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ABSTRACT

Estimating the properties of quantum systems such as quantum phase has been
critical in addressing the essential quantum many-body problems in physics and
chemistry. Deep learning models have been recently introduced to property esti-
mation, surpassing conventional statistical approaches. However, these methods
are tailored to the specific task and quantum data at hand. It remains an open and
attractive question for devising a more universal task-agnostic pretraining model
for quantum property estimation. In this paper, we propose LLM4QPE, a large
language model style quantum task-agnostic pretraining and finetuning paradigm
that 1) performs unsupervised pretraining on diverse quantum systems with differ-
ent physical conditions; 2) uses the pretrained model for supervised finetuning and
delivers high performance with limited training data, on downstream tasks. It mit-
igates the cost for quantum data collection and speeds up convergence. Extensive
experiments show the promising efficacy of LLM4QPE in various tasks includ-
ing classifying quantum phases of matter on Rydberg atom model and predicting
two-body correlation function on anisotropic Heisenberg model.

1 INTRODUCTION

Estimating quantum system properties such as quantum phase is essential for verifying and evalu-
ating quantum technologies (Huang et al., 2020; Gočanin et al., 2022), which is often in the form
of many-body problems. Precise estimation of generic quantum systems is challenged due to the
exponential complexity inherent in describing quantum many-body systems (Gebhart et al., 2023).
Fortunately, physical systems of interest such as those generated by the dynamics of local Hamilto-
nians are not generic, since their particular structure guarantees that the full complexity of Hilbert
space is in principle not required for their accurate description (Carrasquilla et al., 2019). Ac-
cordingly, statistical (including learning-based) approaches have emerged to characterize quantum
systems from traditional Density Functional Theory (DFT) (Hohenberg & Kohn, 1964), Quantum
Monte Carlo (QMC) (Ceperley & Alder, 1986), to advanced variational methods e.g. Tensor Net-
works (TNs) (Orús, 2019) and Neural Network Quantum States (NNQS) (Zhang & Di Ventra, 2023).

There are basically two categories of variational methods for quantum property estimation (QPE).
The first category refers to the TNs and NNQS which formulate QPE as an optimization problem
where the quantum state is approximately represented by a parameterized wave function. The pa-
rameterized wave function is updated by minimizing the expectation values of relevant observable
estimators, based on either density matrix renormalization group (DMRG) algorithm (White, 1992)
or variational Monte Carlo (VMC) (McMillan, 1965). Afterwards the interested properties can be
analyzed by preforming algebra operations on the wave function. Another line of research resorts to
neural networks to serve as universal functions for directly approximating quantum system proper-
ties (Gilmer et al., 2017; Kawai & Nakagawa, 2020; Xiao et al., 2022), which we call NNQPE. The
input to the neural networks is the measurement results of the quantum state, and the output is the
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property of interest. The parameters are optimized using gradient descent. The goal of NNQPE is
to accurately characterize the properties of the quantum state using as few identical copies and mea-
surements as possible. Compared with the TNs, this class of methods could more easily display non-
local correlations, allowing in principle to capture quantum states with higher entanglement (Huang
et al., 2022). Moreover, rather than TNs and the NNQS where additional computational overheads
is required to extract the properties given the optimized parameterized wave function, NNQPE can
directly predict the properties for unknown quantum states.

However, NNQPE suffers generalization ability issue, especially given limited measurement data
for training (Gebhart et al., 2023). Although the generalizability could be improved by training the
models based on extensive measurement data and corresponding labels, the labeling process, i.e.,
accurately estimating properties of quantum systems requires computational and memory resources
that increase exponentially with the system size (Carleo et al., 2019). In particular, the labeling
efforts for quantum systems are intensive. For example, DFT suffers from self-interaction error and
delocalization error, making it difficult to represent quantum states with strong correlations (Verma
& Truhlar, 2020). The sign problem (Loh Jr et al., 1990) implies that it is intractable for QMC
to evaluate properties for large systems or systems with low temperatures (Troyer & Wiese, 2005;
Huang et al., 2022). The maximum bond dimensions of TNs for precisely preserving the proper-
ties of quantum states such as the entanglement entropy scales exponentially w.r.t. the evolution
time (Brandao & Horodecki, 2015). In conclusion, the labeling process is hard to complete classi-
cally due to the inherent separation between quantum and classical computing.

Furthermore, despite the significant promise of NNQPE, their application in harnessing advanced
machine learning techniques for quantum physics remains in its early stages. Current models of
NNQPE are tailored and trained for particular quantum systems and specific tasks. This approach
contrasts sharply with the era of Large Language Models (LLMs) (Radford et al., 2018; Brown et al.,
2020), which have achieved general-purpose language generation and understanding capabilities.
In the realm of LLMs, pretraining serves as the primary method for capturing general language
understanding and afterwards finetuning is adopted to adapt the model to accomplish specialized
tasks. This distinction highlights the nascent yet evolving nature of applying sophisticated machine
learning strategies within the quantum physics domain.

In fact, with the increasing scale of the quantum devices, a vast amount of quantum data are pro-
duced by quantum measurement (Brydges et al., 2019). Such data holds intricate details about the
system. An open question is designing a versatile model, which undergoes extensive pretraining to
master these quantum intricacies. The success of deep learning in handling high-dimensional data
sheds lights on answering this question. First, the sheer volume of quantum data from measurements
allows for the extraction of meaningful patterns and representations (Anshu & Arunachalam, 2024).
Second, the universal approximation capabilities of neural networks suggest that given sufficient
data and computational resources, it’s possible to model the complex, nonlinear relationships inher-
ent in quantum systems (Carleo et al., 2019; Gebhart et al., 2023). Lastly, the task-agnostic nature
of pretraining (Liu et al., 2023) aligns with the quantum realm’s diversity, where a single model
can learn hidden features across various systems and physical conditions. This feasibility is further
supported by the principle of transfer learning (Weiss et al., 2016), where knowledge gained in one
context can significantly benefit task-specific applications.

In this paper, we introduce an LLM-style task-agnostic pretraining model for Quantum Property
Estimation named LLM4QPE. This model is pretrained by leveraging vast (unlabeled) quantum
data, across diverse quantum systems of the same family govern by different physical conditions.
For the downstream tasks, we finetune LLM4QPE on two typical QPE tasks including classifying
quantum phases of matter and predicting two-body correlation function. We also consider two fam-
ilies of quantum model including the Rydberg atom model and the anisotropic Heisenberg model.
The results show its promising power for tackling QPE problems especially in scenarios with limited
data availability. The contributions are:

1) Departure from most existing supervised learning QPE models reliant on restricted, task-specific
labeled quantum data, we propose LLM4QPE, to our best knowledge, the first LLM-style model for
quantum property estimation. Its unsupervised pretraining is fulfilled by maximizing the expected
log likelihood of measurement bit strings, which is entirely unsupervised and task-agnostic.
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2) We develop the novel architecture of our LLM4QPE model. Specifically, to embed the batch-style
discrete measurement records to a continuous space, a trainable LSTM embedding layer is attached
to the transformer decoder. The LSTM-Transformer architecture provides an innate framework
for handling diverse quantum data stemming from experiments under varying physical conditions,
enabling prediction of the property of quantum systems of the same family.

3) We collect a set of quantum data from simulations for unsupervised pretraining and supervised
finetuning. For pretraining, the dataset consists of quantum state measurement records, the size of
which scales linearly w.r.t. the system size and the number of measurements, along with the values
of physical condition variables determining the evolution of quantum systems. Downstream tasks
utilize a set of data generated from quantum systems of the same family, with additional system
properties serving as labels for tasks like phase classification and correlation prediction.

4) We verify the superiority of our approach by empirical studies on two QPE tasks: classifying
quantum phases of matter on Rydberg atom model and predicting two-body correlation function on
anisotropic Heisenberg model, given limited measurements on a resource-limited device.

2 PRELIMINARIES OF QUANTUM STATE AND QUANTUM MEASUREMENT

We introduce basic concepts of quantum computing. Please refer to (Nielsen & Chuang, 2010) for
more details. We put the details on related work to Appendix A.

Quantum State and Density Operator. The quantum bit named as qubit is the basic unit of the
quantum system. We call the ensemble of all qubits in a (sub)system the quantum state. The qubit
is in superposition and becomes deterministic once the measurement is performed on it. How a
quantum state is described mathematically depends on the chosen basis state. For example, by using
two orthogonal computational basis states1 |0⟩ =

[
1
0

]
and |1⟩ =

[
0
1

]
, one qubit can be described

mathematically as a linear combination |ϕ⟩ = α|0⟩+ β|1⟩ =
[ α
β

]
in the space C2, where α, β ∈ C

are the amplitudes satisfying |α|2 + |β|2 = 1. An alternate formulation for describing the quantum
state is possible using a tool known as the density operator or density matrix. For example, the
density matrix of |0⟩ is ρ0 = |0⟩⟨0| =

(
1 0
0 0

)
where ⟨0| denotes the conjugate transpose of |0⟩. For a

generic L-qubit quantum state, it can be described by the so called wave function:

|ψ⟩ =
M∑

σ1=1

· · ·
M∑

σL=1

Ψ(σ1, . . . , σL)|σ1, . . . , σL⟩, (1)

where Ψ : ZL → C maps a fixed configuration σ = (σ1, . . . , σL) of L qubits to a complex number
satisfying

∑M
σ1=1 · · ·

∑M
σL=1 |Ψ(σ1, . . . , σL)|2 = 1, and σi ∈ {1, . . . ,M} is one of the M possible

outcomes by performing quantum measurement on the i-th qubit. The wave function is formulated
in a complex Hilbert space where the vector representation of the quantum state |ψ⟩ ∈ CML

and its
density matrix |ψ⟩⟨ψ| ∈ CML×ML

, which becomes astronomical for large L.

Quantum Measurement. It converts some of the quantum information into classical form (for fur-
ther processing), as described by a set of measurement operators {Om}Mm=1 satisfying

∑
m Om =

I, whereM is the total number of operators. Measuring a qubit leads to collapse of the wave function
and produces potentially yield different outcomes. The possible outcomes correspond to the indices
m of measurement operators. Concretely, upon measuring the qubit ρ, the probability of getting the
result m is given by p(m) = tr(ρOm). For a quantum state with L qubits, the common strategy is
to measure each of the qubits in parallel (Leibfried et al., 1996; Jullien et al., 2014). According to
the born rule of quantum mechanics, such a measurement procedure outputs a measurement string
σ = (σ1, . . . , σL) where σi ∈ {1, . . . ,M} with probability |Ψ(σ1, . . . , σL)|2 as given in Eq. 1.

3 LLM4QPE

3.1 OVERVIEW

As shown in Fig. 1, our model involves two steps: pretraining and finetuning. For pretraining,
the model is fed with unlabeled Dp, and undergoes fully unsupervised training. Subsequently, the
pretrained parameters are transferred to the supervised finetuning phase, where all the parameters

1Computational basis states are also referred to as the Z-basis states in some literature.
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Figure 1: Pretraining and finetuning of LLM4QPE. a) The output embeddings are the summation
of token embeddings, condition embeddings and position embeddings. Three embeddings corre-
spond to encode discrete measurement records, continuous physical variables and qubit positions,
respectively. The token embeddings are replaced with the LSTM embeddings while finetuning. b)
The main part of the model is a multi-layer transformer decoder. Pretraining is entirely unsuper-
vised. The output target is to approximate the classical distribution of the wave function. c) The
model for finetuning and pretraining share the same structure. The pretrained parameters are trans-
ferred to the finetuning stage and updated towards a task specific supervised loss.

are updated using labeled data Dt for various downstream tasks with their task-specific supervised
losses. Finally, we evaluate our LLM4QPE using dataset De. Each downstream finetuning model
possesses separate parameters, even though they initially share the same pretrained parameters. One
of the most notable aspects of our model is the consistent structural similarity between pretraining
and finetuning, with only a few small modifications when handling different downstream tasks.

The description of the quantum data is discussed in Sec. 3.2. We make an analogy between quantum
data and text that, each measurement outcome σi of a qubit is analogue to the token, and the number
of the possible outcomes M is likely to the vocabulary size |V|. A measurement string σ, which
resembles the sentence in texts, is a projection of the entire quantum system with correlative effects
among them. The collection of measurement records R comprised of many measurement strings
from various physical conditions are akin to the corpus gathered from various sources and genres. In
fact, these have also been mentioned implicitly in (Sharir et al., 2020; Hibat-Allah et al., 2020; Cha
et al., 2021; Zhang & Di Ventra, 2023). Yet existing works are still confined to the single task for
training and testing, involving no pretraining. Our model, in contrast, draws inspiration from LLMs
to handle quantum data. Specifically, the data type and data collection strategies are described in
Sec. 3.2 and more details can be found in Appendix B. Given the generated datasets, we first discuss
how to unsupervisely pretrain LLM4QPE in Sec. 3.3. Afterwards the pretrained parameters are
updated towards a supervised loss for different tasks, as presented in Sec. 3.4.

3.2 DESCRIPTION OF THE QUANTUM DATASET GENERATED FROM SIMULATION

We first provide the definition of the quantum dataset in Def. 1 in which the procedures of quantum
dataset generation are provided. An easy-to-understand flowchart is also provided in Fig. 2.
Definition 1 (Quantum Dataset). The quantum dataset is described as D = {si}. Each sample
si = (Ri, ci,pi) contains the measurement records Ri, the physical condition variables ci and the
(optional) system property variables pi. Let L denote the number of qubits, K represent the number
of copies of each quantum state and M denote the number of possible outcomes by performing
measurement on a single qubit. We explain their meaning in detail below.

1) ci ∈ RC represents the physical condition variables controlling the evolution of the quantum
system. These variables can be directly obtained when initializing quantum experiments. The
types of the variables could be system size, coupling strength of Hamiltonians, etc.

2) The measurement records, denoted as Ri ∈ ZK×L, are outcomes generated by quantum mea-
surement. A quantum state is generated by evolving the system under a fixed physical condition
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Figure 2: Process of generating the quantum dataset. a) For each qubit of the quantum system,
we perform quantum measurement using operators {Om}Mm=1 and obtain an integer outcome m
with probability p(m). b) Consider the quantum system govern by different physical conditions.
Quantum measurements are performed on an ensemble of identical quantum states evolved under
each of fixed physical conditions. Measurement can be done parallel for all the qubits of single copy
of the quantum state and outputs a measurement string. This process is applicable and feasible to
existing digital and analog quantum computers. c) The collected data are structured and packed into
a series of tensors, which can be efficiently stored into classical devices and easy to process.

specialized by ci. Afterwards quantum measurement is performed independently on each qubit in
parallel using a set of measurement operators {Om}Mm=1. Performing measurement on L qubits
results in a measurement string, represented as σ = (σ1, . . . , σL) where each σl ∈ {1, . . . ,M}.
The measurement procedures above are repeated K times for each copy of the quantum state.
Finally, we collect K × L measurement outcomes and store them within Ri.

3) (Optional) Certain system property pi ∈ RP represents the statistics of the quantum system
conditioned on ci, such as the quantum phase, correlation function, entanglement entropy, purity,
etc. The exact values of pi can be calculated by classical post-processing by analyzing the either
the wave functions or measurement statistics. We treat these properties as supervised labels
which used for finetuning the model.

It should be mentioned that the process of quantum dataset generation above is closed to Wang et al.
(2022). The difference is that LLM4QPE requires additional ground-truth labels of system proper-
ties for finetuning, rather than the suggestions of Wang et al. (2022) in which the authors propose
to reconstruct the quantum state by unsupervised learning on measurement records, afterwards clas-
sical shadow (Huang et al., 2020) is required to predict specific quantum properties. The two step
strategy often introduces additional overheads. Furthermore, our experiments indicate that parame-
ters in LLM4QPE are specifically optimized for corresponding objectives such as quantum phase of
matters and correlation function, which often leads to superior performance in our numerical results.

3.3 UNSUPERVISED PRETRAINING

Unlike the previous studies (Czischek et al., 2022; Zhang & Di Ventra, 2023) which consider the pre-
training as a warmup process to find suitable initialization for model’s parameters and then finetune
the model on the specific system with the same learning objective as pretraining. Instead, LLM4QPE
regards the pretraining as the avenue to master the quantum intricacies across different systems of
the same family. The pretrained parameters can be transferred towards various downstream tasks.
LLM4QPE is pretrained in a fully unsupervised manner, as illustrated in Fig. 1b.

Quantum Data for Pretraining. The quantum dataset Dp = {Ri, ci}
Np

i=1 used for pretraining is
constructed using the strategy discussed in Sec. 3.2. Here we discuss how to reorganize the data
to adapt to LLM4QPE’s unsupervised pretraining. Let Kp be the number of measurement strings
used for pretraining. We stack all the input measurement records {Ri}

Np

i=1 along the first dimension
and output Ein ∈ ZNpKp×L, where each row is a measurement string σb ∈ ZL. We also construct
the matrix Cin ∈ RNpKp×C where each row is the values of physical condition variables cb ∈ RC .
For both the Rydberg atom model and the anisotropic Heisenberg model, we fix Np = 100 and
Kp = 1024. For each training iteration, we randomly sample Bp rows of Ein and Cin. Such that the
input of the model is {(σb, cb)|σb ∈ Ein, cb ∈ Cin}

Bp

b=1 with batch size Bp.
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Input Embeddings. As shown in Fig. 1a, we consider three types of embeddings as input to capture
the hidden patterns of the quantum system: token embeddings, condition embeddings and position
embeddings. Since each element of the measurement string σb is a discrete integer σ ∈ {1, . . . ,M}
which resembles to the token in NLP, we use learned embeddings to convert the measurement string
σb with additional start token s and output the token embeddings Et ∈ RBp×(L+1)×d where d is
the feature dimension. We empirically find that encoding the physical condition into the model
can further improve the performance. A Feed-Forward Network (FFN) with one hidden layer is
used to embed the physical condition cb into the feature vector Ec ∈ RBp×d. It is treated as a
sentence-level embedding which will be added to all of the L measurement tokens, and we call
it the global embedding. Subsequently, the input embeddings are the (broadcasting) summation
Eout = Et +Ec +Ep where Ep is the positional embeddings as the same as (Vaswani et al., 2017).
Eout is then processed by deeper layers in the discussion below.

Model Architecture. As depicted in Fig. 1b, the main part of LLM4QPE is a multi-layer trans-
former decoder which originates from (Vaswani et al., 2017). The input is the embedding Eout

and the output is H ∈ RBp×(L+1)×d, which are high-order representations of all the measurement
strings and the conditional variables in a batch. Please refer to (Vaswani et al., 2017) for more details
on transformer. For pretraining, given a fixed qubit configuration σ = (σ1, . . . , σL), LLM4QPE at-
tempts to approximate the classical distribution p(σ1, . . . , σL) = |Ψ(σ1, . . . , σL)|2 in Eq. 1. Such
joint distribution is approximated by factorizing it into a product of conditional probabilities:

p(σ1, . . . , σL|c) =
L∏

l=1

p(σl|σl−1, . . . , σ1, c). (2)

The parameters are optimized by minimizing the average negative log-likelihood loss:

Lunsup =
1

Bp

∑
(σ,c)∈Dp

− log p(σ1, . . . , σL|c), (3)

which corresponds to the maximization of (conditional) likelihoods concerning the observed mea-
surement outcomes. Pretraining is entirely unsupervised, enabling the model to be trained on ex-
tensive quantum data that encompass a wide range of physical conditions. To maintain the physical
validity that restricts the output distribution to be normalized, a general strategy is employed to fix
the last layer as the linear projection with softmax activation function, such that the output distribu-
tion satisfies

∑M
σ1=1 · · ·

∑M
σL=1 p(σ1, . . . , σL) = 1 (see Appendix C for proof).

3.4 SUPERVISED FINETUNING

The self-attention mechanism in the transformer allows LLM4QPE to model a wide range of down-
stream tasks, whether it involves classifying quantum phases of matter or predicting the entangle-
ment entropy of quantum states. This adaptability is achieved simply by replacing the relevant
inputs and outputs as needed. Rather than the two-step model (Wang et al., 2022) that uses the
pretrained model to generate new measurement records conditioning on the physical variables and
then predicts quantum properties based on classical shadow (Huang et al., 2020). LLM4QPE is an
end-to-end task-agnostic pretrained model to provide property estimation for the quantum system.

Quantum Data for Finetuning and Input Embeddings. The dataset Df = {(Rj , cj),pj}
Nf

i=j are
generated using the random seed different from the seed for generating Dp. Then we split Df to
construct train/test dataset Dt/De. It is ensured that the sampled physical conditions for pretraining
will not appear in finetuing, i.e. cj /∈ {ci} for j ∈ {1, . . . , Nf}. Note that the physical conditions
for finetuning are sampled from the same distribution as the pretraining. The details about the data
collection can be found in Appendix B. Unlike the pretraining where the input measurement records
is a sentence-level vector σb ∈ ZL, the input of fine-tuning becomes a batch of measurement records
Xi ∈ ZL×Kf where Kf is the number of measurement strings. The reason for such change can be
explained through both intuitive and rational perspectives. Intuitively, single measurement string
cannot reflect the whole picture of the quantum system. Rationally, predicting the properties of the
quantum system in classical computers generally requires exponential number of measurements with
respect to the system size L (Gebhart et al., 2023). Even though for some quantum systems with low
entanglement, the number stills grows quasi-polynomially with L (Huang et al., 2022). Accordingly,
the input of the model is replaced with {(Xj , cj),pj}Bt

j=1 where the tuple (Xj , cj) is the input, pj
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Figure 3: Comparison of weighted F1 score w.r.t. number of measurement strings on Rydberg atom model.

is the corresponding label and Bt is the batch size used for supervised finetuning. The embedding is
also distinct from that of pretraining. The learned token embeddings for the measurement string σi

is not feasible for the batch-style records Xj . To deal with it, a Long Short-Term Memory (LSTM)
layer is attached in front of the decoder, as depicted in Fig. 1c. The LSTM layer converts the discrete
measurement records Xj and outputs high-order embeddings Ernn ∈ RBt×L×d. The additional
embeddings including physical condition embeddings and positional embeddings are transferred
from pretraining. The output embedding is the summation given as Eout = Ernn +Ec +Ep︸ ︷︷ ︸

transferred

.

Feature Aggregation and Output Projection. The output of the L-layer transformer decoder is
H ∈ RBt×L×d. For a specific downstream task, the decoder is initialized with the pretrained
parameters and all the parameters are finetuned towards a supervised loss. To obtain the feature
representation for each of the Bt training samples, a feature aggregation layer is attached after the
last multi-head attention layer. This layer converts the hidden feature H along the second axis and
output H

′ ∈ RBt×d. Finally, additional linear projection layer is employed to project the feature
into H

′′ ∈ RBt×P , along with a task-dependent activated function which is taken to be tanh for
predicting the correlation function, since we have the prior that each element of the label pj is in
the range [−1, 1] (See Appendix B for details). While the log-softmax is adopted for classifying
quantum phases of matter.

Learning Objective. The properties estimation for the quantum system are treated as the supervised
learning tasks. Tow types of tasks are considered in this paper, including classifying quantum phases
of matter and predicting correlation function. The former belongs to the regression task, while the
latter can be regarded as a classification task. For each supervised task, we maintain a consistent
architecture within LLM4QPE. We seamlessly integrate task-specific inputs and ground-truth labels
into LLM4QPE and proceed to finetune all model’s parameters in an end-to-end manner. Given
that the training samples are {(Xj , cj),pj}Bt

j=1 where Bt is the batch size. For classifying quantum
phases of matter, pj is the one-hot label. We minimize the observed data negative log-likelihood
which yields a supervised loss for classification (with P classes):

Lsup = − 1

Bt

∑
j∈{1,...,Nt}

P∑
u=1

I [pj,u = 1] log
(
fθ (Xj , cj)u

)
, (4)

where I[·] is an indicator function, Nt is the size of training dataset and fθ(·) denotes the prediction
of the model with parameters θ to be optimized. For predicting the correlation, pj is the continuous
valued label. We adopt the Root Mean Square Error (RMSE) loss:

Lsup =

√
L̃sup, L̃sup =

1

Bt

∑
j∈{1,...,Nt}

P∑
u=1

(
fθ (Xj , cj)u − pj,u

)2
. (5)

Detailed description of task-specific finetuning can be found in the experiment section.

4 EXPERIMENTS

In this section, we present the finetuning results on two quantum property estimation tasks including
classifying quantum phases of matter and predicting correlation function. Two families of quan-
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Table 1: Classification accuracy of quantum phases of matter on the Rydberg atom model with varied system
size L and varied training size Nt, where Kf is fixed to be 1024. The best results are highlighted in bold.

L = 19 L = 25 L = 31
Method

Nt = 25 Nt = 64 Nt = 100 Nt = 25 Nt = 64 Nt = 100 Nt = 25 Nt = 64 Nt = 100

RBF Kernel 91.75 92.29 93.25 88.43 92.27 94.2 88.32 90.79 92.75
NTK 92.12 92.58 93.79 89.17 94.14 95.39 86.99 92.03 92.71
PixelCNN 92.18 92.79 92.98 88.91 91.59 94.73 85.29 92.21 92.98
NN-shadow 91.73 92.64 93.61 90.57 91.32 95.91 86.38 91.79 92.51

LLM4QPE 94.14 93.38 95.95 93.95 96.51 96.05 87.95 94.95 96.67
LLM4QPE w/o pretrain 93.80 92.89 93.35 90.85 95.35 95.27 87.45 92.77 94.32
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Figure 4: The evolution of training loss and test
weighted F1 score with increasing training epochs
where Nt = 100 and Kf = 1024.
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261 192 172 165 164
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Figure 5: The required number of epochs for each
respective model to attain 90% of its peak weighted
F1 score where Nt = 100.

tum models are considered – the Rydberg atom model (Bernien et al., 2017) and the anisotropic
Heisenberg model (Kranzl et al., 2023).

As baseline methods, we basically consider the classical shadow (Huang et al., 2020) – a learning-
free protocol for constructing the representation of an unknown quantum state. Besides, we compare
with some kernel methods including Radial Basis Function (RBF) Kernel (Huang et al., 2022) and
Neural Tangent Kernel (NTK) (Huang et al., 2022). We further consider some advanced deep learn-
ing based methods, such as PixelCNN (Sharir et al., 2020) and a classical shadow based generative
model (NN-shadow) (Wang et al., 2022) for comparison.

4.1 CLASSIFYING QUANTUM PHASES OF MATTER ON RYDBERG ATOM MODEL

We first consider the Rydberg atom model with different system size L ∈ {19, 25, 31}. We pre-
train LLM4QPE for different system sizes separately with a fixed number of sampled physical
conditions Np = 100. Each physical condition variable ci is a 4-dimensional vector denoted as
[Li,∆i,Ωi, R0/ai]

⊤ where ∆ is the detuning of a laser, Ω is the Rabi frequency and R0/a is the
interaction range. The values of these four variables can be obtained directly when initializing the
(simulated) quantum experiments. For each physical condition we generateKf measurement strings
based on computational basis measurement operators, such that the total number of possible mea-
surement outcomes is M = 2. Then LLM4QPE is pretrained with dataset Dp. The pretrained pa-
rameters are transferred to finetune the model using Dt, where the number of sampled physical con-
ditionsNt ∈ {25, 64, 100} and the number of measurement stringsKf ∈ {64, 128, 256, 512, 1024}.
We fix the size of De for evaluation to be Ne = 10000. Following (Bernien et al., 2017), we con-
sider three categories of quantum phase, i.e., Disorder, Z2, Z3 to establish the label pj , which is a
3-dimensional one-hot vector. More details about the data generation can be found in Appendix B.

We also take evaluation without pretaining the LLM4QPE: all the parameters are initialized ran-
domly in a uniform distribution [−1, 1]. We use accuracy and weighted F1 score as metrics for
3-class classification for evaluation of our models and baselines. The results are listed in Tab. 1
and LLM4QPE achieves the best mean accuracy except for one setting L = 31 with Nt = 25.
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Table 2: RMSE of predicting the correlation on the anisotropic Heisenberg model with varied system
size L and training size Nt. Kf is fixed to 64. The best results are in bold.

L = 8 L = 10 L = 12
Method

Nt = 20 Nt = 50 Nt = 90 Nt = 20 Nt = 50 Nt = 90 Nt = 20 Nt = 50 Nt = 90

Classical Shadow 0.2015 0.1954 0.1967 0.2015 0.1997 0.2015 0.1991 0.2064 0.2117
RBF Kernel 0.2085 0.2077 0.2081 0.2104 0.2131 0.2079 0.2039 0.1931 0.2157
NTK 0.2062 0.2064 0.2052 0.2095 0.2085 0.2097 0.2141 0.1922 0.2105
PixelCNN 0.2257±0.015 0.2357±0.019 0.2239±0.024 0.2393 0.2289±0.023 0.2108±0.024 0.2390±0.024 0.2297±0.035 0.2267±0.038
NN-shadow 0.2069±0.022 0.2098±0.015 0.2057±0.012 0.2078±0.017 0.2054±0.017 0.1959±0.013 0.2037±0.029 0.2021±0.019 0.2102±0.026

LLM4QPE 0.1761±0.032 0.1612±0.022 0.1697±0.025 0.1986±0.011 0.1949±0.012 0.1893±0.023 0.1989±0.023 0.1787±0.021 0.1769±0.015
LLM4QPE w/o pretrain 0.2043±0.027 0.2057±0.036 0.1949±0.027 0.2179±0.015 0.1984±0.013 0.1981±0.025 0.2040±0.028 0.2097±0.031 0.2026±0.027

Table 3: Ablation study results on condition embedding and LSTM embedding. We consider Nt =
64 with Kf = 1024 for the Rydberg model, and Nt = 50 with Kf = 64 for the Heisenberg model.

Rydberg L = 19 L = 25 L = 31 Heisenberg L = 8 L = 10 L = 12

original 93.38 96.51 94.95 original 0.1612 0.1949 0.1787
w/o cond. embed. 93.29 95.96 93.52 w/o cond. embed. 0.1906 0.2095 0.1981
w/o LSTM embed. 90.75 92.18 89.65 w/o LSTM embed. 0.1929 0.1997 0.1904

Fig. 3 shows the performance on varied Kf . LLM4QPE achieves the best weighted F1 score across
all systems and in particular, outperforms by a large margin when Kf = 64. The results indi-
cate that pretrained LLM4QPE can handle the input when a few number of measurement records
are available, which is greatly instrumental due to the expensive and time-consuming (simulated)
quantum experiments. We further plot the training dynamics of LLM4QPE with and without pre-
training throughout the training epochs in Fig. 4. The curves indicate that the pretraining enables
much faster convergence of supervised loss and achieves better finetuning accuracy. Meanwhile, the
required number of epoch for the model to attain 90% of its peak weighted F1 score is provided in
Fig. 5. It reflectw that within the same system size L, the pretrained LLM4QPE converges faster
than the non-pretrained version, with a lower training error and a higher test weighted F1 score.

4.2 PREDICTING CORRELATION FUNCTION ON ANISOTROPIC HEISENBERG MODEL

Next we consider a regression task - predicting correlation on the anisotropic Heisenberg model.
This quantum model inherits the long-range interactions between every two quantum sites, leading
to a complex dynamics which is hard to be simulated by classical computers (Orús, 2019). We
restrict the system size L ∈ {8, 10, 12} due to memory limitations. The ground states of quantum
systems with different physical conditions are calculated by eigenvalue decomposition. For each
physical condition we generate Kf measurement strings based on Pauli-6 measurement operators
such that M = 6. Then we pretrain the LLM4QPE for different system sizes independently with
training size Np = 100.

For model’s finetuning, we vary the number of generated training samplesNt ∈ {20, 50, 90} and fix
the measurement strings Kf = 64. The dataset used for evaluation is generated with Ne = 200. To
obtain the ground-truth labels, We calculate true values of the two-body correlation functions and
collect them as the supervised labels, which is an L×L continuous-valued matrix where each entry
is in the range [−1, 1]. The RMSE results is reported in Tab. 2. LLM4QPE outperforms baselines
in all settings. The learning-based models baselines often fail to surpass the predictive accuracy of
learning-free classical shadow. While our pretrained LLM4QPE stands out by a remarkable margin.

Finally, we study the effects of condition embedding and the LSTM embedding on both Rydberg
atom model and anisotropic Heisenberg model. Note that we replace the LSTM with a fully con-
nected layer with same input/output dimension. The results are given in Tab. 3, where the results
consistently show that both embedding techniques contribute to some positive effects and suggest
that these two techniques can both help to leverage useful information from input quantum data.

5 CONCLUSION AND OUTLOOK

This paper proposes a task-agnostic unsupervised pretraining approach for estimation of the prop-
erties of the quantum systems via quantum datasets. The core of our approach is a transformer
encoder enabling to learn useful hidden information in a fully unsupervised pretraining procedure.
The pretrained parameters can be transferred to solving downstream tasks, leading to more effective
classifying quantum phases and predicting correlation function on a resource-limited device given
limited measurement information.
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A RELATED WORK

A.1 LEARNING-FREE METHODS FOR QPE

Estimating the properties of the quantum system is a long-standing problem in quantum
physics (D’Ariano et al., 2003). The main challenge is that the complexity of describing the
quantum system using classical computers typically scales exponentially with respect to the sys-
tem size (Nielsen & Chuang, 2010). Even though, in fact, the quantum systems studied in physical
experiments generally can be described by a limited number of physical variables. This restriction
leads to the studied quantum systems occupy only a small part of the exponentially large Hilbert
space (Carrasquilla et al., 2019), such that they can be characterized by some classical methods
within an acceptable error.

Traditional algorithms including the QMC (Ceperley & Alder, 1986) and DFT (Hohenberg & Kohn,
1964) has made success for investigating the electronic structure (or nuclear structure), principally
the ground state of many-body systems, such as atoms, molecules, and the condensed phases (Gu-
bernatis et al., 2016). However, these methods have scalability issues and are difficult to be used to
deal with large-scale quantum many body problems. An alternative is a class of TNs methods (Orús,
2019) based on variational method and shows unprecedented performance in analyzing the char-
acteristics of ground state. These methods including Matrix Product State (MPS) (Perez-Garcia
et al., 2006) and Projected Entangled Pair States (PEPS) (Corboz, 2016). This class of methods
approximates the wave function by decomposition of the high-order wave functions into multiple
low-rank tensors. It is then possible to analyze properties of the quantum state by taking algebra
operations on the wave function. Recently, the classical shadow protocol (Huang et al., 2020) sug-
gests to use random measurements to characterize the quantum properties. Classical shadow has
facilitated applications such as direct fidelity estimation (Struchalin et al., 2021) and state function
prediction (Zhang et al., 2021).

A.2 LEARNING-BASED METHODS FOR QPE

With the continuous development of machine learning technologies, neural network based meth-
ods have emerged to tackle the QPE problems. These methods can be categorized into two classes
according to the purpose. The methods (Carleo & Troyer, 2017; Gao & Duan, 2017; Torlai et al.,
2018; Schütt et al., 2019; Hibat-Allah et al., 2020; Zhang & Di Ventra, 2023) of the first class are
called Neural Network Quantum State (NNQS), which replace the tensor used in TNs with a neural
network as a parametric function approximator of quantum many-body wave functions. The pa-
rameterized wave function is updated by minimizing the expectation values of relevant observable
estimators, based on either density matrix renormalization group (DMRG) algorithm (White, 1992)
or variational Monte Carlo (VMC) (McMillan, 1965). Afterwards the interested properties can be
analyzed by preforming algebra operations on the wave function. Another line of research (Gilmer
et al., 2017; Kawai & Nakagawa, 2020; Xiao et al., 2022) is known as Neural Network Quantum
Property Estimation (NNQPE). NNQPE directly optimizes the parameters towards a specific learn-
ing objective which represents a certain property of quantum systems such as the quantum phase.

For both NNQS and NNQPE, different neural network ansatz corresponds to solve quantum many-
body problems with different physical structures. Examples include restricted Boltzmann machine
(RBM) (Carleo & Troyer, 2017), recurrent neural networks (RNNs) (Carrasquilla et al., 2019), con-
volutional neural networks (CNNs) (Wu et al., 2019; Sharir et al., 2020; Wu et al., 2023), and
transformers (Cha et al., 2021; Wang et al., 2022; Zhang & Di Ventra, 2023; Du et al., 2023).

Our work is closely related to NNQPE. While ours employs a unsupervised pretraining to extract
the hidden information of the quantum systems govern by different parameters. We find empirically
that this scheme can make the model perform better under a limited number of copies of quantum
states and measurements. The recent work proposed by Zhu et al. (2022) implements a similar
pretraining strategy for learning of quantum states, whereas our approach differs from it by avoiding
assumptions about knowing the prior frequency about the measurement strings.
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B DETAILS OF THE QUANTUM DATASET GENERATION

A quantum dataset is a collection of data that describes quantum systems and their evolution. The
collection of quantum data must take into account the following factors: 1) the method of data
collection must be feasible on quantum devices and not contradict the disciplines of quantum me-
chanics; 2) the process of data collection is completely automated and does not require experienced
experts to organize and label it and 3) the data must be structured and can be stored on resource-
limited classical devices, thus can be easy to be processed by the machine learning techniques with-
out further post-processing. The quantum dataset we established satisfies these three points. It is
also worth mentioning that our model can be used as a centralized infrastructure to process all these
data uniformly, thanks to the unsupervised pretraining design of the model.

In this paper, we conduct simulated experiments to generate the quantum dataset in classical com-
puters. For the anisotropic Heisenberg model, quantum measurement is performed using the Pauli-6
measurement operators such that M = 6, whereas computational basis measurement operators
are employed for the Rydberg atom model leading to M = 2. Assume that variables ci describ-
ing the physical condition lives in a finite continuous space F within the physical restriction. Let
Dp = {Ri, ci}

Np

i=1 denote the quantum dataset used for pre-training and Df = {(Ri, ci),pi}
Nf

i=1
for fine-tuning, where |Dp| = Np and |Df | = Nf . For pre-training the model, we first uniformly
sample a number of points {ci|ci ∈ F}Np

i=1. Afterwards we conduct simulated experiments for
each ci and collect the corresponding measurement records. The system property pi is not needed
since the pre-training phase is fully unsupervised. While for fine-tuning, we initialized the experi-
ments with another random seed and sample Nf physical conditions also within space F, resulting
in {cj |cj ∈ F}Nf

j=1. Note that We also collect the measurement records for each cj . The difference
part is that we additionally calculate the system property pj and use it as supervised labels. We
further split the Df into Dt and De for training and evaluation respectively with varied separation
ratio. Details of the hyper-parameters and the experimental configurations of the dataset generation
are discussed below.

B.1 RYDBERG ATOM MODEL

Rydberg atom model is a programmable quantum simulators capable of preparing interacting qubit
systems (Bernien et al., 2017). Such quantum model can be effectively described as a two-level
quantum system consisting the ground state |g⟩ (|0⟩) and the Rydberg state |r⟩(|1⟩). The quantum
dynamics of this model is governed by the Hamiltonian

HRydberg =
∑
i

Ω

2
σi
x −

∑
i

∆ni +
∑
i<j

V0
|x⃗i − x⃗j |

ninj (6)

where σx is the Pauli-X matrix, Ω is the Rabi frequency, ∆ is the detuning of a laser, V0 is the
Rydberg interaction constant, i, j is the Rydberg interaction constant and x⃗i is the position vector
of the site i. ni = |ri⟩ ⟨ri| is the occupation number operator at site i, and σi

x = |gi⟩⟨ri| + |ri⟩⟨gi|
describes the coupling between the ground state |gi⟩ and the Rydberg state |ri⟩ at position i.

We follow the recent work in (Wang et al., 2022) to generate the quantum dataset. We refer the
readers to their paper for details. Here we briefly introduce the main procedures. We consider the
Rydberg atom model with system size L ∈ {19, 25, 31}. We fix the interaction constant V0 =
862690 × 2π MHz µm6 and vary the value of Ω ∈ [0, 5] and ∆ ∈ [−10, 15] to get different
physical conditions c, where c is a 4-dimensional vector in the form [L,∆,Ω, R0/a], where R0/a
denote the interaction range with R0 = (V0/Ω)

1/6. Then the approximate ground state for diffident
physical condition is prepared by the tool Bloqade.jl (blo, 2023). This tool can also output the
measurement strings and the true phase of each physical condition. The measurement operators are
chosen to be the computational basis {|0⟩⟨0|, |1⟩⟨1|} for the quantum measurement, such that the
total number of the possible outcomes is M = 2. In this paper, three different phases are considered
including the Disordered phase, Z2 Ordered phase and Z3 Ordered phase. We sample Np = 100
physical conditions with Kp = 1024 measurement strings for pre-training, and Nt ∈ {25, 64, 100}
physical conditions with Kf ∈ {64, 128, 256, 512, 1024} for fine-tuning. The number of physical
conditions for evaluation is fixed to be Ne = 10000. The supervised labels for fine-tuning are one-
hot encoded vectors of the true phases such that the dimension (number of classes) of p is 3. Note
that it is ensured that the sampled physical conditions for pre-training will not appear in fine-tuning.
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B.2 ANISOTROPIC HEISENBERG MODEL

Exploring the effects of these long-range interactions of the quantum system is essential for un-
derstanding the quantum mechanics (Bermúdez et al., 2017). In this paper, we consider the recent
progress for the long-range interactions with the experimentally realized power-law exponent of the
anisotropic Heisenberg model (Kranzl et al., 2023). The dynamics of the anisotropic Heisenberg
model is determined by the Hamiltonian

HHeisenberg =
1

3

∑
i<j

Jij(σ
i
xσ

j
x + σi

yσ
j
y + hσi

zσ
j
z), (7)

where σi
x,y,z is the Pauli matrix operated on the i-th site, h determines the Ising interactions be-

tween the magnons, and Jij is the long-range interaction strength satisfying Jij = J/|i − j|α.
We follow the configuration of (Kranzl et al., 2023) to geenrate the quantum dataset. The val-
ues of h and J are fixed with 1 and 369 rad/s, and we vary the value of α ∈ (1, 2] uniformly.
It is extremely hard to characterize the quantum system with long-range interactions using the
existing computing techniques. Thus we restrict the system size L ∈ {8, 10, 12}. For all the
systems we consider the number of measurement strings used for pre-training as Kp = 1024
and fix the number of sampled physical conditions as Np = 100. For model’s finetuning,
we vary the number of generated training samples Nt ∈ {20, 50, 90} and fix the measurement
strings Kf = 64. The physical condition c is defined as a vector whose dimension C = L2,
in which each element is the coupling strength Jij for i, j ∈ {1, . . . , L}. The problem of
finding the ground state is viewed as the eigenvalue decomposition problem and we obtain the
ground state for each sampled physical condition by the scipy (Virtanen et al., 2020) built-in
functions. The measurement records and the true values of the two-body correlation function
and the entanglement entropy are obtained using the pennylane (Bergholm et al., 2018) tool-
box. We consider the Pauli-6 POVM measurement operators with M = 6 outcomes, which are
given as MPauli-6 =

{
1
3 × |0⟩⟨0|, 13 × |1⟩⟨1|, 13 × |+⟩⟨+|, 13 × |−⟩⟨−|, 13 × |r⟩⟨r|, 13 × |l⟩⟨l|

}
, and

{|0⟩, |1⟩}, {|+⟩, |−⟩}, {|r⟩, |l⟩} stand for the eigenbasis of the Pauli operators σz, σx, and σy , re-
spectively. For the task of predicting the correlation matrix, the ground-truth label is a L×L matrix
and each element of the matrix is the expectation value of the observable

Oij =
1

3

(
σi
xσ

j
x + σi

yσ
j
y + σi

zσ
j
z

)
. (8)

Thus each element can be written as tr(ρOij) in the range [−1, 1], where ρ is the density matrix of
the ground state for each sampled physical condition. We flatten the correlation function matrix to
be the L2-dimensional continuous-valued vector and treat it as the supervised label for fine-tuning.
While for the task of predicting the entanglement entropy, the label is a real number which can be
calculated as − log(tr(ρ2A)), where A is the left-half subsystem with system size L/2 of the L-qubit
quantum system.

C POOF OF THE NORMALIZED OUTPUT DISTRIBUTION

In the main text, we claim that the output (classical) distribution satisfies

M∑
σ1=1

· · ·
M∑

σL=1

p(σ1, . . . , σL) = 1, (9)

as long as the last linear projection layer uses the softmax activated function. The proof is given
below.

The softmax activated function is performed on the model’s output, which is the product of condi-
tional probabilities p(σ1, . . . , σL) =

∏L
i=1 p(σi|σi−1, . . . , σ1). It is easy to check the claim holds

for L = 1. Given that the claim also holds for L = k. For L = k + 1, the following equation then
be hold:

M∑
σi=1

p(σi|σi−1, . . . , σ1) = 1. (10)
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Table 4: The RMSE of predicting the second-order Rényi entanglement entropy for the anisotropic
Heisenberg model. We sampleNp = 100 physical conditions withKp = 1024 measurement strings
for pre-training.

Method L = 8 L = 10 L = 12

Kf = 64 Kf = 128 Kf = 256 Kf = 512 Kf = 1024 Kf = 64 Kf = 128 Kf = 256 Kf = 512 Kf = 1024 Kf = 64 Kf = 128 Kf = 256 Kf = 512 Kf = 1024

Classical Shadow 1.58282 1.56688 1.50989 1.40270 1.22974 1.72379 1.71451 1.73135 1.72740 1.68556 2.89481 2.90874 2.91391 2.90773 2.89722
RBF Kernel 0.07322 0.07160 0.07670 0.07692 0.07706 0.02539 0.02257 0.02242 0.02002 0.01983 0.08710 0.08242 0.08104 0.07081 0.07032
NTK 0.07117 0.06799 0.08834 0.08708 0.08690 0.02497 0.02221 0.02129 0.01996 0.01947 0.08432 0.08249 0.08071 0.07998 0.07381
PixelCNN 0.07198 0.07091 0.06849 0.06687 0.06784 0.01907 0.01892 0.01948 0.01952 0.02089 0.07406 0.07145 0.07107 0.06895 0.06677
NN-shadow 0.06860 0.06415 0.06403 0.06315 0.06221 0.01844 0.01747 0.01664 0.01662 0.01657 0.07261 0.06858 0.06573 0.06156 0.05924

LLM4QPE 0.06302 0.06141 0.06104 0.05998 0.06072 0.01698 0.01623 0.01534 0.01517 0.01520 0.05861 0.05812 0.05648 0.05623 0.05597
LLM4QPE w/o Pretrain 0.06649 0.06295 0.06228 0.06071 0.06034 0.01711 0.01662 0.01696 0.01655 0.01532 0.06624 0.06542 0.06381 0.06042 0.05931

Such that

M∑
σ1=1

· · ·
M∑

σk+1=1

p(σ1, . . . , σk+1)

=

M∑
σ1=1

· · ·
M∑

σk+1=1

|Ψ(σ1, . . . , σk+1)|2

=

M∑
σ1=1

· · ·
M∑

σk+1=1

k+1∏
i=1

|Ψ(σi|σi−1, . . . , σ1)|2

=

M∑
σ1=1

· · ·
M∑

σk=1

(
k∏

i=1

|Ψ(σi|σi−1, . . . , σ1)|2
)

M∑
σk+1=1

|Ψ(σk+1|σk, . . . , σ1)|2

=

M∑
σ1=1

· · ·
M∑

σk=1

|Ψ(σ1, . . . , σk)|2

= 1

(11)

The proof then complete.

D ADDITIONAL NUMERICAL RESULTS

D.1 RESULTS OF PREDICTING THE ENTANGLEMENT ENTROPY

We take an additional downstream task: predicting the second-order Rényi entanglement entropy
− log(tr(ρ2A)) for the anisotropic Heisenberg model, whereA is the left-half subsystem with system
size L/2 of the L-qubit quantum system. The number of training size is set to be Nt = 90 and the
predicted RMSE results are given in Tab. 4. It can be observed that pre-training remains effective
for predicting the entanglement entropy of the anisotropic Heisenberg model.

D.2 MODEL SENSITIVITY TO THE NUMBER OF MEASUREMENTS

In Sec. 4, we study the relationship between the number of measurements and the classification
accuracy of quantum phase of matters on Rydberg atom model. It is empirically evident in Fig. 3
that achieving linear growth in classification accuracy requires an exponential increase in the number
of measurements per training example. Beyond the scaling related to number of measurements, we
dive into further research on the scaling relationship between accuracy and the size of the training
set (i.e., the number of sampled physical conditions which determine the dynamics of the quantum
systems). We constrain the number of measurement per example to 256 (since we find that a large
value makes the accuracy reach saturation) and the results on the 31-qubit system are listed in the
Tab. 5. The results show that the accuracy approximately exhibits linear growth w.r.t. training size.
This finding is consistent with theoretical results presented in (Huang et al., 2022; Lewis et al., 2024),
which demonstrate that there exists a polynomial scaling relationship between model performance
and the size of training dataset.
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Table 5: Classification accuracy of quantum phases of matter on the Rydberg atom model with
varied training size Nt, where L = 31 and Kf = 256. The results are averaged over 3 runs with
different random seeds.

Nt = 20 Nt = 40 Nt = 60 Nt = 80

LLM4QPE 82.05 87.24 89.16 90.63
LLM4QPE w/o pretrain 79.17 81.78 85.96 88.47

Table 6: Classification accuracy of quantum phases of matter on the 31-qubit Rydberg atom model.
The pre-trained parameters are transferred from the model trained on smaller system size. The
training size is set to be Nt = 100, and the number of measurements Kf = 1024.

LLM4QPE (pre-trained on 19-qubit system) 95.74
LLM4QPE (pre-trained on 25-qubit system) 96.13
LLM4QPE (pre-trained on 31-qubit system) 96.67

LLM4QPE w/o pre-train 94.32

Table 7: Classification accuracy of quantum phases of matter on the 19-qubit Rydberg atom model.
The training size is set to be Nt = 100, and the number of measurements Kf = 1024.

no OOD OOD

LLM4QPE 95.95 84.82
LLM4QPE w/o pre-train 93.35 94.23

D.3 FINE TUNING THE MODEL WITH OUT-OF-DISTRIBUTION DATASET

In this section, we consider fine tuning the LLM4QPE with out-of-distribution (OOD) dataset, which
means the dataset used for fine-tuning and the dataset used for pre-training come from different
distributions.

Here, we consider two different configurations to make the fine-tuning dataset out-of-distribution
from the pre-training one: the first is to re-generate the fine-tuning data by modifying the physical
variables and the second is to fine tune the model based on the parameters transferred from the model
pretrained on fewer qubits. In the following, we consider the Rydberg atom model.

First, we take the evaluation that fine-tuning the model on 31-qubit system by using he parameters
pre-trained on 19 and 25-qubit system. Note that the number of qubits is also a physical variable and
we want to see if model parameters trained on small-scale systems could transfer and help model
characterize larger-scale systems. The results are listed in Tab. 6. It is evident that pre-trained
parameters transferred from small-scale systems is also useful for large-scale systems.

Second, we modify the detuning of a laser from [−10, 15] (which is exactly used in the paper) to
[−20,−10] ∪ [15, 25] to generate OOD fine-tuning dataset, on Rydberg atom model with 19 qubits.
The classification accracy are listed in Tab. 7. The pre-trained one fails to perform better than the
LLM4QPE w/o pre-train. The main reason is that the modified detuning values have driven the
quantum evolution into a very different dynamics and the pre-trained model learns less knowledge
about it. Whether pre-training of LLM4QPE remains beneficial for OOD quantum datasets in other
settings remains an open question, and will be further explored in our future work.

E LIMITATIONS

In this study, we concentrate on the classification of quantum phases of matter and the prediction
of correlation functions for the Rydberg atom model and the anisotropic Heisenberg model, respec-
tively. While the LLM4QPE model offers flexibility for addressing various quantum many-body
challenges, such as reconstructing the density matrix. Our focus here is primarily on pretraining the
model with a fixed number of measurement strings. The impact of varying the number of measure-
ment strings on the model’s performance presents a fascinating area for exploration. Additionally,
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the LLM4QPE model is characterized by a relatively small parameter count (tens of thousands of
parameters) when compared to the significantly larger parameter sets of large language models. Due
to the constraints imposed by the model’s size, our pretraining efforts are confined to quantum sys-
tems govern by Hamiltonians from the same family. Looking forward, there is an anticipation to
develop a more robust model, enriched with a greater number of parameters, through learning on
datasets generated from diverse families of quantum systems.
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