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ABSTRACT

Main challenges in long-tailed recognition come from the imbalanced data distri-
bution and sample scarcity in its tail classes. While techniques have been proposed
to achieve a more balanced training loss and to improve tail classes data varia-
tions with synthesized samples, we resort to leverage readily available unlabeled
data to boost recognition accuracy. The idea leads to a new recognition setting,
namely semi-supervised long-tailed recognition. We argue this setting better re-
sembles the real-world data collection and annotation process and hence can help
close the gap to real-world scenarios. To address the semi-supervised long-tailed
recognition problem, we present an alternate sampling framework combining the
intuitions from successful methods in these two research areas. The classifier
and feature embedding are learned separately and updated iteratively. The class-
balanced sampling strategy has been implemented to train the classifier in a way
not affected by the pseudo labels’ quality on the unlabeled data. A consistency
loss has been introduced to limit the impact from unlabeled data while leverag-
ing them to update the feature embedding. We demonstrate significant accuracy
improvements over other competitive methods on two datasets.

1 INTRODUCTION

Large-scale datasets, which contain sufficient data in each class, has been a major factor to the
success of modern deep learning models for computer vision tasks, such as object recognition. These
datasets are usually carefully curated and balanced to have an uniform data distribution over all
classes. This balanced data distribution favors model training but could be impractical in many
real world applications, where the frequency of samples from different classes can be imbalanced,
leading to a long-tailed data distribution. As shown in Figure 1(b), several highly populated classes
take up most of the labeled samples, and some of the classes only have very few samples during
training.

The long-tailed recognition problem has been widely studied in the literature. One major challenge
in this setting (Liu et al. (2019); Kang et al. (2020); Zhou et al. (2020)) to deep learning model
training is the tendency of under-fitting in less-populated classes. The root causes of this under-
fitting are the imbalanced training data distribution as well as the scarcity of data samples in the tail
classes.

More specifically, with an imbalanced training data distribution, when several head classes take up
most of the training samples, tail classes contribute little in the training loss. The model is such that
biased towards head classes. Prior works (Lin et al. (2017); Cao et al. (2019); Kang et al. (2020);
Zhou et al. (2020)) tried to mitigate the issue by re-sampling the training data to be a balanced dis-
tribution or calibrating the sample weights in calculating the loss. However, still the scarcity of tail
class data samples limits the intra-class variations and overall recognition accuracy. Methods focus-
ing on few-shot learning have been introduced to address this problem through data augmentation
and data synthesis (Wang et al. (2018); Hariharan & Girshick (2017); Liu et al. (2020)).

In this work, we resort to a different path to leverage massive unlabeled real data in training to help
improve the long-tailed recognition accuracy. Since data collection is much cheaper and accessible
comparing to data annotation, additional unlabeled real data could readily be available in many real-
world scenarios. This semi-supervised learning setting has been intensively studied in the literature
(Laine & Aila (2016); Rasmus et al. (2015); Tarvainen & Valpola (2017); Berthelot et al. (2019);
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Figure 1: Comparison of different recognition paradigms: a) statistics of CIFAR-10 when used as
a Semi-supervised Recognition benchmark; b) typical data distribution over classes in long-tailed
recognition; c) the proposed Semi-supervised long-tail recognition setting, in which both labeled
and unlabeled subsets follow the same underlying long-tailed data distribution.

Sohn et al. (2020)). However, as shown in Figure 1(a), when we carefully look at the data distribution
of the widely used benchmarks, we observe well-balanced labeled subset and unlabeled subset.
As discussed above, the manually curated balanced distribution, can lead to a gap to real-world
scenarios. This is especially true in unlabeled data. Without labels, people have no way to balance
the data among classes.

In this paper, we propose a more realistic and challenging setting, namely semi-supervised long-
tailed recognition. As shown in Figure 1(c), we assume a long-tailed data distribution of the overall
dataset and both the labeled and unlabeled subsets of training data follow the same underlying long-
tailed data distribution. This setting generally resembles a realistic data collection and annotation
workflow. After collecting the raw data, one has no knowledge of its class distribution before an-
notation. As it is expensive to annotate the full corpus, a common practice is to randomly sample a
subset for annotation under a given labeling budget. When the raw data follows a long-tailed class
distribution, we should expect the same in the labeled subset.

While this new recognition paradigm shares the challenges in both semi-supervised learning and
long-tailed recognition, there is no readily naive solution to it. Methods in long-tailed recognition
rely on class labels to achieve balanced training, which are not available in the unlabeled portion in
the semi-supervised long-tailed recognition. Prior semi-supervised methods without considering the
long-tailed distribution could fail as well.

Taking one of the competitive baseline methods for example, (Yang & Xu (2020)) proposed to firstly
train a recognition model with the labeled subset to generate pseudo labels for the unlabeled subset,
then the model is fine-tuned with the full training dataset. However, when the labeled subset follows
a long-tailed distribution, the pseudo labels are much less accurate for tail classes than head classes.
As a result, the overall pseudo labels quality could be too bad to leverage (See Section 4.4 for results
in CIFAR-10-SSLT and ImageNet-SSLT).

To address the semi-supervised long-tailed recognition problem, we present a method designed
specifically for this setting. We bring the successful class-balanced sampling strategy and com-
bined it with model decoupling in an alternate learning framework to overcome the difficulty of
balancing unlabeled training data.

Inspired by (Kang et al. (2020)), we decouple the recognition model into a feature embedding and
a classifier, and train them with random sampling and class-balanced sampling respectively. As we

2



Under review as a conference paper at ICLR 2022

are targeting at a semi-supervised setting, the classifier is only trained on labeled data to get around
the difficulty of applying correctly class-balanced sampling on unlabeled data, aligning with the
intuition that the classifier needs more robust supervision than the feature embedding.

After that, with the proposed alternative learning framework, we improve model by updating the
feature embedding and the classifier iteratively. We assign pseudo labels with the up-to-date classi-
fier and observed gradually improved accuracy of pseudo labels over iterations. The pseudo labels
are then incorporated in fine-tuning the feature embedding with a regularization term to limit its
potential negative impacts. Similar iterative design has been proposed in semi-supervised learning
literature (Laine & Aila (2016); Tarvainen & Valpola (2017)) but important implementation details
differ.

To summarize, in this paper, 1) we resort to semi-supervised learning to help improve long-tailed
recognition accuracy and identify practical gap of current semi-supervised recognition datasets due
to their well-balanced unlabeled subset; 2) we propose a new recognition paradigm named semi-
supervised long-tailed recognition better resembling real-world data collection and annotation work-
flow; 3) we propose a new alternative sampling method to address the semi-supervised long-tailed
recognition and demonstrate significant improvements on several benchmarks.

2 RELATED WORK

Long-tailed recognition has been recently studied a lot (Wang et al. (2017); Oh Song et al. (2016);
Lin et al. (2017); Zhang et al. (2017); Liu et al. (2019); Wang & Hebert (2016)). Several approaches
have been proposed, including metric learning (Oh Song et al. (2016); Zhang et al. (2017)), loss
weighting (Lin et al. (2017)), and meta-learning (Wang & Hebert (2016)). Some methods design
dedicated loss functions to mitigate the data imbalanced problem. For example, lift loss (Oh Song
et al. (2016)) introduces margins between many training samples. Range loss (Zhang et al. (2017))
encourages data from the same class to be close and different classes to be far away in the embedding
space. The focal loss (Lin et al. (2017)) dynamically balances weights of positive, hard negative, and
easy negative samples. As reported by (Liu et al. (2019)), when applied to long-tailed recognition,
many of these methods improved accuracy of the few-shot group, but at the cost of lower accuracy
over the many-shot classes.

Other methods, e.g. LDAM-DRW (Cao et al. (2019)) replace cross-entropy loss with LDAM loss.
This adds a calibration factor to the original cross-entropy loss. When combined with loss re-
weighting, it improves the accuracy in all splits in long-tailed recognition. However, it can not
be easily generalized to semi-supervised learning. Because both the calibration factor and the loss
weight are calculated based on the number of samples of each class.

In face recognition and person re-identification, the datasets are mostly with long-tailed distribu-
tion. LEAP (Liu et al. (2020)) augmented data samples from tail (few-shot) classes by transferring
intra-class variations from head (many-shot) classes. Instead of data augmentation, we introduce
unsupervised data to improve the performance of long-tailed recognition.

A recent work (Yang & Xu (2020)) rethinks the value of labels in imbalance learning. As part of the
discussion, semi-supervised learning is included. However, only the basic pseudo label solution and
simple datasets, such as CIFAR and SVHN, are discussed.

More recent works (Kang et al. (2020); Zhou et al. (2020)) with improved long-tailed recogni-
tion share the observation that feature embedding and the classifier should be trained with different
sampling strategies. In this work, we adopt our method on this observation to learn the feature em-
bedding model with random sampling and train the classifier with class-balanced sampling. This
design is further closely compatible with semi-supervised learning under alternate learning.

Semi-supervised learning has been extensively discussed in recognition discipline (Laine & Aila
(2016); Rasmus et al. (2015); Tarvainen & Valpola (2017)). One common observation is to optimize
the traditional cross-entropy loss together with a regularization term that regulates the perturbation
consistency of unlabelled data.

Ladder net (Rasmus et al. (2015)) is introduced to minimise the reconstruction loss between the
network outputs from a given sample and its perturbation. It is then simplified in (Laine & Aila
(2016)) as two temporal modules: Π-Model and Temporal Ensembling. The Temporal Ensembling
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(a) Initialization procedure. A recogni-
tion model is first trained with random
sampling. After that the feature em-
bedding is used to train a new classi-
fier with class-balanced sampling. In the
diagram, CNN components that are up-
dated during training are highlighted in
red.
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(b) Diagram of alternate learning. CNN modules in green line is
only used in forwarding. Those in red are fine-tuned with the corre-
sponding loss. In Stage 1, samples from U are forwarded through f
and g. U ′ consists of samples from U , and pseudo labels acquired
from g. In Stage 2, f and g′ are trained on the combination of D and
U ′. In Stage 3, only the classifier g is trained. f is fixed and only
used in forwarding.

encourages the output of the network from unlabeled data to be similar to its counterpart from
previous training epoch. More recently, Mean Teacher (Tarvainen & Valpola (2017)) extends it by
assembling along training. Instead of storing previous predictions, they assemble a Teacher model
by calculating the moving average of the training network, i.e. the Student. The Teacher is then used
to provide the consistency of predictions to the Student.

In addition to that, MA-DNN (Chen et al. (2018)) introduces a memory module to maintain the
category prototypes and provide regularization for learning with unlabeled data. Label propagation
(Li et al. (2018)) is also considered with the help of label graph. More recently, Mixmatch (Berthelot
et al. (2019)) and Fixmatch (Sohn et al. (2020)) improve the performance by introducing powerful
data augmentations and perturbation consistencies.

All the semi-supervised methods above do not separate labeled data during semi-supervised training.
In fact, it is beneficial to combine labeled data and unlabeled data in a certain proportion (Laine
& Aila (2016); Tarvainen & Valpola (2017)). However, without further knowledge, we have no
insight how to deal with this combination when long-tailed distribution is included. Furthermore,
long-tailed learning methods require calibration or re-sampling based on the class distribution. This
combination of labeled and unlabeled data makes the distribution unstable. In result, this is not
suitable for long-tailed recognition.

Recently, Salsa (Rebuffi et al. (2020)) proposes to decouple the supervised learning from semi-
supervised training. Our method follows the alternate training scheme from it, because it is sur-
prisingly compatible with long-tailed learning. In practice, our method differs from Salsa in the
following aspects.

First, we adopt class-balanced sampling in supervised learning to deal with the long-tailed distribu-
tion. Second, we use supervised learning instead of self-supervised learning as initialization. We
find that self-supervised learning results in inferior performance in long-tailed scenario. Third, the
re-initialization is not needed. Because our initialization is already from supervised learning, there
is not a specific starting point to re-initialize the model. In fact, this enhances the soft constraint
between the two stages in (Rebuffi et al. (2020)).

With the models continuously optimized along alternate learning, our method achieves superior
performance while maintains the same amount of training epochs as fine-tuning on pseudo labels.

3 METHOD

In this section, we will introduce the proposed method to semi-supervised long-tailed recognition.
The semi-supervised long-tailed recognition problem is first defined, and some notations are clari-
fied. The decoupling strategy of long-tailed recognition is then discussed. This is also the initializa-
tion phase of our method. After that, the alternate learning scheme with 3 stages is fully discussed.

3.1 SEMI-SUPERVISED LONG-TAILED RECOGNITION

We start by defining the semi-supervised long-tailed recognition problem. Consider an image recog-
nition problem with a labeled training set D = {(xi,yi); i = 1, . . . , N}, where xi is an example
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and yi ∈ {1, . . . , C} its label, where C is the number of classes. For semi-supervised learning, there
is also an unsupervised training subset U = {xi; i = 1, . . . ,M}.
Although the labels of data in U are not available, every sample has its label from {1, . . . , C}. For
class j, we have nj samples from D and mj samples from U . With the assumption that supervised
and unsupervised data follow the same distribution, we have the fact nj

N =
mj

M , ∀j.
The testing set, on the other hand, in order to evaluate the performance on every class without bias,
is balanced sampled on all classes in {1, . . . , C}.

3.2 MODEL DECOUPLING AND DATA SAMPLING

A CNN model combines a feature embedding z = f(x; θ) ∈ Rd, and a classifier g(z) ∈ [0, 1]C .
Embedding f(x; θ) is implemented by several convolutional layers of parameters θ. The classifier
operates on the embedding to produce a class prediction ŷ = arg maxi gi(z). In this work, we adopt
the popular linear classifier g(z) = ν(Wx + b), where ν is the softmax function.

Standard (random sampling) training of the CNN lies on mini-batch SGD, where each batch is
randomly sampled from training data. A class j of nj training examples has probability nj

N of
being represented in the batch. Without loss of generality, we assume classes sorted by decreasing
cardinality, i.e. ni ≤ nj , ∀i > j. In the long-tailed setting, where n1 � nC , the model is not fully
trained on classes of large index j (tail classes) and under-fits. This can be avoided with recourse
to non-uniform sampling strategies, the most popular of which is class-balanced sampling. This
samples each class with probability 1

C , over-sampling tail classes.

Kang et al. (2020); Zhou et al. (2020) shows that while classifier benefits from class-balanced sam-
pling, feature embedding is more robust in random sampling. Practically, Kang et al. (2020) achieves
this by decoupling the training into two stages, and train the feature embedding with random sam-
pling in the first stage, and classifier the second with class-balanced sampling.

3.3 INITIALIZATION

The initialization of the proposed method follows the decoupling from (Kang et al. (2020)). The
two-stage initialization is illustrated in Figure 2(a). A CNN model is first trained with random
sampling. A feature embedding z = f(x; θ) ∈ Rd, and a classifier g′(z) ∈ [0, 1]C are acquired.
After convergence, the classifier is re-initialized and trained with class-balanced sampling, with the
feature embedding fixed. This results in a class-balanced classifier g(z) ∈ [0, 1]C . Both the feature
embedding and the classifier are trained on the supervised training subset D.

3.4 ALTERNATE LEARNING

After obtaining an initialized model, most semi-supervised learning methods fine-tune the model
on a combination of supervised and unsupervised samples. This is, however, incompatible with
our long-tailed recognition model. When applied on unsupervised data, we have no ground truth
for class-balanced sampling. One can make a sacrifice by relying on pseudo labels assigned by the
initialized model. But the effectiveness will depend on the accuracy of pseudo labels.

It is even worse when considering the fact that long-tailed models usually have better performance
on highly populated classes and worse on few-shot classes. Class-balanced sampling over-samples
few-shot classes, while down-samples many-shot. This means, in general, the worse part of pseudo
labels contributes more to the training loss than it should be, while the better part contributes less.

Another difficulty is the model compatibility when combining the long-tailed model to semi-
supervised learning methods. Many semi-supervised learning methods evolve the model and pseudo
labels at the same time. For example, Mean Teacher (Tarvainen & Valpola (2017)) assembles the
teacher model by moving average and trains the student with consistency loss. When it comes to
long-tailed model, it is not clear when we should update the feature embedding or classifier. And it
is also difficult to incorporate both random and class-balanced sampling.

Inspired by (Rebuffi et al. (2020)), which separates supervised learning apart from semi-supervised
learning, we propose an alternate learning scheme. The supervised training on data D, and semi-

5



Under review as a conference paper at ICLR 2022

supervised training on data D∪U are carried out in an alternate fashion together with model decou-
pling and different data sampling strategies.

In practice, after initialization, we have a feature embedding z = f(x; θ), a classifier g′(z) trained
with random sampling, and a classifier g(z) trained with class-balanced sampling. In (Kang et al.
(2020)), only g(z) is used in testing. However, we keep the randomly trained classifier g′(z) for
further usage. The training scheme iterates among 3 stages for N loops, which are shown in Fig-
ure 2(b).

Stage 1: Label assignment. In this stage, pseudo labels are assigned for the unsupervised subset U .
The feature embedding f(x; θ) and class-balanced classifier g(z) are used. The choice of classifier
is equivalent to the long-tailed model when tested for better overall accuracy. The unsupervised
subset with pseudo labels is Û = {(xi, ŷi); i = 1, . . . ,M}, where ŷi are pseudo labels.

Stage 2: Semi-supervised training. After label assignment, we have pseudo labels for all unsu-
pervised data. The model is the fine-tuned on the combination of true and pseudo labels, i.e. on
D ∪ Û . In this stage, random sampling is used to update the feature embedding f(x; θ) and the
randomly-trained classifier g′(z). The classification is optimized by cross-entropy loss:

LCE =
∑

(xi,yi)∈D∪Û

− log g′yi
(f(xi; θ)), (1)

where g′yi
is the yi-th element of g′.

In semi-supervised learning literature, a regularization loss is usually applied to maintain the con-
sistency for unlabeled data. This consistency loss captures the fact that data points in the neighbor-
hood usually share the same label. We adopt this idea and implement the temporal consistency from
(Laine & Aila (2016)). In practice, the class probabilities are acquired from g′. Given the class prob-
ability pe−1 from epoch e− 1, and the class probability pe from epoch e, the loss is KL-divergence
between the two.

Lconsist =
∑

(xi,yi)∈D∪Û

∑
j

pe−1j log
pe−1j

pej
, (2)

where pe−1j and pej are the j-th element of pe−1 and pe respectively.

Overall, the semi-supervised learning loss is the combination of the two.

Lsemi = LCE + λLconsist. (3)

Stage 3: Supervised training. We update the class-balanced classifier g(z) based on the refined
feature embedding, which is fine-tuned with semi-supervised learning in Stage 2. Specifically, the
fine-tuning is applied with class-balanced sampling and only on the supervised subset D. In this
stage, only classifier is updated. The feature embedding is fixed and only used in forwarding. Given
the class-balanced version of supervised subset D′, the cross-entropy loss for classification is

Lsup =
∑

(xi,yi)∈D′

− log gyi
(f(xi; θ)), (4)

where gyi
is the yi-th element of g.

3.5 INSIGHT OF THE DESIGN

Feature embedding is trained with random sampling and semi-supervised learning. This is consis-
tent with long-tailed model in the sampling scheme. It also follows the fact that feature embedding
is less prone to noisy labels. Actually, in self-supervised learning literature (Gidaris et al. (2018);
He et al. (2020); Chen et al. (2020)), the feature embedding can even be learned without labels.

Classifier is learned with class-balance sampling and only supervised data. This is again the same
as the supervised version. And by avoiding fitting the classifier on pseudo labels, we prevent the
wrong labels from propagating through the whole training process. Given the fact that the pseudo
labels are provided by the classifier, if classifier is still optimize on those, wrong labels can be easily
maintained in the fine-tuned version of the classifier.
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Table 1: Left: Results(Accuracy in %) on CIFAR-10-SSLT. ResNet-18 is used for all methods;
Right: Results(Accuracy in %) on ImageNet-SSLT. ResNet-18/50 are used for all methods.

Imbalance factor=100/1000 ResNet-18/50
Method Overall Many-Shot Medium-Shot Few-Shot Overall Many-Shot Medium-Shot Few-Shot

LDAM-DRW (L) 67.4/46.2 79.7/70.3 54.2/36.3 68.1/35.6 21.3/24.9 42.6/51.2 27.0/31.1 8.6/9.9
Pseudo-Label + L 69.6/48.4 69.7/74.0 55.1/39.3 80.2/36.0 17.6/23.9 22.4/44.0 20.9/30.0 12.6/11.1
Mean Teacher + L 69.9/48.3 69.7/75.7 57.3/41.4 79.4/32.9 21.3/25.6 41.8/49.1 28.1/31.8 7.6/11.7
Decoupling (D) 64.0/45.8 91.1/86.5 63.0/47.2 44.4/14.4 24.8/27.2 53.9/58.5 31.1/34.2 8.7/9.8
Pseudo-Label + D 68.9/46.5 92.7/89.0 70.8/47.0 49.8/14.2 25.3/27.7 47.6/52.2 32.1/34.7 11.1/12.4

Ours 71.3/66.7 89.5/84.4 67.7/69.4 60.2/51.4 26.5/29.0 52.0/57.1 33.9/36.5 10.7/12.3

Training the classifier only on labeled data also avoids the dilemma of class-balancing on unlabeled
data. Without ground truth labels, class-balanced sampling can only rely on pseudo labels, which
are not perfect. And the fact that pseudo labels have more errors on few-shot classes is specially not
suitable for class-balanced sampling. Because when few-shot classes are over-sampled, those errors
are also scaled up during training.

4 EXPERIMENTS

4.1 DATASETS

We manually curate two semi-supervised long-tailed recognition benchmarks.

CIFAR-10-SSLT. For easy comparison and ablation, we compose a lightweight semi-supervised
long-tailed dataset based on CIFAR-10 (Krizhevsky et al. (2009)). Following (Cao et al. (2019)), we
randomly sample the training set of CIFAR-10 under an exponential function with imbalance ratios
in {100, 1000} (the ratio of most populated class to least populated). The unsupervised subset is
collected from Tiny Images (Torralba et al. (2008)) following the strategy introduced in (Yang & Xu
(2020)). The class distribution of unlabeled data is always the same as the labeled one, with 5 times
larger. For better description and comparison, we assign the 10 classes into 3 splits: many-shot,
medium-shot, few-shot, with many-shot the most populated 3 classes, medium-shot the medium 3,
and few-shot the least 4 classes.

ImageNet-SSLT. To evaluate the effectiveness of semi-supervised long-tailed recognition methods
on large-scale datasets, we assemble a challenging dataset from ImageNet (ILSVRC-2012) (Deng
et al. (2009)). The supervised subset is sampled with Lomax distribution with shape parameter α =
6, scale parameter λ = 1000. It contains 41, 134 images from 1000 classes, with the maximum of
250 images per class and the minimum of 2 samples. The unsupervised subset is sampled under the
same distribution with an unsupervised factor 4, i.e. |U| = 4|D|. The 1000 classes are divided into 3
splits based on the amount of labeled data n: many-shot (n > 100), medium-shot (10 < n ≤ 100),
few-shot (n ≤ 10). In result, the dataset has 140 many-shot, 433 medium-shot, and 427 few-shot
classes. Methods are evaluated under all classes and each class split.

4.2 NETWORK ARCHITECTURE

ResNet-18 (He et al. (2016)) is used on both CIFAR-10-SSLT and ImageNet-SSLT for fast exper-
iments and comparison. ResNet-50 is used on ImageNet-SSLT to show how methods scale up to
larger networks.

4.3 COMPARISON METHODS

To our best knowledge, there is no available method designated for semi-supervised long-tailed
recognition. We explore typical long-tailed recognition methods and semi-supervised recognition
methods, and combine them as baselines.

Long-tailed Recognition. We consider two long-tailed methods, one for loss calibration and the
other for re-sampling. LDAM-DRW (Cao et al. (2019)) converts cross-entropy loss to LDAM loss
with calibration factors based on class counts. It further regulates the loss with a loss weight also
from class counts. Decoupling (Kang et al. (2020)) decouples the training of embedding and classi-
fier with different sampling strategies. This is also the initialization in our method.
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Semi-supervised Recognition. Pseudo-Label is a basic semi-supervised learning algorithm and
can be easily combined with other models. It contains two phases. The first phase is initialization,
the recognition model is trained on labeled data. Predictions of the initialized model are assigned
on unlabeled data, i.e. pseudo labels. The initialized model is then trained or fine-tuned on the
combination of labeled and unlabeled data. In practice, we combine Pseudo-Label method with the
two long-tailed recognition models to create two semi-supervised long-tailed recognition baselines.
Pseudo-Label combined with LDAM-DRW is the method used in (Yang & Xu (2020)).

Mean Teacher (Tarvainen & Valpola (2017)) is a well-known semi-supervised learning method. It
contains a Student model that is trained with SGD and a Teacher model that is updated with moving
average of the Student. It is, however, unclear how to train it with Decoupling. We only implement
LDAM loss with Student training.

4.4 RESULTS

CIFAR-10-SSLT results are shown in Table 1 with imbalance ratio 100 and 1000. Our methods
outperforms all other methods in overall accuracy.

Our initialized model is equivalent to Decoupling, which shows the worst performance among all
methods. Alternate learning improves the overall performance more than 7% when imbalance factor
is 100, and 20% with imbalance factor 1000. Most of the improvement is from medium and few-
shot classes. The larger improvement on the more imbalanced distribution shows that our method is
more effective with more skewed dataset.

When Pseudo-Label is added upon Decoupling, around 5% improvement is achieved with imbalance
factor 100. But this improvement diminishes when the data is more imbalanced. This implies the
fact that Pseudo-Label is more sensitive to bad tail class labelling.

With the improvement upon Pseudo-Label, our method has the same amount of training epochs on
unsupervised data. The extra calculation in our methods compared to Pseudo-Label is from Stage
1 and 2. However, the classifier training is only on supervised data, and only the linear classifier is
updated. And label assignment does not involve any back-propagation. The extra time on these two
stages are trivial compared to the training of the whole model on the whole dataset.

LDAM-DRW provides very competitive results without any semi-supervised learning methods when
imbalance factor is 100. However, it scales up bad when combined with semi-supervised techniques.
By adding Pseudo-Label, it only improves 2% of overall accuracy. After looking at the splits results,
we find that it improves the few-shot performance at the cost of many-shot. We believe this is
because the wrong balancing factor introduced in LDAM loss. It does not match the true distribution,
and skews the training process. Mean Teacher makes little difference from Pseudo-Label on LDAM-
DRW.

ImageNet-SSLT results are shown in Table 1. Our methods outperforms all baseline methods with
both ResNet-18 and -50 architectures. The ImageNet-SSLT setting is really challenging that all of
the methods give below 30% overall accuracy. In fact, our method is the only one that improves the
few-shot performance while maintains the many-shot accuracy.

On ImageNet-SSLT, Pseudo-Label based methods lose efficacy, because it improves few-shot perfor-
mance with sacrifice on many-shot. This sacrifice is sometimes big, such as Pseudo-Label+LDAM-
DRW with ResNet-18. This is not observed when Pseudo-Label is used on CIFAR-10-SSLT, where
it improves the many-shot performance. This may be due to the bad many-shot pseudo-label quality
on ImageNet-SSLT. Unlike CIFAR-10-SSLT, where the initialized model has 90% of accuracy on
many-shot, many-shot performance on ImageNet-SSLT is only around 50%. These wrong labels
can mislead the training and lower the performance of Pseudo-Label methods. Our method, on the
other hand, updates the pseudo labels iteratively, and is less prone to this problem.

Specifically, adding Pseudo-Label on LDAM-DRW decreases the overall performance. This can
be explained by the fact that the balancing factor in it does not match the true distribution. Mean
Teacher improves upon LDAM-DRW when ResNet-50 is used. But it is still not as good as ours.
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Table 2: Ablation results(Accuracy in %) on CIFAR-10-SSLT, Imbalance factor 100 is used. Sam-
pling methods are denoted as R for random, and C for class-balanced. The last two method names
shows where the embedding is trained.

Method Overall Many-Shot Medium-Shot Few-Shot

R + R 50.9 93.0 57.8 14.1
C + R 61.2 91.3 62.6 37.6
C + C 63.3 91.2 64.4 41.6

D ∪ U ′ 70.1 89.6 68.7 56.5
D 63.3 91.6 61.9 43.2

4.5 ABLATIONS

We further study the training choices of alternate learning. This consists of two parts, i.e. the
sampling choices and semi-supervised learning choices. Results on CIFAR-10-SSLT with imbalance
factor 100 are listed in Table 2.

Sampling choice. Currently, during alternate learning we use random sampling in Stage 2 and class-
balance sampling in Stage 3. This is consistent with long-tailed recognition (Kang et al. (2020)).
However, other combinations are possible. Results are listed in the first 3 lines of Table 2, with
naming format: {sampling in Stage 2}+{sampling in Stage 3}. In method names, “R” stands for
random sampling and “C” stands for class-balanced.

None of the 3 alternatives can beat the initialized model (Decoupling). This is expected. When the
classifier is randomly trained (“R+R” and “C+R”), the model performs bad on few-shot classes. This
will in turn harm the training of embedding by pseudo labels on unsupervised subset. “C+C” trains
the feature embedding with class-balanced sampling. However, it is balancing on pseudo labels,
which can be wrong. The results show that this balancing yields inferior feature embedding.

Semi-supervised learning choice. We train feature embedding with the whole dataset, i.e. D ∪ U ′,
and the classifier with labeled subset D. Other combinations can also be investigated. The classifier
can also be semi-supervise trained, i.e. on D ∪ U ′. At the same time, feature embedding is trained
with or without U ′. We show the results in the last 2 lines of Table 2. In these two experiments, the
classifier is always trained on D ∪ U ′. The difference is whether U ′ is used for embedding learning.

Compared to the regular setting, where the classifier is trained on D, when we train it on D ∪ U ′,
the performance is slightly lower. This can be explained by the fact that wrong pseudo labels in
U ′ can be propagated through loops if the classifier is optimized on them. This is especially true
for few-shot classes, where the accuracy is low. Because of class-balanced sampling, the impact
of few-shot classes is amplified. When compared to Table 1, the main performance drop is from
few-shot classes. This confirms our assumption.

However, when we further remove the unsupervised training of embedding, the performance drops
a lot. It is even worse than the initialized model (Decoupling). In this case, the feature embedding
should be equivalent to that of the initialization. The only difference is the classifier. This further
proves the fact that fine-tuning classifier on pseudo-labels harms the performance.

5 CONCLUSION

This work introduces the semi-supervised long-tailed recognition problem. It extends the long-tailed
problem with unsupervised data. With the property of labeled and unlabeled data obeying the same
distribution, this problem setting follows the realistic data collection and annotation workflow.

A method based on alternate learning is proposed. By separating supervised training from semi-
supervised and decoupling the sampling methods, it incorporates the decoupling training scheme in
long-tailed recognition with semi-supervised learning.

Experiments show that the proposed method outperforms all current baselines. When results are
split based on class cardinality, the method exhibits its robustness to defective pseudo labels. This
is especially true for few-shot classes.

9



Under review as a conference paper at ICLR 2022

REFERENCES

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin
Raffel. Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint
arXiv:1905.02249, 2019.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. arXiv preprint arXiv:1906.07413, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Yanbei Chen, Xiatian Zhu, and Shaogang Gong. Semi-supervised deep learning with memory. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 268–283, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Bharath Hariharan and Ross Girshick. Low-shot visual recognition by shrinking and hallucinating
features. In Proceedings of the IEEE International Conference on Computer Vision, pp. 3018–
3027, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yan-
nis Kalantidis. Decoupling representation and classifier for long-tailed recognition. In Eighth
International Conference on Learning Representations (ICLR), 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

Qimai Li, Xiao-Ming Wu, and Zhichao Guan. Generalized label propagation methods for semi-
supervised learning. 2018.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Jialun Liu, Yifan Sun, Chuchu Han, Zhaopeng Dou, and Wenhui Li. Deep representation learning
on long-tailed data: A learnable embedding augmentation perspective. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2970–2979, 2020.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-scale
long-tailed recognition in an open world. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2537–2546, 2019.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4004–4012, 2016.

10



Under review as a conference paper at ICLR 2022

Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-
supervised learning with ladder networks. arXiv preprint arXiv:1507.02672, 2015.

Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Kai Han, Andrea Vedaldi, and Andrew Zisserman.
Semi-supervised learning with scarce annotations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, pp. 762–763, 2020.

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D Cubuk,
Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. arXiv preprint arXiv:2001.07685, 2020.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780,
2017.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 30(11):1958–1970, 2008.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778,
2018.

Yu-Xiong Wang and Martial Hebert. Learning to learn: Model regression networks for easy small
sample learning. In European Conference on Computer Vision, pp. 616–634. Springer, 2016.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. In Advances in
Neural Information Processing Systems, pp. 7029–7039, 2017.

Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. Low-shot learning from
imaginary data. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 7278–7286, 2018.

Yuzhe Yang and Zhi Xu. Rethinking the value of labels for improving class-imbalanced learning.
arXiv preprint arXiv:2006.07529, 2020.

Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and Yu Qiao. Range loss for deep face
recognition with long-tailed training data. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 5409–5418, 2017.

Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network with
cumulative learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 9719–9728, 2020.

A TRAINING DETAIL

In initialization, the feature embedding is trained with 200 epochs, and classifier is learned in 10
epochs after that. Stage 2 contains 40 epochs of fine-tuning of the embedding on the whole dataset.
In 5 loops of stages, it is in total 200 epochs of embedding fine-tuning. There are also 10 epochs of
classifier fine-tuning in Stage 3 per loop. In semi-supervised learning loss (3), λ = 1 is used.

SGD optimizer with learning rate of 0.1 is used with cosine annealing during training in all stages.
The momentum is 0.9, and weight decay is 0.0005.

All comparison methods are implemented with the hyper-parameters in their papers. The codes from
authors are used when available.
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Table 3: Pseudo label accuracy on unlabeled training subset. CIFAR-10-SSLT with imbalance ratio
100 is used. Compared to testing set, the unsupervised subset is not balanced. In result, the overall
accuracy is higher than that on testing set, because of the domination of many-shot classes. The
results in many/medium/few-shot splits are more useful.

Loop Overall Many-Shot Medium-Shot Few-Shot

0 87.7 92.3 63.0 41.8
1 87.9 92.3 64.0 48.1
2 87.8 92.1 64.7 52.2
3 87.8 91.8 65.3 55.8
4 87.7 91.6 65.8 57.8

Table 4: Results(Accuracy in %) on CIFAR-10-SSLT, imbalance factor 100. ResNet-32 is used for
all methods.

Method Overall Many-Shot Medium-Shot Few-Shot

LDAM-DRW 77.34 91.8 74.3 73.7
Pseudo-Label + L 81.1 87.6 75.6 80.7
Decoupling 68.2 91.6 66.9 49.2

Ours 83.1 92.0 77.7 80.4

B MORE ABLATIONS

Accuracy on unsupervised training subset. In Stage 1, we assign pseudo labels for all samples in
U . Table 3 reveals how the accuracy changes along loops in all splits. Few-shot split performance
improves much faster than others. This proves the effectiveness of our alternate learning scheme,
and explains why our method outperforms the baselines by a large margin in few-shot classes.

The unsupervised subset has a long-tailed distribution, so the overall performance is dominated by
many-shot. However, alternate learning still gets benefits from the improvement on few-shot split.
Accuracy on different splits is more useful when we analyze how the model evolves during training.

More results. Table 5 compares our method to Salsa and FixMatch. The gains are significant for all
data splits. And ResNet-32 results are shown in Table 4.

C INATURALIST2018-SSLT

Dataset. We further curate a benchmark for semi-supervised long-tailed recognition based on iNat-
uralist 2018 (Van Horn et al. (2018)). iNaturalist 2018 is a long-tailed dataset sampled from natural
distribution. We follow the distribution in both of the labeled and unlabeled subset. More specifi-
cally, Samples in each class is randomly down-sampled one-fifth of the total number as labeled data,
and the remains are assigned as unsupervised subset. Classes with less than 2 labeled samples are
eliminated. In result, iNaturalist2018-SSLT contains 8080 classes, with labeled samples from 200
to 2, and the unsupervised subset is 4 times larger.

Classes are divided into three splits based on the number of labeled samples: many-shot
([100,+∞)), medium-shot ([10, 100)), and few-shot ([2, 10)). It is a extremely long-tailed dataset,
with 134 many-shot classes, 1220 medium-shot classes, and 7010 few-shot classes.

Results. Results are shown in Table 6. Our method is the only one that improves the overall
performance upon baseline. iNaturalist2018-SSLT is different from our other benchmarks in the
amount of few-shot classes. It has a very long tail taking up 87% of the label space. This makes the
dataset especially hard when combined with unsupervised data.

With the inferior quality of predictions, we see significant drop of Pseudo-Label method in many-
shot split. In fact, Pseudo-Label decreases the accuracy of baselines in all splits. Our method
mitigates this problem, and improve the few-shot performance. Given the fact that most classes are
in few-shot split, our method is the only one that increase the overall performance.

12



Under review as a conference paper at ICLR 2022

Table 5: Results(Accuracy in %) on CIFAR-10-SSLT, imbalance factor 100. ResNet-18 is used for
all methods.

Method Overall Many-Shot Medium-Shot Few-Shot

Salsa 59.6 82.5 60.7 41.5
FixMatch 64.1 83.6 62.4 50.6

Ours 71.3 89.5 67.7 60.2

Table 6: Results(Accuracy in %) on iNaturalist2018-SSLT. ResNet-50 are used for all methods. For
many-shot t > 100, for medium-shot t ∈ (10, 100], and for few-shot t ≤ 10, where t is the number
of labeled samples.

Method Overall Many-Shot Medium-Shot Few-Shot

Decoupling 27.9 54.1 41.7 24.8
Pseudo-Label + Decoupling 26.3 39.9 35.8 24.3

Ours 28.4 49.5 38.7 26.1

Comparison among benchmarks. From CIFAR-10-SSLT to ImageNet-SSLT and iNaturalist2018-
SSLT, the datasets have more and more classes and few-shot classes. In result, they are more and
more challenging. This challenge makes Pseudo-Label method ineffective. From CIFAR-10-SSLT
to ImageNet-SSLT, the shortcoming first appears in many-shot splits. On ImageNet-SSLT, Pseudo-
Label improves the few-shot performance with a sacrifice of many-shot performance. Our method
is more robust to this difficulty. It keeps the many-shot performance while improves the few-shot
performance. On iNaturalist2018-SSLT, the Pseudo-Label improvement on few-shot split also dis-
appears, and the drop on many-shot is big. Our method, however, can still improves the few-shot
performance and control the drop of many-shot compared to the baseline.

All of these results show that semi-supervised long-tailed recognition is a challenging problem.
Given the fact that this problem follows the natural workflow of data collecting, we believe it de-
serves more attention in the literature.
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