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ABSTRACT

Neural networks usually excel in learning a single task. Their weights are plas-
tic and help them to learn quickly, but these weights are also known to be un-
stable. Hence, they may experience catastrophic forgetting and lose the ability
to solve past tasks when assimilating information to solve a new task. Existing
methods have mostly attempted to address this problem through external con-
straints. Replay shows the backbone network externally stored memories; reg-
ularisation imposes additional learning objectives; and dynamic architecture of-
ten introduces more parameters to host new knowledge. In contrast, we look
for internal means to create less forgetful networks. This paper demonstrates
that two simple architectural modifications – Masked Highway Connection and
Layer-Wise Normalisation – can drastically reduce the forgetfulness in a back-
bone network. When naı̈vely employed to sequentially learn over multiple tasks,
our modified backbones were as competitive as those unmodified backbones with
continual learning techniques applied. Furthermore, our proposed architectural
modifications were compatible with most if not all continual learning archetypes
and therefore helped those respective techniques in achieving new state of the art1.

1 INTRODUCTION

Continual learning (McCloskey & Cohen, 1989) is a difficult experimental setup for most neural
networks. It places a single learning agent in a dynamic environment where it must learn to adapt
from a stream of tasks to make new predictions. This setup means that the underlying data are not
independent and identically distributed (non-iid). Thus when we use conventional gradient descent
methods (Rumelhart et al., 1986) to fine-tune a pre-trained network for a new task, its weights will be
modified to satisfy the learning objectives of the new task. As a result, the re-parameterised network
will experience catastrophic forgetting (McCloskey & Cohen, 1989; French, 1999) and abruptly lose
the ability to solve a previously learnt task.

Recently, continual learning has been of increasing interest. Most of the latest studies can be roughly
categorised as the three archetypes of replay, regularisation, and dynamic architecture. Replay
techniques such as gradient episodic memory (Lopez-Paz & Ranzato, 2017) and experience re-
play (Chaudhry et al., 2019) externally store a handful of data per task. Then upon sequentially
learning a new task, they re-expose copies of the stored data to the backbone network along those
data of the new task. Regularisation methods like learning without forgetting (Li & Hoiem, 2017)
and elastic weight consolidation (Kirkpatrick et al., 2017), on the other hand, impose the backbone
network with secondary learning objectives to learn robust mappings that are less prone to para-
metric corruptions. Furthermore, the dynamic architectural approaches of dynamically expandable
networks (Yoon et al., 2018) and hard attention to the task (Serra et al., 2018) either introduce
more parameters to host new knowledge or explicitly control the backbone synaptic connections to
perform inference on a subset of pre-selected weights. Though the three archetypes of continual
learning methods may appear to be ideologically different, they all seek external means to retain
learnt knowledge. In contrast, this paper will introduce internal modifications to mitigate forgetting.

That is, we aim to create an extremely plastic yet stable network architecture that can withstand
catastrophic forgetting even when it is naı̈vely implemented (simply fine-tuned) for sequential learn-
ing over multiple tasks. Our study was inspired by the recent work of Kuo et al. (2021b). In that

1The codes will be made publicly available once the paper is published.
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Figure 1: Different Classifier Network Designs

paper, the authors compartmentalised their backbone network. They employed a fixed feature ex-
tractor and only fine-tuned their classifiers. Unlike the conventional multiple layer perceptron (MLP)
classifier of Figure 1(a) used in most studies (such as Mai et al. (2020)), their classifier which they
called highway connection networks (HCNs) had the peculiar design shown in Figure 1(b). An
HCN included a two-layer perceptron with highway connection (Srivastava et al., 2015) followed
by a softmax layer. We used red to denote fully connected layers, yellow for softmax, and blue for
the HCN gated unit. They demonstrated that HCNs were more robust against forgetting than MLPs;
and even showed that naı̈vely sequential learning with HCNs could often outperform MLP classi-
fiers with continual learning techniques applied. Moreover, they found that highway connections
were specifically required and could not be replaced with residual connections (He et al., 2016).

In this paper, we introduce two novel modifications to HCNs. Our new ideas draw inspiration
from the stability-plasticity dilemma (Mermillod et al., 2013). Stability is the ability to retain learnt
knowledge upon parametric corruption (Sun et al., 2021); whereas plasticity refers to the ease of
assimilating new information. Our study focuses on designing new architectures in the forward
pass which indirectly but positively affect the updates in the backward pass. This kind of approach
was previously investigated in weight normalisation (Salimans & Kingma, 2016). In that paper,
the authors found that by reparameterising the weight vectors, they could influence the gradient
covariance matrix by making it closer to an identity matrix thereby hastening network configuration.

We propose the Masked Highway Connection (MHC) and Layer-Wise Normalisation (LWN)
shown in Figures 1(c) and 1(d) respectively. While similar techniques exist for general machine
learning; their applications for continual learning are not well studied. After discussing how HCN
mitigates forgetting (Section 3), we will introduce our MHC and show that HCNs can be made even
more robust via self-identifying important weights that are worth fine-tuning through a masking
mechanism (Section 4). Then, we will alternatively characterise forgetting as shifts that occur in
previous distributions (Ebrahimi et al., 2020); and that the LWN can reduce such shifts (Section 5).

Our experiments (Section 6) indicated that both MHC and LWN were robust against forgetting and
greatly outperformed their HCN and MLP baselines. In addition, both designs were compatible with
the continual learning archetypes of replay, regularisation, and dynamic architecture; and they were
able to help those respective techniques to achieve new state of the art. Moreover, MHC and LWN
could also be jointly implemented. Together, they often produced even more robust results and this
was because they each addressed a different aspect of catastrophic forgetting. In order to suggest
the best practice for MHC and LWN for continual learning, we also tested our novel classifiers over
several different settings. Importantly, we found that LWN should not be incautiously substituted
with batch normalisation (Ioffe & Szegedy, 2015).

2 THE CONTINUAL LEARNING FRAMEWORK

As stated in Lopez-Paz & Ranzato (2017), the continual learning setup exposes a base learner F to
a continuum of data with n locally, but not globally, iid tasks ω where

(x1
1, ω1, y

1
1), . . . , (xiφ, ωi, y

i
φ), . . . , (xnΦ, ωn, y

n
Φ). (1)

Each task corresponds to a dataset (xiφ, y
i
φ) ∈ Dωi with Φ samples φ = 1, . . . ,Φ. Once the learner

F observes data from the j-th task, full access to an earlier dataset ωi where i < j is prohibited
to consolidate learnt knowledge. The performance is tracked using a matrix A ∈ R(n+1)×n where
each column represents a distinct task. When F is initialised, its accuracy over all tasks is recorded
in row A1,(1:n). After learning the i-th task, the new performances are updated in row A(i+1),(1:n).

2



Under review as a conference paper at ICLR 2022

3 HIGHWAY CONNECTIONS IMPLICITLY RE-SCALE GRADIENTS

An intermediate layer Lγ in an MLP can be represented as
aLγ = H (aL(γ−1)

,WLγ ) (2)
where the layer output aLγ is transformed from the layer input aLγ−1

over the non-linear function
H with weight WLγ . In addition, say there are Γ layers then the network output is aLΓ

= ŷ. To
fine-tune WLγ , we use gradient descent with the derivative of a costC with respect to the parameters

∂C

∂WLγ

=
∂C

∂ŷ

Γ−1∏
ζ=γ

∂aL(ζ+1)

∂aLζ


︸ ︷︷ ︸

Rel: Srivastava et al. (2015)

Rel: Kuo et al. (2021b)︷ ︸︸ ︷{
∂aLγ
∂WLγ

}
. (3)

Below, we discuss how gradient vanishing and catastrophic forgetting are closely related (Rel:).

Deep MLPs are known to suffer gradient vanishing (Bengio et al., 1994). When the layers increase

but the magnitudes of the individual Jacobian terms
∂aL(ζ+1)

∂aLζ
are small (i.e., ∈ [0, 1]), the term∏Γ−1

ζ=γ

∂aL(ζ+1)

∂aLζ
diminishes to 0 (and so does ∂C

∂WLγ
) and no effective update is made to WLγ .

Highway connection (Srivastava et al., 2015) is well-known for its ability to withstand gradient
vanishing. It reformulates an intermediate layer as

kLγ = (1−TLγ )� kLγ−1 + TLγ �H (kL(γ−1)
,WLγ ) with (4)

gate TLγ = T(kL(γ−1)
,QLγ ) (5)

and the element-wise dot product �. The colour-coded gated unit TLγ has its own weight QLγ and
its values lie in the range of [0, 1]. This new formulation has the Jacobian term

∂kLγ
∂kL(γ−1)

=

{
I, if TLγ = 0

H ′(kL(γ−1)
,WLγ ), if TLγ = 1

. (6)

By introducing the identity matrix I to the Jacobian (and thus the [.] term of Equation (3)), highway
connections prevent the vanishing of gradients and thus facilitate the training of deep networks.

In Kuo et al. (2021b), the authors noted a second property unique to highway connections. While the

{.} term of Equation (3) of an MLP was
∂aLγ
∂WLγ

=
∂H (aL(γ−1)

,WLγ )

∂WLγ
, a highway connection had the

alternative form of
∂kLγ
∂WLγ

= TLγ �
∂H (kL(γ−1)

,WLγ )

∂WLγ
which included the gated unit. Since each

entry in TLγ lied in [0, 1], highway connections thus implicitly scaled down the magnitudes of the
gradients used in gradient descent. This was desirable for continual learning because less changes
were made to a pre-trained weight WLγ ; and HCNs were hence less susceptible to forgetting.

4 IMPROVING THE HCN ARCHITECTURE

Though highway connection is effective against catastrophic forgetting, its best practices and short-
comings remain unclear. In this section, we review the different roles that the gated unit TLγ plays
in the forward pass (inference) and in the backward pass (update). Furthermore, we will show that
there exists an interesting structural connection between the HCN gated unit TLγ and the derivative
∂H (kL(γ−1)

,WLγ )

∂WLγ
which can be exploited to make the network even more robust to forgetting.

Overleaf in the top half of Figure 2, we show that HCN performs a point-to-point gradient reduction.
On the left, we superimpose a dotted box on top of HCN. The inference and update that occur
within this box are illustrated on the right. Without loss of generality, the scenario in the figure is
for 3 hidden dimensions and that each TLγ entry scales down its corresponding feature of the fully
connected layer output kLγ during inference. Note that the entries of kLγ are shown in different
shades of red; and they correspond to specific rows in the weight WLγ . Likewise for update, we

highlight the rows of
∂H (kL(γ−1)

,WLγ )

∂WLγ
in different shades of green; and we show how each row of

this derivative is scaled down, in a point-to-point fashion, by the entries of the gated unit TLγ .
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Figure 2: Differences in the Inferences and Updates of the HCN and MHC Classifiers

But does the entirety of weight WLγ need to be updated at all times? Two prior studies, the lottery
ticket hypothesis (LTH) (Frankle & Carbin, 2019) and the uncertainty-regularised continual learning
(UCL) (Ahn et al., 2019), suggested not. In network pruning, LTH found that only a small subset
of the dense network needed to be updated to achieve competitive performances. Whereas UCL
showed that continual learning could be achieved by regularising specific nodes in the weight that
deviated from a pre-determined distribution. They both considered the structural relationship among
nodes in the base learner. A similar approach can be applied to HCN.

The lower-half of Figure 2 presents the inner workings of our Masked Highway Connecton (MHC)
classifier. We add a binary Mask to HCN and change the formulation from Equations (4) and (5) to

kLγ = (1−GLγ )� kLγ−1 + GLγ �H (kL(γ−1)
,WLγ ) with (7)

a masked gate GLγ = Mask�TLγ = Mask�T(kL(γ−1)
,QLγ ). (8)

The Mask keeps the largest neural values in TLγ with the top-K function. As shown in Fig-
ure 2, when TLγ ∈ R3 and that K = 1, the MHC masked gate GLγ nullifies the two rows with
weaker activation values. The mask also nullifies specific updates during optimisation. In our exper-
iments in Section 6, we will demonstrate that this minimalistic update can reduce excessive weight
modification thereby improving network stability for the sequential learning setup.

5 FORGETTING, MEASURED THROUGH FEATURE SHIFTS

The gating mechanism in HCN showed that Kuo et al. (2021b) regarded forgetting as the amount of
change that occurred in the pre-trained weights. However, both Ebrahimi et al. (2020) and Ahn et al.
(2019) quantified forgetting through alternative means. Both studies employed Bayesian neural
networks (BNNs) (Mackay, 1992) for continual learning. The former conceptualised forgetting as
shifts that occurred in the distributions of weights; and the latter showed that BNNs could become
stable by regularising the network with changes in the standard deviations of the weight matrix.

Thus in addition to MHC, we further propose Layer-Wise Normalisation (LWN) to mitigate shifts
in the classifier. However, we address internal covariate shifts (ICSs) (Shimodaira, 2000) instead
of weight distribution shifts. ICS refers to the change in network activation distributions due to
parametric changes during training; and we will show that forgetting can also be mitigated at the
feature level. An LWN with hidden dimension H changes Equation 2 to a

normalised layer aLγ =
a∗Lγ − µLγ

σLγ
. from .a∗Lγ = H (aL(γ−1)

,WLγ ). with (9)

mean: . µLγ =
1

H

H∑
η=1

a∗Lγ,η . and . standard deviation: . σLγ =

√√√√ 1

H

H∑
η=1

(a∗Lγ,η − µLγ )2. (10)
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(a) MLP with H = 100 (b) LWN with H = 100

Figure 3: Longitudinal Changes in Activation Values After Task Changing

In order to demonstrate the effectiveness of LWNs over MLPs, we prepared a toy example which first
trained both classifiers with MNIST (LeCun et al., 1998) and then with FashionMNIST (Xiao et al.,
2017). Both classifiers had the hidden dimensions H = 100 with the two layer designs shown in
Figures 1(d) and 1(a) respectively. Both datasets contained grey-scale images on 28×28 pixel boxes
with 60K and 10K images for training and testing. After pre-training both classifiers on MNIST, we
externally stored a batch of MNIST images BMNIST and applied them on the classifiers to collect the
output activations of the second layer a(0)

L2
. When we fine-tuned the classifiers for FashionMNIST,

we re-applied BMNIST and collected the new activation a
(ξ)
L2

for each ξ-th update. We then plotted
the changes in activation in Figures 3(a) and 3(b). See Appendix A for more details in the setup.

The changes in activation were defined as

Diffact = abs
(
E|BMNIST|
b=1 (ba

(ξ)
L2,η
−b a(0)

L2,η
)
)

(11)

and it measured the magnitudes of the expected differences in the changes of the layer two activation
(over samples b in BMNIST). The deeper the colours the larger the differences. Each row represented
the changes in a unique feature aL2,η

after the classifier received updates to solve FashionMNIST.
Each row generally became deeper and this showed that ICS occurred during re-parameterisation
and that the learnt mapping for MNIST images BMNIST had diverged. After fine-tuning, we found
that the divergence was Diffact = 86.44 in MLP and Diffact = 69.03 in LWN. Forgetting was hence
20%(= [1 − 69.03/86.44] × 100%) less severe in LWN than in MLP. This was because that the
differences in LWN features became smaller after redistributing the activation along the feature
dimension. LWN also scaled well with larger dimensionality; see Appendix B for details.

Unlike the well-known layer normalisation (Ba et al., 2016), our LWN did not have learnable param-
eters to reshape the post-normalised activation distribution. This was because that during our exper-
iments, we found that these features were not necessary. Also, we found that LWN was specifically
required to mitigate forgetting; and it could not be replaced by the popular batch normalisation (Ioffe
& Szegedy, 2015). This will be further discussed in Section 6.3.

6 EXPERIMENTS AND RESULTS

We compared six classifier networks with four continual learning setups over three datasets. The
main results were summarised in Tables 1 and 2, with more results in Tables 4 – 12 in the appendices.

The Datasets
We tested image permutation (Kirkpatrick et al., 2017) on MNIST (LeCun et al., 1998), and in-
cremental classes (Rebuffi et al., 2017) on Cifar100 (Krizhevsky, 2009) and CUB200 (Wah et al.,
2011). MNIST was previously mentioned in Section 5. Cifar100 included 100 classes of 32 × 32
coloured images; with 50K for training and 10K for testing. Whereas CUB200 contained 5, 994
training and 5, 794 test images over 200 coloured bird species on mostly 500× 500 pixel boxes.

The Tasks
Permuted MNIST (Perm-MNIST) was derived by first reshaping MNIST images as vectors of 784(=
28×28) pixels, then by applying a unique permutation on all vectors of that task. On the other hand,
incremental Cifar100 (Inc-Cifar100) and incremental CUB200 (Inc-CUB200) were generated via
sequentially introducing a fixed set of classes per task drawn without replacement from the datasets.
There were 20 tasks for Perm-MNIST. For Inc-Cifar100, we tested three scenarios with 5, 10, and
20 classes per task. Likewise for Inc-CUB200, we introduced 10, 20, and 40 classes per task. (The
Inc scenarios thus had 20, 10, and 5 respective tasks.) We mainly followed Douillard et al. (2020)
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to process the datasets2 and setup as domain-incremental learning (Van de Ven & Tolias, 2019).

The Backbone Networks
For Perm-MNIST, our backbone networks were simply two-layer MLPs, HCNs, and MHCs. We
tested MHCs with a range of different settings – we used top-K to keep between the top 10% to
the top 90% of the gated unit activation. In addition, we embedded LWN in MLPs, in HCNs, and
in MHCs. All of the normalisation were applied specifically to the input of layer two. Interested
readers could find elaborated illustrations in Figure 7 of Appendix C.

For Inc-Cifar100 and Inc-CUB200, our backbone networks were compartmentalised as fixed pre-
trained feature extractors with sequential learning classifiers. The feature extractors for Inc-Cifar100
were ResNet18s (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009); and those for Inc-
CUB200 were ResNeXt50s (Xie et al., 2017) pre-trained on ImageNet. We replaced the final layer
of the feature extractors with our classifiers. Our classifiers here were also two-layer MLPs, HCNs,
and MHCs. The MHC again kept top-K with K ∈ [10%, 90%]; however, we embedded the
LWNs differently. The normalisation were applied in two different places – first on the input of
layer one (extracted by the feature extractors), and then on the input of layer two. Again, interested
readers could find elaborated illustrations in Figure 8 of Appendix C.

Additional Training Detials
For Perm-MNIST and Inc-Cifar100, our classifiers had hidden dimensions H = 100; and it was
H = 400 for Inc-CUB200. The Perm-MNIST backbones observed 5K images on Task 1 then 1K
images for all subsequent tasks. Likewise for Inc-Cifar100, it was 5 epochs on Task 1 then 1 epoch
for the rest. However, the backbones observed 5 epochs for all Inc-CUB200 tasks. We used batch
size B = 10, and updated all classifiers with SGD (Rumelhart et al., 1986) with learning rate 0.01.

The Continual Learning Setups
We denoted singular as the scenario when the backbones were naı̈vely and sequentially trained
(simply fine-tuned) over all tasks. Then, we tested the regularisation-based elastic weight consoli-
dation (EWC) (Kirkpatrick et al., 2017), the memory-based experience replay (ER) (Chaudhry et al.,
2019), and the dynamic architectural-based hard attention to the task (HAT) (Serra et al., 2018)3.
Some secondary experiments could be found in Appendix F.

Metrics
We used the two metrics below to evaluate the sequential learning performances
Average accuracy (ACC) 1

n

∑n
i=1 An+1,i ; and

Final Accuracy of Task 1 (FA1) An+1,1.
Both metrics were based on matrix A of Section 2. The classifier plasticity could be indicated
through ACC, and FA1 could reflect the classifier stability. All units were in percentage accuracy,
the higher the better; and all results were reported as the 95% confidence intervals over 10 seeds.

6.1 RESULTS ON NAÏVELY SEQUENTIAL LEARNING

We summarised a subset of results for the singular setup overleaf in Table 1. It included all results
for Perm-MNIST, Inc-Cifar100 with 20 classes per task, and Inc-CUB200 with 40 classes per task.
The baseline results for MLPs and HCNs were shown in grey, and we highlighted our results that
were better than the baselines in cyan. This table reflected four important remarks.

The first remark was that, our classifier designs could outperform the baselines with a large margin
if they were configured properly. However the second remark showed that, the best practice of MHC
varied for each task. For Perm-MNIST, the best performce in MHC was recorded when we kept the
top K = 70% of gated unit activation; but for Inc-Cifar100 and Inc-CUB200, it was when only the
top K = 10% activation was kept. This was potentially due to the contextual complexity of the
datasets; such that it was possible to learn with less information from the contextually rich Cifar100
and CUB200. The third remark was that LWN greatly improved both the plasticity (ACC score) and
stability (FA1 score) for all classifiers. While it was well-known that normalisation could improve
network plasticity (Ba et al., 2016), our work provided empirical evidence that normalisation along
the feature dimension was beneficial for mitigating forgetting. In addition, the fourth remark was

2Refer to inclearn/lib/data/datasets.py in Douillard et al. (2020)’s official repository.
3We set the regularisation coefficient λ = 3 for EWC; stored 50 images per task for ER; and applied HAT

only on the first layer of classifier synapses.
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Table 1: A Subset of Results on the Naı̈ve Sequential Learning of Classifiers
Task Ours Classifier ACC (%) FA1 (%)
Perm-MNIST - - MLP 66.4± 23.1 67.9± 11.9

- - HCN 72.0± 15.5 78.7± 8.4
X MHC (90%) 72.1± 16.1 79.1± 7.7
X MHC (70%) 72.4± 15.1 79.5± 7.3
X MHC (50%) 72.1± 14.7 79.3± 7.4
X MHC (30%) 71.4± 14.5 78.4± 7.3
X MHC (10%) 70.8± 15.1 76.1± 8.4
X LWN in MLP 68.4± 23.5 71.3± 11.5
X LWN in HCN 74.6± 14.2 80.5± 7.5
X LWN in MHC (70%) 75.3± 13.1 81.6± 8.4

Inc-Cifar100 - - MLP 41.7± 18.1 32.1± 5.9
(inc. 20 classes) - - HCN 46.0± 12.1 41.8± 3.8

X MHC (90%) 46.1± 11.9 41.2± 4.0
X MHC (70%) 46.2± 12.1 40.8± 5.9
X MHC (50%) 46.6± 11.4 40.8± 4.6
X MHC (30%) 46.7± 10.8 41.8± 4.3
X MHC (10%) 46.9± 10.7 42.0± 6.1
X LWN in MLP 45.3± 16.0 37.0± 8.1
X LWN in HCN 48.0± 10.8 42.7± 4.2
X LWN in MHC (10%) 48.4± 9.6 44.2± 4.5

Inc-CUB200 - - MLP 55.0± 19.7 45.3± 11.1
(inc. 40 classes) - - HCN 57.4± 15.3 51.7± 6.4

X MHC (90%) 56.8± 15.4 51.2± 7.7
X MHC (70%) 55.2± 17.1 48.3± 7.6
X MHC (50%) 56.8± 15.2 51.4± 5.8
X MHC (30%) 57.5± 15.7 53.6± 6.7
X MHC (10%) 60.8± 14.0 57.6± 4.6
X LWN in MLP 71.7± 19.1 61.3± 9.5
X LWN in HCN 75.6± 16.3 66.0± 5.7
X LWN in MHC (10%) 76.2± 15.3 67.3± 5.3

that MHC and LWN could be made more powerful when they were jointly implemented. This was
not particularly surprising because both techniques addressed forgetting from different perspectives.
MHCs considered forgetting as the modifications made to the pre-trained weights (see Section 4);
whereas LWNs were effective in minimising the feature shifts in a learnt mapping (see Section 5).
We made more results for the singular setup available in Appendix D. We refer to Table 4 for
additional results on Inc-Cifar100; and to Table 5 for additional results on Inc-CUB200.

6.2 RESULTS WITH CONTINUAL LEARNING TECHNIQUES APPLIED

After the singular setup, we tested all classifiers with EWC, ER, and HAT applied. Our results were
summarised in Table 2 overleaf. Due to space constraints, we selected the best performing LWN
in MHC results. Interested readers could find the results for all other backbone network designs in
Tables 6 – 12 in Appendix D. We found three additional important remarks from the experiments.

The first remark was that our LWN in MHCs were compatible with all of EWC, ER, and HAT. Since
these three techniques were from the most well-known continual learning archetypes, we expected
our LWN in MHCs to be compatible with most if not all existing continual learning techniques.
Second, our LWN in MHCs achieved better results than the baselines. Hence, they helped the afore-
mentioned techniques in reaching new state-of-the-art status. The third remark was that, the majority
of our naı̈vely sequential learning LWN in MHCs from Table 1 (both ACC and FA1) achieved better
results than the baseline classifiers with continual learning techniques applied. Hence, we demon-
strated the importance of employing the correct classifier design to mitigate forgetting.

6.3 BATCH NORMALISATION IS NOT GOOD FOR CONTINUAL LEARNING

In this section, we tested batch normalisation (BN) (Ioffe & Szegedy, 2015) in MLP. The results for
Perm-MNIST in Table 3 showed that BN was detrimental for the backbone networks.
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Table 2: A Subset of Results with Continual Learning Techniques Applied

Task Ours CL Tech. Classifier ACC (%) FA1 (%)
Perm-MNIST - - EWC MLP 68.9± 18.3 76.5± 7.0

- - EWC HCN 73.7± 14.4 82.3± 5.7
X EWC LWN in MHC (70%) 76.5± 13.3 84.6± 6.2

Perm-MNIST - - ER MLP 72.1± 12.5 80.3± 2.8
- - ER HCN 73.3± 15.6 83.9± 2.1
X ER LWN in MHC (70%) 76.0± 14.3 85.9± 1.9

Perm-MNIST - - HAT MLP 67.2± 20.6 72.3± 18.5
- - HAT HCN 71.6± 15.1 79.2± 6.0
X HAT LWN in MHC (70%) 75.3± 13.5 83.2± 4.0

Inc-Cifar100 - - EWC MLP 43.3± 15.2 36.1± 5.5
(inc. 20 classes) - - EWC HCN 47.0± 10.6 44.0± 4.9

X EWC LWN in MHC (10%) 49.2± 8.6 46.9± 3.2

Inc-Cifar100 - - ER MLP 41.7± 17.0 37.1± 5.5
(inc. 20 classes) - - ER HCN 42.1± 16.2 38.5± 5.2

X ER LWN in MHC (10%) 45.1± 14.4 41.6± 4.8

Inc-Cifar100 - - HAT MLP 43.4± 13.0 38.0± 6.0
(inc. 20 classes) - - HAT HCN 44.2± 13.1 38.6± 8.3

X HAT LWN in MHC (10%) 47.3± 9.1 44.9± 4.8

Inc-CUB200 - - EWC MLP 56.0± 17.8 46.8± 13.5
(inc. 40 classes) - - EWC HCN 58.8± 13.7 51.8± 6.6

X EWC LWN in MHC (10%) 77.4± 14.0 69.7± 7.7

Inc-CUB200 - - ER MLP 51.9± 20.1 47.6± 4.5
(inc. 40 classes) - - ER HCN 52.0± 20.2 48.2± 9.0

X ER LWN in MHC (10%) 71.8± 20.0 63.1± 8.6

Inc-CUB200 - - HAT MLP 55.7± 16.1 59.6± 6.1
(inc. 40 classes) - - HAT HCN 56.4± 14.1 62.1± 7.4

X HAT LWN in MHC (10%) 78.8± 7.7 77.5± 4.6

(a) BN in MLP (b) LWN in MLP

Figure 4: Longitudinal Changes in Activation Values After Task Changing

Table 3: Results on Perm-MNIST
Classifier ACC (%) FA1 (%)
MLP 66.4 67.9
LWN in MLP 68.4 71.3
BN in MLP 44.3 38.3

In order to understand the reason why BN was disadvan-
tageous for continual learning, we repeated the experi-
ments in Section 5 where we first trained BN in MLP for
MNIST and then fine-tuned for FashionMNIST. We illus-
trated the results in Figure 4. This figure was formatted
following the style of Figure 3. BN in MLP had much
deeper colours than LWN in MLP. In addition, the divergence was Diffact = 97.66 in BN in MLP
and forgetting was hence 41%(= [1− 69.03/97.66]× 100%) more severe than LWN in MLP.

The deep colours first appeared after the BN in MLP started to observe data from FashionMNIST.
This indicated that the learnt parameters (i.e., the scale and the shift) in BN required readjustments as
a response to the change in source data distribution. This was expected since BN normalised neural
network values along the batch dimension rather than the feature dimension. That is, while BN could
decrease the ICS within a single task, it could not decrease the ICS occurring between tasks. These
results showed that LWN was specifically required and that it should not be incautiously replaced
with an alternative normalisation.
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6.4 SEQUENTIAL LEARNING IN A NOISY ENVIRONMENT

Figure 5: Perm-MNIST with Noise

We further concerned the realistic scenario of continual
learning under the presence of noise. The noise injection
(NI) (Kuo et al., 2021a) scenario randomly shuffled a por-
tion of pixels of Perm-MNIST images. The lowest setting
injected 10% noise while the highest setting injected 50%
noise. Refer to the details of this setup in Appendix E.

We naı̈vely sequentially trained the classifiers and plotted
the results in Figure 5. Both HCNs and LWN in MHCs
were able to achieve better results than MLPs on plas-
ticity (ACC). In addition, our novel LWN in MHCs also
outperformed HCNs in stability (FA1). We attributed this
to LWN in MHC’s minimalistic updates for reducing the
impact of input corruption on optimisation.

7 RELATED WORK

Our results highlight the architectural importance for continual learning. The components in the
forward pass not only impact plasticity, but also influence the backward pass and thus stability.
From this perspective, continual learning shares many important research questions with network
pruning and neural architectural search (NAS).

Network pruning was originally proposed to reduce both the computational and memory cost of
neural networks. Han et al. (2015) found that large networks could perform with no loss in accuracy
with only 10% of its total parameters. Zhou et al. (2019) further demonstrated that neural networks
could still perform competitively when the weights were reset but with their original signs kept.
This implied that the architecture had a direct influence on the topology of the solution space (Li
et al., 2018) and potentially also the capacity of the minima on the loss landscape (Hochreiter &
Schmidhuber, 1997). This in turn decided how easy it was to not forget. These insights echoed with
some findings in NAS. NAS considered network building as a learning problem (Zoph & Le, 2017).
It was recently extended to continual learning in Mundt et al. (2021); and some linear classifiers
with random weights were found to perform on par with fully trained deep counterparts.

Besides network pruning and NAS, many work in the lottery ticket hypothesis (LTH) (Frankle &
Carbin, 2019) also highlighted the importance of controlled and minimalistic updates. Gohil et al.
(2019) found that when configured correctly, a small and sparsified subnetwork within a dense net
could be generalised across tasks. Additional studies on the structural relations between subnetworks
and feature distributions were also investigated in Ayinde et al. (2019) and Kuo et al. (2021a).

8 CONCLUSION

This paper introduced Masked Highway Connections (MHCs) and Layer-Wise Normalisations
(LWNs) as classifiers to mitigate forgetting for backbone networks that sequentially learn over sev-
eral tasks. Unlike the reply, regularisation, and dynamic architectural continual learning archetypes,
our approach did not add external constraints to prevent forgetting. Instead, we focused on internal
modifications that were beneficial for the classifier design. To elaborate, our methods were able to
stop forgetting without the externally stored data of replay and were thus memory efficient. Simi-
larly, our methods were different to dynamic architectures and did not introduce new modules upon
learning a new task. Hence, our methods were also computationally efficient.

We demonstrated that forgetting could be prevented at both the weight level and at the feature level.
MHC achieved the former via minimalistic updates to lower the impact of weight corruption. While
LWN achieved the latter through feature redistribution to retain previously learnt mappings.

MHCs and LWNs were able to outperform their baselines. In addition, they were compatible with
techniques of all continual learning archetypes hence helping those techniques in achieving new state
of the art. Moreover, LWN in MHCs were very stable even when they were the naı̈vely implemented;
they often achieved better results than baseline classifiers with continual learning techniques applied.

9
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This paper investigated simple yet effective classifier designs to prevent catastrophic forgetting in
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REPRODUCIBILITY STATEMENT
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A DETAILS ON THE EXPERIMENTAL SETUP OF SECTION 5

This section aims to provide more details on the experimental setup for the toy experiment in Section
5. The purpose of the experiment is to compare the changes in the learnt mapping between an MLP
classifier and an LWN in MLP classifier when we change from training them on MNIST (LeCun
et al., 1998) to FashionMNIST (Xiao et al., 2017).

The design of the baseline MLP classifier looked like that in Figure 1(a), and similarly the LWN
in MLP classifier took the shape of that in Figure 1(d). Both classifiers had 2 layers – with in-
put dimension 784, hidden dimension 100, and output dimension 10; and they were trained with
SGD (Rumelhart et al., 1986) with learning rate 0.01. As shown in the figure, the normalisation in
LWN in MLP was applied at the input of layer two (equivalently, the output of layer one).

The two classifiers were first trained on MNIST. They were exposed to 5K copies of MNIST images
in batches of size 10. Prior to input, each image was flattened as a vector of size 784(=28 × 28).
After learning from the 5K copies, we externally stored a subset of MNIST images of size 50 (i.e.,
, |BMNIST|= 50). Then, we applied the saved images BMNIST to the pre-trained classifiers to collect
the layer two activation a

(0)
L2

.

We proceeded to fine-tune the classifiers on 10K images of FashionMNIST. Similar to the previous
setup, each image was flattened as vectors of 784 pixels and that the batch size was 10. There were
hence 1K updates. After each step of update, we re-applied BMNIST to the fine-tuned classifiers and
collected the new activation values at layer two a

(ξ)
L2

. We then recorded the longitudinal changes in

the learnt mapping for MNIST as abs
(
E|BMNIST|
b=1 (ba

(ξ)
L2,η
−b a(0)

L2,η
)
)

and plot the results in Figure 3.

This experiment was later re-complied in Section 6.3. The BN in MLP classifier also had the nor-
malisation applied at the input of layer two.

B LWN SCALES WELL WITH LARGE HIDDEN DIMENSIONS

(a) LWN with H = 100 (b) LWN with H = 50

Figure 6: Longitudinal Changes in Activation Values After Task Changing

Following the experimental setup as described in Appendix A, we further compared LWNs with 100
and with 50 hidden dimensions. As shown in Figure 6, there were more patches of deeper colours in
an LWN with 50 hidden dimensions than there were in an LWN with 100 hidden dimensions. After
fine-tuning both classifiers, we found that an LWN with 100 hidden dimensions had a divergence
score of Diffact = 69.03 while an LWN with 50 hidden dimensions had Diffact = 37.34. After
weighting it equally across the number of dimensions, it was Diffact = 0.69(= 69.03/100) per
dimension for the former and Diffact = 0.75(= 37.34/50) per dimension for the latter. Forgetting
was hence 8.00%(= [1 − 0.69/0.75] × 100%) less severe in the former setting. This was because
that LWN exploited the hidden dimension in neural networks – the higher the dimensionality, the
more evenly the features could be redistributed.
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C FIGURATIVE CLARIFICATIONS ON THE CLASSIFIERS IN SECTION 6

Figure 7: Different Classifier Network Designs for Perm-MNIST

Figure 8: Different Classifier Network Designs for Incremental Classes

In Figure 7, we illustrated the different classifier designs that we used for the Perm-MNIST exper-
iments. As mentioned previously, the backbone for the Perm-MNIST experiments were solely the
classifiers and that no feature extractor was involved. In addition, all LWN were applied at the input
of layer two.

Likewise, we presented our different classifier designs for Inc-Cifar100 and Inc-CUB200 overleaf in
Figure 8. There were two main differences. First, the backbone networks of the incremental classes
were compartmentalised as fixed pre-trained feature extractors and sequential learning classifiers.
Second, the normalisation from LWN were applied at two places instead of one. In addition to the
usual normalisation for the input of layer two, we added LWN to the input of layer one. That is,
normalisation was applied directly after the feature extractors pre-processed the input data.

D MORE RESULTS FROM THE EXPERIMENTS

Due to space constraint, we were unable to put all experimental results in the main text. Hence we
only showed the most important results, but we stored the rest of the performances in this section.

In Table 4, we provided additional results on Inc-Cifar100 under the naı̈ve sequential learning setup.
The results were for the scenarios with class increments of size 5 and size 10. Similarly, Table
5 provided additional results on Inc-CUB200 under the naı̈ve sequential learning setup with class
incremental size 10 and size 20.

Then in Tables 6 to 12, we listed more results when the classifiers were trained with continual
learning techniques applied. The aditional results in this section provided the extra metric scores for
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MHC, LWN in MLP, and LWN in HCN for all scenarios. In addition, we also listed those results
for Inc-Cifar100 with incremental class sizes 5 and 10; and similarly Inc-CUB200 with incremental
class sizes 10 and 20.

Table 4: More Results on the Naı̈ve Sequential Learning of Classifiers

Task Ours Classifier ACC (%) FA1 (%)
Inc-Cifar100 - - MLP 63.0± 38.2 53.6± 16.0
(inc. 5 classes) - - HCN 66.9± 30.4 61.6± 11.0

X MHC (90%) 66.3± 31.5 61.7± 12.8
X MHC (70%) 65.9± 33.0 62.1± 13.4
X MHC (50%) 67.1± 30.6 62.8± 11.8
X MHC (30%) 66.7± 31.5 62.8± 11.1
X MHC (10%) 66.9± 33.2 65.0± 7.7
X LWN in MLP 66.4± 33.2 55.8± 10.0
X LWN in HCN 66.9± 33.5 62.4± 5.2
X LWN in MHC (10%) 67.8± 31.2 63.9± 9.3

Inc-Cifar100 - - MLP 49.9± 20.5 40.0± 12.0
(inc. 10 classes) - - HCN 54.6± 15.8 47.9± 8.0

X MHC (90%) 54.1± 16.6 41.7± 9.1
X MHC (70%) 54.4± 16.3 48.3± 8.8
X MHC (50%) 55.1± 15.5 49.2± 10.4
X MHC (30%) 55.4± 15.4 48.6± 11.2
X MHC (10%) 55.5± 15.0 47.6± 11.7
X LWN in MLP 54.1± 18.5 44.8± 6.9
X LWN in HCN 56.4± 15.6 48.8± 10.0
X LWN in MHC (10%) 57.3± 14.2 52.4± 8.3

Table 5: More Results on the Naı̈ve Sequential Learning of Classifiers

Task Ours Classifier ACC (%) FA1 (%)
Inc-CUB200 - - MLP 57.7± 46.0 36.7± 20.7
(inc. 10 classes) - - HCN 60.9± 44.8 45.1± 16.5

X MHC (90%) 60.4± 44.0 43.8± 15.2
X MHC (70%) 58.9± 45.7 44.0± 20.8
X MHC (50%) 58.9± 44.4 44.3± 21.3
X MHC (30%) 58.9± 45.9 47.7± 11.1
X MHC (10%) 62.2± 42.2 52.4± 16.7
X LWN in MLP 72.0± 38.3 62.4± 18.4
X LWN in HCN 74.6± 34.7 71.1± 10.8
X LWN in MHC (10%) 74.6± 35.4 70.4± 13.1

Inc-CUB200 - - MLP 55.6± 25.1 50.2± 16.3
(inc. 20 classes) - - HCN 59.4± 26.5 55.1± 11.1

X MHC (90%) 58.5± 27.0 54.3± 11.7
X MHC (70%) 56.5± 27.0 50.4± 10.2
X MHC (50%) 56.0± 26.1 51.9± 9.7
X MHC (30%) 57.9± 26.9 53.4± 12.0
X MHC (10%) 60.5± 25.9 56.1± 12.6
X LWN in MLP 71.2± 21.6 64.9± 11.4
X LWN in HCN 73.8± 19.7 68.1± 11.2
X LWN in MHC (10%) 73.5± 19.0 68.4± 6.0
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Table 6: More Results with Continual Learning Techniques Applied

Task Ours CL Tech. Classifier ACC (%) FA1 (%)
Perm-MNIST - - EWC MLP 68.9± 18.3 76.5± 7.0

- - EWC HCN 73.7± 14.4 82.3± 5.7
X EWC MHC (70%) 73.7± 14.4 82.8± 4.6
X EWC LWN in MLP 70.8± 18.8 79.3± 7.4
X EWC LWN in HCN 76.5± 13.1 84.2± 5.8
X EWC LWN in MHC (70%) 76.5± 13.3 84.6± 6.2

Perm-MNIST - - ER MLP 72.1± 12.5 80.3± 2.8
- - ER HCN 73.3± 15.6 83.9± 2.1
X ER MHC (70%) 73.0± 16.6 84.2± 2.2
X ER LWN in MLP 74.4± 12.2 82.5± 3.0
X ER LWN in HCN 76.6± 13.6 85.9± 1.6
X ER LWN in MHC (70%) 76.0± 14.3 85.9± 1.9

Perm-MNIST - - HAT MLP 67.2± 20.6 72.3± 18.5
- - HAT HCN 71.6± 15.1 79.2± 6.0
X HAT MHC (70%) 70.5± 15.7 78.8± 6.6
X HAT LWN in MLP 71.5± 17.0 77.6± 12.3
X HAT LWN in HCN 75.7± 13.2 83.4± 3.8
X HAT LWN in MHC (70%) 75.3± 13.5 83.2± 4.0

Table 7: More Results with Continual Learning Techniques Applied

Task Ours CL Tech. Classifier ACC (%) FA1 (%)
Inc-Cifar100 - - EWC MLP 65.5± 33.4 62.3± 13.8
(inc. 5 classes) - - EWC HCN 68.0± 27.9 66.3± 9.7

X EWC MHC (10%) 68.0± 30.0 69.1± 5.0
X EWC LWN in MLP 68.9± 27.7 62.8± 6.9
X EWC LWN in HCN 69.0± 28.4 67.0± 6.4
X EWC LWN in MHC (10%) 69.8± 26.1 69.9± 5.7

Inc-Cifar100 - - ER MLP 69.5± 23.2 67.1± 6.4
(inc. 5 classes) - - ER HCN 70.0± 23.7 67.2± 6.5

X ER MHC (10%) 70.0± 23.4 68.0± 6.4
X ER LWN in MLP 71.0± 23.2 67.5± 4.8
X ER LWN in HCN 70.8± 23.0 67.0± 3.4
X ER LWN in MHC (10%) 71.1± 23.4 67.7± 6.2

Inc-Cifar100 - - HAT MLP 65.8± 30.3 60.4± 12.3
(inc. 5 classes) - - HAT HCN 65.9± 33.2 63.3± 7.7

X HAT MHC (10%) 68.3± 27.9 66.8± 8.3
X HAT LWN in MLP 66.6± 31.6 61.5± 9.3
X HAT LWN in HCN 66.3± 34.2 65.4± 5.3
X HAT LWN in MHC (10%) 67.3± 30.9 64.9± 7.9
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Table 8: More Results with Continual Learning Techniques Applied

Task Ours CL Tech. Classifier ACC (%) FA1 (%)
Inc-Cifar100 - - EWC MLP 52.1± 17.1 48.7± 11.3
(inc. 10 classes) - - EWC HCN 55.4± 14.2 51.0± 8.3

X EWC MHC (10%) 56.2± 13.1 51.3± 9.8
X EWC LWN in MLP 55.4± 15.7 51.5± 7.1
X EWC LWN in HCN 57.3± 13.4 53.5± 8.9
X EWC LWN in MHC (10%) 57.9± 12.3 57.1± 7.4

Inc-Cifar100 - - ER MLP 51.9± 13.8 52.6± 5.9
(inc. 10 classes) - - ER HCN 52.9± 13.4 53.2± 8.2

X ER MHC (10%) 53.3± 13.2 53.9± 5.8
X ER LWN in MLP 54.7± 13.5 54.9± 4.6
X ER LWN in HCN 55.4± 12.8 54.4± 7.3
X ER LWN in MHC (10%) 55.6± 12.7 54.3± 4.1

Inc-Cifar100 - - HAT MLP 52.7± 17.3 43.5± 13.6
(inc. 10 classes) - - HAT HCN 55.3± 14.5 46.1± 11.8

X HAT MHC (10%) 55.8± 13.4 52.0± 12.7
X HAT LWN in MLP 54.1± 17.2 45.9± 8.7
X HAT LWN in HCN 56.0± 14.9 50.8± 10.0
X HAT LWN in MHC (10%) 55.8± 14.6 50.9± 12.4

Table 9: More Results with Continual Learning Techniques Applied

Task Ours CL Tech. Classifier ACC (%) FA1 (%)
Inc-Cifar100 - - EWC MLP 43.3± 15.2 36.1± 5.5
(inc. 20 classes) - - EWC HCN 47.0± 10.6 44.0± 4.9

X EWC MHC (10%) 47.5± 9.0 44.3± 5.6
X EWC LWN in MLP 46.4± 13.9 40.4± 6.9
X EWC LWN in HCN 48.8± 9.3 45.2± 2.9
X EWC LWN in MHC (10%) 49.2± 8.6 46.9± 3.2

Inc-Cifar100 - - ER MLP 41.7± 17.0 37.1± 5.5
(inc. 20 classes) - - ER HCN 42.1± 16.2 38.5± 5.2

X ER MHC (10%) 42.4± 15.5 39.0± 4.0
X ER LWN in MLP 43.8± 15.6 39.4± 6.0
X ER LWN in HCN 44.9± 15.1 40.7± 4.3
X ER LWN in MHC (10%) 45.1± 14.4 41.6± 4.8

Inc-Cifar100 - - HAT MLP 43.4± 13.0 38.0± 6.0
(inc. 20 classes) - - HAT HCN 44.2± 13.1 38.6± 8.3

X HAT MHC (10%) 45.6± 9.9 43.1± 5.3
X HAT LWN in MLP 45.7± 11.8 41.5± 5.8
X HAT LWN in HCN 47.0± 10.5 43.5± 7.6
X HAT LWN in MHC (10%) 47.3± 9.1 44.9± 4.8
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Table 10: More Results with Continual Learning Techniques Applied

Task Ours CL Tech. Classifier ACC (%) FA1 (%)
Inc-CUB200 - - EWC MLP 57.7± 46.3 43.3± 25.1
(inc. 10 classes) - - EWC HCN 63.0± 42.2 49.8± 14.1

X EWC MHC (10%) 63.2± 40.9 57.6± 19.7
X EWC LWN in MLP 73.6± 37.5 70.2± 14.4
X EWC LWN in HCN 77.4± 31.5 76.3± 13.3
X EWC LWN in MHC (10%) 76.9± 31.8 77.0± 12.2

Inc-CUB200 - - ER MLP 71.3± 36.2 76.3± 9.1
(inc. 10 classes) - - ER HCN 71.7± 35.5 78.5± 7.5

X ER MHC (10%) 72.7± 36.0 79.6± 6.4
X ER LWN in MLP 76.1± 32.1 78.2± 5.7
X ER LWN in HCN 78.2± 30.3 82.5± 6.5
X ER LWN in MHC (10%) 77.9± 30.7 82.6± 6.4

Inc-CUB200 - - HAT MLP 60.9± 43.0 48.8± 25.8
(inc. 10 classes) - - HAT HCN 62.3± 42.1 55.8± 18.5

X HAT MHC (10%) 66.5± 39.0 66.1± 13.5
X HAT LWN in MLP 75.2± 33.8 82.2± 17.8
X HAT LWN in HCN 72.0± 40.9 81.4± 12.9
X HAT LWN in MHC (10%) 74.0± 36.1 81.2± 9.4

Table 11: More Results with Continual Learning Techniques Applied

Task Ours CL Tech. Classifier ACC (%) FA1 (%)
Inc-CUB200 - - EWC MLP 57.8± 24.2 53.4± 14.7
(inc. 20 classes) - - EWC HCN 61.1± 23.3 55.7± 12.4

X EWC MHC (10%) 62.8± 23.7 60.3± 14.2
X EWC LWN in MLP 74.0± 18.2 69.5± 8.0
X EWC LWN in HCN 76.7± 17.1 73.0± 10.3
X EWC LWN in MHC (10%) 76.3± 17.0 72.7± 10.0

Inc-CUB200 - - ER MLP 60.3± 24.4 64.9± 8.8
(inc. 20 classes) - - ER HCN 62.2± 23.7 67.8± 7.5

X ER MHC (10%) 63.0± 24.3 68.4± 6.1
X ER LWN in MLP 67.5± 23.2 70.4± 6.2
X ER LWN in HCN 72.0± 21.1 74.5± 6.8
X ER LWN in MHC (10%) 72.7± 20.1 75.0± 8.1

Inc-CUB200 - - HAT MLP 58.6± 24.5 65.4± 10.8
(inc. 20 classes) - - HAT HCN 58.1± 26.7 65.3± 13.5

X HAT MHC (10%) 61.3± 24.3 71.4± 7.3
X HAT LWN in MLP 75.0± 22.8 81.1± 7.2
X HAT LWN in HCN 75.6± 18.7 77.2± 8.4
X HAT LWN in MHC (10%) 75.5± 18.6 79.0± 10.7
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Table 12: More Results with Continual Learning Techniques Applied

Task Ours CL Tech. Classifier ACC (%) FA1 (%)
Inc-CUB200 - - EWC MLP 56.0± 17.8 46.8± 13.5
(inc. 40 classes) - - EWC HCN 58.8± 13.7 51.8± 6.6

X EWC MHC (10%) 62.3± 11.0 57.4± 4.9
X EWC LWN in MLP 72.7± 17.7 62.4± 8.8
X EWC LWN in HCN 76.8± 14.3 68.4± 6.0
X EWC LWN in MHC (10%) 77.4± 14.0 69.7± 7.7

Inc-CUB200 - - ER MLP 51.9± 20.1 47.6± 4.5
(inc. 40 classes) - - ER HCN 52.0± 20.2 48.2± 9.0

X ER MHC (10%) 53.4± 20.5 49.6± 8.4
X ER LWN in MLP 64.7± 25.3 53.9± 7.7
X ER LWN in HCN 70.0± 21.4 60.6± 8.1
X ER LWN in MHC (10%) 71.8± 20.0 63.1± 8.6

Inc-CUB200 - - HAT MLP 55.7± 16.1 59.6± 6.1
(inc. 40 classes) - - HAT HCN 56.4± 14.1 62.1± 7.4

X HAT MHC (10%) 58.8± 15.0 65.5± 6.3
X HAT LWN in MLP 75.9± 11.8 79.1± 6.0
X HAT LWN in HCN 77.6± 9.5 76.1± 5.6
X HAT LWN in MHC (10%) 78.8± 7.7 77.5± 4.6

E THE NOISE INJECTION SETUP

The NI setup of Kuo et al. (2021a) can be seen as a direct extension of the Perm-MNIST task. Based
on the description of that paper, there is only one extra step – which is to randomly shuffle a portion
of the content of the Perm-MNIST vectors. To elaborate, each task of Perm-MNIST first reorganises
each MNIST image as a vector of 784 pixels; it then applies the permutation mask of the current
task to that vector of pixels. On top of this, NI randomly selects a portion of the pre-processed 784
pixels and shuffle those selected pixels.

The remaining hyperparameters of the NI scenario were identical to our normal Perm-MNIST setup.
There were 20 tasks in total. We naı̈vely sequentially trained the classifiers over 5K images on the
first task, then observe 1K images on the rest of the tasks. All classifiers had two layers with hidden
dimension 100; and they were updated with SGD with learning rate 0.01.

F ADDITIONAL EXPERIMENTAL SETUPS

Table 13: More Results with Continual Learning Techniques Applied

Task Ours CL Tech. Classifier ACC (%) FA1 (%)
Perm-MNIST - - EBM - - 74.2± 12.2 61.1± 13.7

- - EBM HCN 77.7± 10.0 65.8± 11.1
X EBM MHC (70%) 77.9± 9.9 66.8± 14.4
X EBM with LWN 80.3± 6.3 74.9± 6.1
X EBM LWN in HCN 82.3± 5.2 77.0± 4.2
X EBM LWN in MHC (70%) 82.1± 5.3 76.6± 3.2

Inc-Cifar100 - - EBM - - 31.3± 22.4 21.8± 9.4
(inc. 10 classes) X EBM LWN in MHC (10%) 37.4± 19.6 31.6± 3.2

Inc-CUB200 - - EBM - - 32.4± 22.4 15.15± 4.7
(inc. 20 classes) X EBM LWN in MHC (10%) 51.3± 19.5 30.8± 5.5

It was suggested by one of our reviewers to include additional experiments to test our techniques on
the non-standard continual learning classifiers. To this end, we supplemented our existing experi-
ments with Energy-Based Models (EBM) (Li et al., 2020) as alternative classifiers.

As shown in Figure 1, traditional continual learning classifiers used softmax as their final layer.
However, it was noted in Li et al. (2020) that softmax classifiers encourage a winner-takes-all dy-
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namic for network parameterisation. Thus alternatively, they advocated for the use of EBMs. The
aim of their EBM was to minimise the energy for the input class while rising the energy level for
all remaining classes. Such a setup would allow the network to lower its confidence in making an
incorrect decision.

However, their EBM required a paradigmatic shift towards the conventional network setup for con-
tinual learning. First, they relinquished softmax as their final layer and instead replaced it with a
linear transformation with a single output dimension. Second, they required both the data along with
their ground-truth labels as input. Regardless of these changes, our MHC and LWN techniques were
still applicable to EBM classifiers. As shown in Table 13, our techniques were able to improve the
vanilla EBM setup across three different datasets.
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