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ABSTRACT

While 3D semantic part understanding underpins numerous downstream appli-
cations, 3D part detection from images remains underexplored due to limited
annotated datasets. To address this, we introduce DST-Part3D, a 3D semantic part
dataset with 3, 300 fine-grained 3D part annotations across 475 shapes from 50
object categories, paired with 125, 000 realistic synthetic images. DST-Part3D
enables training and evaluation of 3D part detection from images, 2D part segmen-
tation via projection, and benchmarking of 3D correspondence quality through
transferred part labels. Using this dataset, we develop Part321, an algorithm that
recognizes 3D parts in images using only one annotated mesh per category. Part321
establishes mesh-to-mesh and mesh-to-image correspondences to propagate part
pseudo-labels across instances, allowing effective 3D part detector training with
minimal supervision. Experiments demonstrate that Part321 outperforms previous
methods on 3D and 2D part detection tasks. In addition, we use DST-Part3D to an-
alyze the mesh-to-mesh correspondence obtained by different methods leveraging
transferred 3d part labels, highlighting the key challenge in 3D part correspondence,
which provides insight into future work.

1 INTRODUCTION

Cognitive psychology studies suggest that humans recognize objects as a composition of simple
geometric components in 3D space (Biederman, 1987). Many real-world vision applications, like
robotics and autonomous driving, also require the ability to detect and segment object parts in 3D
from single images. Specifically, fine-grained robot manipulation, such as lifting and rotating a bottle
to display the label on the cap, requires robust reasoning about the object parts and their relationships
with intended tasks (Yin et al., 2025). However, most existing works detect parts only in 2D since
real-image datasets (Meletis et al., 2020; Zhou et al., 2017; Ramanathan et al., 2023; Chen et al.,
2014; He et al., 2022; Liu et al., 2022) only have 2D part annotations for evaluation. In this paper, we
introduce DST-Part3D, a 3D semantic part dataset paired with realistic synthetic images. We also
develop Part321, an algorithm to recognize 3D parts in single images using only one annotated mesh,
in order to flexibly detect parts under different part definitions with minimal supervision.

Annotating 3D parts on real images is nearly impossible without paired 3D object shapes. Therefore,
we propose an alternative approach where we make a realistic synthetic dataset leveraging recent
advances in incorporating 3D geometry control into diffusion models (Ma et al., 2024). We annotate
3, 300 3D parts on 475 shapes from 50 object categories. Following 3D-DST (Ma et al., 2024), we
leverage latent diffusion models with text prompts (Rombach et al., 2022), coupled with Control-
Net (Zhang et al., 2023a), to generate realistic synthetic images conditioned on edge maps of rendered
images. Using this method, we create a large-scale realistic synthetic dataset of 125, 000 images that
have 3D part annotations. We name it DST-Part3D. DST-Part3D can not only enable training and
evaluation of 3D part detection from images and 2D part segmentation via projection, but also enable
benchmarking of 3D correspondence quality through transferred part labels.

Based on the proposed dataset, we study the problem of recognizing 3D parts from single images
using one annotated mesh. We introduce Part321, where 3 denotes 3D part information, 2 denotes a
single 2D image, and 1 denotes one annotated mesh. We need to address two challenges: (1) The
geometry of different objects in one object category can vary significantly, e.g., different shapes of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Compare

3D Features2D FeaturesImage

Render

Recognized 3D Parts

Optimize

Figure 1: Part321. Our framework detects 3D object parts from a single image by extracting 2D
features from the image and compare with rendered 3D features in deformable neural mesh. Through
optimizing the 3D pose, scale and shape of object parts, we recognize them in 3D space.

airplanes. Thus, finding a commonly shared representation of diverse shapes is essential. (2) We need
to model the semantic relation between the 3D parts and the 2D image pixels.

To address the first challenge, we establish mesh-to-mesh correspondence by using the one-shot
annotated mesh as a template and matching each of its vertices to the most semantically similar
vertices on other meshes within the same category. Consequently, we can share the vertex feature
of any vertex on the annotated mesh with the corresponding vertex on other shape instances in the
category. Using the obtained correspondences, we also train a deformation network that predicts
vertex offsets conditioned on one-hot shape latents representing other meshes, enabling the template
to deform into diverse geometries.

To solve the second challenge, we attach neural features (Wang et al., 2020; Shtedritski et al., 2024;
Neverova et al., 2020) to the vertices of the deformable mesh, forming a deformable neural mesh. The
neural features can be shared among different instances based on the mesh-to-mesh correspondence.
Then we can learn the mesh-to-image correspondence, which aligns the neural features on the meshes
with the 2D features extracted from images (Wang et al., 2020). Leveraging the camera poses and
3D shapes from DST-Part3D, we use contrastive learning to optimize the neural features to align
with the 2D features extracted from corresponding pixels. Benefiting from the realism of our realistic
synthetic images, this correspondence generalizes to real data as well.

During inference, as shown in Figure 1. Given a test image, we first extract the 2D features from the
image and render 3D features from the deformable neural mesh. Through comparing the features and
taking the derivative, we find clues to change the 3D pose, position, and shape of the whole neural
mesh as well as each part to better align the two feature sets, leading to the optimized configuration
of parts corresponding to the input image.

We evaluate Part321’s pioneering ability of one-shot 3D part detection from single images on the
DST-Part3D, which outperforms crafted baselines. To further validate the generalization ability of
the model on real images, we compare Part321 with 2D segmentation methods on three real-world
image part datasets by projecting the predicted 3D parts into the image plane. To analyze the
performance bottleneck of Part321, we evaluate the mesh-to-mesh correspondence calculated by
different methods using the proxy task of part transfer, which reveals the fundamental challenge of
3D part correspondence and provides insight for future improvement.

Our contributions can be summarized as follows:

• We construct DST-Part3D dataset, with 3D annotated parts for 50 object categories, 475
shapes, and ∼ 3, 300 parts, paired with 125, 000 realistic synthetic images.

• We propose Part321, a category-level object 3D part recognition method that only requires
one annotated mesh, which pioneers one-shot 3D part detection from single images by
learning two types of correspondence.

• Part321 outperforms designed baselines on one-shot 3D part detection from single images.
It also outperforms 2D segmentation methods on real image part datasets.

• We use DST-Part3D to analyze the mesh-to-mesh correspondence obtained by different
methods using part transfer, highlighting the challenge in 3D part correspondence.
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Diffusion Style 
Transfer

3D Part Annotation

475 #3D CAD Models
50 rigid categories

Realistic Synthetic Images

3, 300 #3D Parts

DST-Part3D

Figure 2: Overview of the DST-Part3D Dataset. Firstly, we select 475 3D CAD models from
50 rigid object categories. Secondly, we generate realistic synthetic images following the 3D-DST
generation pipeline and annotate 3d parts on these meshes. Then we obtain DST-Part3D that has
realistic synthetic images with 3D part annotations.

2 RELATED WORK

3D Part Dataset. Compared to 2D part datasets, 3D part datasets are rather limited. We have
ShapeNet-Part (Yi et al., 2016) that annotates 16 rigid categories of 31.9k shapes, but the part defini-
tions are coarse, averaging only about three parts per instance. PartNet (Mo et al., 2019) annotates 24
indoor object categories of 26.7k shapes with fine-grained hierarchical 3D part annotations. 3DCoM-
PaT++ (Slim et al., 2023) annotates 10k shapes of 41 categories with even more fine-grained parts.
While these datasets are large-scale, they are primarily designed for 3D part segmentation with 3D
input. For instance, fine-grained datasets like PartNet and 3DCoMPaT++ include very small parts
that are difficult to detect in 2D images. Moreover, only 3DCoMPaT++ provides rendered images of
annotated meshes, but those synthetic images use only a white background. In contrast, we introduce
DST-Part3D, a 3D part dataset paired with large-scale realistic synthetic images, which is specifically
designed for recognizing 3D parts from single images.

Learning Object Parts in 3D. Learning 3D parts from 3D inputs, e.g., pointclouds, has been widely
explored. Previous works on 3D semantic segmentation have explored many effective network
architectures (Qi et al., 2017a;b; Yu et al., 2019; Shi et al., 2020; Zhang et al., 2022) and training
methods (Landrieu & Simonovsky, 2018; Afham et al., 2022; Liu et al., 2023a; Zhang et al., 2023b)
to improve the ability of 3D part segmentation. Another important area is 3D part discovery, which
involves decomposing 3D objects into self-defined parts (Xu et al., 2019; Luo et al., 2020; Sun
et al., 2021; Koo et al., 2022). However, one limitation of these approaches is their reliance on 3D
observations. In order to recognize 3D geometries from images, previous methods try to register
pixels to a canonical mesh Kulkarni et al. (2020); Yang et al. (2021); Kokkinos & Kokkinos (2021).
These methods focus on deformable articulated categories (i.e., animals) where the articulation is hard
but the geometric variance within a category is smaller than rigid objects. Animals have relatively
fixed part configurations, but some part positions can change a lot across instances for rigid objects.
More recent approaches focus on using multiview 2D part correspondence for 3D parts (Sharma et al.,
2022; Thai et al., 2024), but they still suffer from low-quality 2D part segmentation under challenging
situations (e.g., fine-grained part definitions, extreme poses, etc). In contrast, we leverage mesh-to-
image correspondence to relax the requirement for 3D input and use mesh-to-mesh correspondence
to overcome geometric variance across rigid object instances.

3 DATASET CONSTRUCTION

DST-Part3D aims to provide fine-grained 3D semantic part annotations for 50 common rigid object
categories in the real world. The 50 categories - 40 outdoor and 10 indoor objects - are selected
from 3D-DST (Ma et al., 2024) which classifies CAD models obtained from ShapeNet (Chang et al.,
2015), Objaverse (Deitke et al., 2023), OmniObject3D (Wu et al., 2023), and Toys4k (Stojanov et al.,
2021) into ImageNet-1k (Deng et al., 2009) categories. These fine-grained object categories can not
only help us constrain the shape variance within each category but also benefit the generated prompts
for latent diffusion models by including more shape-specific information (e.g., describes one vehicle
shape as a convertible rather than a general car). There are 761 shapes in these 50 categories, and we
annotated parts on 475 of them — about 10 per category. Compared to hierarchical parts directly
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from assets, our annotations emphasize semantic parts that align better with images by defining
surface parts visible from typical viewpoints. On average, each annotated mesh contains 7 parts,
yielding roughly 3, 300 parts in total. We also introduce spatial information to our part definitions(e.g.
left door) due to the importance of accurate spatial recognition of 3D part configurations, and we
merge tiny, hard-to-recognize parts into larger, semantically coherent parts. Additionally, following
the generation pipeline in 3D-DST, we leverage a more advanced latent diffusion model (i.e. Stable
Diffusion 3) to generate 125, 000 realistic synthetic images with 3D part annotations as shown in
Figure 2. Note that we also generate realistic synthetic images on the unannotated meshes for
training Part321. Please refer to the Appendix A.3 for more details about the dataset and experiments,
which demonstrate the realism of the generated images. Furthermore, benefiting from our consistent
semantic part definitions and constrained shape-variance within each fine-grained category, DST-
Part3D naturally becomes a promising 3D part dataset to benchmark the quality of 3D correspondence
by testing the transferred 3D part labels using 3D correspondence between two meshes.

4 PART321

We formulate the one-shot 3D object part recognition problem as establishing a deformable mesh
attached with neural features (Section 4.1), which is a shared 3D representation among different 3D
shapes in one object category and is aligned with 2D images. As shown in Figure 3, we build mesh-
to-mesh correspondence (Section 4.2) and mesh-to-image correspondence (Section 4.3) to achieve
this. Such a formulation makes detecting 3D parts from 2D images approachable by differentiating
the process of rendering the deformable neural mesh into 2D feature maps.

During inference (Section 4.4), we first recognize the object using the mesh template without
deformation to have a preliminary estimate of its 3D pose and part positions. Then we refine the 3D
pose and part configurations by allowing deformation.

4.1 DEFORMABLE NEURAL MESH

We aim to establish a shared representation of diverse shapes in each object category. We implement
it by using the mesh-to-mesh correspondence so that the vertex feature of the annotated one mesh
can be shared among different shape instances. We also enable deformation for the annotated mesh
by training a deformation network to predict vertex offsets. The deformation is based on the mesh-
to-mesh correspondence and is conditioned on one-hot shape latents that represent other meshes.
Note that the shape latents are independent for each vertex by default. Additionally, we attach neural
features to the vertices of our deformable mesh model so that we can align the neural features on the
meshes with the 2D features extracted from images by the mesh-to-image correspondence.

We name it deformable neural mesh: N = {V,A,Θ,P,Z}, which consists mesh vertices V = {Vk ∈
R3}Kk=1, triangular faces A = {Ak ∈ N3}K

′

k=1, feature vector on each vertex Θ = {θk ∈ Rd}Kk=1,
part label P = {Pk ∈ N}Kk=1, and one-hot shape latent Z = {zk ∈ Rd′}Kk=1, conditioned on which
the mesh will be reshaped into diverse geometries. K and K

′
are the number of vertices and faces of

the mesh.

4.2 MESH-TO-MESH CORRESPONDENCE

We use a set of meshes from the category {My = {Vy,Ay}} to learn the vertex-level mesh-to-mesh
correspondence, where y is the index of the mesh and Vy and Ay are the vertices and faces of the
y-th mesh.

We formulate the mesh-to-mesh correspondence as feature matching, which means that we propose
to learn the features on each vertex representing its geometric information and exploit the cosine
similarity of feature vectors to form the correspondence. We use a PointNet++ (Qi et al., 2017b)
encoder Ψ pre-trained on reconstruction (Sun et al., 2021) to extract object geometry descriptors from
point clouds. It is self-supervisedly trained on 31, 747 shapes of 13 object categories collected from
ShapeNet (Chang et al., 2015). We use it to compute vertex features on each mesh γy = Ψ(Vy). The
features of each vertex Vy,k is γy,k, where k is the index of vertex in mesh My. Then, we compute
the cosine similarity of features to obtain the dense correspondence between vertices across all object
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Figure 3: Overview of the training process of Part321. The mesh-to-mesh correspondence is
learned between mesh vertices, which finds corresponding vertices across different objects in the
category. Then, realistic synthetic images are generated using the 3D-DST (Ma et al., 2024), based
on which the mesh-to-image correspondence is learned to align the 3D meshes with the generated 2D
image using contrastive learning.

meshes. For example, for the k1-th vertex on mesh My1
, the corresponding vertex on mesh My2

is
defined as:

Corr(y1, k1, y2) = argmaxk
γy1,k1 · γy2,k

∥γy1,k1
∥∥γy2,k∥

. (1)

With mesh-to-mesh correspondence, the corresponding vertices from different meshes could share
the same feature vector in the annotated mesh. To make the annotated mesh deformable, we train a
deformation network φ based on the correspondence. We aim to make each part separately deformable
to represent diverse combinations, but we also need the deformable mesh to be part-agnostic to avoid
retraining when the part definition changes. Therefore, we attach one shape latent to each vertex in
the annotated mesh. When we have the part definition during inference, we keep the shape latent of
the vertices in the same part to be the same. We build an MLP that takes one vertex of the annotated
mesh Vk, the shape latent zk attached to this vertex, and outputs the offset between the target position
specified by the shape latent and the original position of Vk. Thus, the deformation is defined as:

V̂k = Vk + φ(Vk, zk), k = 1, 2, ...,K (2)

where V̂k is the vertex after deformation. For training, the deformation network takes the vertex Vk

and a one-hot shape latent hy that represents the target mesh My. We use a different notation for
shape latent here (i.e., hy) because during the training stage, the shape latents of all vertices are the
same (meaning they deform to the y-th mesh). Based on mesh-to-mesh correspondence, the network
should output the position offset between the corresponding vertex Vy,Corr(y0,k,y) and Vk, where y0
is the index of the annotated mesh in the category. The loss for training φ is:

Ldeform =
∑
y

∑
k

|(Vy,Corr(y0,k,y) − Vk)− φ(Vk, hy)|. (3)

We also apply the surface-normal consistency loss to keep the deformed mesh smooth. During
inference, our framework could deform each object part into diverse shapes by changing the latent Z .
Please refer to the Appendix for more details on the deformation network.

4.3 MESH-TO-IMAGE CORRESPONDENCE

To relate the vertices in the deformable mesh with 2D images, we add neural features to its vertices
and introduce the mesh-to-image correspondence, which is formulated as the similarity between
features on each vertex θk and the features extracted Φ(I) = F ∈ Rc×h×w from image I , where Φ
is the feature extractor we need to train.

As shown in Figure 3, we use the realistic synthetic images in DST-Part3D generated by the meshes
set {My} for training. We only need to use the ground truth 3D pose and shape as the supervision,
which requires no 3D part annotations.

We employ the same learning process to learn the correspondence as previous object pose estimation
approaches using contrastive learning (Ma et al., 2022; Wang et al., 2020; 2024). However, rather
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Figure 4: The inference process of Part321. We use the deformation network to reshape each
part given the one-hot shape latent (represented by grids with grayscale values). Image features are
extracted from the given test image. We optimize the whole object pose and 3D configuration (location,
rotation, scale, and shape) of object parts by gradient-based minimizing the feature reconstruction
loss. The 2D part segmentation is computed by a projection of optimized 3D parts.

than learning the vertex features fuzzily with a prototype geometry (e.g., a cuboid), we utilize the
detailed object geometry (i.e., {My}) since we have the 3D correspondence to share the sampled
vertex features across the meshes. Relying on detailed shapes makes it feasible to learn precise
features θk of part-level structures, e.g., the center of the left front wheel. Such a difference allows
Part321 to locate object parts accurately. For details about the learning formulation, please refer to
the Appendix A.1.1.

4.4 PART INFERENCE

Our inference pipeline (Figure 4) predicts 3D object parts by optimizing the overall object pose and
3D configurations (i.e., location, rotation, scale, and shape) of each part in the deformable neural
mesh via the feature-level rendering and comparison.

Specifically, we extract a feature map using the trained feature extractor from the testing image
F = Φ(I). We also render a feature map F̂ using the built neural mesh N given a set of 3D
configurations, e.g., shape, pose, and scale. By comparing the two feature maps we update the 3D
attributes to make the rendered feature map better align with the extracted features. Technically, we
use gradient optimization to iteratively minimize the feature difference loss on each pixel p on the
feature map:

Lrecon =
∑
p

∥Fp − F̂p∥2. (4)

In detail, we first optimize the camera pose R by disabling deformation of the deformable neural
mesh. We start by sampling 144 initial poses and choose the one with the smallest feature difference
loss for further optimization, which gives a preliminary estimate of the 3D rotation R of the whole
object and its part positions. Secondly, we refine the 3D pose and part configurations by allowing
deformation. For each object part, we optimize the scaling parameter S ∈ R3, shape latent Z , and
transformation T ∈ R6, which includes the 3D translation and 3D rotation. By changing T , S, and
Z , each object part can move freely in 3D space and be deformed into diverse shapes.

Also, to ensure the geometry consistency between object parts, we introduce a geometry consistency
loss. We select all the paired vertices {Vk, Vl}, Pk ̸= Pl that belong to different object parts, which
have distances ρkl = ∥Vk − Vl∥ smaller than a threshold τ . A consistency loss is applied if the
distance of these paired vertices exceeds the threshold during optimization:

Lconsist =
∑
k,l

(ρkl − τ)1[ρij > τ ], (5)

where 1 is an indicator function that equals 1 if the expression is true and equals 0 if otherwise.

The overall optimization loss Linference is the weighted sum of feature difference loss and geometry
consistency loss with wconsist as the weight. We conduct gradient optimization to find 3D configuration
w.r.t. R, T, S,Z with minimal Linference for 300 steps, thus recognizing object parts in 3D space.
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Pose Acc 83.3 71.0 59.0 66.0 42.1 57.1 61.5 82.0 63.6 40.0 69.0 58.0 78.4 54.0 48.0 44.0 22.5 24.4 28.3 46.0 30.6 65.0 33.3 34.0 52.0
3D mIoU 40.0 38.7 48.5 64.0 33.4 34.4 28.5 40.2 34.9 32.8 23.2 20.0 40.6 25.8 36.2 23.4 9.52 24.8 25.4 14.8 41.0 13.7 32.7 25.6 17.3
CD (10−2) 0.37 2.51 7.53 3.03 1.27 1.44 9.09 0.35 5.42 17.3 2.42 8.51 3.02 16.1 1.29 6.43 10.7 16.6 4.34 2.65 4.84 0.74 10.1 6.09 23.5

Pose Acc 50.0 92.0 65.0 44.2 64.2 20.0 68.5 36.7 48.9 65.7 71.0 39.0 73.0 42.2 65.7 52.5 60.0 34.0 95.0 32.0 50.0 38.0 57.0 53.0 44.0
3D mIoU 31.0 47.0 28.1 31.9 58.7 14.7 54.3 30.3 31.0 56.0 34.8 32.6 24.9 36.4 38.1 24.3 37.0 28.8 29.7 30.1 24.0 44.5 42.4 18.6 27.6
CD (10−2) 5.44 1.65 8.87 6.06 6.61 22.1 5.84 8.94 5.44 5.12 8.38 14.4 6.53 5.04 6.12 9.04 11.7 3.07 0.28 7.17 7.87 5.30 4.92 21.4 5.03

Table 1: Quantitative results for 3D part detection from 2D images on 3D DST. We use the pose
accuracy, mean value of chamfer distance and mean 3D Bounding Box IoU over all parts to show
that our method could precisely recognize 3D object parts from a single image.

5 EXPERIMENTS

To validate the effectiveness of Part321, we evaluate on diverse categories for 3D part detection in
Section 5.2 and benchmark the quality of mesh-to-mesh correspondence in Section 5.3. We also
evaluate Part321 on real image part datasets that only have 2D annotations to demonstrate that
Part321’s generalization ability on real images in Section 5.4. Furthermore, we demonstrate the
effectiveness of important components of Part321 in Section 5.5 and introduce the computational
cost in Section 5.6.

5.1 SETTINGS

Training Details. For each object category in 3D-DST (Ma et al., 2024), we want to use images
generated from all annotated meshes (except the selected one) for testing and use the images generated
from unannotated meshes for training. For categories that have few or no unannotated meshes, we
will split 2

3 of the total meshes for training (not using the part annotations).

Metrics. We use Chamfer Distance (CD) and 3D Bounding Box IOU to evaluate 3D part recognition.
We compare the predicted 3D parts and ground truth parts after the camera and parts transformations
to validate our model’s ability to locate the parts. The pose estimation is regarded as accurate if the
rotation error is smaller than π

6 . For 2D segmentation, we use Mean Intersection over Union (mIoU)
as the metric. Please note that these metrics, except for pose accuracy, are all conducted in a part-wise
manner, and we report the mean value over all parts.

5.2 3D PART DETECTION

We conduct extensive experiments on DST-Part3D for 3D part detection from single 2D images. Since
there are no directly comparable baselines, we construct a baseline by concatenating a state-of-the-art
image-to-3D method (Long et al., 2024) and 3D part segmentation method (Yang et al., 2024) for
comparison. We present results of 50 categories in Table 1.

As shown in Table 1, our method achieves promising results on diverse object categories, which
proves that our learned deformable neural mesh effectively represents the categories and could

Figure 5: Qualitative results on 3D DST. The detected 3D bounding box and corresponding
recognized parts show that our method could generalize to diverse object categories.
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Method Pose Acc ↑ CD (10−2) ↓ 3D mIOU ↑

Wonder3D (2024) + SAMPart3D (2024) - 8.98 20.0

Part321 53.5% 7.16 32.5

Table 2: Comparison with baselines on 3D part recognition. Part321 outperforms models trained
on the large-scale dataset by leveraging the learned deformable neural mesh.

PartField (2025) 28.9 70.9 40.9 97.2 59.4 29.4 20.4 27.5 52.4 30.6 20.3 32.6 32.6 39.0 65.8 39.0 35.6 27.2 46.6 20.4 40.7 19.5 36.3 44.3 10.5
Capsule(ours) (2021) 42.2 61.6 41.3 95.5 66.6 31.9 35.1 34.8 48.8 39.6 27.5 35.1 53.9 40.6 57.6 58.1 38.9 31.1 40.2 28.9 39.5 22.7 75.6 55.7 19.0

PartField (2025) 43.7 32.2 37.5 34.0 32.4 25.9 25.0 25.2 74.8 24.6 18.1 28.5 24.0 52.9 36.3 29.5 29.3 54.5 27.5 65.6 27.6 70.3 49.8 26.0 33.9
Capsule(ours) (2021) 43.7 41.6 35.0 49.4 39.1 42.6 35.5 20.1 77.3 30.5 31.2 27.6 24.2 59.8 45.4 23.8 23.9 38.5 29.6 64.2 33.9 51.0 60.4 35.3 42.9

Table 3: Part transfer results on DST-Part3D. We use the mean 3D Bounding Box IoU over all
parts to benchmark the performance of mesh-to-mesh correspondence.

correctly locate the object parts in 3D space and deform the parts into suitable geometries. We do
observe some categories propose more challenges due to very fine-grained annotations (e.g, steering
wheel in golf cart), limited number of meshes (e.g., tram, rocket, and shopping cart), or huge shape
variance across instances (e.g., kettle, mower).

Figure 5 visualizes the 3D bounding boxes of detected parts and their corresponding recognized 3D
parts, where our method precisely detects the 3D pose and location of object parts and the predicted
parts closely resemble the geometries in the image.

Table 2 shows the mean results across the 50 categories. Our framework outperforms the baseline
significantly, which demonstrates the effectiveness of learning correspondences compared to large-
scale training.

5.3 3D CORRESPONDENCE BENCHMARK

We evaluated two methods here: Capsule (Sun et al., 2021) and PartField (Liu et al., 2025). The 3D
feature extractor of Capsule is self-supervisedly trained on 31,747 shapes across 13 categories from
ShapeNet (Chang et al., 2015; Deprelle et al., 2019), whereas PartField’s extractor is trained on 340k
filtered shapes from Objaverse (Deitke et al., 2023) and 30k shapes from PartNet (Mo et al., 2019)
with hierarchical part annotations.

Surprisingly, as shown in Table 3, Capsule(ours) shows a better performance in categories that have
more fine-grained part annotations in DST-Part3D, especially when the part definition contains spatial
information. Please refer to the Appendix A.2.2 for a qualitative comparison of the part transfer
results. However, the quantitative results for both methods are not accurate enough, which can explain
why Part321 degrades in several objection categories. We hope this benchmark can motivate works
to incorporate more cross-shape supervision during training in the future.

2D mIOU ↑ Police Car Airliner Bicycle Jeep Minibus Mean

SegFormer (2021) 39.57 37.25 23.21 37.02 32.82 33.97
DeepLab v3+ (2018) 44.54 35.71 23.74 34.47 31.60 34.01

Matcher (20-shots) (2023b) 32.85 22.31 29.95 30.63 35.29 30.21
SLiMe (2023) 37.60 35.23 38.34 46.78 32.61 38.11

Part321 53.61 41.77 31.67 42.12 43.92 42.62

Table 4: Quantitative results on real images. Despite that Part321 performs the extra 3D recognition
task, it outperforms 2D baselines with large-scale pretraining.

5.4 EVALUATION ON REAL IMAGES

To demonstrate that Part321 generalizes well to real images, we evaluate it on real image part datasets.
We compared it with state-of-the-art 2D methods (Chen et al., 2018; Xie et al., 2021; Liu et al.,

8
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Figure 6: Qualitative results of 3D part recognition from our annotated real images. We show
the 2D segmentations and 3D parts rendered from two different views

Pose Accuracy CD (10−2) ↓ 3D mIOU ↑

w/o Scaling 53.9 7.98 30.7
w/o Constrain 53.3 7.32 32.1
w/o Deformation 51.4 8.35 31.1
Full Model 53.5 7.16 32.5

Table 5: Ablation study on 3D DST dataset. We validate the necessity of our different components.
The numbers are averaged across all 50 categories.

2023b; Khani et al., 2023) that are trained or fine-tuned on the same amount of synthetic images.
The baselines include traditional segmentation methods (Chen et al., 2018; Xie et al., 2021) and also
methods leveraging foundation models (Liu et al., 2023b; Khani et al., 2023).

Since the existing 2D part datasets do not correspond with the part definitions and fine-grained
object categories in DST-Part3D, we select 279 images from the test and validation set of Ima-
geNet (Krizhevsky et al., 2012) of five categories and annotate the part masks according to 3D
annotations on the meshes. Table 4 and Figure 6 show that Part321 can generalize better to real-world
images than 2D methods when trained only on synthetic images. For results on PartImageNet (He
et al., 2022) and UDA Part (Liu et al., 2022), please refer to the Appendix A.2.3.

5.5 ABLATION STUDY

Table 5 shows the ablation study of important components in Part321. In the w/o Scaling setup,
the object scale S is set to be fixed during part optimization. For w/o Constrain, we remove the
geometry consistency loss during optimization. The w/o Deform setting shows the results that no
shape deformation is applied during inference. The results show that all the proposed components are
essential to achieve the best 3D part detection performance.

5.6 COMPUTATIONAL RESOURCES

Our training takes about 10 ∼ 48 hours per category on a Titan RTX (depending on mesh count/size).
Inference averages 1 minute per image for both 3D and 2D parts, while the baseline requires ∼ 12
minutes (Wonder3D (Long et al., 2024): 7 min + SAMPart3D (Yang et al., 2024): 5 min).

6 CONCLUSION

To address the challenge of recognizing 3D object parts from 2D images. we firstly introduce
DST-Part3D, that has 3, 300 annotated 3D parts on 475 shapes from 50 categories paired with
125, 000 realistic synthetic images. We then present Part321 to recognize 3D object parts from a
2D image using only one annotated mesh. Part321 establishes mesh-to-mesh and mesh-to-image
correspondences to propagate part pseudo-labels across instances, allowing effective 3D part detector
training with minimal supervision. Experiments demonstrate that Part321 outperforms 3D and
2D part detection tasks compared to alternatives. In addition, we use DST-Part3D to analyze the
mesh-to-mesh correspondence obtained by different methods leveraging transferred 3d part labels,
highlighting the key challenge in 3D part correspondence, which provides insight into future work.

9
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7 STATEMENTS

7.1 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. The method details
are described in Section 4. The training and testing settings are written in Section 5.1. More
implementation details are provided in the Appendix A.1. We will release the source code as
anonymous supplementary material. The DST-Part3D dataset will be also released publicly.

7.2 ETHICS STATEMENT

Our submission does not raise any questions regarding the Code of Ethics.
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A APPENDIX

A.1 METHOD DETAILS

A.1.1 LEARNING FORMULATION OF MESH-TO-IMAGE CORRESPONDENCE

To relate the vertices in the deformable mesh with 2D images, we add neural features to its vertices
and introduce the mesh-to-image correspondence, which is formulated as the similarity between
features on each vertex θk and the features extracted Φ(I) = F ∈ Rc×h×w from image I , where Φ is
the feature extractor we need to train. We use the realistic synthetic images in DST-Part3D generated

12

https://arxiv.org/abs/2407.09648
https://openreview.net/forum?id=Kb4fDvJBlj
https://openreview.net/forum?id=Kb4fDvJBlj


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

by the meshes set {My} for training. We only need to use the ground truth 3D pose and shape as the
supervision, which requires no 3D part annotations.

To learn the correspondence, we use the mesh My that is used to generate the image and calculate the
world-to-screen transformation Ω using the known camera pose Q. To find 2D feature fk = F (pk) at
pixel pk that corresponds to the vertex k, we compute the projected location of each vertex on the
feature map pk = Ω(Vk). Besides, the visibility ok is determined for each vertex in the image, i.e.,
ok = 1 if vertex k is visible, and vice versa.

Our learning objective is to enlarge the feature distance ∥fk − θl∥ if ∥Vk − Vl∥ is above a desired
threshold, where k and l are indexes of two vertices. Such properties of features allow us to
use differentiable rendering to find the optimal alignment of the vertices on the 3D model and
corresponding locations on the 2D image. To achieve this, we use the contrastive loss (Bai et al.,
2023; Wang et al., 2020) to learn the extractor:

Ltrain = −
∑
k

ok · log(
eκfk·θk∑

vl /∈Nk
eκfk·θl +

∑
βn∈B eκfk·βn

), (6)

where κ is a preset softmax temperature, and Nk indicates the spatial neighborhood of Vk, which
controls spatial error threshold of the correspondence. B = {βn ∈ Rd}5n=1 is a set of background
features that are pushed away from every vertex feature in the latent space to make the system robust
to backgrounds.

At the same time, we adapt the vertex features θk using the momentum update strategy (Bai et al.,
2023),

θk ←− ok(1− σ) · fk + (1− ok + σ · ok)θk, (7)

where σ is the momentum for the update process.

A.1.2 FEATURE INTERPOLATION PROCESS DETAILS

During the learning of mesh-to-mesh correspondence, we apply the feature interpolation process
to compute the feature for every vertex on the meshes. Specifically, we train the PointNet++ (Qi
et al., 2017b) encoder with sampled 1024 points {py,i} from each mesh y, thus obtaining the features
{Γy,i} for those vertices. Then the features {γy,k} on all vertices {Vk} of the mesh y are computed by
the weighted sum of features of neighboring sampled vertices: γy,k = 1∑

j∈N(k) e
wkj

∑
j∈N ewkjΓy,j ,

where N denotes the neighboring vertices and wkj denotes the reciprocal of euclidean distance
between vertex k and vertex j.

A.1.3 DEFORMATION NETWORK DETAILS

To train the deformation network, for each category, we use the annotated mesh as the template mesh,
base on which the network predicts the 3D offsets of vertices given a shape latent. We use the training
meshes in the category to train the network, which should deform the mesh into those meshes given
the corresponding one-hot latent vectors. During inference, the deformed mesh could be seen as
an interpolation among the selected meshes. Figure 7 shows that our deformation network could
reshape the template into diverse geometries that resembles the object in the images.

A.1.4 RENDERING VISIBILITY DETAILS

During Mesh-to-image correspondence training, we render the depth map D = Render(Ny,Ω) and
the vertex-to-camera distance dk = ∥Q− Vk∥2. Then the vertex visibility is computed as

ok =

{
0, ∥Dpk

− dk∥2 > τr
1, ∥Dpk

− dk∥2 ≤ τr
, (8)

where τr is a preset threshold.
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A.2 MORE RESULTS

A.2.1 MORE QUALITATIVE RESULTS ON 3D PART DECTION

As shown in Figure 8, we visualize the 3D bounding box and part prediction of more categories,
which demonstrate our model’s ability to generalize to diverse object shapes and part definitions.
Please note that the first two predicted school bus parts are deformed from the same annotated mesh.

A.2.2 QUALITATIVE COMPARISON OF PART TRANSFER

As shown in Figure 9, Capsule (Sun et al., 2021) produces more position-aware and less noisy part
transfer results than PartField (Liu et al., 2025), despite being trained on only 13 categories with a
relatively small amount of data.

A.2.3 MORE RESULTS ON REAL IMAGE DATASETS

To further validate that Part321 can generalize well to real images, we compare with more 2D
baselines on PartImageNet (He et al., 2022) dataset and UDA Part (Liu et al., 2022) as shown in
Table 6 and Table 7. All methods are trained using only synthetic images and then evaluated on
real images. Our method outperforms all 2D approaches despite that we perform the harder task of
discovering 3D parts from 2D images. Note that we re-annotated the PartImageNet test images here
to enable them to have more fine-grained annotations that correspond to our 3D part definitions (e.g.,
for the car category, we separate 4 wheels and 2 doors with spatial information). As for the UDA
Part, we merge the super fine-grained part definitions similarly.

Figure 10 shows the qualitative comparison between 2D baselines and Part321. Our method is more
robust to the background and shows more precise part detection with spatial information (e.g, left
engine and right engine).

2D mIOU ↑ Car Aeroplane Bicycle Mean

SegFormer (2021) 28.85 39.68 26.72 37.47
DeepLab v3+ (2018) 28.73 38.69 34.76 37.23

SLiMe (2023) 27.09 20.35 31.32 26.25

Part321 50.47 45.14 40.07 45.23

Table 6: Quantitative results of 2D segmentation on PartImageNet dataset show that Part321 outper-
forms baselines significantly when annotations are fine-grained (e.g., Cars have 8 parts).

Template Deformed Shapes

Diverse Objects in Images
Figure 7: Given a template shape and different shape latent, our deformation model could reshape the
annotated mesh into diverse shapes to fit the objects in the images.
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Figure 8: More qualitative results of 3D bounding box and 3D part prediction on diverse categories.

Source Mesh GT Target Mesh GT Capsule Result PartField Result

Figure 9: Qualitative comparison of part transfer quality using the mesh-to-mesh correspondence.

A.3 DST-PART3D DETAILS

A.3.1 PARTS TAXONOMY

Table 9 contains the parts taxonomy for the 50 rigid object classes in DST-Part3D.

A.3.2 DEMONSTRATION ON REALISM

To quantitatively demonstrate the realism of images in DST-Part3D can better bridge the domain gap,
we compare the 2D part segmentation results with the synthetic image dataset of 3DCoMPaT++ (Slim
et al., 2023). Synthetic images in 3DCoMPaT++ have diverse textures by compositing a wide range of
high-quality materials on different parts, which is a good representative of direct rendering methods.
Additionally, their synthetic images are rendered with a uniformly white background, which is also
beneficial for evaluating the effectiveness of the realistic background generated by diffusion models.

In Table 8, we perform the comparison on the airplane category of 3DCoMPaT++. The diffusion-
generated data following our pipeline uses the same 32 CAD models and viewpoints with 3DCoM-
PaT++. "3DCoMPaT++(diffusion bg)" data is generated by replacing the foreground object of our
diffusion-generated data with the foreground from 3DCoMPaT++. The evaluation is performed
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OursOurs SegformerDeepLab v3+

Figure 10: Qualitative results of 2D part segmentation on PartImageNet dataset show that our
prediction is more geometry-aware and is less affected by the complex background. Parts are
represented by different color masks with highlighted boundaries.

2D mIOU ↑ Car Aeroplane Bicycle Mean

SegFormer (2021) 24.33 35.92 38.30 32.85

SLiMe (2023) 25.45 28.82 40.98 31.75

Part321 37.39 39.88 44.89 40.72

Table 7: Quantitative results for part segmentation on UDA Part show the robustness of our method
with different part annotations. w/ Pseudo denotes the baseline trained with pseudo labeling.

on the PartImageNet (He et al., 2022) test set of airplanes. The synthetic-only setting is using
SegFormer (Xie et al., 2021) and the UDA setting is using DAFormer (Hoyer et al., 2022), which
adds the self-labeling modules to real images to the SegFormer.

As observed in the table, diffusion-generated object textures lead to better performance (i.e., more
realistic) than materials provided in 3DCoMPaT++ with improvements of 4.61 mIoU under the Syn-
only setting and 4.79 mIoU under the UDA setting. The diffusion-generated background also benefits
by comparing it to the white background, which is significant for observing that the background IoU
improves from 85.40 to 92.33 under the UDA setting.

A.3.3 ANNOTATION SCHEME

(i) What parts to annotate per category: One of the key challenges in annotating parts of 3D CAD
models is the ambiguity of object part selection (e.g., how to annotate the parts of a space shuttle). We
divide our 50 rigid-object categories into five super-categories: car, airplane, bicycle, boat, and tool.
We classify the super-category of each object category based on Wikidata and common knowledge.
We then analyze what object parts are important in cognition and are tractable to be annotated in
real images. Subsequently, we create part definition templates for each super-category, except tools,
as the shapes of tools vary significantly. Therefore, we define part definitions individually for each
tool category. Note that our part definitions are all recognizable from the object surface and we do
not define parts that are internal structures. Annotators will check the shapes of their assigned CAD
models first and then revise the provided part definitions only if necessary. (ii) What principles to
select part vertices: We design several principles in selecting part vertices to guide the annotators
to ensure high-quality and consistent 3D part annotations. Firstly, the annotated part vertex groups
should be disjoint sets, and the union of all groups should contain every vertex in the original CAD
models. Secondly, if a mesh face belongs to two connected parts, the annotator should not assign all
three vertices to one part and should still assign the vertices based on where they are located. (iii)
Annotation quality inspection: The annotation inspection is done by selected annotators whose
annotations are high-quality during the annotation process, and the annotators will inspect the object
categories that belong to the same super-categories of what they annotated in the annotation process.

A.4 THE USE OF LARGE LANGUAGE MODELS(LLMS)

In paper writing, we use LLMs to polish writing. In addition, the image generation process of
DST-Part3D requires LLMs to generate prompts.
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datasets supervision architecture body wing engine tail bg mIoU

3DCoMPaT++ (white bg) (2023) Syn-only SegFormer (2021) 25.45 11.28 7.64 5.64 83.43 26.69
UDA DAFormer (2022) 45.63 24.32 5.18 3.42 85.40 32.79

3DCoMPaT++ (diffusion bg) (2023) Syn-only SegFormer (2021) 24.89 20.59 9.54 5.90 87.11 29.61
UDA DAFormer (2022) 44.76 25.62 6.79 3.81 92.33 34.66

Diffusion generated (Ours) Syn-only SegFormer (2021) 33.01 19.63 13.00 15.68 90.20 34.30
UDA DAFormer (2022) 56.43 26.37 10.71 9.61 94.13 39.45

Table 8: Ablation on diffusion-generated textures and background. "bg" is the abbreviation for
background. "Diffusion generated" refers to synthetic data generated following our pipeline that uses
the same 32 CAD models and viewpoints with 3DCoMPaT++. "3DCoMPaT++ (diffusion bg)" is
generated by replacing the foreground object of diffusion-generated data with the foreground from
3DCoMPaT++. The results are evaluated on the PartImageNet test set of airplanes. Numbers are
averaged over 3 random seeds.

class ID class name parts taxonomy
n02690373 airliner engine†, fuselage, wing†, vertical_stabilizer, wheel(front, back_left, back_right), horizontal_stabilizer†
n02701002 ambulance wheel(front_left, front_right, back_left, back_right), door†, front_trunk, back_trunk, head_light†, frame, rearview†
n02749479 gun buttstock,magazine,barrel, gunbody
n02804414 bassinet stand, frame
n02814533 beach wagon wheel(front_left, front_right, back_left, back_right), door†, front_trunk, back_trunk, head_light†, frame, rearview†
n02835271 recumbent bicycle wheels(back, front), frame(paddle), handlebar, saddle
n02906734 broom handle, head
n02981792 catamaran sail, body
n03063689 kettle spout, body, handle
n03100240 convertible wheel(front_left, front_right, back_left, back_right), door†, front_trunk, back_trunk, head_light†, frame, rearview†
n03187595 dial telephone handset, dial, host, cord
n03272562 tram wheel†, door†, frame, rearview†
n03344393 fireboat top, body
n03345487 fire engine wheel†, door†, ladder_and_pump, frame, rearview†
n03417042 garbage truck wheel†, frame, front trunk, garbage_container
n03444034 go-kart wheel(front_left, front_right, back_left, back_right), frame, seat, engine
n03445924 golfcart wheel, frame, seat
n03481172 hammer handle, head
n03496892 harvester wheel†, frame, cutter, mirror
n03498962 hatchet handle, head
n03594945 jeep wheel(front_left, front_right, back_left, back_right), door†, frame, front_trunk, back_trunk, rearview†
n03599486 jinrikisha wheel(front, back_left, back_right), saddle, frame
n03642806 laptop keyboard, screen, body, touchpad
n03649909 mower wheel(front_left, front_right, back_left, back_right), steering_wheel, shaft, frame
n03670208 limo wheel(front_left, front_right, back_left, back_right), frame, rearview†, door†, head_light†
n03673027 ocean liner top, body
n03769881 minibus wheel(front_left, front_right, back_left, back_right), frame, door, rearview†
n03770679 minivan wheel(front_left, front_right, back_left, back_right), frame, door†, head_light†
n03785016 moped wheel(front, back), handlebar, frame, rearview
n03792782 mountain bike wheels(back, front), frame, handlebar, saddle
n03891251 park bench arm, backrest, beam, seat, leg
n03947888 pirate ship sail, body
n03977966 police car wheel(front_left, front_right, back_left, back_right), door†, front_trunk, back_trunk, frame, rearview†
n04037443 race car wheel(front_left, front_right, back_left, back_right), door†, front_trunk, back_trunk, head_light†, frame, rearview†
n04065272 recreational vehicle wheel(front_left, front_right, back_left, back_right), door†, front_trunk, back_trunk, head_light†, frame, rearview†
n04146614 school bus wheel(front_left, front_right, back_left, back_right), frame, head_light†, door†, rearview†
n04147183 schooner sail, bottom
n04204347 shopping cart wheel(front_left, front_right, back_left, back_right), basket, handle, frame
n04252225 snowplow wheel(front_left, front_right, back_left, back_right), frame, rearview†, cutter
n04266014 rocket engine†, fuselage, wing†, vertical_stabilizer, wheel†, horizontal_stabilizer†
n04285008 sports car wheel(front_left, front_right, back_left, back_right), door†, front_trunk, back_trunk, head_light†, frame, rearview†
n04465501 tractor wheel†, door†, arm_and_loader, frame, rearview†
n04467665 trailer truck wheel†, door†, front_trunk, trailer, head_light†, frame, rearview†
n04482393 tricycle wheels†, frame, handlebar, saddle, cargo_box
n04483307 trimaran sail, body
n04487081 trolleybus wheel(front_left, front_right, back_left, back_right), frame, door†, head_light†
n04507155 umbrella handle, canopy, frame
n04509417 unicycle wheels, frame, saddle
n04552348 warplane engine†, fuselage, wing†, vertical_stabilizer, wheel(middle, left, right), horizontal_stabilizer†
n04612504 galley sail, body

Table 9: Parts taxonomy of DST-Part3D. †: indicates the left and right parts are separate part
classes.
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