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Abstract

We study L Grad, a geometry-aware modification to gradient-based optimization that constrains
descent directions to address overconfidence, a key limitation of standard optimizers in uncertainty-
critical applications. By enforcing orthogonality between gradient updates and weight vectors,
1 Grad alters optimization trajectories without architectural changes. On CIFAR-10 with 10%
labeled data, 1 Grad matches SGD in accuracy while achieving statistically significant improvements
in test loss (p = 0.05), predictive entropy (p = 0.001), and confidence measures. These effects show
consistent trends across corruption levels and architectures. L Grad is optimizer-agnostic, incurs
minimal overhead, and remains compatible with post-hoc calibration techniques.

Theoretically, we characterize convergence and stationary points for a simplified L Grad variant,
revealing that orthogonalization constrains loss reduction pathways to avoid confidence inflation and
encourage decision-boundary improvements. Our findings suggest that geometric interventions in
optimization can improve predictive uncertainty estimates at low computational cost.

1. Introduction

Neural networks are increasingly deployed in settings where prediction confidence must be reliable,
motivating both algorithmic and post-hoc approaches to calibration. While most intrinsic methods
target loss function design or regularization, we open a new research direction: using geometric
constraints on optimization trajectories to improve calibration.

Specifically, we provide the first systematic study of 1 Grad (read as "OrthoGrad") for calibra-
tion, which alters descent directions by projecting gradients orthogonally to layer weight vectors
during training. This simple geometric constraint changes the optimization trajectory in a way that
systematically reduces overconfidence without degrading accuracy. We evaluate | Grad empirically
on CIFAR-10 and CIFAR-10C using ResNet18 and WideResNet-28-10, with a focus on the low-data
regime. Our results show that | Grad improves calibration metrics and robustness under input
corruption while remaining compatible with standard post-hoc calibration techniques.

Theoretically, we prove convergence of a simplified 1 Grad variant and characterize its fixed
points in positive homogeneous networks. These results suggest a mechanism by which | Grad
prevents loss reduction via confidence scaling alone, encouraging decision-boundary improvements
instead. Together, our findings show that geometry-aware optimization can enhance calibration.

2. Background

A classifier is said to be calibrated when predicted confidence scores reflect the true likelihood of
correctness. This property is critical when predictive uncertainty informs downstream decisions. Guo
et al. introduced temperature scaling in [1], demonstrating that modern neural networks are often
poorly calibrated despite high accuracy.
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Calibration techniques fall into two categories. Intrinsic methods improve calibration during
training, e.g., via loss modifications [2, 3], data augmentation, or mixup [5]. Post-hoc methods,
including temperature scaling, Platt scaling, and isotonic regression, adjust model outputs after
training without changing weights. Post-hoc methods depend on held-out validation data and cannot
correct uncertainty misestimation rooted in model internals.

Recent work has explored orthogonality to improve deep networks, primarily for generalization
and stability: orthogonal convolutional filters [8], inter-layer gradient orthogonality [6, 9], and
orthogonalized descent to accelerate grokking [4]. We extend this line to calibration, studying | Grad,
which projects layer-wise gradients orthogonally to their corresponding weights at each update.
While | Grad was originally proposed to stabilize training near grokking [4], we examine its effects
on model calibration under limited data and distribution shift.

To our knowledge, no prior work has investigated the link between orthogonalized gradient
updates and calibration. We provide the first empirical evaluation of whether geometry-aware descent
can improve metrics such as expected calibration error (ECE) and predictive entropy without harming
accuracy.

3. Theoretical Analysis

We first formally define the | Grad algorithm for continuous loss functions on RP. There are two
important variations: the practical implementation used in our experiments (with renormalization) and
a simplified variant (without renormalization) for which we can prove convergence. The following
definition is the practical implementation used in our experiments and in [4], and the definition for
the simplified variant is found in the appendix.

Definition 1 For a differentiable loss function L : RP — R, learning rate n > 0, numerical stability
constant € > 0, we define the 1 Grad update procedure as follows:

1. Begin with 6 € R?,

2. Nextlet g=VL(0)— %9. This is the orthogonalized gradient.
3. If||g|| = 0, we do not perform an update and return 6. Otherwise we continue.

4. We now renormalize the gradient:
. VL6
g_<u <m>g
gl + €

5. Finally, we update ' = 6 — ng.

Note that we re-normalize the orthogonalized gradient to have the same magnitude as the original
gradient (with a slight modification for numerical stability). Unfortunately this renormalization
leads to slightly less desirable theoretical properties. In particular, if 1 Grad with renormalization
converges, it converges to a stationary point for L, but we cannot guarantee convergence itself.

However, without renormalization, we can prove convergence under standard assumptions:
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Theorem 2 Suppose L : RP — R is bounded from below, differentiable, and V L is Lipschitz with
Lipschitz constant k. Then for any n € (0,1/k), and any initialization 0y € RP, | Grad (without
gradient renormalization) will converge to some 0* satisfying:

[(VL(67),0%)] = [167]] - [[VL(6")]I.
In particular, V L(0*) is parallel to 0*.

The proof (see Appendix) follows standard arguments. While we describe orthogonalization
at the model level for clarity, the result extends naturally to layer-wise orthogonalization with only
notational modifications.

This implies that 1 Grad converges to points where further loss reduction requires rescaling
model weights and biases. As noted in [4], for positive homogeneous networks this corresponds to
increasing confidence rather than altering the decision boundary. Hence, | Grad reaches stationary
points w.r.t. the decision boundary and avoids reducing loss by simply inflating confidence.

For the renormalized variant used in our experiments, convergence guarantees do not hold, but
if it converges, it must converge to a stationary point. This represents a theory-practice gap in our
work: while we prove convergence for the non-renormalized case, experiments use renormalization
for numerical stability. However, orthogonal updates fundamentally constrain trajectories regardless
of renormalization: in positive homogeneous networks, 1 Grad still encourages decision-boundary
improvements over confidence scaling.

Empirically, we observed no significant performance differences between renormalized and
non-renormalized variants in a 10-seed comparison on CIFAR-10 and CIFAR-10C, suggesting renor-
malization preserves the core geometric benefits while maintaining practical stability. The constraint
structure remains: gradient components parallel to weights are removed, forcing optimization along
decision-boundary-improving directions.

4. CIFAR-10 Results
4.1. Training on CIFAR-10

Using 20 different seeds, we selected a random 10% of the training dataset, for a total of 500 images
per class. For each seed, we trained a ResNetl8 model (modified to fit the CIFAR-10 dataset)
for 100 epochs with a learning rate of 0.01, momentum set to 0.9, and weight decay at 5e — 4.
We used a batch size of 64 and added random flips and crops for data augmentation. The base
optimizer was PyTorch’s SGD, which we compared to | Grad following the implementation in [4].
Orthogonalization is applied layer-wise: each layer’s gradient is projected orthogonally to that layer’s
weight vector. Note that this implementation includes gradient renormalization; while this variant
does not enjoy the convergence guarantees we prove, we include it here for continuity with prior
work and to isolate the effect of orthogonalization on calibration metrics. The average results across
the 20 runs are shown in Table 1 and reliability diagrams can be found in the appendix.

This experiment showed no significant difference in accuracy metrics. However, L Grad achieved
statistically significant improvements in test loss (p = 0.05), predictive entropy (p = 0.001), and
confidence measures: lower maximum softmax (p = 0.002), maximum logit (p = 2.5 x 107°), and
logit variance (p = 2 x 1077).

While not reaching statistical significance, L Grad showed consistent trends toward improved
ECE and Brier Score, and better confidence-correctness correlation (0.467 vs 0.445). The robustness
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SGD | 1 Grad | Effect Size | 95% Confidence Interval p value
Topl Accuracy | 75.18 | 75.27 -0.05 (—0.67,0.57) 0.86
Top5 Accuracy | 97.67 | 97.81 -0.35 (—0.97,0.28) 0.28
Loss 1.26 | 1.19 0.64 (0.005,1.28) 0.05
ECE 0.168 | 0.161 0.48 (—0.15,1.11) 0.14
Brier Score | 0.408 | 0.400 0.28 (—0.34,0.91) 0.37
Entropy 0.208 | 0.224 -1.11 (—=1.77,—-0.44) 0.001
Max Softmax | 0.920 | 0.914 1.06 (0.40,1.72) 0.002
Max Logit 13.58 | 13.03 1.52 (0.82,2.22) 2.5 x107°
Logit Variance | 45.73 | 42.30 2.00 (1.25,2.77) 2x 1077

Table 1: CIFAR-10 test results across 20 seeds comparing SGD and | Grad. Accuracy remains
unchanged, but | Grad consistently improves loss, entropy, and softmax/logit statistics.
These differences suggest improved calibration and reduced overconfidence under | Grad.
Bold indicates better performance (higher accuracy, entropy; lower loss, ECE, etc.), regard-
less of statistical significance.

of significant effects across multiple confidence-related metrics suggests systematic reduction in
overconfidence without accuracy degradation.

While orthogonalization has been hypothesized to introduce implicit regularization by reducing
weight norm growth, our experiments do not support this effect. The final weight vector norms did
not differ significantly between the two optimization methods (79.69 for SGD compared to 79.72 for
1 Grad, p = 0.36).

4.2. Temperature Scaling

Next, we evaluated the impact of temperature scaling on model calibration between the two optimizer
choices. There was a significant difference (p = 0.003) between optimal temperatures, with SGD
requiring higher temperature scaling (1" = 2.80) compared with | Grad (1" = 2.66). However, there
was no difference between the temperature scaled ECE or Brier scores (see appendix).

Notably this means that, unlike the results in [7], L Grad appears to remain amenable to post-hoc
calibration and is able to improve loss and entropy by instead optimizing the decision boundary
without allowing for naive scaling of outputs. Additionally, the fact that 1 Grad required a significantly
lower temperature for calibration further indicates that L Grad converges to better calibrated models
without sacrificing accuracy.

4.3. CIFAR-10C Evaluation

Finally, we turn to examining how the resulting models behaved under input corruption using
the CIFAR-10C dataset. We found that 1 Grad maintained calibration and loss improvements
across corruption types and severity levels. We observed similar results to the clean experiment,
with negligible differences between SGD and L Grad in accuracy metrics, but the effects on loss,
entropy, max softmax/logit values, and logit variance persisted (although diminished in statistical
significance).
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Performance Across Corruption Severities
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Figure 1: Comparative trends across CIFAR-10C corruption levels. | Grad consistently shows
better loss and predictive entropy across corruption levels without sacrificing accuracy,
indicating improved robustness under input noise.

In all, it appears that orthogonalizing gradients had no meaningful impact on accuracy, yet it
improved the model’s calibration by decreasing loss and confidence and increasing entropy.

5. Additional Empirical Results
5.1. Extended Training Results

To examine calibration and robustness under extreme overfitting, we extended ResNet18 training to
1000 epochs with all other hyperparameters fixed. This stress test was designed to reveal optimizer
behavior beyond the typical training horizon. Early stopping was not used. Due to computational
constraints, results are from a single seed and should not be interpreted statistically, though they are
consistent with our short-run multi-seed findings.

SGD achieved higher clean test accuracy (70.5% vs. 65.8% for L Grad), but L Grad consistently
outperformed under corruption: from level 2 onward it yielded better loss and ECE, and from level
3 onward better Topl accuracy. Overall average accuracy across CIFAR-10C was also higher for
L Grad (60.4% vs. 59.0%). Detailed comparisons appear in the appendix.

At corruption level 5, the overfit 1 Grad model outperformed not only the overfit SGD model but
also every seed from the 100-epoch experiments. Assessing the statistical robustness of this behavior
is left to future work.

5.2. WideResNet-28-10

We additionally ran a 5 seed experiment using WideResNet-28-10. All other hyperparameters were
kept the same as the original ResNet18 experiment in Section 4. The results confirm that calibration
benefits generalize across architectures: | Grad again achieved significant improvements in loss
(p = 0.004), entropy (p = 2 x 10~%), and confidence measures while maintaining accuracy parity.
The consistency of these effects across ResNet18 and WideResNet-28-10 suggests the geometric
constraint addresses a fundamental optimization bias toward overconfidence that is architecture-
independent. These results persisted under corruption. More details appear in the appendix.
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6. Discussion

This work demonstrates that gradient orthogonalization via | Grad systematically improves neural
calibration without accuracy loss. The method achieves statistically significant improvements in
test loss, entropy, and confidence measures across architectures (ResNet18, WideResNet-28-10) and
conditions (clean data, corruption, extended training). As an optimizer-agnostic intervention with
minimal overhead, 1 Grad offers a practical approach for applications requiring reliable uncertainty
estimates.

Key limitations include restriction to CIFAR-10/CIFAR-10C and the theory-practice gap between
our convergence proof (non-renormalized) and experimental implementation (renormalized). The
extended training results, while promising, require validation across multiple seeds. | Grad remains
compatible with post-hoc calibration, mitigating concerns about regularization-calibration conflicts
[7].

Theoretically, we prove convergence for a simplified variant and characterize favorable stationary
points where loss reduction requires decision-boundary improvements rather than confidence scaling.
While our convergence proof applies to the non-renormalized case, empirical comparison shows no
significant differences between variants, suggesting the geometric benefits transfer to the practical
implementation.

Our results indicate that geometric constraints on optimization trajectories offer a promising
direction for improving neural calibration. 1 Grad provides consistent calibration improvements
across architectures and conditions while maintaining the simplicity and broad applicability essential
for practical deployment.
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7. Appendix

The appendix is organized as follows. First we describe the stationary points for L Grad with
renormalization. Next we formally define the | Grad algorithm without renormalization and prove
Theorem 3.1, showing that in the non-renormalized case 1 Grad is guaranteed to converge under
standard assumptions. We then discuss the stable points for 1 Grad (with and without renormaliza-
tion), showing that in the case of positive homogenous classification networks they correspond with
stationary points with respect to the decision boundary.

7.1. 1 Grad with Renormalization

We first note that if | Grad with renormalization converges, it converges to a stationary point for L.
Note that this does not imply that | Grad with renormalization will converge, and in fact with a fixed
learning rate we suspect that in many cases it will not converge, but we leave a deeper discussion
of this potential lack of convergence to future work. Here we characterize the stationary points for
1 Grad with renormalization.

Lemma 3 If | Grad with renormalization converges along the descent pathway (6,,)cn, then either
(VL(6y,),0rn) = 10n|] - |IVL(0y,)]|| for some n € N at which point the 1 Grad trajectory stabilizes,
or||VL(60,)|| — 0.

Proof First suppose | Grad converges along the descent pathway (6,,)xen. If we have (VL(6,,),6,,) =
[16n]] - ||V L(6y)|| for some k, it is easy to see that the | Grad trajectory stabilizes. We now assume
that (VL(6,,),0,) # 0 for all k € N. For each k € N, let vy, i be as in the definition of L Grad.
Since (6,,) converges, we have

_ VL) - lJorll _ [IVL(6n)

X I
gkl = = — 0.
Hka—i—E 1+ HvekH

Suppose for a contradiction that lim sup ||V L(6,)|| = ¢ > 0. By passing to a subsequence we can
assume without loss of generality that lim ||V L(6,)|| = c. Since ||vg|| < |[VL(6,)|| by definition,
we know . .
limsupl+ +— > 14 -,
[|vgll c

and therefore

L(6
Jim inf Hlv GDIINN - < _>o.
This contradicts that ||g,,|| — 0 and it must be the case that ||VL(6,,)|| — 0. [ |

Notably, this means that if the 1 Grad procedure outlined in [4] converges (nontrivially), it
converges to a stationary point for L. Combined with the fact that we cannot guarantee convergence
for the renormalized version of 1 Grad, this may mitigate some of the theoretically proposed benefits
discussed in Section 3.
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7.2. Convergence Results

Next we define the | Grad procedure without renormalization:

Definition 4 For a differentiable loss function L : RP — R, learning rate n > 0, we define the
1 Grad (without renormalization) update procedure as follows:

1. Begin with 6 € R?,

2. Nextlet g =V L(0) — Wﬁl ;ﬁgw 0. This is the orthogonalized gradient.

3. We update 6’ = 6 — ng.

Without renormalization, we are able to prove some desirable convergence properties. Not only
that the algorithm converges under standard assumptions, but additionally the stable points have
desirable properties when it comes to positive homogenous model architectures.

Theorem 3.1 Suppose L : RP — R is bounded from below, differentiable, and V L is Lipschitz
with Lipschitz constant k. Then for any n € (0,1/k), and any non-zero initialization 0y € RP,
1 Grad (without gradient renormalization) will converge to some 0* satisfying:

[(VLO7), 07) = 107[] - [IVL(O)]-
In particular, V L(0*) is parallel to 0*.
Proof Let 6,, be any point along the | Grad pathway and let
On
116112

denote the orthogonalized gradient. Define the update 6,11 = 6,, — ng,. Since VL is Lipschitz with
constant k, we apply a standard descent bound:

gn = VL(QN) - <VL(0n)v 071)

2k
L(Bu41) < L(6a) = (T L(B), g0} + L= lgal

2 2
= L(6.,) =1 (van)n? - W) + LE g

2
n°k
= L(0p) — nllgnl* + 5 |lgnl]?

=20 -7 (1= %) ol

Since < 1/k, the coefficient n (1 — %k> is positive. Therefore, the loss strictly decreases

unless g, = 0.Summing over n = 0to 7" — 1, we get:

T-1
k
L(60) — L(07) > 1 (1 - 2”) S [lgnl
n=0
Since L is bounded below by some L;,; € R, we have:

o0

L(6g) — Ly
S [lga? < 20000 = Lint.
n=0 n

0-%)
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We now note that since for each n € N, (gy,, 6,,) = 0, we know

[o@) o
S l0ns1 = all> =1 Y llgal[* < 00
k=0 n=0

and by the Cauchy criterion it must be the case that the sequence (6,,) converges to some 6*.

We now let
9*

[16% ||
By continuity of VL(+) it is easy to see that g* = 0, and the desired result follows immediately. W

g"=VL(O")—(VLO"),0%)

We note here that when it comes to performing orthogonalization for a model with parameters
0 € RP, the proof still holds if the orthogonalization is occurring on the entire parameter set at
once, or at the level of a partition of § (in particular at the layer level). The conclusion will only
differ in that each component of the stabilized gradient V L(6*) will be parallel to the corresponding
component of the vector #* and each component may differ by scalar multiples. For the purposes of
understanding the stability of decision boundaries in positive homogenous classification models, this
distinction makes no difference.

7.3. Decision Boundary Properties of Stable Points

In this section we prove that a stationary point for non-renormalized | Grad exhibits favorable
properties for positive homogenous models. In particular, if the orthogonalization occurs on the
level of a positive homogenous section of the network, | Grad will converge to solutions where loss
cannot be improved by changing the decision boundary.

Definition 5 We say that for any P C [1,p], a model fy : R* — RF with parameters 6 € RP is
positive homogenous with respect to P if for any 0 € RP and any ¢ > 0, for any x € R", we have

for(z) = afp(z)
where o > 0 and 0" € RP satisfying: for alli € P, 0, = c0; and for all i ¢ P, 0, = 0;.

Note here that an MLP is positive homogenous with respect to any P containing the union of
layers of the model.

Theorem 6 For 6 € RP, let fy : R* — R* be a model outputting logits for a classification task.
Additionally, suppose there exists a partition P of [1, p| such that for every P € P, f is positive
homogenous with respect to P. For a loss function L as in Theorem 3.1, if 1 Grad orthogonalizes
gradients with respect to each P € P, it will converge to local minimum with respect to the decision
boundary.

Proof First note that at the level of each P € P, by Theorem 3.1 L Grad will converge to a solution
such that
(VL(0p), 0p)| = 1P - VL") pl|-

It therefore follows that for the entire collection of parameters, traveling along V L(6*) only scales
the model parameters, where each collection of parameters P € P will be scaled by a different

10
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magnitude. Since f is positive homogenous with respect to each P € P, and the decision boundary
is determined by the maximum output of fy«, it follows that locally improving L does not change the
decision boundary. |

7.4. Renormalized vs Non-Renormalized Comparison

To address the theory-practice gap between our convergence proof (non-renormalized) and experimen-
tal implementation (renormalized), we conducted a 10-seed comparison on CIFAR-10 using identical
hyperparameters. Results show no statistically significant differences, validating that renormalization
preserves the core geometric benefits of orthogonalization.

Variant Accuracy | Loss | ECE | Entropy | Max Softmax | Max Logit
Renormalized 74.89 1.198 | 0.164 | 0.225 0914 12.62
Non-Renormalized 74.14 1.230 | 0.167 | 0.220 0.916 12.56

Table 2: Comparison of renormalized vs non-renormalized | Grad variants on CIFAR-10.
Values shown are averages across 10 random seeds. No significant differences observed,
indicating renormalization preserves geometric benefits while maintaining numerical stabil-

ity.

7.5. Additional Figures

Optimizer ECE Brier Score

Before | After || Before | After
SGD 0.168 | 0.015 || 0.041 | 0.034
1 Grad 0.161 | 0.015 || 0.040 | 0.034

Table 3: Expected Calibration Error (ECE) and Brier Score before and after temperature
scaling on CIFAR-10. Both optimizers benefit similarly from temperature scaling, but
1 Grad starts with slightly better raw calibration. This shows that 1 Grad is compatible
with post-hoc calibration techniques, preserving gains after temperature correction. Bold
indicates better performance, regardless of statistical significance.

11
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Average Accuracy vs. Corruption Severity
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Figure 2: Overtrained ResNet-18 accuracy across CIFAR-10C corruption levels. In the over-
trained environment accuracy initially favors SGD, however | Grad surpasses it at higher

severity.
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Figure 3: Reliability Diagram for ResNet18 on CIFAR-10. Average reliability diagram across 20
seeds across entire CIFAR-10 test dataset. | Grad exhibits slightly better reliability than
SGD.
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Reliability Diagram - CIFAR-10C (SGD vs OrthoGrad)
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Figure 4: Reliability Diagram for ResNet18 on CIFAR-10C. Average reliability diagram across

20 seeds across entire CIFAR-10C test dataset. 1 Grad exhibits slightly better reliability
than SGD.

Corruption Level

Accuracy (%) Loss ECE Conf-Acc Corr.
SGD | LGrad || SGD | LGrad || SGD | LGrad || SGD | LGrad

67 64 1.79 1.91 023 | 024 0.388 | 0.382
63 63 202 | 193 0.26 | 0.24 0.366 | 0.384
59 61 262 | 2.00 029 | 0.25 0.347 | 0.377
55 59 253 | 2.08 0.32 | 0.26 0.329 | 0.374
51 55 2.88 | 2.24 0.36 | 0.28 0.301 | 0.343

DNk~ W -

Table 4: Accuracy, loss, ECE, and confidence-accuracy correlation on CIFAR-10C across

corruption levels (single seed, 1000 epochs). | Grad degrades more gracefully under
corruption, outperforming SGD from corruption level 3 onward. Calibration and loss
are consistently better, even though clean accuracy is slightly lower. Results suggest
robustness gains under overfitting conditions. Bold indicates better performance, regardless
of statistical significance.

13
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SGD | L Grad | Effect Size | 95% Confidence Interval | p value
Topl Accuracy | 78.54 | 79.00 -0.35 (—1.60,0.90) 0.59
Top5 Accuracy | 98.05 | 97.84 0.50 (—0.76,1.76) 0.44
Loss 1.05 | 0.88 2.56 (0.89,4.24) 0.004
ECE 0.14 0.12 2.40 (0.77,4.02) 0.015
Brier Score 0.35 | 0.33 0.86 (—0.43,2.15) 0.21
Entropy 0.19 | 0.25 -4.18 (—6.40,—1.97) 2 x 1074
Max Softmax | 0.92 | 091 291 (1.13,4.69) 0.002
Max Logit 12.11 | 8.68 11.20 (6.14,16.27) 3x 1076
Logit Variance | 31.37 | 13.83 15.45 (8.57,22.34) 6 x 1076

Table 5: CIFAR-10 WideResNet-28-10 test results across 5 seeds comparing SGD and | Grad.

Accuracy remains unchanged, but | Grad consistently improves loss, entropy, and soft-
max/logit statistics. These differences suggest improved calibration and reduced overconfi-
dence under | Grad. Bold indicates better performance, regardless of statistical significance.
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Figure 5: Reliability Diagram for WideResNet-28-10 on CIFAR-10. Average reliability diagram

across 5 seeds. | Grad exhibits consistently better reliability than SGD.
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lOf{eliability Diagram - All Corruptions (All Types, Severities & Seeds Aggregated)
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Figure 6: Reliability Diagram for WideResNet-28-10 on CIFAR-10C. Average reliability diagram
across b seeds across entire CIFAR-10C test dataset. | Grad exhibits consistently better
reliability than SGD.
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