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Abstract

Large language models (LLMs) have shown promise in guardrailing against
undesired behaviors, but their high inference costs, memory consumption,
and unstructured outputs can be prohibitive. In this work we propose
guardrail-specific instruction pretraining using a synthetic data generation
pipeline. The data generation process is tailored towards generating policies
that define the scope of the guardrail, compliant and non-compliant prompts,
rationales when non-compliant and the output binary compliant or non-
compliant label. From this, we propose a new guardrail model called
Guardformer and show when further few-shot fine-tuned it significantly
outperforms current state of the art (SoTA) while only requiring 512MB in
storage. GuardFormer is orders of magnitude smaller than baselines such
as gpt-4, yet significantly outperforms it while having the ability to learn
from multiple custom policies at once.
Empirical evaluation across 7 public datasets and 4 novel guardrail bench-
marks demonstrates our efficient classifiers’ superiority over state-of-the-art
LLMs and third-party APIs. Our models achieve average F1 score im-
provements of 29.64 and 21.07 points compared to Aegis-LlamaGuard and
gpt-4o, respectively, in distinguishing safe from unsafe behaviors. Notably,
models trained on our synthetic data consistently outperform those trained
on real data, even when evaluated against custom-defined guardrailing
policies, underscoring the efficacy of our approach.

1 Introduction

The widespread use of large language models (LLMs) in both the public and private domains
has led to an increasing concern around guardrailing against malicious prompts [Biswas
and Talukdar, 2023, Greshake et al., 2023, Manczak et al., 2024]. While there has been
a concerted effort to defend against misusage of LLMs, current guardrailing and safety
alignment approaches can lead to considerable performance degradation on safe and non-
malicious prompts, reducing the models general capabilities [Qi et al., 2023, Jain et al., 2023].
In contrast, guardrails that are independent of the main LLM being used avoid this issue
of safety alignment degrading generalization performance. While 3rd party API services
and publicly available models (e.g PromptGuard and LlamaGuard [Inan et al., 2023]) offer
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Figure 1: GuardFormer: Creating Robust Guardrails with guardrail-instruction pretraining
and guardrail classification using Synthetic Guardrail Data Generation.

different solutions to this issue of guardrailing while not diminishing the LLMs general
capabilities, they are limited in generalization performance, inference speed and adaptability
(i.e transfer learning is difficult without retraining).
In this paper, we show that through the use of a well crafted synthetic data generation
pipeline that our robustly fine-tuned classifiers can significantly outperform current state
of the art (SoTA) while being orders of magnitude smaller w.r.t the number of model
parameters. This involves describing each task with task definitions that include a concise
summary of the task, allowed and disallowed behaviors and examples of safe and unsafe
behaviors. We demonstrate the effectiveness of these classifiers on various safety, toxicity and
prompt injection public benchmarks and show significant improvements over LLamaGuard-
[1,2,3]-7b [Inan et al., 2023], Nemo Guardrails [Rebedea et al., 2023], Azure Content Safety,
GPT-3.5-turbo/4/4o [OpenAI, 2023a], Meta PromptGuard [Inan et al., 2023] and OpenAIs
Content Moderation API [OpenAI, 2023b]. One challenge to this initial approach is that
we require a fine-tuned classifier for each domain for optimal performance. To address
this challenge we further show that it is possible to maintain better performance over
the aforementioned baseline using a unified guardrail that performs guardrail instruction
pretraining learning by unifying synthetically generated policy-specific datasets. Below we
summarize our contributions:

• Guardrail classifiers that are 14 times faster than the best performing LLM (gpt-4)
while outperforming it on public datasets by 21.07 F1 and 5.13 F1 on our proposed
CustomGuardBenchmark.

• A multi-task learning approach to guardrailing, we refer to as GuardFormer that out-
performs a single-task guardrailing model, referred to as PolicyGuard by performing
guardrail specific pretraining on synthetic data.

• A synthetic data generation pipeline for guardrailing, for both classifier pretraining
for generalizability and policy specific fine-tuning for task specificity. This includes
a self-reflection step that improves the label judgements by reflecting on the LLMs
intial label prediction.

• An analysis of how guardrail performance varies as a function of 1) the number of
training samples used for training, 2) training on synthetic or real data and 3) the
number of active fine-tuning parameters required with and without pretraining.

2 Related work
Below describes work related to the main aspects of this work.
Generative Content moderation. Ensuring safety has been an active area of research
for several years. Most recently, LLMs have been used solely for guardrailing. This includes
LlamaGuard-7B/2-8B/3-8B [Inan et al., 2023] have defined policy descriptions and unsafe
categories that outline what ’Can’ and ’Should not’ be allowed for input prompts and output
responses. Ghosh et al. [2024] have built upon LlamaGuard-2 by using safety-based adapter
fine-tuning of LlamaGuard 2 on the Aegis Safety dataset that outlines a broad taxonomy of
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13 critical safety risk categories. Nemo Guardrails Rebedea et al. [2023] have introduced
programmable guardrails whereby a specialized modeling language, Colang, can be used to
define behaviors by giving either behavioral definitions or examples of such in a programmatic
manner. While these LLMs have shown promise, it still remains infeasible to run (7B or
larger) models for many latency (or memory) critical applications. Additionally, next token
prediction in these generative models are not guaranteed to predict the defined safe or unsafe
categories which potentially makes output parsing unreliable and difficult.
Discriminative Content Moderation Bert-based classifiers have been used to detect
offensive or toxic inputs [Vidgen et al., 2020, Deng et al., 2022]. More more recent work
has focused on the use of LLMs through APIs such as Perspective API [Lees et al., 2022],
OpenAI Content Moderation API [Markov et al., 2023] (categories including toxicity, threat,
harassment, and violence) and Azure Content Safety API [Microsoft, 2023] (categories include
hate and violence) that provide a severity score between 0-6. While bert-based classifiers
have the benefit of being much smaller than current LLMs, to date they have lacked the
necessary training data to be robust against guardrail domains and topics of interest. Lee
et al. [2024] have also focused on training binary classifiers to guard against unsafe prompts
and responses. They use affirmative prefixes to encourage safety-aligned LLMs to generate
instructions, responses and rely on LlamaGuard-3 to generate corresponding labels. In
contrast, to our work, we are not limited to a single jailbreaking technique to generate text
from LLMs, we do not need to rely on an existing seed dataset (a policy definition instead),
we only require one LLM generator (they use 3 different LLMs) and our pretraining dataset
is an order magnitude larger (>1 million training samples, compared to their 100k training
samples).
Our work addresses shortcomings of these prior works.

3 Methodology
Below we describe how we synthetically generate safe and unsafe samples and refine policy
definitions for improved generation on various guardrail tasks. We then describe the model
pretraining, fine-tuning and model merging process.

3.1 Synthetic Data Generation
For Synthetic Data Generation (SDG), we begin by defining a description of the task,
which we refer to as a policy P. Here, P includes a policy name Pname, description Pdesc,
allowed behaviors Pallowed, disallowed behaviors Pdisallowed and an optional Pexamples that
gives examples of safe and unsafe prompts. Given Pdisallowed, a seed dataset Dseed :=
{(xi

safe, r
i
safe, y

i
safe)}

Nsafe
i=1

⋃
{(xi

unsafe, r
i
unsafey

j
unsafe)}

Munsafe
j=1 is generated where xsafe, rsafe and

ysafe are a compliant prompt, a rationale for compliancy and label and xunsafe, runsafe and
yunsafe are a noncompliant prompt, a rationale for noncompliancy and label respectively. We
can formulate the SDG process as a conditional distribution p(D|P;G) where G is the LLM
data generator. Once D is generated, we refine the policy to improve clarity using a prompt
template that prompts G to self-reflect on its own label judgements for all yunsafe and ysafe
with the aim of recorrecting any incorrectly generated prompts. For our public benchmarks
that contain training datasets along with test sets that are used for benchmarking (e.g
BeaverTails [Ji et al., 2024]), a set of example unsafe inputs in Pexamples are used to bias the
data generation towards prompts that are within the same domain.

3.2 Custom Policy Guardrailing
Given the synthetic data generation process described by p(D|P;G), we first train policy-
specific fine-tuned classifiers, known as PolicyGuard. This method uses the generated dataset
D to create highly specialized models capable of accurately identifying policy violations
across diverse domains. Let fθ denote our base classifier with parameters θ, which can be
instantiated as large pre-trained language models (e.g RoBERTa-large). We fine-tune {θ to
create a policy-specific classifier fθP that maximizes performance on the task defined by policy
P . We formulate the fine-tuning objective as LCE(θ) = − 1

|D|
∑

(xi,yi)∈D[yi log(fθ(xi))+ (1−
yi) log(1− fθ(xi))] where (xi, yi) are the prompt-label pairs from the synthetic dataset D,
and fθ(xi) is the predicted probability of the input being non-compliant with the policy. By
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minimizing LCE(θ) the classifier learns specific nuances of P as represented in the generated
data.

3.3 Multi-Policy Guardrailing
In contrast to PolicyGuard, in this section we describe GuardFormer, a novel approach de-
signed to create a single, versatile model capable of performing well across all policies or tasks
of interest. This approach not only enhances efficiency but also enables cross-task learning,
potentially improving performance on individual tasks through shared representations.
To achieve this, we concatenate the SDG training datasets for all policies P1,P2, ...,PN ,
creating a unified dataset Dunified where each all P have been humanly created by a domain
expert. We then use Dunified as a seed dataset to generate more diverse synthetic policies
P ′ given the prompts and rationales in Dunified. Then, with P ′ we prompt the generator
G (e.g Mixtral 8x22B-Instruct) to generate safe and unsafe prompts and unsafe rationales,
where applicable, given these new policies. This results in the full pretraining dataset D∗
that consists of the original seed Dunified and the new diverse subset Ddiverse.
For each sample, we construct an instruction input that combines the policy description,
prompt, and rationale. Formally, for a policy Pi, a sample in D∗ is represented as x̄i =
P(i,desc)\n Query: xi [SEP] ri where pi is the prompt, ri is the corresponding generated
rationale, and [SEP] is a separator token. We then train a multi-task model fθmulti on D* by
minimizing a combination of masked language modeling (MLM) loss, Alice++ loss [Pereira
et al., 2021] and classification loss:

L(θmulti) = λ1LMLM(θmulti) + λ2LAlice++(θmulti) + λ3LCE(θmulti) (1)
where λ1...3 are hyperparameters balancing the three loss components. The MLM loss
LMLM is defined as LMLM(θmulti) = − 1

|M|
∑

m∈M log p(x̄m|x\m; θmulti) where M is the set
of masked tokens, x̄m is a masked token, and x\m represents the input with masked tokens.
The Alice++ loss LAlice++ is designed to improve the model’s robustness and generalization
across tasks.
It is defined as LAlice++(θmulti) = Llabel + αLvirtual where Llabel is the loss computed using
gold labels and Lvirtual is the virtual adversarial training (VAT) loss. The VAT loss is then
defined as: Lvirtual(θmulti) = Ex∼D

[
max δ : |δ| ≤ εKL

(
p(y|x; θ̂multi)|p(y|x+δ; θmulti)

)]
where

δ is a small perturbation bounded by ε and KL is the Kullback-Leibler divergence between
the model’s predictions for the original and perturbed inputs. This encourages consistent
predictions under small input perturbations.
During inference, given a new input xnew for a specific policy Pj , we construct the
instruction input as described earlier and use the trained model to predict: ypred =
argmaxy∈{safe,unsafe} fθmulti(xnew). This guardrail instruction-based pretraining (GIP) al-
lows the model to distinguish between different policies during both training and inference,
effectively learning to handle multiple tasks within a single architecture while benefiting
from shared representations across tasks.

4 Experimental Setup

4.1 Dataset Details

For our experiments, we split our fine-tuning and evaluation using synthetic data and
compare to fine-tuning on real data on the training dataset from the public benchmark
or if there is no training dataset for the public test dataset, we train on real related data
(i.e the same domain). For our private benchmark, all our results for PolicyGuard and
MultiPolicyGuard are fine-tuned on synthetic data. In the appendix we describe each policy
description we use for both our public and private training datasets.

Public Benchmarks We first benchmark against publicly available datasets that
are all available on the huggingface dataset hub1, which we now provide their hub
names. This includes 2 prompt-injection datasets (deepset/prompt-injections and

1 https://huggingface.co/datasets
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xTRam1/safe-guard-prompt-injection), 3 toxicity-based datasets (“toxicchat0124” from
lmsys/toxic-chat Lin et al. [2023] and SetFit/toxic_conversations_50k) and 3 con-
tent safety datasets (nvidia/Aegis-AI-Content-Safety-Dataset-1.0, mmathys/openai-
moderation-api-evaluation and PKU-Alignment/BeaverTails). Each datasets test set
is converted into binary labels (safe/unsafe) where necessary (e.g openai-moderation).

Private Benchmarking We also test our proposed guardrails on a private benchmark
CustomGuardBench2, which consists of datasets we refer to as Safety, Finance, Tax and
Injection. These 4 datasets cover the prohibiting of unsafe discussions, financial advice,
tax advice and prompt injection respectively. For all of these datasets, an expert compliance
officer and policy informed annotators manually annotate the benchmark dataset given an
aforementioned policy definition for each one.

4.2 Model Details

Baseline Models. For 3rd party API services we use 1) OpenAI GPT models such as
gpt-3.5-turbo, gpt-4 and gpt-4o [OpenAI, 2023a]) OpenAI Content Moderation [OpenAI,
2023b], 3) Azure Content Safety and 4) Nemo Guardrails using gpt-4o as the generator.
For the GPT-models we use batch completion through litelllm3 library to optimally
reduce API call response time. For our public available SoTA LLMs, we use LlamaGuard-
1/2/3 [Inan et al., 2023], Meta-Llama-3.1-8B-Instruct [Dubey et al., 2024], nvidia/Aegis-
AI-LlamaGuard [Ghosh et al., 2024] and Prompt-Guard-86M [AI, 2023].
Finetuning Setup. The base models used for our experiments in finetuning and
benchmarking PolicyGuard and Guardformer are RoBERTaLarge Liu et al. [2019] and an
instruction pretrained version of XLM-RoBERTaLarge Wang et al. [2024]. The former is
a standard well-established masked monolingual language model (MLM) model, while the
latter is a multilingual MLM that has been trained from instructions to produce high quality
sentence embeddings.

Figure 2: F1 Score Across DeepSet, SafeGuard, ToxicChat, SetFit, Nvidia-Content-
Safety and OpenAI Moderation test datasets.

2This will be made public before the end of the year.
3https://github.com/BerriAI/litellm
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5 Results

Public Benchmarking Figure 2 shows the F1 scores per task on our curated public bench-
mark where the base model used for our proposed models is based on XLM-RoBERTaLarge.
Overall, we find superior performance across a diverse set of toxicity, safety and prompt injec-
tion based tasks. GuardFormer consistently outperforms task-specific PolicyGuard models
in both cases where we fine-tune on our synthetically generated training data (i.e Synthetic)
and on the real training data (i.e Real). Most notably, PolicyGuard and GuardFormer
significantly outperform both 3rd party and publicly available LLMs. For example, gpt-4o,
the best performing LLMs of our baselines, achieves 21.62 average F1 score points below our
best performing guardrail model.
Figure 3 shows the overall guardrail performance for our proposed PolicyGuard and

GuardFormer models and the baselines. We find the average F1 score for GuardFormer ranks
the highest and outperforms these baselines, including gpt4 and LlamaGuard models, by a
large margin. Generally, gpt4 and gpt4-o outperform publicly available LLM baselines that
have been pretrained specifically for safety and other related policies. Of the LLamaGuard
suite of models, we find nvidia/Aegis-AI-LlamaGuard outperforms the original Llama-
Guard models. We also note while OpenAI-Moderation performs well on its own OpenAI
Moderation dataset, it generalizes poorly to other safety and toxicity test sets. Lastly, we
find that fine-tuning on our synthetic data instead of real public training data increases
the performance. Table 1 shows the results when using RoBERTaLarge as the base model,
which unlike XLM-RoBERTaLargehas not been pretrained specifically for high performing
sentence embeddings, nor has it been further pretrained with an instruct-based corpus. Due
to this we see a drop in performance, however, we are still within 0.56 average F1 score
points compared to 69.41 F1 obtained by gpt-4 in Figure 2.

Figure 3: Average F1 Score Across 7 safety, toxicity and prompt injection test sets.
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Models Score Injection Toxicity Content Safety
DeepSet SafeGuard ToxicChat SetFit NVIDIA-CS Beavertails

PolicyGuardSynthetic 57.89 56.81 81.31 36.54 15.99 80.87 75.85
GuardFormerSynthetic 67.97 63.06 86.04 56.73 35.82 83.93 82.28
PolicyGuardReal 56.54 57.92 79.65 34.81 15.23 78.54 73.12
GuardFormerReal 63.14 56.43 81.76 54.89 25.17 81.95 78.63

Table 1: Comparing synthetic vs real training data with RoBERTALarge.

Figure 4: Private benchmark results on DynamoGuardBenchmark

Moreover, all other baselines are outperformed and significant improvements are found when
using our synthetic training data compared to the real data training data that is available from
each public dataset. Additionally, GuardFormer consistently outperforms PolicyGuard as
we posit the effects of GIP in GuardFormer has more impact than XLM-RoBERTaLargesince
it has not been pretrained with instructions prior to GIP.

Private Benchmark Results Based on the results presented in Figure 4, we
find that GuardFormer demonstrates superior performance across all categories of the
CustomGuardBenchmark4. GuardFormers performance is particularly noteworthy in the
Safety and Injection categories, where it achieves the highest scores of 91.83 and 88.62,
respectively. While gpt-4 is competitive in performance for safety and prompt injection, it
suffers in performance on more specialized guardrail tasks, namely in Finance (i.e prohibiting
financial advice) and to a lesser extent Tax (i.e Avoiding Tax Advice).

(a) GuardFormer - No Tuning vs. CFT vs. FFT
(b) PolicyGuard & GuardFormer Learning
Curves on Safety and Finance test sets.

Figure 5: Performance comparisons of different model configurations

4 CustomGuardBenchmark will be made public at https://huggingface.co/datasets
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GuardFormer converges faster during fine-tuning Our analysis reveals that
GuardFormer achieves optimal performance with less active parameters tuned during task-
specific fine-tuning. As shown in Figure 5a, classification layer fine-tuning (CFT) for
GuardFormer outperforms full fine-tuning (FFT), whereas PolicyGuard requires FFT for
best results. This trend is consistent across all tasks in CustomGuardBenchmark, with
PolicyGuard heavily relying on FFT for generalization, particularly for ”Avoid financial
advice” and ”Avoid Unsafe Discussion” policies. In contrast, GuardFormer generally achieves
higher F1 scores with CFT compared to FFT, underscoring the crucial role of GIP in
generalizing to novel, unseen policies.

GuardFormer requires fewer training steps to reach optimal performance Fur-
thermore, GuardFormer demonstrates impressive data efficiency. Figure 5b illustrates that
GuardFormer not only improves with less training data compared to PolicyGuard but also
converges more rapidly. On average, GuardFormer requires just 1 epoch per task, while
PolicyGuard needs 8. Remarkably, GuardFormer’s performance is nearly on par even without
additional task-specific fine-tuning, indicating significantly enhanced zero-shot performance
and generalization to new, unseen guardrailing policies/tasks. This zero-shot capability
surpasses the baseline LLMs, highlighting the effectiveness of our GIP step on synthetic
guardrail data.

6 Conclusion

In this work, we proposed a process for achieving highly performance discriminative classifiers
that generalize well the custom policies that define the scope of a guardrail. We find that
with models that are less than 512MB in storage can outperform models of magnitudes of
order larger such as gpt-4 and significantly outperform well-established and publicly available
guardrails such as those from the LlamaGuard suite. We view this as a breakthrough for
faster and low cost guardrailing and can be used tangentially with general purpose large
language models and on-device given the reduced memory and storage footprint.
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