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Abstract: Scaling real robot data is a key bottleneck in imitation learning, leading
to the use of auxiliary data for policy training. While other aspects of robotic ma-
nipulation such as image or language understanding may be learned from internet-
based datasets, acquiring motion knowledge remains challenging. Human data,
with its rich diversity of manipulation behaviors, offers a valuable resource for this
purpose. While previous works show that using human data can bring benefits,
such as improving robustness and training efficiency, it remains unclear whether
it can realize its greatest advantage: enabling robot policies to directly learn new
motions for task completion. In this paper, we systematically explore this potential
through multi-task human-robot cotraining. We introduce MotionTrans, a frame-
work that includes a data collection system, a human data transformation pipeline,
and a weighted cotraining strategy. By cotraining 30 human-robot tasks simulta-
neously, we direcly transfer more than 10 motions from human data to deployable
end-to-end robot policies. Notably, 9 tasks achieve non-trivial success rates in
zero-shot manner. MotionTrans also significantly enhances pretraining-finetuning
performance (+40% success rate). Through ablation study, we also identify key
factors for successful motion learning: cotraining with robot data. These findings
unlock the potential of motion-level learning from human data, offering insights
into its effective use for training robotic manipulation policies. All data, code, and
model weights will be open-sourced.

Keywords: human data, motion transfer, cotraining, policy learning.

1 Introduction

Learning robotic manipulation policies from teleoperated demonstrations has progressed rapidly
in recent years [1, 2, 3]. However, collecting large-scale robot datasets remains costly and labor-
intensive [4, 5], creating a significant bottleneck for further improvement of manipulation abilities. To
address data scarcity, researchers have turned to auxiliary sources, such as images or language [6, 7]
to help policy training. While internet data provides abundant vision-language knowledge to aid
policy learning [8], acquiring motion knowledge remains a significant challenge.

Human data [9, 10] represents a particularly promising source to solve this: it is abundant, easy
to collect, and rich in diverse manipulation behaviors [10]. Previous works have leveraged human
demonstrations to extract task-aware representations, such as affordances [11] or keypoint flows [12],
to support motion transfer. However, the introduction of intermediate representation hinders inte-
gration with mainstream end-to-end policies. More recently, with advances in wearable sensing,
researchers begin to explore the use of human motion data (with hand poses recorded from VR
device) directly for robot policy cotraining or pretraining [9, 13, 14, 15, 16]. These approaches have
shown benefits for visual grounding [15], robustness [14] and training efficiency [16]. However, it is
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Figure 1: We propose MotionTrans, a framework that enables motion-level learning from VR
human data. By cotraining on 15 human tasks and 15 robot tasks, we empower end-to-end robotic
manipulation policies to directly perform tasks in human data on real robot. Finetuning performance
is also improved when a few robot demonstrations are available for these tasks.

still uncertain whether it can fully realize its greatest advantage: allowing robot policies to directly
acquire new motions for task completion.

In this paper, we investigate this question by introducing MotionTrans (Figure 1), a framework
designed to directly learn 10+ robot-executable motions from human data for a unified, end-
to-end robot policy. This is achieved through multi-task human-robot cotraining. We develop a
VR-based teleoperation system and data collection pipeline to construct the MotionTrans Dataset,
which includes 3,213 demonstrations across 15 human tasks and 15 robot tasks from more than
10 scenes. We further propose a transformation procedure that maps human demonstrations into
the robot’s observation—action space, making them compatible with mainstream end-to-end policies
such as Diffusion Policy [2] or the Vision-Language-Action model (mp-VLA) [3]. Finally, we adopt
a weighted cotraining strategy that jointly optimizes over both human and robot tasks. We name
our framework MotionTrans because it enables motion transfer from human data to deployable robot
policies.

We first evaluate the zero-shot performance on all human tasks. This means that we directly
deploy policies to robot without collecting any robot data for these human tasks. Results show that
Diffusion Policy [2] and mp-VLA model [3] achieve non-trivial success rates for 9 tasks in total.
Even in unsuccessful cases, they exhibit meaningful motion for task completion, such as reaching
target objects. We also find that, when few robot demonstrations of these human tasks are available
for finetuning, pretraining on the MotionTrans Dataset leads to an average 40% boost in success
rate on these tasks. Further analysis indicates that the effectiveness of motion transfer depends
on the presence of robot data for human-robot cotraining. Together, these findings highlight the
possibility for motion-level learning from human data, and provide a clear framework and principles
for achieving this. Our contributions can be summarized as:

* MotionTrans framework for end-to-end human-to-robot motion transfer, including data collec-
tion system, MotionTrans Dataset, a pipeline to transform human data into robot format, and a
weighted human-robot cotraining strategy.

* MotionTrans enables explicit human motions transfer for end-to-end robot policies, even
for zero-shot settings (directly learn more than 10 tasks from human data to robot). It also
improve finetuning performance with +40% success rate on average.



2 Related Work

Imitation Learning for Robot Manipulation. Imitation learning [17, 18] has made significant
progress in recent years. By learning motion from training data [1, 19], imitation policies can
effectively perform a wide range of manipulation tasks [2, 20], including challenging multi-task
settings [3, 16, 21, 22]. In this paper, we focus on two widely-used architectures for imitation
learning: Diffusion Policy [2] and the my Vision-Language-Action Model (ro-VLA) [3]. However,
the scalability of training data remains a major challenge, due to the high cost of collecting real-robot
data [4, 5]. This has led to the use of auxiliary data [6, 7] for policy training. Despite ability
such as image or language understanding in robotic manipulation could improve from internet-based
pretraining [8, 23], acquiring motion knowledge remains difficult. Human data [10, 24, 25, 26], with
its abundant and diverse manipulation behaviors, provides a valuable supplement for this.

Task-Aware Representation Learning from Human. Early works have leveraged task-aware
representations for human-to-robot knowledge transfer. Self-supervised learning has been used
for implicit task-aware representations [27, 28, 29, 30, 31] learning, while representations like
affordances [11, 32, 33], object poses [34], videos [35, 36], and motion flows [12, 37, 38, 39] support
motion-aware representation learning. Some approaches use wrist trajectories as prompts for one-
shot human-to-robot skill transfer [40, 41, 42, 43, 44]. EgoZero [45] predicts wrist poses from
smart glasses, but relies on keypoint-based representations [46] for policy observations. The use of
intermediate representations in these methods limits their integration with mainstream end-to-end
visuomotor policy learning [2, 3], restricting their future applicability.

End-to-End Policy Learning with Posed Human Data. Recent advancements in wearable sens-
ing [9, 19, 47] now allow easy collection of posed human data (with hand keypoints, wrist poses
information etc.) through VR devices [10]. This data provide action label for prediction, supporting
end-to-end policy learning [48]. Some studies cotrain human and robot data [9, 13, 49, 50, 51],
while others first pretrain with human data and then finetune with robot demonstrations [14, 15, 16].
These works have shown policy improvements in visual grounding [15], robustness [13, 14], and
training efficiency [16]. However, whether it can achieve direct transfer of motions from human to
robot remains unclear [45]. To the best of our knowledge, our paper is the first to systematically
verify motion-level end-to-end learning from human data.

3 MotionTrans

In this section, we present our proposed MotionTrans framework (Figure 2). We first introduce
the motion transfer problem and define the observation-action space of the policy (Section 3.1).
To facilitate human-robot data cotraining, we develop data collection systems for both human and
robot data (Section 3.2). We then propose a pipeline to convert human data into a robot format
(Section 3.3). This ensures compatibility with mainstream robot policies, enabling subsequent
end-to-end cotraining. Finally, we choose the architecture of robot policies and apply human-robot
multi-task cotraining (Section 3.4).

3.1 Problem Definition

Our goal is to enable motion-level policy learning from human data through human-robot multi-task
cotraining. Specifically, we aim to train a policy Ppolicy On the combined dataset D = Dyopor U
Dhuman, Where Diopor = {Diobot |i=1,...,Niobot} is the robot dataset, and Dhyman = {D} 0, | =
1,..., Nhuman} is the human dataset. Each D! represents a sub-dataset corresponding to a specific

task, and the task sets of the human and robot data are non-overlapping.

After training, we deploy Ppglicy on a real-world robot and evaluate its performance on all tasks
from Dpyman to assess the effectiveness of motion transfer. This is defined as the zero-shot setting,
since the evaluation tasks contain no corresponding robot data for training. We also evaluate the
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Figure 2: Illustration of our proposed MotionTrans framework, which consists of a human-robot
data collection system, a pipeline for transforming human data into robot format, and a weighted
human-robot multi-task cotraining strategy. After training, we enable the direct deployment of the
trained policies to perform tasks in human datasets on real robots.

performance of few-shot finetuning setting, where a small number of robot demonstrations for the
tasks from Dyyman are available to further finetune Ppolicy.

We define the input and output of our policies within the robot observation-action space S =
(I;,P;, Ay). This space S enable direct motion execution on real-world robots. At each timestamp ¢,
the policy receives an egocentric RGB image I, € RF*W>3 and proprioceptive states P, € RT#*D
where Tp is the history length and D is the state dimension. For simplicity, this work focuses on
single-arm tasks (Figure 3), thus D corresponds to the concatenation of one robot wrist pose and one
robot hand joint state (Figure 2(a)). The policy outputs an action chunk prediction A, € R7a%P [2],
where T4 denotes the action prediction horizon.

3.2 Human-Robot Data Collection System

For human-robot cotraining, we need to collect both robot and human data [13]. Next we describe
the data collection system of these two type of data. The top-left side of Figure 2 illustrates the two
types of data collection systems.

Human Data Collection with Portable VR Device. We extend ARCap [19] to build our human
data collection system (Figure 2(a)), which incorporates a portable VR headset for recording hand
keypoint positions and camera poses and an RGB camera for capturing the image stream /;. The
system enables the recording of hand keypoints position K; and human wrist poses W; in the I;
camera’s coordinate frame. Collectors are instructed to minimize head motion to approximate the
static camera setting of real robot hardware, although slight movements are tolerated [9].

Robot Data Collection with Teleoperation. Since our goal is to achieve direct human-to-robot
motion transfer, the robot hardware need to match the functionality of the human arm and hand. To
this end, we choose the combination of a single robot arm and a dexterous robot hand as our hardware
platform (Figure 2(a)). The teleoperation system for this setup is based on Open-Television [1].

3.3 Human Data Transformation to Robot Format

As shown in the previous section, the raw human data collected from the VR device differs in
format from robot data, which prevents it from being directly used for cotraining with deployable



robot policies [14, 15]. To address this, we propose directly transforming human data into the
robot’s observation-action space [1]. After transformation, the human data can serve as a form of
“supplementary robot data” for training any mainstream end-to-end robot policy.

Transforming Observation-Action Space. The observation-action space of the robot includes three
components: image observation I, proprioceptive state P;, and action A, (refer to Section 3.1). Both
P; and A, are generated by stacking wrist poses W; and hand joint states H;. Next, we describe
the design for these components: (1) Image observation /,: We use egocentric view for both
human and robot data, as shown in Figure 3. The use of the similar image view makes the spatial
relationships of objects in the scenes similar for accomplishing similar tasks, thus enabling similar
motions to achieve those tasks. (2) Wrist poses W;: We use the egocentric camera coordinate
system (camera captures ;) for both human and robot data. This allows for the measurement of wrist
poses in a unified coordinate system, ensuring that the spatial definitions of human and robot data
are consistent. (3) Hand joints state H,: we employ the dex-retargeting [52], an optimization-based
inverse kinematics solver, to map human hand keypoints K; to robot hand joint state H;.

To further mitigate the difference between human data and robot data: (1) we slow down human data
by a factor of 2.25 via poses and hand joints state interpolation; (2) we utilize action-chunk-based
relative poses [2, 20] for wrist poses to reduce distribution mismatches between human and robot
data. For instance, even if the robot’s and human’s hand positions differ in world space, their relative
poses remain the same if they move forward at the same speed; (3) we encourage collectors to change
viewpoints between trajectory recordings. This enhances the diversity of positional relationships
between the camera view and the targeted manipulation objects, thereby encouraging policies to
adapt to a larger distribution of hand poses and, consequently, a larger workspace for the robot.

The design above converts human data into the same format with robot, enabling us to direct replay
human data on real-world robots. Based on the collection system, data transformation pipeline,
and principles described above, we collect our MotionTrans human-robot datasets (Section 4.1 and
Figure 3) for multi-task cotraining.

3.4 Weighted Multi-Task Human-Robot Cotraining

By unifying the observation and action spaces, we enable joint training of human and robot data
under a shared end-to-end robot policy. This section introduce the multi-task policy architectures
we use and how we train these policies.

End-to-End Multi-Task Policy Architectures. We explore two popular end-to-end policy archi-
tectures: (1) Diffusion Policy (DP) [2]: unlike the original single-task setup, we extend DP for
multi-task training. Each task is associated with a learnable embedding, serving as a unique task
condition. The visual encoder is replaced with DINOv2 [53] to enhance visual perception abil-
ity [17]. (2) Vision-Language-Action model (79-VLA): we adopt network structure from [3], a
policy architecture integrating large-scale pretrained Vision-Language Models [54] for multimodal
perception and instruction following. We directly use instructions (listed in Appendix A) to assign
tasks for mo-VLA.

Weighted Human-Robot Cotraining. Our final step is to design a strategy to train multi-task
policies with the processed human-robot dataset. Given the potential imbalance between human and
robot data [9, 51], we adopt a weighted cotraining strategy similar to [55]. The training objective
over the combined dataset D = Dyopot U Dhuman is defined as: Lp =aLp,,, +(1-a)Lp,,,... Where

L denotes the loss computed on each dataset. In this paper, we set: @ = %, where
| Drobot| @and | Dpyman| representing the dataset sizes. This weight ensures that the sum of the weights

for human and robot data is equal, leading to the balance of these two data sources.

4 Experiments

In this section, we introduce our detailed experiment setting (Section 4.1) and results. The details
of hardware platform, policies implementation and training could be found in Appendix B and
Appendix C. We conduct experiments for both zero-shot (Section 4.2) and few-shot (Section 4.3)



o e o o e e e o o -

"l&_ |

Orange-Bucket

Bread-Pad

\
1
1
1
|
|
1
1
1
1
1
Data Distribution by Skills :
1
1
1
1
1
1
1
1
1
1
1
1
1
I

1 V1 B -

1 1

1 Robot Tasks Human Tasks L . "

1 1 |

1 1! )

I 20.0% O2% 20, 'I

| o - 1! Wipe Towel Pour Bottle Close Laptop Mango (Bypass)

1 s 12.5% L )

L saam S7% : 1 : =S

: 133% 12.5% 1 |
1

1 6.7% 18.8% 11

1 11

1 11

1 Task Category 1 ) t

pick-place pour/flip wipe/push fold

'\ pressiclose unpluglopen 1 Mango (Lift) Prcss Dice Banana-Plate Toy Bear-Box

/ 7

i ————————— e i —————————————————

Figure 3: Illustration of the MotionTrans Dataset, which comprises 3,213 demonstrations spanning
15 human tasks and 15 robot tasks collected across more than 10 scenes. Detailed description and
visualization of all 30 tasks are provided in Appendix A.

settings, as demonstrated in Section 3.1. Additionally results, including design ablation study,
explanation of motion transfer mechanism and visual robustness verification could be found in
appendix. Note that our conclusion focuses on motion learning and does not account for potential
improvements in visual grounding or policy robustness from human data [14, 15].

4.1 Experiment Setup

MotionTrans Multi-Task Dataset. Here we introduce the dataset used to train our policies, namely
the MotionTrans Dataset, which includes 3,213 demonstrations across 15 human tasks and 15 robot
tasks from more than 10 scenes. A brief summary of the dataset is shown in Figure 3. Each task
contains between 40 and 150 demonstrations. We ensure the dataset covers a wide range of motions
and skills, including pick-and-place, pouring, wiping, pushing, pressing, opening, etc. This variety
has been proven crucial for successful motion transfer, as demonstrated in Appendix G. The complete
task list and visualizations for all 30 tasks are provided in Appendix A.

To enhance the visual robustness of the policies [56] (Appendix H), such as robustness to different
backgrounds and lighting conditions, we collect training data across 10+ scenes [17]. For robot
tasks, about half of the data is collected in the “green table scenes” (the scenes for the examples
of the “Bread-Pad” and “Unplug Charger” task in Figure 3). This scene is also designated as the
default scene for our evaluation.

Evaluation Tasks and Metrics. Since our goal is to understanding the effectiveness of human-
to-robot motion transfer, we focus on evaluating human tasks in this paper. Among all 15 tasks in
human dataset, there are two tasks (‘“Fold Towel” and “Pour Milk Bottle) not been able to deploy to
robot due to hardware design limitation. Therefore, we drop the results of these two tasks and focus
on discussing other 13 tasks. The task list could be found in Figure 4 and Appendix A.

We use the Success Rate (SR) to evaluate the ability of policies to accomplish specific tasks. However,
this metric alone is insufficient to reflect the effectiveness of motion transfer, as it ignores meaningful
motion during task execution. To address this limitation, we define a Motion Progress Score (Score)
to quantify the quality of policy motion for task completion. This metric enables a more precise
evaluation of policy behavior. Detailed scoring rubrics for all tasks are provided in Appendix D.
For each task, we conduct 10 rollouts and calculate the average results for both metrics. For clarity,
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Figure 4: Results of MotionTrans in the zero-shot experiment setting. The results show that both
Diffusion Policy (DP)[2] and mo-VLA[3] achieve successful human-to-robot motion transfer. Even
without any robot data for these human tasks, 9 tasks attain a non-zero success rate. For the remaining
tasks, MotionTrans still generates meaningful motion for task accomplishment, as indicated by a non-
trivial Motion Progress Score.

we normalize the Score to a [0,1] range for all presentations. We change the object arrangement for
each rollout to cover a wide range of configurations of the task across the 10 rollouts.

4.2 Zero-shot Experiment

The goal of the zero-shot experiment is to verify the effectiveness of direct human-to-robot motion
transfer. This means learning motions from human without collecting any robot data for these specific
human tasks. We train the two selected end-to-end policies, Diffusion Policy (DP) and my-VLA (as
mentioned in Section 3.4), using our MotionTrans Dataset. Subsequently, we directly deploy these
policies to the real robot hardware and evaluate the performance of all human tasks. We seek to
answer the following questions:

* (Q1.1) Can the robot directly learn to accomplish some tasks from human data, even without
collecting any robot data for these tasks?

* (Q1.2) For tasks that cannot be accomplished, can the robot learn meaningful motion for task
completion?

* (Q1.3) Is cotraining with robot data the key factor for achieving explicit motion transfer?

* (Q1.4) What is the difference in motion transfer effectiveness between different policy architec-
tures?

In this paper, we focus on enabling human-to-robot transfer for mainstream end-to-end policies.
Therefore, we do not compare against zero-shot intermediate representation-based methods such as
Vid2Robot [57], General-Flow [12], EgoZero [45], ZeroMimic [33] etc., which are not compatible
with such policies. Instead, our analysis centers on differences among end-to-end policy architectures
(DP vs. mp-VLA).



(a) Examples of Successful Tasks in Zero-shot Setting
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Figure 5: The visualizations for zero-shot human-to-robot motion transfer from our MotionTrans
framework. All tasks shown here do not involve any robot data collection and are learned from
human data. These results demonstrate that the MotionTrans enables explicit human-to-robot motion
transfer for task completion through human-robot cotraining.

Results Overview. The results of the zero-shot experiment are shown in Figure 4. We observe that
both DP and mp-VLA learn meaningful motions for task completion, achieving an average Motion
Progress Score of around 0.5. For some tasks, our method enables zero-shot task accomplishment.
The average success rate on all tasks is approximately 20%. This prove that MotionTrans enable
efficient human-to-robot motion transfer even for zero-shot setting.

(Q1.1) MotionTrans enables the policy to achieve non-trivial success rate across 9 tasks in
the human dataset. As shown in Figure 4, there are 9 tasks that achieve a non-trivial success
rate. The visualization of two examples could be found in the Figure 5(a) (“Orange-Bucket” and
“Unplug Charger”). Among these tasks, pick-and-place tasks account for the vast majority. This
can be attributed to the simplicity of pick-and-place motion and the large number of such tasks in
our dataset. We want to mention that even if both the pick objects and place targets are not seen
in robot tasks (e.g., the “Orange-Bucket” task, visualized on the left side of Figure 5(a)), this type
of task-level transfer is still possible. Other accomplished tasks include motions such as pouring,
unplugging, lifting, opening and closing (pressing), although some of these motions achieved only
limited success rates under constrained object arrangement settings. In more general settings, the
model often exhibits meaningful motion tendencies, though insufficient to accomplish the tasks.

(Q1.2) MotionTrans enables the robot to learn meaningful motion for task completion. We find
that for tasks that cannot be directly accomplished in a zero-shot manner, MotionTrans still learns
meaningful motions from human data (Figure 4). For instance, in the “Wipe Towel” task, both DP
and mp-VLA learn the motion of “push towel forward” to some extent (left side of Figure 5(b)).
Moreover, we observe that human data provides a spatial location capability for almost all human
tasks, which is represented as reaching the target manipulated objects (may only appearing in human
data) to some extend. An example of this is the “Press Stapler” task in Figure 5(b). Although the
stapler is not included in the robot data, the policy still demonstrates approaching behavior.

(Q1.3) Cotraining with robot data is the key factor for successful motion transfer. The “human-
only” baseline in Figure 6 illustrates the results when only human data is utilized for Diffusion Policy
(DP) training. It is evident that when robot data is not included for cotraining, the success rate
across all tasks is 0% for zero-shot setting. The behavior score results can be found in Appendix E.
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Figure 6: Results of the success rate for few-shot finetuning experiments. For readability, only the
results of 8 example tasks are presented here. From these results, we conclude that both human and
robot data during pretraining are important for improving finetuning performance.

Generally, the policy trained solely on human data exhibits random motion when deployed on the
robot. This demonstrates that cotraining with robot data is essential for explicit human-to-robot
motion transfer.

(Q1.4) DP and np-VLA each have their own advantages (manipulation precision and task
adherence). As shown in Figure 4, no single model excels across all tasks. On average, the
performance of the two models is nearly identical. However, we observe that different models
demonstrate their strengths on different tasks. Generally, DP performs better than 7o — VLA in
precise manipulation stage, such as grasping, and exhibits stronger spatial location capabilities. An
example of evidence for this is that, for all pick-and-place tasks, the average grasping success rate
of mp-VLA is 20%, while DP achieves 67.5%. In contrast, mp-VLA shows stronger instruction
following for motion generation in more cases. For example, in the “Pour Bottle” task, we observed
limited wrist rotation with DP, while my-VLA successfully performs the complete pouring action
(Figure 5(c)). We hypothesize that this difference arises from a balance between visual perception
and task semantic following. The model that focuses more on visual perception (DP) tends to achieve
greater manipulation precision, whereas the model that emphasizes task semantics and instruction
following (mo-VLA) can adhere to task requirements more stringently.

4.3 Few-shot Experiment

In this section, we investigate whether motion transfer from human-robot cotraining can also enhance
performance in a few-shot finetuning setting, where a limited number of robot demonstrations of
human tasks are available for policy finetuning. Considering DP and mp-VLA exhibit similar average
performance in zero-shot experiments, we focus on DP architecture for computational resource
efficiency in this part. We additionally collect 20 demonstrations for all human tasks in the default
“green table” scenes, as mentioned in Section 4.1. Subsequently, we perform 5-shot and 20-shot
multi-task finetuning [16] based on checkpoints previously trained on the MotionTrans Dataset.
We aim to answer the following questions:

* (Q2.1) Will pretraining on the human-robot dataset, namely the MotionTrans Dataset, help
improve policy finetuning performance?

* (Q2.2) What is the contribution of human data versus robot data for policy pretraining?

* (Q2.3) Does the conclusion vary based on the number of finetuning examples used?

To this end, we compared our method with three baselines to investigate the impact of different
data components: (1) “from-scratch”, which means training policies without any pretraining; (2)
“robot-only”’, which entails pretraining solely on robot data from the MotionTrans Dataset before



finetuning; and (3) “human-only”, which consists of pretraining exclusively on human data prior to
finetuning. Next, we present the detailed settings and results of few-shot experiments.

Result Overview. The results of the few-shot experiments are presented in Figure 6. For clarity, we
only show the success rate results for a subset of tasks. The results for Motion Progress Score can
be found in Appendix E. As observed, the average performance of the policies improves consistently
with an increase in finetuning data. Next, we will conduct a detailed analysis to address the questions
posed at the beginning of the experiment section.

(Q2.1) Pretraining on MotionTrans Dataset enable significant improvement for finetuning per-
formance. As shown in Figure 6, policy pretrained on MotionTrans Dataset gains around 40%
average success rate improvement compared to “from-scratch” baseline. These results prove that
cotraining on human-robot data could provide useful motion prior [58] for downstream finetuning.

(Q2.2) Both human and robot data during pretraining are crucial for enhancing performance.
From Figure 6, we can see that policy pretrained on both human and robot data (MotionTrans)
shows a significant advantage compared to human-only or robot-only pretraining. Besides, robot-
only pretraining outperforms human-only pretraining on average. This is expected, as our robot
pretraining data share the same embodiment as the deployed robot, minimizing the embodiment gap
between training and inference [51]. All these results indicate that robot data play a non-negligible
role during policy pretraining.

(Q2.3) Human-robot pretraining is more effective as the number of finetuning data decreases.
Finally, we analyze the impact of pretraining with varying amounts of finetuning data. As shown in
Figure 6, the improvements are much larger in the 5-shot setting compared to the 20-shot setting.
Moreover, when 20 finetuned demonstrations are available, the advantage of robot-only pretraining
becomes minimal, and the benefit of human-only pretraining disappears. However, in the 5-shot
setting, all pretraining methods show a significant advantage over the from-scratch baseline.

4.4 Other Results

We leave the ablation study of the key designs in Appendix F. We also conduct a case study in
Appendix G to understand the mechanism and reasons of motion transfer. (1) Transfer occurs
through using human motion to encourage motion interpolation of robot data to formulate new
motions for human task (motion generation). (2) The visual encoder learns to attend to the target
object in the human data (visual perception). (3) The transfer performance improves with a wider
range of motion and task coverage (scaling trend). Finally, we verify the visual robustness of our
experiment results against background in Appendix H.

5 Conclusion

In this paper, we propose MotionTrans, a framework that achieves motion-level learning from human
data for end-to-end robot policies. The experiments show that our method achieves explicit human-
to-robot motion transfer in a zero-shot setting and significantly improves finetuning performance in
a few-shot setting. We also reveal the key factor for explicit motion transfer: cotraining with robot
data. We hope that the new motion-centric insights that we propose could enhance the utilization of
human data in robot policy learning in more effective ways.

Limitations and Future Directions. Our largest limitation is that the height perception ability of
the policies is still limited, which causes them to sometimes fail to reach the correct height when
considering in-the-wild scenes. This limitation arises from our monocular egocentric perception
setting, which may be addressed by adding wrist camera for both human and robot hardware plat-
forms [51, 59]. Another limitation is that our study is still limited to self-collected human dataset.
Extending motion-level learning to larger, internet-scale datasets, as in [15], is left for future work.
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Appendix
A Details of MotionTrans Dataset and All Tasks

Here we describe the details of all tasks in MotionTrans Dataset. For simplicity, we name pick-place
task with “pick object-place target” format, and name other task with “verb noun” format in the main
paper. For tasks with multiple steps, we name it as “stepl+step2” format.

The visualization and descriptions / VLA-prompt of all 15 human tasks could be found in Figure 7
and Table 1. All 15 robot tasks could be found in could be found in Figure 8 and Table 2.

As mentioned in the main paper, to enhance the visual robustness of the policies [56] (Appendix H),
such as robustness to different backgrounds and lighting conditions, we collect training data across
various scenes [17]. Each human task is collected in at least 4 different scenes. For robot tasks, about
half of the data is collected in the default “green table scenes”, with random disturbance objects
placed on the table for approximately 80% of the data. The other half of the robot tasks is collected
in at least 4 different scenes.

B Hardware Platform

For the robot hardware (Figure 10a(c)), we use a Franka Emika robot arm [60] in combination with
a 6DoF Inspired Dexterous (Right) Hand [1]. This combination mimics the functionality of a human
right hand and arm. The robot is mounted on a movable lift table to facilitate data collection in
various locations. A ZED2 camera is fixed to the table in an egocentric view to provide an image
observation stream. The recorded images are cropped to 640x480 resolution. The VR device used
for teleoperation is the Meta Quest 3 [1]. Calibration between the robot base and the robot perception
camera is achieved through the DROID platform codebase [4].

For human data collection (Figure 10a(a)), we use the Meta Quest 3 as our VR headset. To
ensure consistency in image observations, we also employ a ZED2 camera to record RGB images
and perform image cropping. We designed a 3D-printed element to link the VR headset and the
camera [19]. This device is connected to a portable workstation, such as a laptop, for data storage.
Calibration between the camera and the VR device is accomplished through a combination of ArUco
code calibration [61] and VR anchor location (based on VR APP). To ensure data quality, we provide
real-time feedback on the camera’s view frustum and hand positioning to guide the collector during
data acquisition (Figure 10a(b)).

C Policies Implementation

For the robot observation-action space (Section 3.1), we set the proprioception history 7, =2 and
the action horizon T4 = 16. The representation of the rotation component of wrist poses is chosen
as the first two rows of the rotation matrix, as demonstrated in [2]. For policy control, we use 10
fps for both data collection and policy inference. For Diffusion Policy (DP) backbone, the task-
embedding dimension is set as 16. The proprioception state is encoded via a 4-layer MLP. The
DINOV?2 vision encoder utilizes DINOv2-base pretrained checkpoints [53], and during training, we
unfreeze the weights of the DINOv2-base encoder. We first concatenate the task embedding with the
features from the vision and proprioception encoder, and then input the concatenated features into
the U-Net-based Diffusion head for action generation [2]. For mp-VLA, we load my-droid pretrained
checkpoints [62] before training. Since the target hardware of this checkpoint is incompatible with
our robot hardware, direct deployment results in a 0% success rate. The model’s performance is
derived from training within our MotionTrans framework.
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Figure 7: The visualizations of all 15 human tasks in the egocentric view.

Human Tasks

Description / VLA-prompt

Unplug Charger

unplug the white charger.

Bread-Bucket

drop bread to the green bucket.

Press Stapler

press the stapler.

Orange-Bucket

put orange to the green bucket.

Wipe Towel

wipe blue towel on the table and push it to the bulky bottle.

Close Laptop

close silver laptop.

Mango-Bowl (Bypass)

put mango to pink bowl while avoiding obstacle by bypassing.

Mango-Bowl (Lift)

put mango to the pink bowl while avoiding obstacle by lifting.

Press Dice

press red dice to make it rotation.

Banana-Plate

put banana to the white plate.

Pour Bottle

pour bottle to the pink bowl.

Toy Bear-Box

put toy bear to the black box.

Open Box + Pand-Box

first open the white cap style box then put toy panda to the box.

Fold Towel

fold the blue towel.

Pour Milk Bottle

pour milk bottle to the yellow pan.

Table 1: All 15 human tasks with descriptions (VLA-prompt).
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Figure 8: The visualizations of all 15 robot tasks in the egocentric view.

Robot Tasks Description / VLA-prompt

Push Cube push orange cube to the bulky bottle.
Panda-Box put toy panda to the box.

Bread-Pad put bread to the red pad.

Open Box open the white cap style box.

Bottle-PBucket drop black bottle to purple bucket.

Pour Cola pour cola to the red cup.

Move Dice move red dice to the bulky bottle.

Flip Down Bottle | flip down the black bottle.

Press Mouse press the pink mouse.

Bread-Platform put bread to the high black platform.

Capybara-PPad put Capybara to the purple pad.

Chilli-Plate put chilli to the white plate.

Towel R/L Bowl wipe blue towel on the table and push it left or right to the pink bowl.

Mango-Bowl put mango to the pink bowl.

Cucumber-PBucket | put cucumber to purple bucket.

Table 2: All 15 robot tasks with descriptions (VLA-prompt).
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Figure 9: Results of the Motion Progress Score for few-shot finetuning experiments. For readability,
only the results of 8 example tasks are presented here.

D Rubrics of Motion Progress Score

Table 3 provides the detailed rubrics for our Motion Progress Score metric. The scores are allocated
to the different motions / stages required to complete the task, with a maximum score of 8 points.

Human Tasks

Rubrics of Motion Progress Score

Mango-Bowl (Bypass)

(1) show reach-grasp; (1) success grasp; (2) show bypassing; (2) success by-
passing; (1) show reach-put; (1) success put;

Mango-Bowl (Lifting)

(1) show reach-grasp; (1) success grasp; (1) show lifting; (2) success lifting; (2)
show down-putting; (1) success put;

Pour Bottle (1) show reach-grasp; (1) success grasp; (2) show rotation; (2) success pouring;
(2) good pour position;
Toy Bear-Box (2) show reach-grasp; (2) success grasp; (2) show reach-put; (1) success put; (1)

good put;

Bread-Bucket

(1) show reach-grasp; (1) success grasp; (2) show reach-put; (2) success put; (2)
good put height;

Close Laptop

(2) show reach-press; (2) press finish < 30 degrees; (2) press finish < 15 degrees;
(2) press finish = 0 degrees;

Press Stapler

(2) show reach-press; (2) success contact; (2) good contact; (2) press down;

Unplug Charger

(2) show reach-grasp; (1) success grasp; (1) show lifting; (2) success unplug;
(2) still holding after unplug;

Open Box + Panda-Box

(2) open the white box; (1) continue; (1) no stop; (1) reach the panda; (1) success
grasp the panda; (2) success put;

Wipe Towel

(2) show down-press; (2) success press; (2) show pushing (including retry); (2)
success pushing;

Banana-Plate

(1) show reach-grasp; (2) success grasp; (2) show reach-put; (2) success put; (1)
good put height;

Orange-Bucket

(1) show reach-grasp; (2) success grasp; (2) show reach-put; (2) success put; (1)
good put height;

Press Dice

(1) show reach-press; (1) success contact; (2) show down-press; (2) press > 5
cm; (2) success press to make it rotate;

Table 3: The rubrics of Motion Progress Score for all 13 evaluated human tasks.
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(a) Figure 10a: Illustration of our hardware system,
which includes a human VR-based data collection de-
vice and a single-arm robot platform. A screenshot (b) FigurelOb: The visualizations of the rendered
of the VR device during human data collection is also RGB observations for the w/ Visual Rendering vari-
provided. ant in design ablation (Appendix F).

E Results of Motion Progress Score for Few-shot Experiment

The results of Motion Progress Score for few-shot experiment are shown in Figure 9. The conclusion
drawn from the Motion Progress Score aligns with that from the Success Rate (Section 4.3).

F Design Ablation

We conduct an ablation study on the key designs of MotionTrans.We find that when considering
motion-level learning, the effectiveness of some designs may differ compared to visual-level human
data learning [9, 13, 14, 15, 50, 63]. We compare three variants of MotionTrans in zero-shot setting
experiments. The backbone chosen for all models is Diffusion Policy (DP):

* w/ Abs Pose: We replace the action-chunk-based relative pose [64] with absolute egocentric
pose for wrist label.

* w/ Action Norm [13, 51]: We use independent action and proprioception normalization for
human and robot data before policy training.

» w/ Visual Rendering [48, 50, 63]: We first replay robot data in simulation, then crop the
rendered robot and paste it to the original RGB image observation. For simplicity, we ignore
the segmentation of the human hand and the inpainting of the original human hand region, as
demonstrated in [48]. Visualizations of the rendered results are shown in Figure 10b.

Results are shown in Table 4. We observe that w/ Abs Pose and w/ Action Norm dramatically
decrease the performance of human-to-robot motion transfer. For w/ Abs Pose, this increases the
distribution difference between human and robot actions, prohibiting motion transfer, as discussed
in Section 3.3. For w/ Action Norm, performance drops because it creates a discrepancy in normal-
ization between policy training and deployment. This contrasts with the phenomenon observed in
visual robustness evaluations as demonstrated by previous works [13, 51]. When directly learning
new motions and skills from human data, it is preferable to keep action normalization consistent
between training and inference.

For w/ Visual Rendering, we find that performance is nearly the same as the non-rendered version.
We believe this is because, although the rendered results may appear somewhat realistic to humans,
they still contain many hints and shortcuts for neural networks, which do not differ much from original
human videos. One potential solution is to also conduct inpainting during policy inference [48], but
may lead to additional computational overhead and policy delay.
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Score SR (%)

w/ Abs Pose 0.370 10.0
w/ Action Norm 0.341 8.4

w/ Visual Rendering 0.475 23.1
MotionTrans-DP 0.492 23.1

Table 4: Ablation results of design choices for MotionTrans. The results are averages across all
evaluated human tasks. Analysis are demonstrated in Appendix F.

Score SR (%)

H-bucket 0.0 0
H-bucket + R-pad 0.275 0
H-bucket + R-platform 0.5 30
H-bucket + R-pad + R-platform 0.625 40
H-bucket + R-pad + R-platform + PP-set 0.75 70
all data (MotionTrans) 0.825 80

Table 5: The results of the case study for the “Bread-Bucket” task in zero-shot setting, including
outcomes from training on different subsets of MotionTrans Datasets. Detailed analysis could be
found in Section G.

G How Transfer Happening: A Case Study

In this section, we design a case study to delve deeper into the mechanism of human-to-robot motion
transfer. We choose the task “Bread-Bucket” for our case study, as it already demonstrates a high
success rate (80%) in zero-shot settings, indicating effective motion transfer for this task. We conduct
the case study by down-sampling the number of tasks: we train policies on different subsets of
MotionTrans and compare their performance, thereby gaining insights into how different training
tasks affect the results. The subsets we use are:

e (Human) Bread-Bucket: the task we evaluate for the case study, referred to as “H-bucket” in
later experiments.

* (Robot) Bread-Pad: placing bread on a very thin red pad, referred to as “R-pad.”

* (Robot) Bread-Platform: placing bread on a very high black platform, referred to as “R-
platform.”

¢ (Human-Robot) Pick-Place subset: including four tasks: robot “Mango-Bowl,” robot
“Capybara-Purple Pad,” human ‘“Banana-Plate,” and human “Toy Bear-Box.” This subset is
referred to as “PP-set” later.

Visualization and the height (for later analysis) of the key objects used in this experiment are shown
in Figure 12a. We then train Diffusion Policy (DP) on different subsets, and the evaluation results
for the "Bread-Bucket” task are shown in Table 5. By analyzing the results, we can conclude that:

(Conclusion 1: Action) Transfer occurs through motion interpolation of robot data to formulate
new motions for human tasks. We first analyze the results of the first four rows of Table 5. The
trajectory visualizations can be found in Figure 11. We observe that when only training on human
data, the policy becomes confused with the newly deployed robot embodiment. When cotraining
with one robot task (R-pad or R-platform), the robot tends to adapt to the placement height in the
robot data rather than the height of the bucket. Only after cotraining with both R-pad and R-platform,
which allows for interpolation of bucket height placement, does the policy begin to exhibit bucket-
height-aware motion. This shows that rather than directly expecting to learn extrapolation from
human data, we should cotrain with robot data and use motion in human data to facilitate robot
motion interpolation for generating motions for these human tasks.
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Figure 11: The visualizations of the MotionTrans-DP results for the “Bread-Bucket” task, trained
on various combinations of human and robot tasks. By analyzing these results (Section G), we
suggest that motion transfer occurs through the use of motion in human data to support robot motion
interpolation for generating motions for these human tasks.

Bread-Bucket Close Laptop Unplug Charger

(b) Figure12b: The visualization of the attention map
from the DINO encoder [53] for MotionTrans-DP,
based on the Grad-Cam toolkit [65]. This shows that
(a) Figure 12a: The visualizations of key objects used the vision encoder learns to focus on the target manip-
in the “Bread-Bucket” case study are presented here. ulation objects for tasks in human datasets, even when
The height of each object is labeled beneath it. the embodiment changes to a robot during inference.

R-Pad Bread H-Bucket  R-Platform
0.3¢m 4.0cm  15.3cm 20.7¢m

(Conclusion 2: Vision) The visual encoder learns to attend to the target object in the human
data. Next, we analyze motion transfer from visual perception perspective. We visualize the
attention map of the DINOv2 encoder [53] for “Bread-Bucket” and other tasks in Figure 12b via
Grad-Cam [65]. We can see that, through training on human data, although the embodiment in image
observation changes during policy deployment, the model still learns to attend to target objects to
some extent. This explains why the policy gains the ability to locate target objects during robot
deployment, even if these objects have only been seen in human data.

(Conclusion 3: Scaling) The transfer performance improves with a wider range of motion and
task coverage. Building on Conclusions 1 and 2, we hypothesize that with a wider range of motion
and task coverage, the policy may develop a stronger ability for motion interpolation and visual
attention, thus leads to a better transfer performance. We verify this through the last three rows of
Table 5. As the results show, with more task coverage, the performance improves steadily. This
indicates that human-to-robot motion transfer exhibits a scaling trend to some degree.

H Visual Background Robustness

Finally, we verify the visual robustness of our experiment results against scene background [14]. We
change the background from our default “green table” scenes (mentioned in Section 4.1) to a new
scene, as shown in Figure 13, and evaluate Diffusion Policy (DP) performance for both zero-shot and
20-shot settings. The results are shown on the right side of Figure 13. We observe that although the
performance drops slightly, it still maintains a non-trivial Motion Progress Score and success rate.
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Original vs Novel Background

[ Score - Original SR(%) - Original
775 Score - Novel 7/ /2 SR(%) - Novel
0.90
0.84 83.1

MotionTrans-DP MotionTrans-DP
Zero-Shot Setting 20-Shot Setting

Figure 13: Illustration of the visual background robustness experiment and results. For the novel
background, the performance drops slightly but remains at a persuasive level. This prove the
robustness of our motion transfer results.

This proves the robustness of our results on motion-level human data learning. Note that this does
not mean we achieve in-the-wild manipulation ability [51], which is not the main focus of this paper
and will be discussed in the limitations section.
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