data Mining, pp. 357–366, 2009.

Mukund Narasimhan and Jeff Bilmes. A submodular-supermodular procedure with applications to
discriminative structure learning. In Proceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence, UAI’05, pp. 404–412, 2005.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions—I. Mathematical Programming, 14(1):265–294, 1978.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 652–660, 2017.

Mina Rezaei, Farzin Soleymani, Bernd Bischl, and Shekoofeh Azizi. Deep bregman divergence
for self-supervised representations learning. Computer Vision and Image Understanding, 235:
103801, 2023. ISSN 1077-3142.

Ruslan Salakhutdinov and Geoff Hinton. Learning a nonlinear embedding by preserving class neigh-
bourhood structure. In Marina Meila and Xiaotong Shen (eds.), Proceedings of the Eleventh Inter-
national Conference on Artificial Intelligence and Statistics, volume 2 of Proceedings of Machine
Learning Research, pp. 412–419, San Juan, Puerto Rico, 21–24 Mar 2007. PMLR.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 815–823. IEEE, 2015.

Ali Siahkamari, XIDE XIA, Venkatesh Saligrama, David Castañón, and Brian Kulis. Learning to
approximate a bregman divergence. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 3603–3612.
Curran Associates, Inc., 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4004–4012. IEEE, 2016.

Peter Stobbe. Convex Analysis for Minimizing and Learning Submodular Set Functions. PhD thesis,
California Institute of Technology, 2013.

Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families, and Varia-
tional Inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

Fei Wang and Jimeng Sun. Survey on distance metric learning and dimensionality reduction in data
mining. Data Mining and Knowledge Discovery, 29:534 – 564, 2014.

Jiang Wang, Feng Zhou, Shenghua Wen, Xiao Liu, and Yuanqing Lin. Learning fine-grained image
similarity with deep ranking. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1386–1393. IEEE, 2014.

Kilian Q Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning for large margin
nearest neighbor classification. In Y. Weiss, B. Schölkopf, and J. Platt (eds.), Advances in Neural
Information Processing Systems, volume 18. MIT Press, 2005.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Eric Xing, Michael Jordan, Stuart J Russell, and Andrew Ng. Distance metric learning with ap-
plication to clustering with side-information. In S. Becker, S. Thrun, and K. Obermayer (eds.),
Advances in Neural Information Processing Systems, volume 15. MIT Press, 2002.

Han-Jia Ye, De chuan Zhan, and Yuan Jiang. Fast generalization rates for distance metric learning.
Machine Learning, 108:267 – 295, 2018.

Jieping Ye, Zheng Zhao, and Mingrui Wu. Adaptive distance metric learning for clustering. In
Proceedings of the 20th International Conference on Neural Information Processing Systems, pp.
543–550. Curran Associates Inc., 2007.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep Sets. In Advances in Neural Information Processing Systems, vol-
ume 30, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A WELL-DEFINEDNESS OF STRICT SEMIDIFFERENTIALS

In this section, we show the well-definedness of strict semidifferentials defined in (4) and (5).
First, we confirm the equivalence between the strict submodularity and the strict diminished re-
turns property as in (Nemhauser et al., 1978). Hereafter, we denote the increase of a set function
f as f(j|S) := f(S ∪ {j}) − f(S) for j ∈ V and S ⊆ V \{j} and distinguish ⊂ from ⊆ by
whether it contains an equality or not. We repeat the definition of strict submodularity for the sake
of convenience:

Definition A.1. A set function f : 2V → R is strictly submodular if

f(X) + f(Y) > f(X ∪ Y) + f(X ∩ Y) (10)

for every non-comparable X,Y ⊆ V .

Lemma A.2. For a set function f : 2V → R, the strict submodularity (10) holds if and only if

f(j|S) > f(j|T) (11)

is satisfied for all S ⊂ T ⊂ V and j ∈ V \T .

Proof.
[(10) → (11)]
By taking S ⊂ T, j /∈ T,X = S ∪ {j}, Y = T , we have

f(S ∪ {j}) + f(T) > f(S ∪ {j} ∪ T) + f((S ∪ {j}) ∩ T) = f(T ∪ {j}) + f(S).

[(11) → (10)]
Let X,Y ⊂ V be any non-comparable subsets of V and denote X\Y = {j1, . . . , jr} ̸= ∅. From
(11),

f(ji|X ∩ Y ∪ {j1, . . . , ji−1}) > f(ji|Y ∪ {j1, . . . , ji−1})

holds. By summing up the above equality, the l.h.s. becomes

r∑
i=1

f(ji|X ∩ Y ∪ {j1, . . . , ji−1}) =
r∑

i=1

[f(X ∩ Y ∪ {j1, . . . , ji})− f(X ∩ Y ∪ {j1, . . . , ji−1})]

= f(X ∩ Y ∪ {j1, . . . , jr})− f(X ∩ Y) = f(X)− f(X ∩ Y).

and the r.h.s. becomes
r∑

i=1

f(ji|Y ∪ {j1, . . . , ji−1}) =
r∑

i=1

[f(Y ∪ {j1, . . . , ji})− f(Y ∪ {j1, . . . , ji−1})]

= f(Y ∪ {j1, . . . , jr})− f(Y) = f(X ∪ Y)− f(Y).

That results in strict submodularity (10).

Lemma A.2 states the strict version of the diminishing returns property with respect to strictly sub-
modular functions. We can find the following proposition from Lemma A.2.

Lemma A.3. When f : 2V → R is strictly submodular,

f(T)− f(S) <
∑

j∈T\S

f(j|S)−
∑

j∈S\T

f(j|S ∪ T\{j}) (12)

and

f(T)− f(S) <
∑

j∈T\S

f(j|S ∩ T)−
∑

j∈S\T

f(j|S\{j}) (13)

for every S, T ⊆ V (S ̸= T).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. We use strict diminishing returns (11) to prove (12). Taking any S, T ⊆ V, (S ̸= T) and
denoting T\S = {j1, . . . , jr}, S\T = {k1, . . . , kq}. We have

f(S ∪ T)− f(S) =

r∑
t=1

[f(S ∪ {j1, . . . , jt})− f(S ∪ {j1, . . . , jt−1})]

=

r∑
t=1

f(jt|S ∪ {j1, . . . , jt−1})

≤
r∑

t=1

f(jt|S) =
∑

j∈T\S

f(j|S) (14)

from (11) (the equality holds only if T\S = ∅). Then,

f(S ∪ T)− f(T) =

q∑
t=1

[f(T ∪ {k1, . . . , kt} − f(T ∪ {k1, . . . , kt−1})]

=

q∑
t=1

f(kt|T ∪ {k1, . . . , kt−1})

=

q∑
t=1

f(kt|T ∪ {k1, . . . , kt}\{kt})

≥
q∑

t=1

f(kt|S ∪ T\{kt}) =
∑

j∈S\T

f(j|S ∪ T\{j}) (15)

is also obtained (the equality holds only if S\T = ∅). By subtracting (15) from (14), we can confirm
(12). Note that the inequality in (12) does not include an equality unlike (14) and (15) because at
least one of T\S and S\T is non-empty by the condition S ̸= T .

Inequality (13) can be derived in a similar manner. We can obtain

f(T)− f(S ∩ T) =

r∑
t=1

[f((S ∩ T) ∪ {j1, . . . , jt})− f((S ∩ T) ∪ {j1, . . . , jt−1})]

=

r∑
t=1

f(jt|(S ∩ T) ∪ {j1, . . . , jt−1})

≤
r∑

t=1

f(jt|S ∩ T) =
∑

j∈T\S

f(j|S ∩ T) (16)

and

f(S)− f(S ∩ T) =

q∑
t=1

[f((S ∩ T) ∪ {k1, . . . , kt} − f((S ∩ T) ∪ {k1, . . . , kt−1})]

=

q∑
t=1

f(kt|(S ∩ T) ∪ {k1, . . . , kt−1})

=

q∑
t=1

f(kt|(S ∩ T) ∪ {k1, . . . , kt}\{kt})

≥
q∑

t=1

f(kt|((S ∩ T) ∪ {k1, . . . , kq})\{kt})

=

q∑
t=1

f(kt|S\{kt}) =
∑

j∈S\T

f(j|S\{j}), (17)

where the equalities in (16) and (17) hold only if T\S = ∅ and S\T = ∅, respectively. Inequality
(13) is obtained from (16) and (17).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We may also be able to show the sufficiency of (12) and (13) for the strict submodularity (10) in a
similar way to (Nemhauser et al., 1978, Proposition 2.1), but we omit it because it is not necessary
for our methodology.

Now we show the existence of strictly subgradients of strict submodular functions.

Proposition A.4 (Existence of strict subgradients). Suppose that f : 2V → R satisfies the strict
submodularity (2). Then, the strict subdifferential of f at Y ⊆ V is non-empty.

Proof. We show the existence by directly composing specific examples of the subgradients as in
(Stobbe, 2013, Section 3.3.1). Let λ ∈ RN be some modular function and t ∈ R be some real value.
We define a modular function hY ∈ RN as

hY := λ+ t(1Y − 1V \Y).

For any X ⊆ V , we can find

hY (X)− hY (Y) = ⟨hY , 1X − 1Y ⟩ = ⟨λ, 1X − 1Y ⟩+ t⟨1Y − 1V \Y , 1X − 1Y ⟩

and the rightmost term can be rewritten as

⟨1Y − 1V \Y , 1X − 1Y ⟩ = 2⟨1Y , 1X − 1Y ⟩ − ⟨1Y + 1V \Y , 1X − 1Y ⟩
= 2|X ∩ Y |−2|Y |−|X|+|Y |
= −(|X|+|Y |−2|X ∩ Y |).

Since the r.h.s. is the negative of the size of the set of X and Y XORed, it takes a negative value
when X ̸= Y . Therefore, we can have

∀X ∈ 2V \{Y }, hY (X)− hY (Y) = ⟨λ, 1X − 1Y ⟩+ t⟨1Y − 1V \Y , 1X − 1Y ⟩ < f(X)− f(Y)

by taking sufficiently large t > 0. To be precise, we obtain

hY = λ+ t(1Y − 1V \Y) ∈ ∂̃f (Y) ⇔ t > max
X∈2V \{Y }

f(Y)− f(X) + λ(X)− λ(Y)

|X|+|Y |−2|X ∩ Y |
.

Next, let us prove the non-emptiness of strict superdifferentials.

Proposition 2.5 (Strict supergradients). The modular functions ĝY , ǧY , and ḡY defined in Table 1
are all the strict supergradients if f is strictly supermodular.

Proof. For all X ⊆ V , we have

ĝY (X) =
∑
j∈X

ĝY (j) =
∑

j∈X\Y

f(j|Y) +
∑

j∈X∩Y

f(j|V \{j}),

ĝY (Y) =
∑
j∈Y

ĝY (j) =
∑

j∈Y \X

f(j|V \{j}) +
∑

j∈X∩Y

f(j|V \{j}),

by definition. If X ̸= Y , it can be found that

ĝY (X)− ĝY (Y) =
∑

j∈X\Y

f(j|Y)−
∑

j∈Y \X

f(j|V \{j})

≥
∑

j∈X\Y

f(j|Y)−
∑

j∈Y \X

f(j|X ∪ Y \{j}) (∵ Lemma A.2)

> f(X)− f(Y) (∵ Lemma A.3).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

holds. This indicates ĝY ∈ ∂̃f (Y). Similarly, we have

ḡY (X)− ḡY (Y) =
∑

j∈X\Y

f(j|∅)−
∑

j∈Y \X

f(j|V \{j})

≥
∑

j∈X\Y

f(j|∅)−
∑

j∈Y \X

f(j|Y \{j})

︸ ︷︷ ︸
= ǧY (X)− ǧY (Y)

(∵ Lemma A.2)

≥
∑

j∈X\Y

f(j|X ∩ Y)−
∑

j∈Y \X

f(j|Y \{j}) (∵ Lemma A.2)

> f(X)− f(Y) (∵ Lemma A.3)

for X ̸= Y . Thus ǧY , ḡY ∈ ∂̃f (Y) is also obtained.

B STRICT SUBMODULARITY OF THE RELAXED FACILITY LOCATION
FUNCTION

Proposition B.1. The relaxed facility location function fFC,ε defined in (3) is strictly submodular
for ε > 0.

Proof. For every X ⊂ V and every j ∈ V \X , we have

fFC,ε(j|X) = ε

K∑
k=1

log

(∑
i∈X

eϕik/ε + eϕjk/ε

)
− ε

K∑
k=1

log
∑
i∈X

eϕik/ε

= ε

K∑
k=1

log

(
1 +

eϕjk/ε∑
i∈X eϕik/ε

)
(18)

Now, consider X,Y ⊂ V such that X ⊂ Y ⊂ V and j ∈ V \Y . Then,

fFC,ε(j|X) = ε

K∑
k=1

log

(
1 +

eϕjk/ε∑
i∈X eϕik/ε

)

> ε

K∑
k=1

log

(
1 +

eϕjk/ε∑
i∈Y eϕik/ε

)
= fFC,ε(j|Y)

holds from (18). By Lemma A.2, the strict submodularity of fFC,ε is shown.

C ADDITIONAL EXPERIMENTS

C.1 ANOTHER ACTIVATION FUNCTION

Additionally, we report the results of experiments where the activation function in the final layer
of ε-PointNet’s MLP was changed from ReLU to Softplus. Table 3 shows the results with ε = 0.
No significant difference was observed compared to the results obtained with ReLU, as reported in
Table 2.

C.2 QUANTITATIVE EVALUATION FOR SET RETRIEVAL

Table 4 shows the result of the quantitative score of the set retrieval experiment in Section 5.2.
Retrieval mean Average Precision (mAP) is employed as the metric as in (Hamdi et al., 2021). We
compare the performance of the proposed DBD with PointNet (see Section 5 for the architecture)
with two baseline methods, Densepoint (Liu et al., 2019) and the multi-view transformation network
(MVTN) (Hamdi et al., 2021). For MVTN, we report the score shown in the original paper (Hamdi
et al., 2021) because we failed to reproduce the result.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Experimental results of set clustering for ModelNet40 dataset (Wu et al., 2015) with the
softplus activation function. Prefixes grow, shrink, and bar correspond to the supergradients ĝY (j),
ǧY (j) and ḡY (j) respectively (as shown in Table 1). The means and standard deviations of 10 trials
with different random seeds are reported.

Df (X,Y) f(X) Rand index

grow-DBD (softplus) w/ decomposition f1(X)− f2(X) 0.7940(±0.0089)
shrink-DBD (softplus) w/ decomposition f1(X)− f2(X) 0.7911(±0.0090)

bar-DBD (softplus) w/ decomposition f1(X)− f2(X) 0.7424(±0.0107)
grow-DBD (softplus) w/o decomposition f1(X) 0.7743(±0.0095)

shrink-DBD (softplus) w/o decomposition f1(X) 0.7756(±0.0094)
bar-DBD (softplus) w/o decomposition f1(X) 0.7295(±0.0120)

Table 4: Experimental results of set retrieval for ModelNet40 dataset (Wu et al., 2015). Prefixes
grow, shrink, and bar correspond to the supergradients ĝY (j), ǧY (j) and ḡY (j) respectively (as
shown in Table 1). The means and standard deviations of 10 trials with different random seeds are
reported, except ∗. Note that the evaluation result with ∗ is borrowed from the original paper.

Method mAP

grow-DBD w/ decomposition 90.13(±0.75)
shrink-DBD w/ decomposition 90.20(±0.77)

bar-DBD w/ decomposition 86.09(±0.85)
grow-DBD w/o decomposition 88.12(±0.80)

shrink-DBD w/o decomposition 88.20(±0.81)
bar-DBD w/o decomposition 83.57(±0.97)
Densepoint (Liu et al., 2019) 89.68(±0.88)
MVTN (Hamdi et al., 2021) 92.9∗

18

	Introduction
	Preliminaries
	Submodular Functions and Semidifferentials
	Strict Submodularity
	Permutation-invariant Neural Networks

	Theoretical Foundations
	Submodular-Bregman Divergences
	Discrete Bregman Divergences
	Expressive Power of Discrete Bregman Divergences

	Proposed Method
	Numerical Experiments
	Illustrative Example
	Applications on Real-world Dataset

	Conclusion and Discussion
	Well-definedness of Strict Semidifferentials
	Strict Submodularity of the Relaxed Facility Location Function
	Additional Experiments
	Another Activation Function
	Quantitative Evaluation for Set Retrieval

