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ABSTRACT

Optimal transport (OT) provides a way of measuring distances between distribu-
tions that depends on the geometry of the sample space. In light of recent ad-
vances in solving the OT problem, OT distances are widely used as loss functions
in minimum distance estimation. Despite its prevalence and advantages, however,
OT is extremely sensitive to outliers. A single adversarially-picked outlier can
increase OT distance arbitrarily. To address this issue, in this work we propose
an outlier-robust OT formulation. Our formulation is convex but challenging to
scale at a first glance. We proceed by deriving an equivalent formulation based on
cost truncation that is easy to incorporate into modern stochastic algorithms for
regularized OT. We demonstrate our model applied to mean estimation under the
Huber contamination model in simulation as well as outlier detection on real data.

1 INTRODUCTION

Optimal transport is a fundamental problem in applied mathematics. In its original form (Monge,
1781), the problem entails finding the minimum cost way to transport mass from a prescribed prob-
ability distribution µ on X to another prescribed distribution ν on X . Kantorovich (1942) relaxed
Monge’s formulation of the optimal transport problem to obtain the Kantorovich formulation:

OT(µ, ν) , min
Π∈F(µ,ν)

E(X1,X2)∼Π

[
c(X1, X2)

]
, (1.1)

where F(µ, ν) is the set of couplings between µ and ν (probability distributions on X × X whose
marginals are µ and ν) and c is a cost function, where we typically assume c(x, y) ≥ 0 and
c(x, x) = 0. Compared to other notions of distance between probability distributions, optimal
transport uniquely depends on the geometry of the sample space.

Recent advancements in optimization for optimal transport (Cuturi, 2013; Solomon et al., 2015;
Genevay et al., 2016; Seguy et al., 2018) enabled its broad adaptation in machine learning applica-
tions where geometry of the data is important. See (Peyré & Cuturi, 2018) for a survey. Optimal
transport has found applications in natural language processing (Kusner et al., 2015; Huang et al.,
2016; Alvarez-Melis & Jaakkola, 2018; Yurochkin et al., 2019), generative modeling (Arjovsky
et al., 2017), clustering (Ho et al., 2017), domain adaptation (Courty et al., 2014; 2017), large-scale
Bayesian modeling (Srivastava et al., 2018), and many other domains.

Many applications use OT as a loss in an optimization problem of the form:

θ ∈ arg minθ∈Θ OT(µn, νθ), (1.2)

where {νθ}θ∈Θ is a collection of parametric models, µn is the empirical distribution of the samples.
Such estimators are called minimum Kantorovich estimators (MKE) (Bassetti et al., 2006). They are
popular alternatives to likelihood-based estimators, especially in generative modeling. For example,
when OT(·, ·) is the Wasserstein-1 distance and νθ is a generator parameterized by a neural network
with weights θ, equation 1.2 corresponds to the Wasserstein GAN (Arjovsky et al., 2017).

One drawback of optimal transport is its sensitivity to outliers. Because all the mass in µ must be
transported to ν, a small fraction of outliers can have an outsized impact on the optimal transport
problem. For statistics and machine learning applications in which the data is corrupted or noisy,
this is a major issue. For example, the poor performance of Wasserstein GANs in the presence of
outliers was noted in the recent works on outlier-robust generative learning with f -divergence GANs
(Chao et al., 2018; Wu et al., 2020). The problem of outlier-robustness in MKE has not been studied,
with the exception of two concurrent works (Staerman et al., 2020; Balaji et al., 2020).
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In this paper, we propose a modification of OT to address its sensitivity to outliers. Our formulation
can be used as a loss in equation 1.2 so that it is robust to a small fraction of outliers in the data. To
keep things simple, we consider the ε-contamination model (Huber & Ronchetti, 2009). Let νθ0 be
a member of a parametric model {νθ : θ ∈ Θ} and let

µ = (1− ε)νθ0 + εν̃,

where µ is the data-generating distribution, ε > 0 is the fraction of outliers, and ν̃ is the distribution
of the outliers. Although the fraction of outliers is capped at ε, the value of the outliers is arbitrary,
so the outliers may have an arbitrarily large impact on the optimal transport problem. Our goal is
to modify the optimal transport problem so that it is more robust to outliers. We have in mind the
downstream application of learning θ0 from (samples from) µ in the ε-contamination model. Our
main contributions are as follows:

1. We propose a robust OT formulation that is suitable for statistical estimation in the ε-
contamination model using MKE.

2. We show that our formulation is equivalent to the original OT problem with a clipped transport
cost. This connection enables us to leverage the voluminous literature on computational optimal
transport to develop efficient algorithm to perform MKE robust to outliers.

3. Our formulation enables a new application of optimal transport: outlier detection in data.

2 PROBLEM FORMULATION

2.1 ROBUST OT FOR MKE

To promote outlier-robustness in MKE, we need to allow the corresponding OT problem to ignore
the outliers in the data distribution µ. The ε-contamination model imposes a cap on the fraction of
outliers, so it is not hard to see that ‖µ − νθ0‖TV ≤ ε, where ‖ · ‖TV is the total-variation norm
defined as ‖µ‖TV =

∫
1
2 |µ(dx)|. This suggests we solve a TV-constrained/regularized version of

equation 1.2. The constrained version

min
θ∈Θ,µ̃

OT(µ̃, νθ)

subject to ‖µ− µ̃‖TV ≤ ε

suffers from identification issues. In particular, it cannot distinguish between “clean” distributions
within TV distance ε of νθ0 . This makes it unsuitable as a loss function for statistical estimation,
because it cannot lead to a consistent estimator. However, its regularized counterpart

min
θ∈Θ,s

OT(µ+ s, νθ) + λ‖s‖TV, (2.1)

where λ > 0 is a regularization parameter, does not suffer from this issue. In the rest of this paper,
we work with the TV-regularized formulation equation 2.1.

The main idea of our formulation is to allow for modifications of µ, while penalizing their magnitude
and ensuring that the modified µ is still a probability measure. Below we formulate this intuition in
an optimization problem titled ROBOT (ROBust Optimal Transport):

Formulation 1:

ROBOT(µ, ν) =



minΠ∈F+(Rd×Rd)

s∈F(Rd)

∫
C(x, y) Π(dx,dy) + λ‖s‖TV

subject to

∫
B×Rd

Π(dx, dy) =

∫
B

(µ(dx) + s(dx)) ≥ 0

∀ B ∈ B(Rd) (Borel σ-algebra)∫
Rd×C

Π(dx,dy) =

∫
C

ν(dy) ∀ C ∈ B(Rd)∫
s(dx) = 0.

(2.2)
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Here F(Rd) denotes the set of all signed measures with finite total variation on Rd, F+(Rd × Rd)
is the set of all measures with finite total variation on Rd × Rd.

The first and the last constraints ensure that µ + s is a valid probability measure, while λ‖s‖TV
penalizes the amount of modifications in µ. It is worth noting that we can identify exact locations of
outliers in µ by inspecting µ+ s, i.e. if µ(x) + s(x) = 0, then x got eliminated and is an outlier.

ROBOT, unlike classical OT, guarantees that an adversarially picked outliers can not increase the
distance arbitrarily. Let µ̃ = (1− ε)µ+ εµc, i.e. µ̃ is µ contaminated with outliers from µc, and let ν
be an arbitrary measure (in MKE, µ̃ is the contaminated data and ν is the model we learn). Adversary
can arbitrarily increase OT(µ̃, ν) by manipulating the outlier distribution µc. For ROBOT we have
the following bound:

Theorem 2.1. Let µ̃ = (1− ε)µ+ εµc for some ε ∈ [0, 1), then

ROBOT(µ̃, ν) ≤ (OT(µ, ν) + λε‖µ− µc‖TV) ∧ λ‖µ̃− ν‖TV ∧OT(µ̃, ν). (2.3)

This bound has two key takeaways: since TV norm of any two distributions is bounded by 1, ad-
versary can not increase ROBOT(µ̃, ν) arbitrarily; in the absence of outliers, ROBOT is bounded by
classical OT. See Appendix C for the proof.

Related work We note connection between equation 2.2 and unbalanced OT (UOT) (Chizat.,
2017; Chizat et al., 2018). UOT is typically formulated by replacing TV norm with KL(µ + s|µ)
and adding an analogous term for ν. Chizat et al. (2018) studied entropy regularized UOT with
various divergences penalizing marginal violations. Optimization problems similar to equation 2.2
have also been considered outside of the ML literature (Piccoli & Rossi, 2014; Liero et al., 2018).
We are unaware of prior applications of UOT to outlier-robustness, but it was studied in the con-
current work of Balaji et al. (2020). Another relevant variation of OT is partial OT (Figalli, 2010;
Caffarelli & McCann, 2010). It may also be considered for outlier-robustness, but it has a drawback
of forcing mass destruction rather than adjusting marginals to ignore outliers when they are present.
A concurrent work by Staerman et al. (2020) took a different path: they replaced the expectation
in the Wasserstein-1 dual with a median-of-means to promote robustness. It is unclear what is the
corresponding primal, making it hard to interpret as an optimal transport problem.

A major challenge with the aforementioned methods, including our Formulation 1, is the difficulty
of the optimization problem. This is especially the case for MKEs, where a transport problem has
to be solved in every iteration to obtain the gradient of the model parameters. Chizat et al. (2018)
proposed a Sinkhorn-like algorithm for entropy regularized UOT, but it is not amenable to stochastic
optimization. Balaji et al. (2020) proposed a stochastic optimization algorithm based on the UOT
dual, but it requires two additional neural networks (total of four including dual potentials) to pa-
rameterize modified marginal distributions (i.e., µ + s and analogous one for ν). Optimizing with
a median-of-means in the objective function as in (Staerman et al., 2020) is also challenging. The
key contribution of our work is a formulation equivalent to equation 2.2, which is easily compatible
with the large body of classical OT optimization techniques (Cuturi, 2013; Solomon et al., 2015;
Genevay et al., 2016; Seguy et al., 2018).

More efficient equivalent formulation At a first glance, there are two issues with equation 2.2:
it appears asymmetric and it is unclear if it can be optimized efficiently. Below we present an
equivalent formulation that is free of these issues:

Formulation 2:

ROBOT(µ, ν) =



minΠ∈F+(Rd×Rd)

∫
Cλ(x, y)Π(dx, dy)

subject to

∫
B×Rd

Π(dx, dy) =

∫
B

µ(dx) ∀ B ∈ B(Rd)∫
Rd×C

Π(dx, dy) =

∫
C

ν(dy) ∀ C ∈ B(Rd),

(2.4)

where Cλ is the truncated cost function defined as Cλ(x, y) = C(x, y) ∧ 2λ. Looking at equa-
tion 2.4, it is not apparent that it adds robustness to MKE, but it is symmetric, easy to combine
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with entropic regularization by simply truncating the cost, and benefits from stochastic optimization
algorithms (Genevay et al., 2016; Seguy et al., 2018). This formulation also has a distant relation
to the idea of loss truncation for achieving robustness (Shen & Sanghavi, 2019). Pele & Werman
(2009) considered the Earth Mover Distance (discrete OT) with truncated cost to achieve computa-
tional improvements; they also mentioned its potential to promote robustness against outlier noise
but did not explore this direction.

In Section 3, we establish equivalence between the two ROBOT formulations, equation 2.2 and
equation 2.4. This equivalence allows us to obtain an efficient algorithm based on equation 2.4 for
robust MKE. We also provide a simple procedure for computing optimal s in equation 2.2 from
the solution of equation 2.4, enabling a new OT application: outlier detection. We verify the effec-
tiveness of robust MKE and outlier detection in our experiments in Section 4. Before presenting
the equivalence proof, we formulate the discrete analogs of the two ROBOT formulations for their
practical value.

2.2 DISCRETE ROBOT FORMULATIONS

In practice we typically encounter samples from the distributions, rather then the distributions them-
selves. Sampling is also built into stochastic optimization. In this subsection, we present the discrete
versions of the ROBOT formulations. The key detail is that, in equation 2.2, µ, ν and s are all sup-
ported on Rd, while in the discrete case the empirical measures µn ∈ ∆n−1 and νm ∈ ∆m−1

are supported on a set of points (∆r is the unit probability simplex in Rr). As a result, to for-
mulate a discrete version of equation 2.2, we need to augment µn and νm with each others’ sup-
ports. To be precise, let supp(µn) = {X1, . . . , Xn} and supp(νm) = {Y1, . . . , Ym}. Define
C = {Z1, Z2, . . . , Zm+n} = {X1, . . . , Xn, Y1, . . . , Ym}. Then discrete analog of equation 2.2 is

Formulation 1 (discrete):

ROBOT(µn, νm) =


minΠ∈R(m+n)×(m+n)

s∈Rm+n

〈Caug,Π〉+ λ [‖s1‖1 + ‖t1‖1]

subject to Π1m+n =

[
µn + s1

t1

]
, Π>1m+n =

[
0
νm

]
Π � 0, 1>m+ns = 0,

(2.5)

where Caug ∈ R(m+n)×(m+n) is the augmented cost function Caug,i,j = c(Zi, Zj) (c is the ground
cost, e.g., squared Euclidean distance), s = (s1, t1) and 1r is the vector all ones in Rr. The TV
norm got replaced with its discrete analog, the L1 norm. Similarly to its continuous counterpart, the
optimization problem is harder than the typical OT due to additional constraint optimization variable
s and increased cost matrix size.

The discrete analog of equation 2.4 is straightforward:

Formulation 2 (discrete):

ROBOT(µn, νm) =

{
minΠ∈Rn×m 〈Cλ,Π〉
subject to Π1n = µn, Π>1m = νm, Π � 0,

(2.6)

whereCλ,i,j = c(Xi, Yj)∧2λ. As in the continuous case, it is easy to adapt modern (regularized) OT
solvers without any computational overhead. As in the continuous case, formulations of equation 2.5
and equation 2.6 are equivalent. It is also possible to recover s of equation 2.5 from the solution of
equation 2.6 to perform outlier detection.

Two-sided formulation So far we have assumed that one of the input distributions does not have
outliers, which is the setting of MKE, where the clean distribution corresponds to the model we
learn. In some applications, both distributions may be corrupted. To address this case, we provide
an equivalent two-sided formulation, analogous to UOT with TV norm:
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Formulation 3 (two-sided):

ROBOT(µn, νm) =


min Π∈R(m+n)×(m+n)

s1∈Rm+n, s2∈Rm+n

〈Caug,Π〉+ λ [‖s1‖1 + ‖t1‖1 + ‖s2‖1 + ‖t2‖1]

subject to Π1m+n =

[
µn + s1

t1

]
, Π>1m+n =

[
s2

νm + t2

]
Π � 0, 1>m+ns1 = 0, 1>m+ns2 = 0.

(2.7)
where s1 = (s>1 , t

>
1 )> and s2 = (s>2 , t

>
2 )>.

3 EQUIVALENCE OF THE ROBOT FORMULATIONS

In this section we present our main theorem, which demonstrates the equivalence between two
formulations of the robust optimal transport:

Theorem 3.1. For any two measures µ and ν, ROBOT(µ, ν) has same value for both the formu-
lations, i.e., Formulation 1 is equivalent to Formulation 2 both for continuous and discrete case.
Moreover, we can recover optimal coupling of one formulation from the other.

Below we sketch the proof of this theorem and highlight some important techniques used in the
proof. We focus on the discrete case as it is more intuitive and has concrete practical implications in
our experiments. A complete proof can be found in Appendix A. Please also see Appendix A.2 for
the proof of equivalence between Formulations 1, 2 and 3 in the discrete case.

3.1 PROOF SKETCH

In the remainder of this section we consider the discrete case, i.e., equation 2.5 for Formulation 1
(F1) and equation 2.6 for Formulation 2 (F2). Suppose Π∗2 is an optimal solution of F2. Then we
construct a feasible solution Π∗1, s

∗
1 = (s∗1, t

∗
1) of F1 based on Π∗2 with the same value of the objective

function as F2 and claim that (Π∗1, s
∗
1) is an optimal solution. We prove the claim by contradiction:

if (Π∗1, s
∗
1) is not optimal, then there exists another pair (Π̃1, s̃1) which is optimal for F1 with strictly

less objective value. We then construct another feasible solution Π∗2,new of Formulation 2 which has
the same objective value as of (Π̃1, s̃1) for F1. This implies Π∗2,new has strictly less objective value
for F2 than Π∗2, which is a contradiction.

The two main pillars of this proof are (1) to construct a feasible solution of F1 starting from a feasible
solution of F2 and (2) to show that the solution constructed is indeed optimal for F1. Hence step
(1) gives a recipe to construct an optimal solution of F1 starting from an optimal solution of F2. We
elaborate the first point in the next subsection, which has practical implications for outlier detection.
The other point is more technical; interested readers may go through the proof in Appendix A.1.

Algorithm 1 Generating optimal solution of F1 from F2

1: Start with Π∗2 ∈ Rn×m, an optimal solution of Formulation 2.
2: Create an augmented matrix Π ∈ Rm+n×m+n with all 0. Divide Π into four blocks:

Π =


Π11︸︷︷︸
n×n

Π12︸︷︷︸
n×m

Π21︸︷︷︸
m×n

Π22︸︷︷︸
m×m


3: Set Π12 ← Π∗2 and collect all the indices I = {(i, j) : Ci,j > 2λ}.
4: Set Π12(i, j)← 0 for (i, j) ∈ I.
5: Set Π22(j, j)←

∑n
i=1 Π∗2(i, j)1(i,j)∈I for all 1 ≤ j ≤ m and set Π∗1 ← Π.

6: Set s∗1(i) ≤
∑m
j=1 Π∗2(i, j)1(i,j)∈I for all 1 ≤ i ≤ n.

7: Set t∗1(j) = Π22(j, j) for all 1 ≤ j ≤ m.
8: return Π∗1, s

∗
1, t
∗
1.
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3.2 GOING FROM FORMULATION 2 TO FORMULATION 1

Let Π∗2 (respectively Π∗1) be an optimal solution of F2 (respectively F1). Recall that Π∗1 has di-
mension (m + n) × (m + n). From the column sum constraint in F1, we need to take the first n
columns of Π∗1 to be exactly 0, whereas the last m columns must sum up to νm. For any matrix A,
we denote by A[(a : b)× (c : d)] the submatrix consisting of rows from a to b and columns from c
to d. Our main idea is to put a modified version of Π∗2 in Π∗1[(1 : n) × (n + 1 : m + n)] and make
Π∗1[(n+1 : m+n)×(n+1 : m+n)] diagonal. First we describe how to modify Π∗2. Observe that, if
for some (i, j) Ci,j > 2λ, we expectXi ∈ supp(µn) to be an outlier resulting in high transportation
cost, which is why we truncate the cost in F2. Therefore, to get an optimal solution of F1, we make
the corresponding value of optimal plan 0 and dump the mass into the corresponding slack variable
t∗1 in the diagonal of the bottom right submatrix. This changes the row sum, which is taken care of
by s∗1. But, as we are not moving this mass outside the corresponding column, the column sum of
Π∗1[(1 : (m + n)) : ((n + 1) : (m + n))] remains same as column sum of Π∗2, which is νn. We
summarize this procedure in Algorithm 1.

Figure 1: Constructing optimal solution of Formulation 1 from optimal solution of Formulation 2.

Example. In Figure 1, we provide an example to visualize the construction. On the left, we have
Π∗2, an optimal solution of Formulation 2. The blue triangles denote the positions where the corre-
sponding cost value is ≤ 2λ, and light-green squares denote the positions where the corresponding
value of the cost matrix is> 2λ. To construct an optimal solution Π∗1 of Formulation 1 from this Π∗2,
we first create an augmented matrix of size 6× 6. We keep all the entries of of left 6× 3 sub-matrix
as 0 (in this picture blank elements indicate 0). On the right submatrix, we put Π∗2 into the top-right
block, but remove the masses from light-green squares, i.e. where cost value is > 2λ, and put it in
the diagonal entries of the bottom right block as shown in Figure 1. This mass contributes to the
slack variables s1 and t1, and this augmented matrix along with s1, t1 give us an optimal solution of
Formulation 1.

3.3 OUTLIER DETECTION WITH ROBOT

Our construction algorithm has practical consequences for outlier detection. Suppose we have two
datasets, a clean dataset νm (i.e., has no outliers) and an outlier-contaminated dataset µn. We can
detect the outliers in µn without directly solving costly Formulation 1 by following Algorithm 2. In
this algorithm, λ is a regularization parameter that can be chosen via cross-validation or heuristically
(see Section 4.2 for an example). In Section 4.2, we use this algorithm to perform outlier detection
on image data.

Algorithm 2 Outlier detection in contaminated data

1: Start with µn (contaminted data) and νm (clean data).
2: Solve Formulation 2 and obtain Π∗2 using a suitable value of λ.
3: Use Algorithm 1 to obtain Π∗1, s

∗
1, t
∗
1 from Π∗2.

4: Find I, the set of all the indices where µn + s∗1 = 0.
5: Return I as the indices of outliers in µn.
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Table 1: Robust mean estimation with GANs using different distribution divergences. True mean
is η0 = 05; sample size n = 1000; contamination proportion ε = 0.2. We report results over 30
experiment restarts.

Contamination JS Loss SH Loss RKL Loss ROBOT UOT

N (0.1 · 15, I5) 0.09 ± 0.03 0.11 ± 0.03 0.115 ± 0.03 0.1 ± 0.03 0.1 ± 0.04
N (0.5 · 15, I5) 0.23 ± 0.04 0.24 ± 0.05 0.24 ± 0.05 0.117 ± 0.03 0.2 ± 0.04
N (1 · 15, I5) 0.43 ± 0.05 0.43 ± 0.06 0.43 ± 0.06 0.261 ± 0.06 0.25 ± 0.05
N (2 · 15, I5) 0.67 ± 0.07 0.67 ± 0.08 0.67 ± 0.08 0.106 ± 0.03 0.1 ± 0.03

(a) Varying proportion of contamination (b) Varying outlier distribution mean

Figure 2: Empirical study of regularization hyperparameter λ sensitivity

4 EMPIRICAL STUDIES

To evaluate effectiveness of ROBOT, we consider the task of robust mean estimation under the
Huber contamination model. The data is generated from (1 − ε)N (η0, Id) + εN (η1, Id) and the
goal is to estimate η0. Prior work has advocated for using f -divergence GANs (Chao et al., 2018;
Wu et al., 2020) for this problem and pointed out inefficiencies of Wasserstein GAN in the presence
of outliers. We show that our robust OT formulation allows us to estimate the uncontaminated mean
η0 comparably or better than a variety of f -divergence GANs. We also use this simulated setup to
study sensitivity to the regularization hyperparameter λ.

In our second experiment, we present a new application of optimal transport enabled by ROBOT.
Suppose we have collected a curated dataset νm (i.e., we know that it has no outliers)—such data
collection is expensive, and we want to benefit from it to automate subsequent data collection. Let
µn be a second dataset collected “in the wild,” i.e., it may or may not have outliers. We demonstrate
how ROBOT can be used to identify outliers in µn using the curated dataset νm.

4.1 ROBUST MEAN ESTIMATION

Following Wu et al. (2020), we consider a simple generator of the form gθ(x) = x + θ, x ∼
N (0, Id), d is the data dimension. The basic idea of robust mean estimation with GANs is to
minimize various distributional divergences between samples from gθ and observed data simulated
from (1 − ε)N (η0, Id) + εN (η1, Id). The goal is to estimate η0 with θ. To efficiently implement
ROBOT GAN, we use a standard min-max optimization approach: solve the inner max (ROBOT)
and use gradient descent for the outer min parameter. To solve ROBOT, it is straightforward to adopt
any of the prior stochastic regularized OT solvers: the only modification is the truncation of the cost
entries as in equation 2.6. We use the stochastic algorithm for semi-discrete regularized OT from
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(Genevay et al., 2016, Algorithm 2). We summarize ROBOT GAN in Algorithm 3. Line 5 - Line 10
perform the inner optimization where we solve entropy regularized OT dual with truncated cost and
Line 11 - Line 12 perform gradient update of θ.

Algorithm 3 ROBOT GAN

1: Input: robustness regularizion λ, entropic regularization α, data distribution µn ∈ ∆n−1,
supp(µn) = X = [X1, . . . , Xn], steps sizes τ and γ

2: Initialize: Initialize θ = θinit, set number of iterations M and L, i = 0, v = ṽ = 0.
3: for j = 1, . . . ,M do
4: Generate z̃ ∼ N (0, Id) and set z = z̃ + θ.
5: Set the cost vector c ∈ Rn as c(k) = c(Xk, z) ∧ 2λ for k = 1, . . . , n.
6: for i = 1, . . . , L do . solve entropy regularized OT dual
7: Set h← ṽ−c

α and do the normalized exponential transformation u← eh

〈1,eh〉 .
8: Calculate the gradient∇ṽ← µn − u.
9: Update ṽ← ṽ + γ∇ṽ and v← (1/(j + i))ṽ + (j + i− 1/(j + i))v.

10: Do the same transformation of v as in Step 7, i.e. set h← v−c
α and set Π← eh

〈1,eh〉 .
11: Set Π(k) = 0 for k such that C(Xk, z) > 2λ for k = 1, . . . , n.
12: Calculate gradient with respect to θ as ∇θ = 2

[
z
∑
k Π(k)−X>Π

]
13: Update θ ← θ − τ∇θ.
14: Ouput: θ

For the f -divergence GANs (Nowozin et al., 2016) we use the code of Wu et al. (2020) for GANs
with Jensen-Shannon (JS) loss, squared Hellinger (SH) loss and Reverse Kullback-Leibler (RKL)
loss. For the exact expression of these divergences see Table 1 of Wu et al. (2020). We report
estimation error measured by the Euclidean distance between true uncontaminated mean η0 and
estimated mean θ for various contamination distributions in Table 1. ROBOT GAN performs well
across all considered contamination distributions. As the difference between true mean η0 and
contamination mean η1 increases, the estimation error of all methods tends to increase. However,
when it becomes easier to distinguish outliers from clean samples, i.e., η1 = 2 · 15, performance of
ROBOT noticeably improves.

We also compared to the Sinkhorn-based UOT algorithm (Chizat et al., 2018) available in the Python
Optimal Transport (POT) library (Flamary & Courty, 2017); to obtain a UOT GAN, we modified
steps 5-11 of Algorithm 3 for computing Π. Unsurprisingly, both ROBOT and UOT perform simi-
larly: recall equivalence to Formulation 3, which is similar to UOT with TV norm. The key insight of
our work is the equivalence to classical OT with truncated cost, that greatly simplifies optimization
and allows to use existing stochastic OT algorithms. In this experiment, the sample size n = 1000
is sufficiently small for the Sinkhorn-based UOT POT implementation to be effective, but it breaks
in the experiment we present in Section 4.2. We also tried the code of Balaji et al. (2020) based on
CVXPY (Diamond & Boyd, 2016), but it is too slow even for the n = 1000 sample size.

In the previous experiment, we set λ = 0.5. Now we demonstrate empirically that there is a broad
range of λ values performing well. In Figure 2a, we study sensitivity of λ under various contamina-
tion proportions ε holding η0 = 15 and η1 = 5 · 15 fixed. Horizontal lines correspond to λ = ∞,
i.e., vanilla OT. The key observations are: there is a wide range of λ efficient at all contamination
proportions, and ROBOT is always at least as good as vanilla OT (even when there is no contam-
ination ε = 0). In Figure 2b, we present a similar study varying the mean of the contamination
distribution and holding ε = 0.2 fixed. We see that as the contamination distribution gets closer to
the true distribution, it becomes harder to pick a good λ, but the performance is always at least as
good as the vanilla OT (horizontal lines).

4.2 OUTLIER DETECTION FOR DATA COLLECTION

Our robust OT formulation equation 2.5 enables outlier identification. Let νm be a clean dataset
and µn potentially contaminated with outliers. Recall that ROBOT allows modification of one of
the input distributions to eliminate potential outliers. We can identify outliers in µn as follows: if
µn(i)+s∗1(i) = 0, thenXi, the ith point in µn, is an outlier. Instead of directly solving equation 2.5,
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Figure 3: Random sample of outliers detected by ROBOT from a dataset of MNIST digits contami-
nated with Fashion MNIST images.

which may be inefficient, we use our equivalence results and solve an easier optimization problem
equation 2.6, followed by recovering s to find outliers via Algorithm 2.

Let νm be a clean dataset consisting of 10k MNIST digits and µn be a dataset collected “in the
wild” consisting of (different) 8k MNIST digits and 2k Fashion MNIST images. We compute
ROBOT(µn, νm) to identify outlier Fashion MNIST images in µn. For each point in µn we ob-
tain a prediction, outlier or clean, which allows us to evaluate accuracy. ROBOT outlier detection is
90% accurate in this experiment. We also comment on λ selection: since we know that νm is clean,
we can subsample two datasets from it, compute vanilla OT to obtain transportation plan Π and set
λ to be half the maximum distance between matched elements, i.e. 2λ = maxi,j{Cij : Πij > 0},
where C is the cost matrix for the two subsampled datasets. This procedure is essentially estimating
maximum distance between matched clean samples. We also present a random sample of outliers
identified by our method in Figure 3. All of the sampled outliers are Fashion MNIST images, al-
though 90% accuracy suggests that some of the outliers were not identified. Decreasing λ can help
to find more outliers, but may result in some clean samples being mistaken for outliers. We con-
clude that ROBOT can be used to assist in data collection once an initial set of clean data has been
acquired. As we mentioned previously, the Sinkhorn-based UOT POT implementation is too expen-
sive for this experiment due to larger sample size, yielding memory errors on a personal laptop with
16GB RAM.

For comparison, we also consider a heuristic distance-based approach for identifying outliers. We
estimate diameter τ of the set of clean dataset νm by taking the 99th percentile of the pairwise
distance matrix of samples in νm. If outliers and clean data have disjoint support, we can adopt a
simple heuristic: for each sample in the potentially contaminated µn compute an average distance
to the clean samples in νm and declare a sample as an outlier if this average distance is greater than
the diameter τ of the clean data. The accuracy of this procedure is 85.4%, inferior to the ROBOT
accuracy of 90%. The disjoint support assumption justifying the distance-based heuristic might be
too strong in practice. ROBOT continues to be effective even when the supports of clean and outlier
distributions are not easily separable.

5 SUMMARY AND DISCUSSION

We proposed and studied ROBOT, a robust formulation of optimal transport. We showed that al-
though the problem is seemingly asymmetric and challenging to optimize, there is an equivalent
formulation based on cost truncation that is symmetric and compatible with modern stochastic opti-
mization methods for OT.

ROBOT closely resembles unbalanced optimal transport (UOT). In our formulation, we added a
TV regularizer to the vanilla optimal transport problem. This is motivated by the ε-contamination
model. In UOT, the TV regularizer is typically replaced with a KL divergence. Other choices of the
regularizer may lead to new properties and applications. Studying equivalent, simpler formulations
of UOT with different divergences may be a fruitful future work direction.

From the practical perspective, in our experiments we observed no degradation of ROBOT GAN in
comparison to OT GAN, even when there were no outliers. It is possible that replacing OT with
ROBOT may be beneficial for various machine learning applications of OT. Data encountered in
practice may not be explicitly contaminated with outliers, but it often has errors and other deficien-
cies, suggesting that a “no-harm” robustness is desirable.
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A PROOF OF THEOREM 3.1

A.1 PROOF OF DISCRETE VERSION

Proof. Define a matrix Π as:

Π(i, j) =

{
0, if C(i, j) > 2λ

Π∗2(i, j), otherwise

Also define s ∈ Rn and t ∈ Rm as:

s∗1(i) = −
m∑
j=1

Π∗2(i, j)1C(i,j)>2λ

and similarly define:

t∗1(j) =

n∑
i=1

Π∗2(i, j)1C(i,j)>2λ

These vectors corresponds to the row sums and the column sums of the elements of the optimal
transport plan of Formulation 2, where the cost function exceeds 2λ. Note that, these co-ordinates
of the optimal transport plan corresponding to those co-ordinates of cost matrix, where the cost
is greater than 2λ and contribute to the objective value via their sum only, hence any different
arrangement of these transition probabilities with same sum gives the same objective value.

Now based on this Π obtained we construct a feasible solution of Formulation 1 following Algorithm
1:

Π∗1 =

[
0 Π
0 diag(t∗1)

]
The row sums of Π∗1 is:

Π∗11 =

[
µn + s∗1
t∗1

]
and it is immediate from the construction that the column sums of Π∗1 is νm. Also as:

n∑
i=1

s∗1(i) =

m∑
j=1

t∗1(j) =
∑

(i,j):Ci,j>2λ

Π∗2(i, j)

and s∗1 � 0, t∗1 � 0, we have:

1>(µn + s∗1 + t∗1) = 1>p = 1 .

Therefore, we have (Π∗1, s
∗
1, t
∗
1) is a feasible solution of Formulation 1. Now suppose this is not an

optimal solution. Pick an optimal solution Π̃, s̃, t̃ of Formulation 1 so that:

〈Caug, Π̃〉+ λ
[
‖s̃‖1 + ‖t̃‖1

]
< 〈Caug,Π∗1〉+ λ [‖s∗1‖1 + ‖t∗1‖1]

The following two lemmas provide some structural properties of any optimal solution of Formulation
1:

Lemma A.1. Suppose Π∗1, s
∗
1, t
∗
1 are optimal solution for Formulation 1. Divide Π∗1 into four parts

corresponding to augmentation as in algorithm 1:

Π∗1 =

[
Π∗1,11 Π∗1,12

Π∗1,21 Π∗1,22

]
Then we have Π∗1,11 = Π∗1,21 = 0 and Π∗1,22 is a diagonal matrix.

Lemma A.2. If Π∗1, s
∗
1, t
∗
1 is an optimal solution of Formulation 1 then:

1. If Ci,j > 2λ then Π∗1(i, j) = 0.
2. If Ci,j < 2λ for some i and for all 1 ≤ j ≤ n, then s∗1(i) = 0.
3. If Ci,j < 2λ for some j and for all 1 ≤ i ≤ m, then t∗1(j) = 0.
4. If Ci,j < 2λ then s∗1(i)t∗1(j) = 0.

12
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We provide the proofs in the next subsection. By Lemma A.1 we can assume without loss of gener-
ality:

Π̃ =

[
0 Π̃12

0 diag(t̃)

]
Now based on

(
Π̃, s̃, t̃

)
we create a feasible solution namely Π∗2,new of Formulation 2 as follows:

Define the set of indices {i1, · · · , ik} and {j1, . . . , jl} as:

s̃i1 , s̃i2 , . . . , s̃ik > 0 and t̃j1 , t̃j2 , . . . , t̃jl > 0 .

Then by part (4) of Lemma A.2 we have Ciα,jβ > 2λ for α ∈ {1, . . . , k} and β ∈ {1, . . . , l}. Also
by part (2) of Lemma A.2 the value of transport plan at these co-ordinates is 0. Now distribute the
mass of slack variables in these co-ordinates such that the marginals of new transport plan becomes
exactly µn and νm. This new transport plan is our Π∗2,new. Recall that, ‖s̃‖1 = ‖t̃‖1. Hence, here
the regularizer value decreases by 2λ‖s̃‖1 and the cost value increased by exactly 2λ‖s̃‖1 as we are
truncating the cost. Hence we have:

〈Cλ,Π∗2,new〉 = 〈Caug, Π̃〉+ λ
[
‖s̃‖1 + ‖t̃‖1

]
< 〈Caug,Π∗1〉+ λ [‖s∗1‖1 + ‖t∗1‖1]

= 〈Cλ,Π∗2〉

which is contradiction as Π∗2 is the optimal solution of Formulation 2. This completes the proof for
the discrete part.

A.2 PROOF OF EQUIVALENCE FOR TWO SIDED FORMULATION

Here we prove that our two sided formulation, i.e. Formulation 3 (equation 2.7) is equivalent to
Formulation 1 (equation 2.5) for the discrete case. Towards that end, we introduce another auxiliary
formulation and show that both Formulation 1 and Formulation 3 are equivalent to the following
auxiliary formulation of the problem.

Formulation 4:

WR,L,4(p, q) =


minΠ∈Rm×n,s1∈Rm,s2∈Rn 〈C,Π〉+ λ [‖s1‖1 + ‖s2‖1]

subject to Π1n = p+ s1

ΠT 1m = q + s2

Π � 0

(A.1)

First we show that Formulation 1 and Formulation 4 are equivalent in a sense that they have the
same optimal objective value.

Theorem A.3. Suppose C is a cost function such that C(x, x) = 0. Then Formulation 1 and
Formulation 4 has same optimal objective value.

Proof. Towards that end, we show that given one optimal variables of one formulation we can get
optimal variables of other formulation with the same objective value. Before going into details we
need the following lemma whose proof is provided in Appendix B:

Lemma A.4. Suppose Π∗4, s
∗
4,1, s

∗
4,2 are the optimal variables of Formulation 4. Then s∗4,1 � 0 and

s∗4,2 � 0.

Now we prove that optimal value of Formulation 1 and Formulation 4 are same. Let (Π∗1, s
∗
1,1, t

∗
1,1)

is an optimal solution of Formulation 1. Then we claim that (Π∗1, s
∗
1,1, t

∗
1,1) is also an optimal

solution of Formulation 4. Clearly it is feasible solution of Formulation 4. Suppose it is not optimal,
i.e. there exists another optimal solution (Π̃4, s̃4,1, s̃4,2) such that:

〈C, Π̃4〉+ λ(‖s̃4,1‖1 + ‖s̃4,2‖2) < 〈C,Π∗1,12〉+ λ(‖s∗1,1‖1 + ‖t∗1,1‖1)

13



Under review as a conference paper at ICLR 2021

Now based on (Π̃4, s̃4,1, s̃4,2) we construct a feasible solution of Formulation 1 as follows:

Π̃1 =

[
0 Π̃4

0 −diag(s̃4,2)

]
Note that we proved in Lemma A.4 s̃4,2 � 0, hence we have Π̃1 � 0. Now as the column sums of
Π̃4 is q + s̃4,2, we have column sums of Π̃1 = [0 q>]> and the row sums are [(p+ s̃4,1)> s̃>4,2]>.
Hence we take s̃1,1 = s̃4,1 and s̃1,2 = s̃4,2. Then it follows:

〈Caug, Π̃1〉+ λ [‖s̃1,1‖1 + ‖s̃1,2‖1] = 〈C, Π̃4〉+ λ [‖s̃4,1‖1 + ‖s̃4,2‖1]

< 〈C,Π∗1,12〉+ λ
[
‖s∗1,1‖1 + ‖t∗1,1‖1

]
= 〈Caug,Π∗1〉+ λ

[
‖s∗1,1‖1 + ‖t∗1,1‖1

]
This is contradiction as we assumed (Π∗1, s

∗
1,1, t

∗
1,2) is an optimal solution of Formulation 1. There-

fore we conclude (Π∗1, s
∗
1,1, t

∗
1,1) is also an optimal solution of Formulation 4 which further con-

cludes Formulation 1 and Formulation 4 have same optimal values. This completes the proof of the
theorem.

Theorem A.5. The optimal objective value of Formulation 3 and Formulation 4 are same.

Proof. Like in the proof of Theorem A.3 we also prove couple of lemmas.

Lemma A.6. Any optimal transport plan Π∗3 of Formulation 3 has the following structure: If we
write,

Π∗3 =

[
Π∗3,11 Π∗3,12

Π∗3,21 Π∗3,22

]
then Π∗3,11 and Π∗3,22 are diagonal matrices and Π∗3,21 = 0.

Lemma A.7. If s∗3,1, t
∗
3,1, s

∗
3,2, t

∗
3,2 are four optimal slack variables in Formulation 3, then

s∗3,1, t
∗
3,1 � 0 and s∗3,2, t

∗
3,2 � 0.

Proof. The line of argument is same as in proof of Lemma A.4.

Next we establish equivalence. Suppose (Π∗3, s
∗
3,1, t

∗
3,1, s

∗
3,2, t

∗
3,2) are optimal values of Formulation

3. We claim that (Π∗3,12, s
∗
3,1 − s∗3,2, t∗3,1 − t∗3,2) forms an optimal solution of Formulation 4. The

objective value will then also be same as s∗3,1 � 0, s∗3,2 � 0 (Lemma A.7) implies ‖s∗3,1 − s∗3,2‖1 =
‖s∗3,1‖1 + ‖s∗3,2‖1 and similarly t∗3,1 � 0, t∗3,2 � 0 implies ‖t∗3,1 − t∗3,2‖1 = ‖t∗3,1‖1 + ‖t∗3,2‖1.
Feasibility is immediate. Now for optimality, we again prove by contradiction. Suppose they are not
optimal. Then lets say Π̃4, s̃4,1, s̃4,2 are an optimal triplet of Formulation 4. Now construct another
feasible solution of Formulation 3 as follows: Set s̃3,2 = t̃3,2 = 0, s̃3,1 = s̃4,1 and t̃3,1 = s̃4,2. Set
the matrix as:

Π̃3 =

[
0 Π̃4

0 −diag(s̃4,2)

]
Then it follows that

(
Π̃3, s̃3,1, s̃3,2, t̃3,1, t̃3,2

)
is a feasible solution of Formulation 3. Finally we

have:

〈Caug, Π̃3〉+ λ
[
‖s̃3,1‖1 + ‖s̃3,2‖1 + ‖t̃3,1‖1 + ‖t̃3,2‖1

]
= 〈Caug, Π̃3〉+ λ [‖s̃4,1‖1 + ‖s̃4,2‖1]

= 〈C, Π̃4〉+ λ [‖s̃4,1‖1 + ‖s̃4,2‖1]

< 〈C,Π∗3,12〉+ λ
[
‖s∗3,1 − s∗3,2‖1 + ‖t∗3,1 − t∗3,2‖1

]
= 〈Caug,Π∗3〉+ λ

[
‖s∗3,1‖1 + ‖s∗3,2‖1 + ‖t∗3,1‖1 + ‖t∗3,2‖1

]
This contradicts the optimality of (Π∗3, s

∗
3,1, s

∗
3,2, t

∗
3,1, t

∗
3,2). This completes the proof.
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A.3 PROOF OF CONTINUOUS VERSION

Proof. In this proof we denote by F1 the optimization problem of equation equation 2.2 and by
F2 the optimization problem equation equation 2.4. Assume that µn and νm denote the respective
empirical measures relative to µ, ν. From Villani (2009), we know that µn, νn converge weakly to
µ and ν respectively. Therefore, ROBOT2(µn, µ) → 0. Similary for νn and ν. Thus, by triangle
inequality,

lim
n→∞

|F2(µn, νn)− F2(µ, ν)| = 0.

But ROBOT2(µn, νn) = ROBOT1(µn, νn). Therefore, our proof is complete if we can show that

lim
n,m→∞

|F1(µn, νm)− F1(µ, ν)| → 0.

Let S = {s signed measure : µ+ s is a probability measure in Rd}. For s ∈ S , define

W (µ+S, ν) =



minΠ∈F(Rd×Rd)

∫
C(x, y) Π(dx, dy) + λ‖s‖TV

subject to

∫
A

Π(dx, dy) ≥ 0 ∀ A ∈ B(Rd × Rd)

µ(dx) + s(dx)) ≥ 0

∀ B ∈ B(Rd)∫
Rd×C

Π(dx, dy) =

∫
C

ν(dy) ∀ C ∈ B(Rd)

By Lemma A.8, ∃ s ∈ S such that ROBOT (µ, ν) = W (µ + s, ν) + λ‖s‖TV . Let s = s+ − s−,
where s+ and s− are positive measures on Rd. Let ‖s‖TV = γ. Then, ‖s−‖TV = ‖s+‖TV = γ/2.

Then consider X1, . . . , Xn ∼ (P − s−)/(1 − γ), Y1, . . . , Yn ∼ s−/γ, Z1, . . . , Zn ∼ s+/γ. Then
for any bounded continuous function f ,

lim
n→∞

∑
i

f(Xi)/n =

∫
f(x)

(P − s−)

(1− γ)
(dx)

lim
n→∞

∑
i

f(Zi)/n =

∫
f(x)

s+

γ
(dx) (A.2)

Therefore, the distribution given by (P + s)n =
(1− γ)

n

∑
i δXi +

γ

n

∑
i δZi satisfies, (P + s)n

L→
P + s, and therefore from (Villani, 2009), limn→∞WC((P + S)n, νn)→ W (P + S,Q). Here δx
is the Dirac mass at x. Moreover, ‖sn‖ = ‖s‖, where sn satisfies sn =

γ

n
(
∑
i δZi −

∑
i δYi).

Also, ROBOT (µn, νn) ≤ W ((P + s)n, νn) + λ‖s‖TV , and therefore ROBOT2(µ, ν)) =
lim supn→∞ROBOT (µn, νn) ≤ ROBOT (µ, ν).

Now, let s̃n satisfy W1(µn + s̃n, νn) + λ‖s̃n‖TV = ROBOT (µn, νn). Such an s̃n exists by the
proof of the discrete part because µn, νn are discrete measures.

Then, similar to the Step 1 in the proof of Lemma A.8, there exists a probability measure µ⊕ s and
a subsequence {nk}k≥1 such that µnk + snk almost surely converges weakly to µ⊕ s.
Moreover, similar to Step 2 of Lemma A.8 W1(µnk + snk , µ ⊕ s) → 0 as well as ‖snk‖TV →
‖µ⊕ s−µ‖TV . Thus, W1(µnk + snk , νnk) +λ‖snk‖TV →W1(µ⊕ s, ν) +λ‖µ⊕ s−µ‖TV . But
by the proof of the discrete part ROBOT (µnk , νnk) = ROBOT2(µnk , νnk) → ROBOT2(µ, ν).
Therefore, with s = µ⊕ s− µ, W1(µ+ s, ν) + λ‖s‖TV = ROBOT2(µ, ν).

Therefore, ROBOT2(µ, ν) = lim supn→∞ROBOT (µn, νn) ≥ ROBOT (µ, ν). Thus the equal-
ity holds.
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Lemma A.8. Assume that µ, ν is such that
∫
‖x‖dµ,

∫
‖x‖dν < ∞. Moreover, assume that

C(x, y) in equation 2.2 is the l1 norm, i.e., C(x, y) = ‖x− y‖. Then, there exists s with µ+ s being
a probability measure such that

W1(µ+ s, ν) + λ‖s‖TV = ROBOT (µ, ν), (A.3)

where W1 is the Wasserstein-1 norm with the cost function C(·, ·) as mentioned above.

Proof. Let µn, νm be the empirical measures relative to µ, ν respectively. We know that since
µn, νm are discrete, there exists sn satisfying W1(µn + sn, νm) = ROBOT (µn, νm). We provide
the proof in the following steps.

Step 1: Almost surely µ× ν, there exists a subsequence {nk}k≥1 such that {µn + sn}n and {νn}n
is relatively compact.

µ and ν are probability measures on Rd and are therefore tight.
Let Kε be such that Pµ(X /∈ Kε), Pν(Y /∈ Kε) ≤ ε/4.

Consider the empirical distributions νn =
∑
i δYi/n, µn

∑
i δXi/n of ν, µ respectively. Here, Xi ∼

µ and Yi ∼ν .

Fix an ω. Then {X1, . . . , Xn, Y1, . . . , Yn} is fixed. Now by the construction for the discrete case,
sn has support in {X1, . . . , Xn, Y1, . . . , Yn}.
Let Tn be the optimal transport map from µn to νn. Then, for every i ≤ n, there exists a unique
j ≤ n, such that Tn(Xi) = Yj . Define τn : {1, . . . , n} → {1, . . . , n} such that τn(i) = j if
Tn(Xi) = Yj .Then µn + sn =

∑
i δZi/n, where Zi = Xi or Yτn(i) and δx is the Dirac delta mass

at x.

Then, let Z ∼ µn + sn

Pω(Z /∈ Kε|µn + sn) ≤
∑
i

1(Xi /∈Kε)/n+
∑
i

1(Yi /∈Kε)/n (A.4)

Therefore, E(Pω(Z /∈ Kε|µn+sn)) ≤ ε/2. Moreover, V ar(Pω(Z /∈ Kε|µn+sn)) = o(n−1)→ 0.
Therefore, limn→∞ Pµn×νn(Pω(Z /∈ Kε|µn + sn) ≤ ε) → 1. Therefore µn + sn is almost surely
tight and thus by Prokhorov’s Theorem also relatively compact.

Step 2: Therefore, for ω almost surely, there exists a subsequence {nk}k≥1 such that µnk + snk
converges weakly to a limit (dependent on ω) µ ⊕ s which is a probability measure. Moreover,∫
‖x‖d(µnk + snk) < ∞ almost surely. By Bolzano-Weierstrass Theorem, there exists a further

subsequence {nkl}l such that
∫
‖x‖d(µnkl + snkl )→

∫
‖x‖d(µ+ s) almost surely. For the sake of

convenience, without loss of generality, we will replace the sub-subsequence {nkl}l with {nk}k≥1

henceforth.

Thus, by Theorem 6.9 of (Villani, 2009) , W1(µnk + snk , µ ⊕ s) → 0 almost surely. Moreover,
W1(µnk , µ)→ 0 almost surely. Therefore ‖snk‖TV → ‖µ⊕ s− µ‖TV almost surely.

Step 3: Consider an arbitrary S = S+ − S−, such that S+ and S− are positive measures on Rd,
and µ+ S is a probability measure. Let ‖S‖TV = γ. Then, ‖S−‖TV = ‖S+‖TV = γ/2.

Then consider X1, . . . , Xn ∼ (µ− S−)/(1− γ), Y1, . . . , Yn ∼ S−/γ, Z1, . . . , Zn ∼ S+/γ. Then
for any bounded continuous function f ,

lim
n→∞

∑
i

f(Xi)/n =

∫
f(x)

(P − s−)

(1− γ)
(dx)

lim
n→∞

∑
i

f(Zi)/n =

∫
f(x)

s+

γ
(dx) (A.5)

Therefore, the distribution given by (µ + S)n(A) = (1 − γ)
∑
i 1Xi∈A + (γ)

∑
i 1Zi∈A satisfies,

(µ+S)n
L→ µ+S, and therefore from (Villani, 2009), limn→∞W1((µ+S)n, νn)→W1(µ+S, ν).

Moreover, ‖Sn‖TV = ‖S‖TV , where Sn satisfies Sn(A) =
γ

n

∑
i 1Zi∈A −

∑
i 1Yi∈A.
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But, W1(µnk + snk , νnk) + λ‖snk‖TV ≤ W1((µ + S)nk , νnk) + λ‖Snk‖TV . Therefore, taking
limits, W1(µ⊕ s, ν) + λ‖µ⊕ s−µ‖TV ≤W1(µ+S, ν) + λ‖S‖TV , and thus the proof holds with
s = µ⊕ s− µ.

B PROOF OF ADDITIONAL LEMMAS

B.1 PROOF OF LEMMA A.1

Proof. The fact that Π∗1,11 = Π∗1,21 = 0 follows from the fact that Π∗1 � 0 and Π∗11 = Q. To prove
that Π∗1,22 is diagonal, we use the fact that the any diagonal entry the cost matrix is 0. Now suppose
Π∗1,22 is not diagonal. Then define a matrix Π̂ as following: set Π̂11 = Π̂21 = 0, Π̂12 = Π∗1,12 and:

Π̂22(i, j) =

{∑m
k=1 Π∗1,22(k, i), if j = i

0, if j 6= i

Also define ŝ = s∗1 and t̂ as t̂(i) = Π̂22(i, i). Then clearly (Π̂, ŝ, t̂) is a feasible solution of Formu-
lation 1. Note that:

‖t̂‖1 = 1>Π̂221 = 1>Π∗1,221 = ‖t∗1‖1

and by our construction 〈Caug, Π̂〉 < 〈Caug,Π∗1〉. Hence (Π̂, ŝ, t̂) reduces the value of the objective
function of Formulation 1 which is a contradiction. This completes the proof.

B.2 PROOF OF LEMMA A.2

Proof. 1. Suppose Π∗1(i, j) > 0. Then dump this mass to s∗1(j) and make it 0. In this way
〈Caug,Π∗1〉 will decrease by > 2λΠ∗1(i, j) and the regularizer value will increase by atmost
2λΠ∗1(i, j), resulting in overall reduction in the objective value, which leads to a contradiction.

2. Suppose each entry of ith row of C is < 2λ. Then if s∗1(i) > 0, we can distribute this mass in
the ith row such that, s∗1(i) = a1 + a2 + · · · + am with the condition that t∗1(j) ≥ aj . Now we
reduce t∗1 as:

t∗1(j)← t∗1(j)− aj
Hence the value 〈Caug,Π∗1(i, j)〉 will increase by a value < 2λs∗1(i) but the value of regularizer
will decrease by the value of 2λs∗1(i), resulting in overall decrease in the value of objective
function.

3. Same as proof of part (2) by interchanging row and column in the argument.
4. Suppose not. Then choose ε < s∗1(i) ∧ t∗1(j), Add ε to Π∗1(i, j). Hence the cost function value
〈Caug,Π∗1〉 will increase by < 2λε but the regularizer value will decrease by 2λε, resulting in
overall decrease in the objective function.

B.3 PROOF OF LEMMA A.4

Proof. For the notational simplicity, we drop the subscript 4 now as we will only deal with the
solution of Formulation 4 and there will be no ambiguity. We prove the Lemma by contradiction.
Suppose s∗1,i > 0. Then we show one can come up with another solution (Π̃, s̃1, s̃2) of Formulation
4 such that it has lower objective value. To construct this new solution, make:

s̃1,j =

{
s∗1,j , if j 6= i

0, if j = i

Now to change the optimal transport plan, we will only change ith row of Π∗. We subtract
a1, a2, . . . , an ≥ 0 from ith column of Π∗ in such a way, such that none of the elements are negative.
Hence the column sum will be change, i.e. the value of s̃2 will be:

s̃2,j = s∗2,j − aj ∀1 ≤ j ≤ n .
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Now clearly from our construction:
〈C, Π̃〉 ≤ 〈C,Π∗〉

For the regularization part, note that, as we only reduced ith element of s∗1, we have ‖s̃1‖1 =
‖s∗1‖1 − s∗1,i. And by simple triangle inequality,

‖s̃2‖1 ≤ ‖s∗2‖1 + ‖a1‖1 = ‖s∗2‖1 + s∗1,i

by construction ai’s, as ai ≥ 0 and
∑
i ai = s∗1,i. Hence we have:

‖s̃1‖1 + ‖s̃2‖1 ≤ ‖s∗1‖1 − s∗1,i + ‖s∗2‖1 + s∗1,i = ‖s∗1‖1 + ‖s∗2‖1 .

Hence the value corresponding to regularizer will also decrease. This completes the proof.

B.4 PROOF OF LEMMA A.6

Proof. We prove this lemma by contradiction. Suppose Π∗3 does not have the structure mentioned
in the statement of Lemma. Construct another transport plan for Formulation 3 Π̃3 as follows: Keep
Π̃3,12 = Π∗3,12 and set Π̃3,12 = 0. Construct the other parts as:

Π̃3,11(i, j) =

{∑m
k=1 Π∗3,11(i, k) +

∑n
k=1 Π∗3,21(k, i), if i = j

0, if i 6= j

and

Π̃3,22(i, j) =

{∑n
k=1 Π∗3,22(k, i), if i = j

0, if i 6= j

It is immediate from the construction that:

〈Caug, Π̃3〉 ≤ 〈Caug,Π∗3〉

As for the regularization term: Note the by our construction s̃4 will be same as s∗4 as column sum of
Π̃3,22 is same as Π∗3,22. For the other three:

s̃3(i) = Π̃3,11(i, i) =

m∑
k=1

Π∗3,11(i, k) +

n∑
k=1

Π∗3,21(k, i)

s̃2(i) = Π̃3,22(i, i) =

n∑
k=1

Π∗3,22(k, i)

and hence by construction:

‖s̃2‖1 = 1>Π∗3,221 = ‖s∗2‖1 − 1>Π∗3,211 .

‖s̃3‖1 = 1>Π∗3,111 + 1>Π∗3,211 = ‖s∗3‖1
And also by our construction, s̃1 = s∗1 + c where c = (Π∗3,21)>1. As a consequence we have
‖c‖1 = 1>Π∗3,211. Then it follows:

4∑
i=1

‖s̃i‖1 = ‖s∗1 + c‖+ ‖s∗2‖1 − 1>Π∗3,211 + ‖s∗3‖1 + ‖s∗4‖1

≤
4∑
i=1

‖s∗i ‖1 + ‖c‖1 − 1>Π∗3,211

=

4∑
i=1

‖s∗i ‖1

So the objective value is overall reduced. This contradicts the optimality of Π∗3 which completes the
proof.
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C PROOF OF THEOREM 2.1

Proof. The proof is immediate from the Formulation 1. Recall that the Formulation 1 can restruc-
tured as:

ROBOT (µ̃, ν) = inf
P
{OT (P, ν) + λ‖P − µ̃‖TV } .

where the infimum is taking over all measure dominated by some common measure σ (with respect
to which µ, µc, ν are dominated). Hence,

ROBOT (µ̃, ν) ≤ OT (P, ν) + λ‖P − µ̃‖TV
for any particular choice of P . Taking P = µ we get that

ROBOT (µ̃, ν) ≤ OT (µ, ν) + λ‖µ− µ̃‖TV = OT (µ, ν)) + λε‖µ− µc‖TV
Taking P = ν we get ROBOT (µ̃, ν) ≤ λ‖ν − µ̃‖TV and finally taking P = µ̃ we get
ROBOT (µ̃, ν) ≤ OT (µ̃, ν). This completes the proof.
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