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Abstract

Quantization [Alistarh et al., 2017] is an important
(stochastic) compression technique that reduces
the volume of transmitted bits during each com-
munication round in distributed model training.
Suresh et al. [2022] introduce correlated quan-
tizers and show their advantages over indepen-
dent counterparts by analyzing distributed SGD
communication complexity. We analyze the fore-
front distributed non-convex optimization algo-
rithm MARINA [Gorbunov et al., 2022] utilizing
the proposed correlated quantizers and show that it
outperforms the original MARINA and distributed
SGD of Suresh et al. [2022] with regard to the
communication complexity. We significantly re-
fine the original analysis of MARINA without any
additional assumptions using the weighted Hes-
sian variance [Tyurin et al., 2022], and then we
expand the theoretical framework of MARINA to
accommodate a substantially broader range of po-
tentially correlated and biased compressors, thus
dilating the applicability of the method beyond
the conventional independent unbiased compressor
setup. Extensive experimental results corroborate
our theoretical findings.

1 INTRODUCTION

Modern deep neural networks consist of numerous blocks
comprising diverse layers that are arranged in a hierarchi-
cal structure [LeCun et al., 2015]. This complexity leads to
a high demand for data in these networks [Vaswani et al.,
2017, Brown et al., 2020]. Moreover, it is worth noting that
such models exhibit a distinct nonconvex nature [Choroman-
ska et al., 2015]. Hence, there is a requirement to distribute
the data among various computing resources, giving rise to
the challenge of effectively orchestrating distributed [Yang

et al., 2019] model training. Another incentive for adopting
distributed training emerges from the Federated Learning
framework [Li et al., 2020a, Kairouz and et. al, 2019]. In
this scenario, client-owned data is not readily shared among
clients. Consequently, a centralized algorithm becomes re-
sponsible for overseeing the training of multiple clients.
Given that contemporary Machine Learning models have
grown substantially in size, during each round of gradient
descent, every client is required to transmit a dense gradi-
ent vector often comprised of millions of parameters [Li
et al., 2020b]. This places an overwhelming strain on the
communication network. Therefore, it becomes compulsory
to explore techniques capable of diminishing the volume
of bits transmitted over communication channels while pre-
serving the algorithm’s convergence.

There exist various approaches of addressing this problem.
The concept of acceleration or momentum [Nesterov, 1983,
2004] in gradient-type methods has received extensive at-
tention in conventional optimization problems. It aims to
attain quicker convergence rates, thereby reducing the num-
ber of communication rounds [Beck and Teboulle, 2009,
Zhu, 2017, Lan et al., 2019, Kovalev et al., 2019, Li et al.,
2020c]. Deep Learning practitioners commonly rely on
Adam [Kingma and Ba, 2015] or one of its numerous vari-
ants, which, among other techniques, also employ momen-
tum. Local training, which involves having each participat-
ing client perform multiple local optimization steps on their
data before engaging in communication-intensive parameter
synchronization, stands as one of the most practically valu-
able algorithmic components in Federated Learning model
training [Povey et al., 2014, Moritz et al., 2016, McMahan
et al., 2017, Mishchenko et al., 2022, Condat et al., 2024,
Grudzień et al., 2023, Demidovich et al., 2024b].

Driven by the necessity to create distributed stochastic gra-
dient communication-efficient methods in nonconvex sce-
narios, in this paper we consider the optimization problem

min
x∈Rd

[
f(x) =

1

n

n∑
i=1

fi(x)

]
(1)
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where n is the number of clients working in parallel, and fi :
Rd → R is a (potentially nonconvex) function representing
the loss of the model parameterized by weights x ∈ Rd with
respect to the training data stored on client i. We require the
problem (1) to be well-posed:

Assumption 1. The functions f1, . . . , fn : Rd → R are
differentiable. Moreover, f is lower bounded, i.e., there
exists f inf ∈ R such that f(x) ≥ f inf for all x ∈ Rd.

Assumption 2. There exists a constant L+ ≥ 0 such
that 1

n

∑n
i=1 ∥∇fi(x)−∇fi(y)∥2 ≤ L2

+ ∥x− y∥2 , for all
x, y ∈ Rd. To avoid ambiguity, let L+ be the smallest such
number.

Assumption 2 is stronger than L−-Lipschitz continuity of
the gradient of f (by Jensen’s inequality; also, L− ≤ L+):

Assumption 3. There exists a constant L− ≥ 0 such that
∥∇f(x)−∇f(y)∥ ≤ L− ∥x− y∥ , for all x, y ∈ Rd.

We are interested in finding an approximately stationary
point of the nonconvex problem (1). In other words, our
objective is to find a (random) vector x̂ ∈ Rd such that
E
[
∥∇f(x̂)∥2

]
≤ ε2, all while minimizing the amount of

communication between the n clients and the server.

A typical approach for solving the optimization problem (1)
involves employing Distributed Gradient Descent (DGD).
Starting with an initial iterate x0 ∈ Rd and a learning rate
γ > 0, at each iteration t, the server broadcasts the cur-
rent iterate xt ∈ Rd to the clients. Subsequently, each
client computes its gradient ∇fi(x

t) and sends it back
to the server. Finally, the server aggregates all the gradi-
ents and utilizes them to perform the gradient descent step
xt+1 = xt− γ

n

∑n
i=1 ∇fi(x

t), updating the iterate to xt+1.
This process is then repeated. Although DGD is widely
acknowledged as an optimal algorithm for attaining a sta-
tionary point with minimal iterations in smooth nonconvex
problems [Nesterov, 2004], it also places a substantial bur-
den on the communication network. During each commu-
nication round, DGD sends dense gradients to the server.
As mentioned earlier, this level of communication load is
deemed impractical in numerous scenarios. One approach
to address this issue is to employ an unbiased compressor
on the transmitted data [Seide et al., 2014, Alistarh et al.,
2017, Lin et al., 2017, Zhang et al., 2017, Lim et al., 2018,
Alistarh et al., 2018, Wang et al., 2018].

Definition 1. A (possibly randomized) mapping Q : Rd →
Rd is called an unbiased compressor if E [Q(a)] = a and
there exists a constant ω ≥ 0 such that

E
[
∥Q (a)− a∥2

]
≤ ω ∥a∥2 , ∀x ∈ Rd.

If this condition is satisfied for a compressor Q, we shall
write Q ∈ U (ω) .

The subsequent phase in reducing the communication bur-
den within DGD involves the implementation of client-to-
server communication compression. This modification of
DGD is referred to as Distributed Compressed Gradient
Descent (DCGD), and it conducts iterations of the form

xt+1 = xt − γ

n

n∑
i=1

Qt
i

(
∇fi(x

t)
)
,

where Qt
i is the compressor used by the client i at iteration t.

DCGD stands out as one of the simplest distributed methods
that employ compression. More advanced methods include
DIANA [Mishchenko et al., 2019], MARINA [Gorbunov
et al., 2022, Sokolov and Richtárik, 2024, Demidovich et al.,
2024a].

Most of the common compression techniques can be at-
tributed to one of the two classes: sparsification or quanti-
zation. Sparsification [Alistarh et al., 2018, Szlendak et al.,
2021, Demidovich et al., 2023a] methods reduce communi-
cation by only selecting an important sparse subset of the
vectors to broadcast at each step. Highly popular sparsifiers
are TopK and RandK [Beznosikov et al., 2020]. More exam-
ples can be found in the survey Demidovich et al. [2023b].
In the present work we focus on the quantization compres-
sion technique [Alistarh et al., 2017]. When provided with
the gradient vector at a client, we quantize each component
through randomized rounding to a discrete set of values,
preserving the statistical properties of the original vector.
Below we define several widely used quantizers.

Definition 2. Let 1 ≤ q ≤ +∞, a ∈ Rd. Standard dither-
ing operator Dq,k

sta with k levels 0 = lk < lk−1 = 1
k <

. . . < l1 = k−1
k < l0 = 1, is defined as follows. If a = 0,

then Dq,k
sta = 0. If a ̸= 0, let yi

def
= |ai|

∥a∥q
, for all i ∈ [d]. Fix

i, let u ∈ {0, 1, . . . , k − 1} be such that lu+1 ≤ yi ≤ lu.

Then
(
Dq,k

sta

)
i
= ∥a∥q×sign(ai)×ξ(yi), where ξ(yi) = lu

with probability yi−lu+1

lu−lu+1
or ξ(yi) = lu+1 otherwise.

Definition 3 (Natural dithering). Natural dithering opera-
tor Dq,k

nat with k levels is defined in the same way, but with
lk = 0, lk−1 = 1

2k−1 , . . . , l1 = 1
2 , l0 = 1

20 = 1.

In particular, Alistarh et al. [2017] consider QSGD with
independent standard dithering quantizers D2,k

sta.

The major measure of the effectiveness of the distributed
training method is its communication complexity. It is the
result of multiplying the number of communication rounds
required to find x̂ by a properly defined measure of the
amount of communication carried out in each round. Con-
sistent with the standard practice in the literature, we make
the assumption that client-to-server communication con-
stitutes the primary bottleneck, and therefore, we do not
include server-to-client communication in our calculations.



Table 1: Comparison of communication complexities of different distributed methods combined with different quantizers
in the nonconvex regime with homogeneous clients (see Section 3.2), when d ≤ n. In the homogeneous scenario, L− =
L+ = L and L± = 0. Notation: ∆0 = f(x0)− f∗. Abbreviations: CQ = “Correlated Quantizers”, ISCC = “Importance
Sampling Combinatorial Compressors”, IQ = “Independent Quantizers”.

Method Quantizer Communication Complexity Correlated Compressors Reference
DCGD IQ, Def. 6 O

(
∆0dL
ε2

)
✗ Suresh et al. [2022]

DCGD CQ, Def. 7 O
(

∆0dL
ε2

)
✓ Suresh et al. [2022]

MARINA Dq,k
nat, Def. 3 O

(
∆0L
ε2

min
{
d, 1 + d√

n

})
✗ Gorbunov et al. [2022]

MARINA IQ, Def. 6 O
(

∆0L
ε2

min
{
d, 1 + d√

n

})
✗ Gorbunov et al. [2022]

MARINA ISCC, Asm. 6 O
(

∆0d
ε2

min
{
L, L

n
+

√
ω+1Lavg√

n

})
✗ Corollary 4, this work

MARINA CQ, Def. 7 O
(

∆0L
ε2

min
{
d, 1 + d

n

})
✓ Proposition 4, this work

Table 2: Comparison of important characteristics of different quantizers in the nonconvex zero-Hessian-variance regime and
when d ≤ n : bits sent per client and MSE (Mean Square Error, Section 3.1). Notation: D2,k

sta – Standard Dithering, D∞,1
sta –

Ternary Quantization, Dq,k
nat – Natural Dithering.

Quantizer Bits Sent MSE Correlated? Reference
D2,k

sta, Def. 2 O
(
k(k +

√
d)
) √

d
nk

✗ Alistarh et al. [2017]

D∞,1
sta , Def. 2 31 + d log2 3

√
d−1
n

✗ Wen et al. [2017]
Dq,k

nat, Def. 3 31 + d log2(2k + 1)
√

d
n2k−1 ✗ Gorbunov et al. [2022]

IQ, Def. 6 32 + d d∥a∥2
n

, Cor. 1 ✗ Gorbunov et al. [2022]

CQ, Def. 7 32 + d d∥a∥2
n2 , Cor. 2 ✓ Suresh et al. [2022]

ISCC, Asm. 6 O(d)
n

(
A
n2

∑n
i=1

1
wi

−B
)
∥a∥2 , Asm. 6 ✗ Corollary 4, this work

The literature has introduced several distributed methods
more advanced than DCGD, often in conjunction with var-
ious quantization techniques. Horváth et al. [2022] con-
sider DCGD with independent natural dithering quantiz-
ers. Mishchenko et al. [2019], Horváth et al. [2023] study
DIANA with arbitrary unbiased independent quantizers.
Wen et al. [2017] examine distributed SGD algorithm with
D∞,1

sta . To the best of our knowledge, there exists only one
paper [Suresh et al., 2022] that provides an analysis of un-
biased correlated quantizers. However, these quantizers are
integrated with the basic DCGD algorithm, and the opti-
mization problem is exclusively examined in the convex
setting. In Table 1 we compare communication complexi-
ties of the state-of-the-art method MARINA with correlated
quantizers against other proposed combinations of algo-
rithms and quantizers. In fact, DCGD with any quantizers
has a communication complexity of O

(
∆0dL
ε2

)
, and it is

hard to see theoretical advantages of CQ. Our results are
better: MARINA communication complexity is lower than
of DCGD, the proposed combinations with quantizers ISCC
and CQ allow to reduce it even further. Since Lavg can be√
n times smaller than L+, MARINA with ISCC can con-

verge up to
√
n times faster than the original method. This

suggests that we can develop more effective assumptions

for the framework of dependent compressors. In Table 2
we compare the number of bits sent and MSE of differ-
ent quantizers. CQ send roughly the same amount of bits
as its competitors yet they have lower MSE, which allows
MARINA+CQ to achieve lower communication complexity
(as shown in Table 1).

2 CONTRIBUTIONS

First, we highlight our main contributions.

⋄ We extend the analysis of the state-of-the-art distributed
optimization method MARINA [Gorbunov et al., 2022] (see
Algorithm 1) beyond the use of independent quantizers. We
rigorously demonstrate that MARINA achieves faster con-
vergence when employing Correlated Quantizers (CQ) pro-
posed by Suresh et al. [2022] in the zero-Hessian-variance
regime [Szlendak et al., 2021]. Specifically, we establish
the communication complexity of MARINA with CQ and
showcase a significant enhancement compared to MARINA
integrated with strong baseline independent quantizers (see
Table 1; Proposition 4). Our experiments confirm the valid-
ity of our theoretical insights.

⋄ We compare two distributed algorithms that utilize corre-



lated quantizers: MARINA and DCGD (see Table 1; Sec-
tion 4.1). Our analysis reveals that in the zero-Hessian-
variance regime, MARINA exhibits substantially lower com-
munication complexity, making it a superior algorithm. Our
experimental results corroborate the validity of our theoreti-
cal discoveries.

⋄ We demonstrate that CQ from Suresh et al. [2022] exhibit
significantly lower (by a factor of n) MSE compared to their
independent counterparts when applied to homogeneous
data (see Table 2; Corollaries 1 and 2). Furthermore, we
provide insights into why these compressors are particularly
effective when used with MARINA in the zero-Hessian-
variance regime (see Section 3.3).

Our further contributions can be summarized as follows.

We propose a new way to combine CQ with correlated
sparsifiers [Szlendak et al., 2021], allowing for even stronger
compression (see Algorithm 3; Corollary 3).

We expand the scope of our findings by demonstrating
through experiments that they remain applicable beyond the
zero-Hessian-variance regime (see Section 4; Appendix D).

The initial analysis of MARINA was conducted under the
assumption of individual unbiasedness of compressors. We
revise it and demonstrate that equivalent convergence results
can be achieved for a much wider range of Distributed Mean
Estimation algorithms. Additionally, under the weighted
AB-inequality Assumption 6 [Tyurin et al., 2022], we en-
hance the analysis of MARINA (see Algorithm 4) by inves-
tigating its convergence guarantees (see Theorem 2). We
propose an Importance Sampling Combinatorial Compres-
sor which in combination with MARINA allows for an up
to

√
n times faster convergence than the original method

(see Corollary 4; Table 1). Our findings are corroborated by
experiments (see Appendix C.3).

3 MAIN RESULTS

Let us introduce an assumption for the set of compressors
that is used in many results of the paper.

Assumption 4 (Individual Unbiasedness). The random
operators Q1, . . . ,Qn : Rd → Rd are unbiased, i.e.,
E [Qi(a)] = a for all i ∈ {1, 2, . . . , n} and all a ∈ Rd.
If these conditions are satisfied, we write {Qi}ni=1 ∈ Uind.

3.1 AB-INEQUALITY: BETTER CONTROL OF
MSE

Given n vectors a1, . . . , an ∈ Rd, compression vari-
ance or Mean Square Error (MSE) associated with the
set of randomized compressors {Qi}ni=1 is the quan-

tity E
[∥∥ 1

n

∑n
i=1 Qi (ai)− 1

n

∑n
i=1 ai

∥∥2] . In their works,
Suresh et al. [2017, 2022] investigate the problem of dis-
tributed mean estimation under communication constraints

Algorithm 1 MARINA

1: Input: initial point x0 ∈ Rd, stepsize γ > 0, probabil-
ity p ∈ (0, 1], number of iterations T

2: g0 = ∇f(x0)
3: for t = 0, 1, . . . , T − 1 do
4: Sample ct ∼ Bern(p)
5: Broadcast gt to all workers
6: for i = 1, . . . , n in parallel do
7: xt+1 = xt − γgt

8: gt+1
i = ∇fi(x

t+1) if ct = 1, and gt+1
i = gti +

Qi

(
∇fi(x

t+1)−∇fi(x
t)
)

otherwise
9: end for

10: gt+1 = 1
n

∑n
i=1 g

t+1
i

11: end for
12: Output: x̂T chosen uniformly at random from {xt}T−1

t=0

and mainly focus on the task of minimizing the MSE of
quantizers. In fact, compression variance naturally emerges
in the analysis of MARINA (see Algorithm 1), a cutting-
edge distributed algorithm designed for solving nonconvex
optimization problems, and the theoretical communication
complexity of this method linearly depends on the square
root of the compression variance. Therefore, it is crucial
to identify compressors with low MSE when analyzing
MARINA. Nevertheless, there exists a trade-off between
MSE and communication cost. Typically, as MSE increases,
compression becomes more aggressive, but concurrently,
the number of communication rounds also increases. For
this reason, recently, Szlendak et al. [2021] introduced the
following tool for achieving a more precise control of com-
pression variance.

Assumption 5 (AB-inequality). There exist constants
A,B ≥ 0, such that random operators Q1, . . . ,Qn : Rd →
Rd satisfy the inequality

E

∥∥∥∥∥ 1n
n∑

i=1

Qi (ai)−
1

n

n∑
i=1

ai

∥∥∥∥∥
2


≤ A

(
1

n

n∑
i=1

∥ai∥2
)

−B

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

,

for all a1, . . . , an ∈ Rd. If these conditions are satisfied, we
write {Qi}ni=1 ∈ U (A,B) for the set of operators.

Note that the MSE of the estimate 1
n

∑n
i=1 Qi (ai) for

1
n

∑n
i=1 ai on the right-hand side can be viewed as a vari-

ance of the sum of the compressors. The question of interest
here is how correlation between the random compression
operators, or their independence, can affect the MSE. The
following observations were made by Szlendak et al. [2021].
If compressors are unbiased (see Definition 1), then the
AB-inequality holds without any assumption on their inde-
pendence. Generally, requiring independence can lead to a
significant improvement in the constant A. Formally:



Proposition 1. If, for all i ∈ [n], Qi ∈ U (ωi) and
{Qi}ni=1 ∈ Uind, then {Qi}ni=1 ∈ U (maxi{ωi}, 0) . If we
further assume that the compressors are independent, then
{Qi}ni=1 ∈ U

(
1
n maxi{ωi}, 0

)
.

However, it is possible to design correlated unbiased quan-
tizers with an even smaller constant A.

3.2 WHY CORRELATION MAY HELP

It could be feasible to decrease the compression variance
by introducing dependencies between the compressors. The
right-hand side of Assumption 5 can be rewritten as

A

[(
1− B

A

)(
1

n

n∑
i=1

∥ai∥2
)

+
B

A
Var (a1, . . . , an)

]
,

where Var (a1, . . . , an) = 1
n

∑n
i=1 ∥ai −

∑n
i=1 ai∥

2 is the
variance of the vectors {ai}ni=1. It is preferable to design
compressors with B as large as A, since Var (a1, . . . , an)

can be much smaller than 1
n

∑n
i=1 ∥ai∥

2
, This result was

obtained by Szlendak et al. [2021]: PermK sparsifiers intro-
duced in this work are designed so that the sparsified vectors
have zero scalar products, which enforces A = B = 1. Nev-
ertheless, the approach of zeroing out scalar products does
not apply to a quantization technique for the general set of
vectors {ai}ni=1, as quantization does not inherently enforce
sparsity in vectors. Instead, we demonstrate below that a
thoughtfully designed dependence between the unbiased
quantizers can yield an even more substantial enhancement
of the constant A, while the constant B remains compar-
atively smaller and equals zero. Further, we introduce a
regime in which we attain theoretical improvements through
correlation, explain why this regime is more encompassing
than the one involving clients that send homogeneous data
(homogeneous clients regime), and clarify why MARINA
particularly excels within it.

3.3 ZERO-HESSIAN-VARIANCE REGIME

The concept of Hessian variance was introduced by Szlen-
dak et al. [2021] and allowed the authors to refine the com-
munication complexity analysis of MARINA. First, let us
provide a formal definition of it.

Definition 4 (Hessian Variance). Let L± ≥ 0 be the small-
est constant such that

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 − ∥∇f(x)−∇f(y)∥2

≤ L2
± ∥x− y∥2 , x, y ∈ Rd.

The quantity L2
± is called Hessian variance.

Our theoretical results cover the setting when L± = 0. It
extends the case when clients are either homogeneous or
nearly homogeneous with linear perturbations.

Proposition 2. In the homogeneous clients regime Hessian
variance is equal to 0. Moreover, if loss functions on all
clients differ only by a linear term, then Hessian variance is
equal to 0.

The scenario in which L± = 0 holds is particularly advan-
tageous for the MARINA algorithm. Owing to the structure
of the local gradient updates (see line 8 of Algorithm 1), the
vectors ∇fi(x

t+1)−∇fi(x
t) that need to be compressed

and transmitted from clients to the server during the com-
munication round exhibit homogeneity in the zero-Hessian-
variance regime. While achieving the zero-Hessian-variance
regime in practice can be challenging, practical problems
can indeed have L± values very close to zero. We delve
into the theoretical properties of the correlated quantizers
by Suresh et al. [2022] in the context of homogeneous data
and illustrate their advantages over previously proposed
quantizers on homogeneous data.

3.4 SUPERIOR QUANTIZERS FOR MARINA

We start with an introduction to baseline independent quan-
tizers. For simplicity, we initially define them in a one-
dimensional case and outline their properties. We focus on
the homogeneous case where ai = a ∈ Rd for all i ∈ [n].

Definition 5. Suppose that, for all i ∈ [n], ai = a ∈
[l, r], l, r ∈ R. Define independent randomized quantizers
{Qi}ni=1 such that Qi(ai) = r with probability ai−l

r−l and
Qi(ai) = l otherwise, i ∈ [n].

Proposition 3. Quantizers {Qi}ni=1 from Definition 5 are
individually unbiased. The MSE of the quantizers {Qi}ni=1

can be bounded from above in the following way:

E

∥∥∥∥∥ 1n
n∑

i=1

(ai −Qi(ai))

∥∥∥∥∥
2
 ≤ (r − l)2

4n
.

Let us generalize the quantizers from Definition 5 to multi-
ple dimensions.

Definition 6. Assume that each ai = a is a d-dimensional
vector and that Qi quantizes each coordiante independently
as in Definition 5 with l = −∥a∥ , r = ∥a∥ . We’ll refer to
them as Independent Quantization (IQ).

Corollary 1. Suppose each ai ∈ Rd, i ∈ [n]. Then the MSE
of quantizers {Qi}ni=1 of the set of vectors {ai}ni=1 can be
bounded from above in the following way:

E

∥∥∥∥∥ 1n
n∑

i=1

(ai −Qi(ai))

∥∥∥∥∥
2
 ≤ d ∥a∥2

n
.



Algorithm 2 provides a definition of one-dimensional cor-
related quantizers, that generalize their independent coun-
terparts defined above. We aim to establish individual un-
biasedness and bound the MSE of {Qi}ni=1, defined in Al-
gorithm 2, in relation to the set of numbers {ai}ni=1, in the
homogeneous case when ai = a ∈ [l, r], for all i ∈ [n].

Algorithm 2 CQ (ONE-DIMENSIONAL VARIANT) [Suresh
et al., 2022]

1: Input: a1, a2, . . . , an, l, r ∈ R; ∀i ∈ [n], ai ∈ [l, r]
2: Generate π, a random permutation of {0, 1, . . . , n− 1}

3: for i = 1 to n do
4: yi =

ai−l
r−l .

5: Ui = πi

n + γi, where γi has a continuous uniform
distribution U[0, 1/n).

6: Qi(ai) = (r − l)1Ui<yi
.

7: end for
8: Output: 1

n

∑n
i=1 Qi(ai).

Theorem 1. Suppose all the inputs ai = a, i ∈ [n], lie in
the range [l, r]. Then {Qi}ni=1 from Algorithm 2 are individ-
ually unbiased and the following upper bound on the MSE
of the set of quantizers {Qi}ni=1 holds true:

E

∥∥∥∥∥ 1n
n∑

i=1

(ai −Qi(ai))

∥∥∥∥∥
2
 ≤ (r − l)2

4n2
.

The generalization to multiple dimensions is performed in
the same way as in the independent case.

Definition 7. Assume that each ai = a is a d-dimensional
vector and that Qi quantizes each coordiante independently
as in Algorithm 2 with l = −∥a∥ , r = ∥a∥ . We’ll refer to
them as Correlated Quantization (CQ).

Corollary 2. Suppose each ai = a ∈ Rd, i ∈ [n]. Then
{Qi}ni=1 are individually unbiased and the MSE of quantiz-
ers {Qi}ni=1 associated with the set of vectors {ai}ni=1 can
be bounded from above in the following way:

E

∥∥∥∥∥ 1n
n∑

i=1

(ai −Qi(ai))

∥∥∥∥∥
2
 ≤ d ∥a∥2

n2
.

Notice that in both Corollaries 1 and 2, the term ∥a∥2 in
the numerator can be replaced with 1

n

∑n
i=1 ∥ai∥

2. Con-
sequently, IQ belongs to U

(
d
n , 0
)
. Importantly, any client-

wise independent quantization satisfying Assumption 5 will
do so with A = ω̂

n and B = 0, where ω̂ is independent of n.
Conversely, CQ adheres to Assumption 5 with A = d

n2 . As
a result, with a fixed value of d, CQ has an A constant that
is smaller by a factor of O

(
1
n

)
.

Further, we analyze MARINA in the zero-Hessian-variance
regime with independent and correlated quantizers.

Proposition 4. Let L± = 0. Denote by Ccor the communi-
cation complexity per client in MARINA with CQ (Defini-
tion 7). Similarly, denote by Cind the communication com-
plexity per client in MARINA with IQ (Definition 6). Then

Cind

Ccor
=

1 +
√

(1−p)
p

d
4n

1 +
√

(1−p)
p

d
4n2

.

That is, ∀p ∈ [0, 1], Ccor ≤ Cind. In particular, we

show that Ccor = O
(

∆0L
ε2 min

{
d, 1 + d

n

})
and Cind =

O
(

∆0L
ε2 min

{
d, 1 + d√

n

})
.

Experiments suggest that when d = n ≫ 1, the complexity
ratio is approximately 7.29 (see Section B.2). For a more
detailed discussion on the complexities and the conditions
on the relation between d and n under which the ratio can
reach up to 32, please refer to the experimental Section 4.5.

3.5 COMBINATION WITH SPARSIFICATION

Combining different compression techniques often yields
better results than using any single technique on its own
[Safaryan et al., 2021, Wang et al., 2023]. Motivated by this
observation, in [Szlendak et al., 2021, Section 2.4], the au-
thors obtain general results for the composition of indepen-
dent unbiased compressors and PermK sparsifiers [Szlendak
et al., 2021]. We design a new compression Algorithm 3,
incorporating correlated sparsification in the form of PermK
and CQ.

Algorithm 3 PERMK+CQ (NEW)

1: Input: a1, a2, . . . , an ∈ Rd, τ ∈ N
2: Consider the n× d block diagonal matrix with τ blocks

of size n
τ × d

τ filled with ones.
1. Randomly permute the matrix rows, then the

columns to obtain a matrix Mi,j which indicates
if the client i should send its j-th component.

2. Zero out ai,j entries where Mi,j = 0. Scale the
remaining entries by τ .

3. Independently perform CQ (7) within τ groups of
entries that each block was mapped into.

3: Output: sparse, quantized vectors {PQi(ai)}ni=1.

Notice that when τ = n, we obtain PermK sparsifier. On
the other hand, if τ = 1, then the compressor behaves
as CQ (when there is only one block, we do not perform
any permutations). That is, when 1 < τ < n, we indeed
have a compressor which combines CQ and PermK. As
experiments suggest, for some values of L±, PermK+CQ
is better than PermK. It means, that our new compressor is
more robust to the introduced noise than PermK.
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Figure 1: Comparison of CQ, IQ, and DRIVE with MARINA on quadratic optimization tasks with diverse L± values

Corollary 3. The compressors described in Algorithm 3
use 32 + d/τ bits per client and are individually unbiased.
Moreover, if we assume that for each i ∈ [n] : ai = a, then
the mean square error of the quantizers {Qi}ni=1 can be
bounded from above as:

E

∥∥∥∥∥ 1n
n∑

i=1

(ai −Qi(ai))

∥∥∥∥∥
2
 ≤ dτ2 ∥a∥2

n2
.

Comparing this algorithm with CQ in the zero-Hessian-
variance regime, we find that it communicates approxi-
mately τ times less data, albeit with its variance increased
by a factor of τ2.

4 EXPERIMENTS

We compare the performance of MARINA when combined
with Correlated Quantization (CQ, see Definition 7), Inde-
pendent Quantization (IQ, see Definition 6) and DRIVE
[Vargaftik et al., 2021]. The latter serves as a robust non-
correlated quantization baseline. Our primary objective is to
ascertain whether our findings can be practically extended
beyond the zero-Hessian-variance regime. In the plots, we
depict the relationship between the total gradient norm and
the volume of information communicated from clients to the
server. To ensure a fair comparison of the various methods,
we optimized the value of p and fine-tuned the stepsizes in-
dividually for each method and task. Where applicable, the
selected stepsize is shown as a multiplier of the theoretical
stepsize. For details, see Appendix D.3.

In Proposition 4 we prove that in zero-Hessian-variance
regime MARINA+CQ has a lower communication complex-
ity than MARINA+IQ. Below in Section 4.5 we also per-
form a numerical analysis to determine the ratio of commu-
nication complexities for MARINA+CQ and MARINA+IQ
for different d and n. We explore whether it is possible to
achieve a maximal speedup of 32.

4.1 QUADRATIC TASKS WITH VARIOUS L±

We produced a range of quadratic optimization tasks with
varying smoothness constants (see Figure 1). The proce-
dures used to generate these tasks provide us with control
over it (see Appendix for details) as L± values can be reg-
ulated. We opted for d = 1024, n = 128, regularization
λ = 0.001, and noise scale s ∈ {0, 0.5, 1.0}. We can see
that CQ outperforms IQ and is on par with, if not superior
to, DRIVE even in tasks where L± substantially deviates
from 0. We also included DCGD as a baseline.

We established our theory in the zero-Hessian-variance
regime, but it becomes more challenging when L± ̸= 0.
There is no theoretical stepsize for MARINA+CQ, but a
fair comparison is imperative. In the absence of theory, a
common approach is to choose optimal stepsizes for each
method considered. We adjust the stepsizes by selecting the
optimal ones as multiples of theoretical stepsizes by powers
of 2 (see Appendix D.2 for details).

4.2 NON-CONVEX LOGISTIC REGRESSION

We examine MARINA combined with CQ in a non-convex
scenario using a logistic regression problem formulated with
a non-convex regularizer:

f(x) =
1

m

m∑
k=1

log
(
1 + exp

(
−yka

T
k x
))

+ λ

d∑
j=1

x2
j

1 + x2
j

,

where ai ∈ Rd, yi ∈ {−1, 1} denote the training data,
with λ > 0 as the regularization parameter. All our exper-
iments utilized λ = 0.1. We obtained datasets from Lib-
SVM [Chang and Lin, 2011] and partitioned their N entries
into n = d uniform segments. Table 3 provides a summary
of these datasets. Additionally, for reference, we included
DGD (Gradient Descent) in the comparison, which can be
seen as MARINA with no compression. We specifically
choose such setting to test our approach. Notice that, mainly,
it is infeasible to calculate L± for this practical problem. In
general, L± should be different from zero, and we do not



0 1 2 3 4 5
# of bits sent per client 1e5

10 14

10 11

10 8

10 5

10 2

101

f(x
)

2

a9a

0 1 2 3 4 5
# of bits sent per client 1e6

10 15

10 12

10 9

10 6

10 3

100

f(x
)

2

madelon

0 1 2 3 4 5
# of bits sent per client 1e5

10 11

10 9

10 7

10 5

10 3

10 1

101

f(x
)

2

splice
Gradient Descent
MARINA + DRIVE
MARINA + CQ
MARINA + IQ

Figure 2: Comparison of CQ, IQ and DRIVE with MARINA on LibSVM datasets. The points represent the uncompressed
rounds of the algorithm
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Table 3: Datasets and splitting of the data among clients

Dataset n = d N ⌊N/d⌋
a9a 123 32,561 264
madelon 500 2,000 4
splice 60 1,000 16

have a theory for L± ̸= 0. The results are in Figure 2. Our
approach is mostly dominant even in L± ̸= 0 case against
a strong baseline MARINA+DRIVE. We choose optimal
stepsizes as in Section 4.1.

4.3 MULTI-LAYER PERCEPTRON

Experiments with an MLP classifier on the a9a dataset
with 131 clients (see Figure 4), demonstrate that MA-
RINA+CQ exhibits reduced complexity compared to MA-
RINA+DRIVE, DCGD+IQ, MARINA+IQ. MARINA+CQ
accommodates larger step sizes due to lower compres-
sion errors compared to MARINA+IQ, resulting in faster

convergence in terms of loss (also, see Appendix D.2).
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Figure 4: Comparison of CQ, IQ and DRIVE with MARINA
on an MLP training task on the a9a dataset.

4.4 COMBINATION WITH PERMK

As it was mentioned in Section 3.5, combining different
compression techniques, we may obtain better compressors.



In Algorithm 3, we proposed a compressor that combines
PermK with CQ. We empirically measure the performance
of PermK+CQ on the same synthetic quadratic optimization
tasks as in Section 4.1 (see Figure 5). We set d = 1024, n =
3072, τ =

√
d, the regularization λ = 0.001 and s = 0.0.

We choose optimal stepsizes the same way as in Section 4.1.
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Figure 5: Comparison of PermK+CQ, CQ and DRIVE with
MARINA on quadratic optimization task with L± = 0

4.5 NUMERICAL COMPLEXITY ANALYSIS IN
THE D-N PLANE

An Improvement Factor (IF) is a ratio of complexities of
MARINA and GD (see Appendix B). To identify the re-
gion where CQ significantly outperforms IQ, we analyze
the IFs of MARINA as functions of d and n, presuming
we optimally choose the parameter p of the algorithm (see
Appendix D.2.1). From plot (a) of Figure 3, we see that
MARINA+IQ defaults to GD when n ≪ d and achieves
the best possible speedup of x32 (owing to the compressor’s
1-bit per coordinate behavior) when n ≫ d. Conversely, CQ
is distinguished by d = n2, as shown in plot (b) of Figure 3.
Consequently, plot (c) of Figure 3 reveals that CQ surpasses
IQ by up to a factor of x32 when

√
d < n < d.
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A QUANTIZERS IN HOMOGENEOUS DATA REGIME

A.1 ANALYSIS OF INDEPENDENT QUANTIZATION

A.1.1 Proof of Proposition 3

Proof. Let us calculate the first moment of Qi(xi) : for every i ∈ [n], we have that

E [Qi(xi)] =
r(xi − l)

r − l
+

l(r − xi)

r − l
= xi.

Therefore, {Qi}ni=1 are individually unbiased. Further, let us calculate the variance of Qi(xi) : for every i we obtain that

E
[
Q2

i (xi)
]
− (E [Qi(xi)])

2
=

r2(xi − l)

r − l
+

l2(r − xi)

r − l
− x2

i

=
(r − l)2(xi − l)(r − xi)

(r − l)2

= (r − l)2
xi − l

r − l

(
1− xi − l

r − l

)
≤ (r − l)2

4
.

Since the quantizers are independent and identically distributed, we obtain the following bound on the mean square error of
the set {Qi}ni=1 :

E

∥∥∥∥∥ 1n
n∑

i=1

(xi −Qi(xi))

∥∥∥∥∥
2
 =

1

n2

n∑
i=1

E
[
∥Qi(xi)− xi∥2

]
≤ (r − l)2

4n
.

A.1.2 Proof of Corollary 1

Proof. We apply the result of Theorem 1 coordinate-wise and sum the variances.
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A.2 ANALYSIS OF CORRELATED QUANTIZATION

A.2.1 Proof of Theorem 1

Proof. As shown in the proof of Theorem 2 in Suresh et al. [2022], E [Qi(a)] = a for all a ∈ Rd, meaning that they are
individually unbiased. We further analyze the variance in the homogeneous data regime.

We first show the result when l = 0 and r = 1, one can obtain the final result by rescaling the quantizer operation
(r − l) · Qi

(
ai

r−l

)
.

E

( n∑
i=1

a−
n∑

i=1

Qi(a)

)2
 =

n∑
i=1

E
[
(a−Qi(a))

2
]
+

n∑
i=1

∑
j ̸=i

E [(a−Qi(a)) (a−Qj(a))]

=

n∑
i=1

a(1− a) +

n∑
i=1

∑
j ̸=i

E [(a−Qi(a)) (a−Qj(a))]

= na(1− a) +
n∑

i=1

∑
j ̸=i

(
E [Qi(a)Qj(a)]− a2

)

where the second equality uses the fact that 1πi
n +γi<a is a Bernoulli random variable with parameter a. We now calculate

E [Qi(a)Qj(a)] for i ̸= j :

E [Qi(a)Qj(a)] = E
[
1πi

n +γi<a1
πj
n +γj<a

]
= E

[
1πi

n +γi<a1
πj
n +γj<a

(
1πi>πj

+ 1πj>πi

)]
Notice that since δj <

1
n then 1πi

n +γi<a1
πj
n +γj<a

1πi>πj
= 1πi

n +γi<a1πi>πj
. Therefore,

E [Qi(a)Qj(a)] = E
[
1πi

n +γi<a1πi>πj

]
+ E

[
1πj

n +γj<a
1πj>πi

]
.

Let us calculate E
[
1πi

n +γi<a1πi>πj

]
:

E
[
1πi

n +γi<a1πi>πj

]
=

n−1∑
k=0

E
[
1πi

n +γi<a1πi>πj
1πi=k

]
=

n−1∑
k=0

E
[
1nγi<na−k1k>πj

1πi=k

]
indep
=

n−1∑
k=0

E [1nγi<nx−k]E
[
1k>πj1πi=k

]
=

n−1∑
k=0

P (1nγi<na−k)P ({k > πj} ∩ {πi = k}) .

We have that
P ({k > πj} ∩ {πi = k}) = P ({k > πj} |πi = k)P (πi = k) =

k

n (n− 1)
.

Therefore,

E
[
1πi

n +γi<a1πi>πj

]
=

1

n (n− 1)

n−1∑
k=0

kP (1nγi<na−k) .



We have that

P (1nγi<na−k) =


1, if k < ⌊na⌋
na− ⌊na⌋, if k = ⌊na⌋
0, if k > ⌊na⌋.

With that we get

E
[
1πi

n +γi<a1πi>πj

]
=

1

n (n− 1)

⌊na⌋−1∑
k=0

k + ⌊na⌋ (na− ⌊na⌋)


=

1

n (n− 1)

(⌊na⌋ (⌊na⌋ − 1)

2
+ ⌊na⌋ (na− ⌊na⌋)

)
=

⌊na⌋
n (n− 1)

(⌊na⌋ − 1

2
+ na− ⌊na⌋

)
=

⌊na⌋
n (n− 1)

(
na− ⌊na⌋+ 1

2

)
=

na+ (⌊na⌋ − na)

n (n− 1)

(
na− ⌊na⌋+ 1

2

)
=

1

2

(
na2

(n− 1)
− a

n− 1
+

na− ⌊na⌋
n (n− 1)

(⌊na⌋+ 1− na)

)
.

Let ca = (na− ⌊na⌋) (⌊na⌋+ 1− na). We have that:

E
[
1πi

n +γi<a1πi>πj

]
=

1

2

1

n (n− 1)

(
n2a2 − na+ ca

)
Using the symmetry between i and j, we have that: E

[
1πi

n +γi<a1πi>πj

]
= E

[
1πj

n +γj<a
1πj>πi

]
. Therefore,

E [Qi(a)Qj(a)] = E
[
1πi

n +γi<a1πi>πj

]
+ E

[
1πj

n +γj<a
1πj>πi

]
=

1

n (n− 1)

(
n2a2 − na+ ca

)
.

Further,

E [Qi(a)Qj(a)]− a2 =
1

n (n− 1)

(
na2 − na+ ca

)
=

1

n (n− 1)
(−na (1− a) + ca) .

Therefore, we have
n∑

i=1

∑
j ̸=i

(
E [Qi(a)Qj(a)]− a2

)
= −na (1− a) + ca.

With that we get,

E

( n∑
i=1

a−
n∑

i=1

Qi(a)

)2
 = na(1− a) +

n∑
i=1

∑
j ̸=i

(
E [Qi(a)Qj(a)]− a2

)
= na(1− a)− na (1− a) + ca

= ca

= (na− ⌊na⌋) (⌊na⌋+ 1− na)

= (na− ⌊na⌋) (1− (na− ⌊na⌋))

≤ 1

4
.

We get the variance by dividing this equality by n2. Therefore the variance of our quantizers is upper bounded by 1
4n2 .



A.2.2 Proof of Corollary 2

Proof. We apply the result of Theorem 1 coordinate-wise and sum the variances.

A.3 PROOF OF COROLLARY 3

Proof. Let us first show the amount of bits the compressor uses. First we notice that the image of the each block contains n/τ
clients processing the same d/τ coordinates. Thus, quantized vectors require 32 + d/τ bits per client, and the permutations
require no extra communications, since they can be seeded.

We denote Correlated Quantization by Q, PermK by P.

E

∥∥∥∥∥ 1n
n∑

i=1

Qi (Pi (ai))−
1

n

n∑
i=1

ai

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1n
n∑

i=1

Pi (ai)−
1

n

n∑
i=1

ai

∥∥∥∥∥
2


+ E

∥∥∥∥∥ 1n
n∑

i=1

Qi (Pi (ai))−
1

n

n∑
i=1

Pi (ai)

∥∥∥∥∥
2


= E

∥∥∥∥∥ 1n
n∑

i=1

Qi (Pi (ai))−
1

n

n∑
i=1

Pi (ai)

∥∥∥∥∥
2


≤ E

∥∥∥∥∥ 1n
n∑

i=1

Qi (Pi (a))− a

∥∥∥∥∥
2
 .

Notice that in the homogeneous case all the clients are equivalent, so the Correlated Quantization withing the image of each
block can be percieved to use the same set of clients of size n/τ . Let us denote the set of coordinates attributed to the image
of the k-th block as ak,j = ak : j ∈ [d/τ ]. Since Correlated Quantization is independent coordinate-wise, the square error is
additive coordinate-wise and the images of the blocks do not intersect coordinate-wise, we can freely move the sum over the
blocks in and out of the norm.

E

∥∥∥∥∥ 1n
n∑

i=1

Qi(Pi(a))− a

∥∥∥∥∥
2
 =

τ∑
k=1

E

∥∥∥∥∥∥ 1n
n/τ∑
i=1

τQi (ak)− ak

∥∥∥∥∥∥


= E

∥∥∥∥∥∥ τn
n/τ∑
i=1

Qi (a)− a

∥∥∥∥∥∥


=
d ∥a∥2
(n/τ)2

=
dτ2 ∥a∥2

n2
.

B COMPLEXITY ANALYSIS

B.1 PROOF OF PROPOSITION 4

Proof. Szlendak et al. [2021] demonstrated that by integrating MARINA with a compressor that satisfies the AB-inequality
and by choosing the stepsize

γ ≤
(
L− +

√
(1− p)

p

(
(A−B)L2

+ +BL2
±
))−1

,



MARINA can identify a point x̂T , for which E
[
∥f(x̂T )∥2

]
≤ 2∆0

γT . Notice, that in the homogeneous scenario, L− = L+ =
L and L± = 0. Thus, we can rewrite the upper bound on the stepsize

γ ≤ 1

L

(
1 +

√
(1− p)

p
(A−B)

)−1

.

Without quantization, each client will send d coordinates, each composed of 32 bits, which is 32d bits in total. With
Correlated and Independent Quantizations, each client will send d bits, plus the gradient’s norm (32 bits). So 32 + d in total.
In MARINA, the expected number of bits sent per client in each step is

p (32d) + (1− p) (32 + d) .

To achieve an approximately stationary point x̂ such that E
[
∥f(x̂)∥2

]
≤ ε2, we require

T =
2∆0

ε2
L

(
1 +

√
1− p

p
(A−B)

)
algorithm steps. Consequently, the overall communication complexity per client is:

C(p) = (p (32d) + (1− p) (32 + d))T

=
2∆0

ε2
L (p (32d) + (1− p) (32 + d))

(
1 +

√
(1− p)

p
(A−B)

)

=
2∆0

ε2
L (32d)︸ ︷︷ ︸

GD Rate

(
p+ (1− p)

32 + d

32d

)(
1 +

√
(1− p)

p
(A−B)

)
︸ ︷︷ ︸

Improvement Factor

.

Correlated Quantizers
{Qi}i∈[n] ∈ U

(
d
n2 , 0

)
, therefore:

Ccor (p) =
2∆0

ε2
L (32d)

(
p+ (1− p)

32 + d

32d

)(
1 +

√
(1− p)

p

d

4n2

)
.

Applying Lemma 12 from Szlendak et al. [2021], we obtain that Ccor = O
(

∆0L
ε2 min

{
d, 1 + d

n

})
.

Independent Quantizers
{Qi}i∈[n] ∈ U

(
d
4n , 0

)
, therefore:

Cind (p) =
2∆0

ε2
L (32d)

(
p+ (1− p)

32 + d

32d

)(
1 +

√
(1− p)

p

d

4n

)
.

Applying Lemma 12 from Szlendak et al. [2021], we obtain that Cind = O
(

∆0L
ε2 min

{
d, 1 + d√

n

})
.

Clearly, ∀p ∈ [0, 1], Ccor (p) ≤ Cind (p).

B.2 EXTENDED COMPLEXITY ANALYSIS: THE CASE OF N=D

Correlated Quantizers
Given d = n ≫ 1, denoting d

4n2 = 1
4n = b and 32+d

32d = 1
32 + 1

n = a, the complexity can be simplified using the fact that



b → 0 implies p → 0:

−a
√
b

2p3/2
+ (1− a)

(
1 +

√
b

p

)
= 0,

a
√
b

2
= (1− a)

(
p3/2 + p

√
b
)
,

p ≈
(

a

2(1− a)

)2/3

b1/3.

Substituting this into the Improvement Factor over GD, given by IF = Ccor
CGD

, we get:

IFcor = a+ b1/3
((

a(1− a)2/2
)2/3

+
(
2a2(1− a)

)2/3)
+ O

(
b1/3

)
=

=
32 + d

32d
+ O (1) =

1

32
+ O (1) ≈ 0.03125.

Thus, MARINA with Correlated Quantization demands approximately 0.03 times fewer bits communicated than Gradient
Descent to find an ε-solution.

Uncorrelated Quantizers
By setting d = n, we denote d

4n = 1
4 = b and 32+d

32d = 1
32 + 1

d = a. Therefore, the problem of finding the optimal p can be
reduced to minimizing the function

C(p) =
(
p+ (1− p)

(
1

32
+ O(1)

))(
1 +

√
1

4p
− 1

4

)
.

Solving it numerically we get
lim

n=d→∞
p ≈ 0.02105,

leading to
IFind ≈ 0.2277.

Hence, MARINA with Independent Quantization requires approximately 0.23 times fewer bits communicated than Gradient
Descent to find an ε-solution.

The speedup due to correlation is then
IFind

IFcor
≈ 0.2277

0.03125
≈ 7.29.

C IMPROVED ANALYSIS OF MARINA

Szlendak et al. [2021] analyzed the MARINA algorithm under the assumption of individual unbiasedness (4). This algorithm
employs compressed vectors to compute their average. While the assumption of individual unbiasedness guarantees the
unbiasedness of the average when using independent compressors, allowing for correlated compressors at times offers a
guarantee of the average’s unbiasedness even without the need for individual unbiasedness. Moreover, similar to Tyurin et al.
[2022], we can further refine the assumption with weights, allowing for even more sophisticated compressors.

Assumption 6 (Weighted AB-Inequality [Tyurin et al., 2022]). Consider a random mapping S : Rd × . . . × Rd → Rd

to which we refer as “combinatorial compressor”, such that, for all ai ∈ Rd, i ∈ [n], E [S (a1, . . . , an)] =
1
n

∑n
i=1 ai.

Assume that there exist A,B ≥ 0 and weights w1, . . . , wn ∈ R+ :
∑n

i=1 wi = 1, such that, for all ai ∈ Rd, i ∈ [n],

E

∥∥∥∥∥S (a1, . . . , an)−
1

n

n∑
i=1

ai

∥∥∥∥∥
2
 ≤ A

n

n∑
i=1

1

nwi
∥ai∥2 −B

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

.

The set of combinatorial compressors that satisfy this assumption is denoted by S (A,B, {wi}ni=1) .



Assumption 7. Given a set of weights w1, . . . , wn ∈ R+ :
∑n

i=1 wi = 1, let L+,w ≥ 0 be the smallest constant such that
1
n

∑n
i=1

1
nwi

∥∇fi(x)−∇fi(y)∥2 ≤ L2
+,w ∥x− y∥2 , for all x, y ∈ Rd.

Assumption 8. Given a set of weights w1, . . . , wn ∈ R+ :
∑n

i=1 wi = 1, let L2
±,w be the smallest constant such that

1

n

n∑
i=1

1

nwi
∥∇fi(x)−∇fi(y)∥2 − ∥∇f(x)−∇f(y)∥2 ≤ L2

±,w ∥x− y∥2 , x, y ∈ Rd.

We refer to the quantity L2
±,w by the name of weighted Hessian variance.

We refine the analysis of MARINA under Assumption 6.

Theorem 2. Suppose that St ∈ S (A,B, {wi}ni=1) , for all t ∈ N, and that Assumptions 1, 6, 7 and 8 hold. Then, for all

T > 0 and for the stepsize 0 < γ ≤
(
L− +

√
1−p
p

(
(A−B)L2

+,w +BL2
±,w

))−1

, the iterates produced by MARINA

satisfy E
[∥∥∇f(x̂T )

∥∥2] ≤ 2∆0

γT where ∆0 = f(x0)− f∗ and x̂T is chosen uniformly at random from x0, x1, . . . , xT−1.

This contribution fundamentally shares the same goal as the contribution with the analysis of MARINA with correlated
quantizers: we replace the prevalent framework of individual standalone compressors found in existing literature with a
framework of dependent compressors. In the first contribution, quantizers are correlated, whereas in the second contribution,
the compressors are not necessarily individually unbiased, but their average is.

It was originally used for analyzing sampling schemes combined with the PAGE method [Li et al., 2021] in non-distributed
optimization (see [Tyurin et al., 2022]). However, we employ it for compressors and improve the communication complexity
of a different method, MARINA, which is used in distributed optimization. Our work demonstrates that parameters such as
L±,w and L+,w play a pivotal role in influencing the convergence of this variance-reduced algorithm.

Furthermore, the AB-inequality, even when used independently, proves useful for simpler problems of MSE minimization.
It decomposes the bound on the MSE in a natural way, allowing us to compare and analyze different sets of compressors,
and it is generally tight.

Proof of Theorem 2. In the proof, we follow closely the analysis of [Gorbunov et al., 2022] and adapt it to utilize the
power of weighted Hessian variance (Assumption 8) and weighted AB assumption (Assumption 6). We bound the term
E
[∥∥gt+1 −∇f(xt+1)

∥∥2] in a similar way to [Gorbunov et al., 2022], but make use of the weighted AB assumption. Other
steps are essentially identical, but refine the existing analysis through weighted Hessian variance.

First, we recall the following lemmas.

Lemma 1 (Li et al. [2021]). Suppose that L− is finite and let xt+1 = xt − γgt. Then for any gt ∈ Rd and γ > 0, we have

f(xt+1) ≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − ( 1

2γ
− L−

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥gt − xt
∥∥2 . (2)

Lemma 2 (Richtárik et al. [2021]). Let a, b > 0. If 0 ≤ γ ≤ 1√
a+b

, then aγ2 + bγ ≤ 1. Moreover, the bound is tight up to

the factor of 2 since 1√
a+b

≤ min
{

1√
a
, 1
b

}
≤ 2√

a+b
.

Next, we get an upper bound of E
[∥∥gt+1 −∇f(xt+1)

∥∥2∣∣∣xt+1
]
.

Lemma 3. Let us consider gt+1 from Algorithm 1 and assume, that Assumptions 1, 4, 6, 7 and 8 hold, then

E
[∥∥gt+1 −∇f(xt+1)

∥∥2∣∣∣xt+1
]

≤ (1− p)
(
(A−B)L2

+,w +BL2
±,w

) ∥∥xt+1 − xt
∥∥2

+(1− p)
∥∥gt −∇f(xt)

∥∥2 . (3)



Proof. In the view of definition of gt+1, we get

E
[∥∥gt+1 −∇f(xt+1)

∥∥2∣∣∣xt+1
]

= (1− p)E
[∥∥gt + St

(
{∇fi(x

t+1)−∇fi(x
t)}ni=1

)
−∇f(xt+1)

∥∥2∣∣∣xt+1
]

= (1− p)E
[∥∥St

(
{∇fi(x

t+1)−∇fi(x
t)}ni=1

)
−∇f(xt+1) +∇f(xt)

∥∥2∣∣∣xt+1
]

+ (1− p)
∥∥gt −∇f(xt)

∥∥2 .
In the last inequality we used unbiasedness of St. Next, from weighted AB inequality, we have

E
[∥∥gt+1 −∇f(xt+1)

∥∥2∣∣∣xt+1
]

≤ (1− p)E
[∥∥St

(
{∇fi(x

t+1)−∇fi(x
t)}ni=1

)
−∇f(xt+1) +∇f(xt)

∥∥2∣∣∣xt+1
]

+ (1− p)
∥∥gt −∇f(xt)

∥∥2
≤ (1− p)

(
A

n

(
n∑

i=1

1

nwi

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2)−B

∥∥∇f(xt+1)−∇f(xt)
∥∥2)

+ (1− p)
∥∥gt −∇f(xt)

∥∥2
= (1− p)

(
(A−B)

(
n∑

i=1

1

n2wi

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2)

+B

(
n∑

i=1

1

n2wi

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2 − ∥∥∇f(xt+1)−∇f(xt)

∥∥2))
+ (1− p)

∥∥gt −∇f(xt)
∥∥2 .

Using the definition of L+,w and L±,w, we get

E
[∥∥gt+1 −∇f(xt+1)

∥∥2] ≤ (1− p)
(
(A−B)L2

+,w +BL2
±,w

) ∥∥xt+1 − xt
∥∥2

+ (1− p)
∥∥gt −∇f(xt)

∥∥2 .
We are ready to prove Theorem 2. Defining

Φt def
= f(xt)− f inf +

γ

2p

∥∥gt −∇f(xt)
∥∥2 ,

L̂2 def
= (A−B)L2

+,w +BL2
±,w,

and using inequalities (2) and (3), we get

E
[
Φt+1

]
≤ E

[
f(xt)− f inf − γ

2

∥∥∇f(xt)
∥∥2 − ( 1

2γ
− L−

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥gt −∇f(xt)
∥∥2]

+
γ

2p
E
[
(1− p)L̂2

∥∥xt+1 − xt
∥∥2 + (1− p)

∥∥gt −∇f(xt)
∥∥2]

= E
[
Φt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]
+

(
γ(1− p)L̂2

2p
− 1

2γ
+

L−

2

)
E
[∥∥xt+1 − xt

∥∥2]
≤ E

[
Φt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2] ,



where in the last inequality we use
γ(1− p)L̂2

2p
− 1

2γ
+

L

2
≤ 0,

following from the stepsize choice and Lemma 2.

Summing up inequalities E
[
Φt+1

]
≤ E [Φt]− γ

2E
[
∥∇f(xt)∥2

]
for t = 0, 1, . . . , T − 1 and rearranging the terms, we get

1

T

T−1∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 2

γT

T−1∑
t=0

(
E
[
Φt
]
− E

[
Φt+1

])
=

2
(
E
[
Φ0
]
− E

[
ΦT
])

γT
≤ 2∆0

γT
,

since g0 = ∇f(x0) and ΦT ≥ 0. Finally, using the tower property and the definition of x̂T from Algorithm 4, we obtain the
desired result.

Theorem 2 is proven.

C.1 EXAMPLE: DISTRIBUTED MEAN ESTIMATION

Distributed Mean Estimation algorithms are commonly assessed based on their MSE [Suresh et al., 2017, Mayekar and
Tyagi, 2019, Vargaftik et al., 2021, Suresh et al., 2022], with it often being bounded by a factor of its input’s average square
norm. Naturally, such algorithms fit into Weighted AB-inequality with certain A, uniform weights wi =

1
n and B = 0,

allowing for their incorporation into MARINA, in accordance with Theorem 2.

C.2 EXAMPLE: IMPORTANCE SAMPLING

In this example, we consider a combinatorial compressor which is a composition of unbiased independent compressors
verifying Definition 1, with importance sampling [Tyurin et al., 2022].

Let us recall the definition. Fix τ > 0. For all k ∈ [τ ], we define i.i.d. random variables

χk =


1 with probability q1

2 with probability q2
...

n with probability qn,

where (q1, . . . , qn) ∈ Sn (simple simplex). A sampling

S(a1, . . . , an)
def
=

1

τ

τ∑
k=1

aχk

nqχk

is called the Importance sampling. Using the result from Tyurin et al. [2022], we get:

E

∥∥∥∥∥1τ
τ∑

k=1

aχk

nqχk

− 1

n

n∑
i=1

ai

∥∥∥∥∥
2
 =

1

τ

 1

n

n∑
i=1

1

nqi
∥ai∥2 −

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2
 .

In particular for τ = 1 we get:

E

∥∥∥∥∥S(a1, . . . , an)−
1

n

n∑
i=1

ai

∥∥∥∥∥
2
 =

1

n

n∑
i=1

1

nqi
∥ai∥2 −

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

. (4)

With this method, instead of all n clients participating in the compressed rounds, only one client (selected randomly based
on its “importance”) sends their compressed vector. Next we establish whether a composition of unbiased compressors with
importance sampling satisfies Assumption 6.



Lemma 4. Let us assume that an importance sampling function S satisfies (4) with probabilities qi, and some random
compressor Q satisfies Definition 1. Then

E

∥∥∥∥∥S (Q (a1) , . . . ,Q (an))−
1

n

n∑
i=1

ai

∥∥∥∥∥
2
 ≤ (1 + ω)

n2

n∑
i=1

1

qi
∥ai∥2 −

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

.

Thus, a composition of unbiased independent compressors with importance sampling with τ = 1 yields a combinatorial

compressor S ∈ S
(
ω + 1, 1,

{
Li∑n
i=1 Li

}n

i=1

)
.

Proof. Using tower property we have

E

∥∥∥∥∥S (Q (a1) , . . . ,Q (an))−
1

n

n∑
i=1

ai

∥∥∥∥∥
2
 = E

∥∥∥∥∥S (Q (a1) , . . . ,Q (an))−
1

n

n∑
i=1

Q (ai)

∥∥∥∥∥
2


+ E

∥∥∥∥∥ 1n
n∑

i=1

Q (ai)−
1

n

n∑
i=1

ai

∥∥∥∥∥
2
 .

Let us bound the second term:

E

∥∥∥∥∥S (Q (a1) , . . . ,Q (an))−
1

n

n∑
i=1

Q (ai)

∥∥∥∥∥
2


≤ 1

n

n∑
i=1

1

nqi
E
[
∥Q (ai)∥2

]
− E

∥∥∥∥∥ 1n
n∑

i=1

Q (ai)

∥∥∥∥∥
2


=
1

n

n∑
i=1

1

nqi
E
[
∥Q (ai)− ai∥2

]
+

1

n

n∑
i=1

1

nqi
∥ai∥2 − E

∥∥∥∥∥ 1n
n∑

i=1

Q (ai)

∥∥∥∥∥
2


≤ (1 + ω)
1

n

n∑
i=1

1

nqi
∥ai∥2 − E

∥∥∥∥∥ 1n
n∑

i=1

Q (ai)

∥∥∥∥∥
2


= (1 + ω)
1

n

n∑
i=1

1

nqi
∥ai∥2 − E

∥∥∥∥∥ 1n
n∑

i=1

Q (ai)− ai

∥∥∥∥∥
2
−

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

.

Therefore

E

∥∥∥∥∥S (Q (a1) , . . . ,Q (an))−
1

n

n∑
i=1

ai

∥∥∥∥∥
2
 = E

∥∥∥∥∥S (Q (a1) , . . . ,Q (an))−
1

n

n∑
i=1

Q (ai)

∥∥∥∥∥
2


+ E

∥∥∥∥∥ 1n
n∑

i=1

Q (ai)−
1

n

n∑
i=1

ai

∥∥∥∥∥
2


≤ (1 + ω)

n2

n∑
i=1

1

qi
∥ai∥2 −

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

.

Theorem 3. Let Assumptions 1, 7, 8 hold. Let Assumption 3 hold for all fi with Li, i ∈ [n]. Given combinatorial compressors

based on importance sampling S ∈ S
(
ω + 1, 1,

{
Li∑n
i=1 Li

}n

i=1

)
, assume that 0 < γ ≤

(
L− + Lavg

√
1−p
p (ω + 1)

)−1



where Lavg = 1
n

∑n
i=1 Li. Then for all T ≥ 0 the iterates produced by MARINA satisfy E

[∥∥∇f(x̂T )
∥∥2] ≤ 2∆0

γT , where

∆0 = f(x0)− f∗ and x̂T is chosen uniformly at random from x0, x1, . . . , xT−1.

Proof of Theorem 3. From [Tyurin et al., 2022, Section F], we know that by setting qi =
Li∑n
i=1 Li

for importance sampling,

we obtain a sampling with L2
+,w = L2

±,w =
(
1
n

∑n
i=1 Li

)2
satisfying Assumptions 7 and 8 with wi =

Li∑n
i=1 Li

. The proof
is then complete by applying Theorem 2 and Lemma 4.

Theorem 3 is proven.

Corollary 4. Suppose assumptions of Theorem 3 hold. Then the communication complexity of a run of MARINA method
with importance sampling combinatorial compressors in order to reach an approximately stationary point is upper bounded
by O

(
∆0

ε2 min
{
dL−,

dL−
n +

d
√
ω+1Lavg√

n

})
.

Proof of Corollary 4. To get an ε-solution it’s sufficient to have T iterations such that:

2∆0

γT
< ε2 ⇐⇒ 2∆0

γε2
< T.

By taking γ =
(
L− + Lavg

√
1−p
p (ω + 1)

)−1

, we get T > 2∆0

ε2

(
L− + Lavg

√
1−p
p (ω + 1)

)
.

Since we’re doing an importance sampling with τ = 1, each round, with a probability 1 − p, only one client sends, on
average, β = O(1) bits per coordinate. So the number of bits sent by round by a client is on average:

(
(1− p) β

n + 32p
)
d.

The total complexity over all iterations is:(
(1− p)

β

n
+ 32p

)
d× T =

2∆0

ε2
d

(
(1− p)

β

n
+ 32p

)(
L− + Lavg

√
1− p

p
(ω + 1)

)
.

In particular if we take p = 1
32n we get a complexity of O

(
∆0

ε2

(
dL−
n +

d
√
ω+1Lavg√

n

))
and if we take p = 1 we get a

communication complexity O
(

∆0

ε2 dL−

)
.

Therefore, the communication complexity is upper-bounded by O
(

∆0

ε2 min
{
dL−,

dL−
n +

d
√
ω+1Lavg√

n

})
.

Corollary 4 is proven.

Since Lavg can be
√
n times smaller than L+, MARINA with importance sampling can converge up to

√
n times faster than

the original method.

C.3 EXPERIMENTS: WEIGHTED MARINA

We synthesized various quadratic optimization tasks with different smoothness constants Li (see Figure 6). We choose
d = 1024, n = 128, the regularization λ = 0.001, and the noise scale s ∈ {0.0, 10.0}. We generated tasks so that the
difference between maxi Li and mini Li increases. Our experiments show that in various regimes MARINA combined with
ISCC based on DRIVE has lower communication complexity than MARINA simply combined with DRIVE.

D ADDITIONAL EXPERIMENTS DETAILS

D.1 DESCRIPTION OF COMPRESSORS

Table 4 provides a comparative analysis of the compressors used in all the experiments. Notably, DRIVE transmits an
equivalent number of bits per coordinate as CQ and IQ, given d = 2k for some integer k. To ensure a balanced comparison,
we aim to choose d as a power of 2 wherever possible.
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Figure 6: Comparison of DRIVE with or without Importance Sampling (IS) with MARINA on quadratic optimization tasks
with diverse L± values

Algorithm 4 MARINA with combinatorial compression

1: Input: initial point x0 ∈ Rd, stepsize γ > 0, probability p ∈ (0, 1], number of iterations T
2: g0 = ∇f(x0)
3: for t = 0, 1, . . . , T − 1 do
4: Sample ct ∼ Bern(p)
5: xt+1 = xt − γgt

6: Generate a combinatorial compressor St

7: gt+1 = ∇f(xt+1) if ct = 1, and gt+1 = gt + St
(
{∇fi(x

t+1)−∇fi(x
t)}ni=1

)
otherwise

8: end for

D.2 OPTIMAL SELECTION OF PARAMETERS

D.2.1 Identifying the Optimal Probability p

Our objective is to determine the optimal probability popt that reduces the communication complexity to its minimum. This
is described by the equation:

C(p) = 2∆0

ε2
(32dp+ α (1− p))

(
L− +

√
(1− p)

p

(
(A−B)L2

+ +BL2
±
))

,

where α represents the expected total number of bits communicated to the server during the compressed round of MARINA.
When B = 0, which is the case for quantization, the expression simplifies to:

C(p) = 2∆0

ε2
(32dp+ α (1− p))

(
L− + L+

√
(1− p)

p
A

)
.

We solve this problem numerically. This takes into account each problem’s L+, L−, and each compressor’s α, A to obtain
popt. Specifically for CQ and its variants where L± ̸= 0, A isn’t explicitly defined and we extrapolate the equations from
the zero-Hessian-variance regime.

D.2.2 Optimization of the Step Size

Having determined the value of p, we proceed to increase the step size. We increment the step size in multiples of 2 (2, 4, 8,
etc.) of the theoretically optimal step size. Our aim is to identify the step size that ensures the algorithm’s best performance
at 4 · 106 bits communicated from each client to the server. That number was chosen as sufficiently large to demonstrate
relative convergence between different algorithms. The convergence plots, as well as details about the selected optimal step
sizes can be found in Figure 7.



Table 4: Comparison of the compressors used: A and B constants from AB-inequality 5 and the number of bits sent per
client

Compressor A B # of bits per client
CQ (Definition 7) d/(4n2) 0 32 + d
IQ (Definition 6) d/(4n) 0 32 + d
DRIVE [Vargaftik et al., 2021] (π/2− 1)/n 0 32 + 2⌈log2 d⌉

No compression 0 0 32 · d
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Figure 7: Convergence of CQ, IQ, and DRIVE with MARINA with different step sizes on quadratic optimization tasks with
diverse L± values

In Figure 8 we provide the optimal stepsize selection procedure for the MLP classifier experiment on the a9a dataset,
involving 131 clients. The largest step size was chosen such that the median of five optimization runs still converged.
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Figure 8: The optimal step size selection procedure for the MLP optimization problem. The largest step size was selected for
which the median out of five optimization runs still converged.



Algorithm 5 GENERATE QUADRATIC OPTIMIZATION TASK WITH CONTROLLED L± [Tyurin et al., 2022]

1: Input: number nodes n, dimension d, regularizer λ, and noise scale s.

2: for i = 1 to n do
3: Generate random noises νsi = 1 + sξsi and νbi = sξbi , i.i.d ξsi , ξ

b
i ∼ NormalDistribution(0, 1).

4: Take vector bi =
νs
i

4

(
−1 + νbi , 0, . . . , 0

)
∈ Rd.

5: Take the initial tridiagonal matrix

Ai =
νsi
4


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ∈ Rd×d.

6: end for
7: Take the mean of matrices A = 1

n

∑n
i=1 Ai.

8: Find the minimum eigenvalue λmin (A).
9: for i = 1 to n do

10: Update matrix Ai = Ai + (λ− λmin (A)) I.
11: end for
12: Take starting point x0 = (

√
d, 0, . . . , 0).

13: Output: matrices A1, . . . ,An, vectors b1, . . . , bn, starting point x0.

Algorithm 6 GENERATE QUADRATIC OPTIMIZATION TASK WITH CONTROLLED Li [Tyurin et al., 2022]

1: Input: number nodes n, dimension d and noise scale s.

2: for i = 1 to n do
3: Generate random noises νsi = 1 + sξsi , i.i.d ξsi ∼ ExponentialDistribution(1).
4: Generate random noises νbi = sξbi , i.i.d ξbi ∼ NormalDistribution(0, 1).
5: Take vector bi =

(
−1 + νbi , 0, . . . , 0

)
∈ Rd.

6: Take the initial tridiagonal matrix

Ai =
νsi
4


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ∈ Rd×d.

7: end for
8: Take starting point x0 = (

√
d, 0, . . . , 0).

9: Output: matrices A1, . . . ,An, vectors b1, . . . , bn, starting point x0.

D.3 QUADRATIC OPTIMIZATION TASKS GENERATION

Similar to Tyurin et al. [2022], we provide the algorithms used to generate artificial quadratic optimization tasks. Algorithm 5
and Algorithm 6 allow us to control the smoothness constants L± and Li, respectively, via the noise scales.



E AUXILIARY FACTS

E.1 PROOF OF PROPOSITION 2

Proof. Since all fi(x), i ∈ [n], are equal to f(x), we have that

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 = ∥∇f(x)−∇f(y)∥2 , x, y ∈ Rd. (5)

It immediately implies that the Hessian variance L2
± is equal to zero.

In case when functions are identical up to some random linear perturbation, assume that, for i ∈ [n], fi(x) = φ(x)+b⊤i x+ci,
where φ(x) : Rd → R is a differentiable function, bi ∈ Rd, ci ∈ R. Observe that in this case (5) also holds true, and,
therefore, L2

± = 0.
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