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SUMMARY
Genomic Foundation Models (GFMs), such as Evolutionary Scale Modeling (ESM), have demon-

strated significant success in variant effect prediction. However, their adversarial robustness re-
mains largely unexplored. To address this gap, we propose SafeGenes: a framework for Secure
analysis of genomic foundation models, leveraging adversarial attacks to evaluate robustness

against both engineered near-identical adversarial Genes and embedding-space manipulations.

In this study, we assess the adversarial vulnerabilities of GFMs using two approaches: the Fast
Gradient Sign Method (FGSM) and a soft prompt attack. FGSM introduces minimal pertur-
bations to input sequences, while the soft prompt attack optimizes continuous embeddings to
manipulate model predictions without modifying the input tokens. By combining these tech-
niques, SafeGenes provides a comprehensive assessment of GFM susceptibility to adversarial
manipulation. Targeted soft prompt attacks induced severe degradation in MLM-based shal-
low architectures such as ProteinBERT, while still producing substantial failure modes even in
high-capacity foundation models such as ESM1b and ESM1v. These findings expose critical vul-
nerabilities in current foundation models, opening new research directions toward improving their

security and robustness in high-stakes genomic applications such as variant effect prediction.
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Advances in large language models have transformed the way we analyze language, images,
and scientific data—and they are now reshaping biomedicine. Genomic foundation models
(GFMs), which apply language modeling principles to DNA and protein sequences, are
emerging as powerful tools to predict the functional effects of genetic mutations. These
models promise to accelerate the diagnosis of inherited diseases, personalize treatments,
and uncover novel insights into human biology. However, with increasing adoption in
clinical genomics, the question arises: how secure and trustworthy are these models when
faced with unexpected or malicious inputs?

In this study, we present SafeGenes, a framework to evaluate the adversarial robustness
of GFMs. We show that these models, despite their impressive performance, remain
vulnerable to carefully crafted perturbations—either in the form of subtle changes to in-
put sequences or imperceptible manipulations of their internal prompt structure. Our
targeted soft prompt attacks can cause confident misclassification of benign variants, re-
vealing latent vulnerabilities that are not captured by traditional robustness tests. These
vulnerabilities are particularly concerning in medical contexts, where decisions influenced
by model outputs can directly impact patient outcomes.

Beyond demonstrating specific failure cases, our findings have broader implications for the
future of trustworthy Al in genomics. Current defense mechanisms, which rely on input-
level checks or confidence scores, may not suffice when attacks operate within the semantic
space of the model itself. Our work suggests a path forward: integrating robustness
evaluation into the development cycle of genomic Al systems and designing future defenses
that monitor changes in internal representation space. Just as medical instruments must
pass rigorous safety tests, genomic models must be stress-tested for reliability before
clinical use. SafeGenes is a step toward that future.

INTRODUCTION

Genomic Foundation Models (GFMs), such as Evolutionary Scale Modeling (ESM), have rev-
olutionized the field of genomics by providing powerful tools for variant effect prediction and
genomic sequence analysis. These models leverage large-scale data and sophisticated architec-
tures to deliver high accuracy and generalizability across diverse tasks, offering transformative
potential in biomedical applications. For instance, AlphaMissense [1]| integrates evolutionary
conservation and structural modeling for clinical variant classification, while ESM1b [2] demon-
strates strong zero-shot performance on isoform-specific missense predictions using large-scale
masked language modeling. Despite these advances, current GFMs are generally trained in a
task-agnostic manner and lack disease-specific adaptation, limiting their direct applicability in
clinical decision-making. Moreover, their deployment in critical domains such as clinical diag-
nostics necessitates rigorous evaluation of their reliability under adversarial conditions. In par-
ticular, it remains unclear whether GFMs are vulnerable to adversarial manipulations—whether
through perturbed input sequences or learned prompts—which could compromise model robust-
ness and trustworthiness.

To explore this question in a clinically grounded setting, we fine-tune a range of GFMs for
disease-specific variant effect prediction (VEP) using DYNA [3]—a modular framework that



adapts protein- and DNA-based GFMs to cardiac and regulatory genomics tasks. DYNA
employs a Siamese neural network architecture (Figure la) and a pseudo-log-likelihood ratio
(PLLR)-based scoring function (Figure 1b), enabling effective adaptation to domain-specific
VEP with limited rare variant data. Using this framework, we fine-tune multiple GFM back-
bones, including ESM1b and ESM2 variants, on cardiomyopathy (CM) and arrhythmia (ARM)
datasets. These fine-tuned models serve as the basis for evaluating adversarial robustness.

Recent studies have underscored the need to evaluate not only data privacy but also the
adversarial robustness of genomic Al models—particularly those built on powerful pre-trained
architectures. Our findings reveal that GFMs, while strong in generalization, remain vulnerable
to attacks that exploit both surface-level perturbations and deeper latent representations. To
systematically probe these vulnerabilities, we introduce a dual attack framework that combines
perturbation-based and semantic-level adversarial strategies. First, as illustrated in Figure 1c, we
use Fast Gradient Sign Method (FGSM) to probe GFM’s susceptibility to adversarial sequences
by injecting gradient-based noise into variant embeddings, assessing the impact of near-identical
sequences on predictions. In addition to FGSM, a soft prompt attack is introduced, which
operates in the model’s embedding space rather than directly modifying input tokens. We
consider two variants of the soft prompt attack: a confidence hijack, which reduces the margin
between wild-type and variant predictions, and a targeted attack, which specifically pushes
benign variants toward pathogenic predictions. As shown in Figure 1d, this method optimizes
continuous prompt embeddings that, when prepended to the wild-type and variant inputs, guide
the model toward incorrect predictions. Unlike token-level attacks, soft prompts leave the input
sequence unchanged but manipulate internal representations to influence decision boundaries.
This dual approach enables a comprehensive evaluation of GFM’s adversarial robustness by
combining input-space perturbations and embedding-space manipulations, revealing the model’s
susceptibility to both types of attacks.

Across both CM and ARM datasets, all evaluated GFMs exhibited susceptibility to adver-
sarial perturbations, with consistent drops in AUC and AUPR under both input-space (FGSM)
and embedding-space (soft prompt) attacks. The soft prompt attack with targeted optimization
resulted in the most severe degradation, especially on smaller ESM2 models [4], where AUC and
AUPR decreased by up to 10 and 6 percentage points, respectively, with even larger declines
observed in the shallow MLM-based ProteinBERT model [5]. Even high-capacity models such
as ESM1b [6] and ESM1v [7] were not robust, showing large performance drops under targeted
manipulation. In contrast, the confidence hijack variant of the soft prompt attack led to more
subtle but consistent degradation, reflecting the sensitivity of learned embeddings to adversarial
manipulation. These findings demonstrate the urgent need to evaluate and improve the robust-
ness of GFMs, particularly in clinical genomics where decision boundaries must remain stable
under distribution shifts and intentional manipulation. Moreover, they demonstrate a critical
limitation in current defense paradigms, which often assume that adversarial perturbations are
easily detectable via prediction confidence or input-level cues. Our results suggest that effective
defenses must instead operate in latent space—monitoring shifts in embedding geometry and
prediction distributions to detect semantically aligned but deceptive adversarial behavior.

Recent advances have positioned GFMs at the center of precision medicine, with increas-
ing use in diagnostic support tools, variant effect prediction, and genome interpretation plat-
forms [8, 9]. These models are often deployed through open-source APIs (e.g., HuggingFace’s

facebook /esm2), fine-tuned collaboratively across institutions, or integrated into clinical work-
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Figure 1. Illustration of adversarial sensitivity in GFMs for variant effect prediction. (a)
Conceptual schematic showing wild-type and variant embeddings in GFM representation space.
Pathogenic variants are expected to maximize distance from the wild-type, while benign variants
minimize distance. (b) Overview of PLLR computation using a language model. The PLL for
the wild-type and mutant sequence is compared to infer the variant label. (c) FGSM attack
perturbs model embeddings to falsify pathogenicity predictions, shifting benign variants to ap-
pear pathogenic and vice versa. (d) Soft prompt attack: structured prompts induce the model
to shift decision boundaries, leading to adversarial misclassification even when the original label
is correct.

flows via cloud-based model endpoints. In such contexts, realistic threat models emerge. An
attacker may wish to induce false-positive variant calls to manipulate diagnoses for insurance
fraud, research sabotage, or biosecurity evasion [10, 11|. Access could be obtained via model-
sharing practices, gradient leakage in federated learning [zhu2019deep|, prompt injection in
downstream pipelines, or through the manipulation of embedding-based model interfaces that
accept soft prompts [12]. Because many GFMs operate on pre-tokenized or embedded inputs
and often lack strong input sanitization (e.g., they accept variable-length amino acid sequences
without constraints), these attacks can bypass traditional input-level verification. Our work
mirrors similar threat models in NLP and protein design, where adversarial prompts have been
shown to induce targeted model behavior across tasks and modalities [13, 14]. Accordingly, we
demonstrate how both gradient-based and prompt-based adversarial strategies can compromise
GFMs, even when perturbations are minimal and biologically plausible.

RESULTS

Robustness Analysis on the Cardiomyopathy Dataset

To evaluate the impact of adversarial perturbations on variant effect prediction, we performed
a robustness analysis using the CM dataset under both clean and FGSM conditions. Figure 2
provides a comprehensive evaluation of the adversarial robustness of PLLR-based variant effect



prediction on the CM dataset.
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Figure 2. Comprehensive robustness analysis of PLLR-based variant effect prediction on the
cardiomyopathy (CM) dataset. (a—b) Performance degradation under FGSM across varying
sample sizes. (c-d) ROC and histogram views show confidence collapse. (e—g) Violin plots
reveal label-wise distribution shifts in PLLR. (h) Threshold crossing plot shows adversarially
flipped predictions. (i—j) AUC and AUPR performance degradation across fine-tuned model
variants under FGSM attack. Lightning bolt icons indicate FGSM-perturbed evaluations.

Figure 2 (a) shows that AUC scores consistently improve as the training set size increases.
However, across all sampling percentages, the model evaluated with FGSM-perturbed inputs
exhibits a clear performance drop relative to its clean counterpart. For instance, at full data
(100%), the clean model reaches an AUC of 0.78, while the FGSM model achieves only 0.73.
This gap persists even at lower data fractions, revealing that adversarial inputs cause systematic
degradation in discriminative power. Figure 2 (b) displays a similar pattern in AUPR, reflecting
the precision-recall tradeoff. Without FGSM, the model reaches a peak AUPR of over 0.80,



whereas the FGSM-exposed model underperforms by approximately 3—5 percentage points at
every sample size. These results reinforce that the PLLR-based scoring is not only sensitive to
adversarial noise but also exhibits increasing robustness with larger training sets. In conclusion,
the consistent drop in both AUC and AUPR under adversarial evaluation suggests that models
trained for variant effect prediction in clinical genomics must be stress-tested with adversarial
scenarios to ensure reliability in real-world settings.

Figure 2(c-h) provides a comprehensive view of how FGSM perturbations affect model confi-
dence and prediction stability. The ROC curves in Figure 2(c) show that performance degrades
consistently under adversarial perturbation: while the clean evaluation yields an AUC of 0.80,
FGSM reduces this to 0.62. This drop reflects a loss in discriminative capacity caused by small,
structured input perturbations.

To further understand how prediction scores shift, Figure 2(d) compares the distributions
of PLLR values under clean and adversarial conditions. Clean PLLR scores exhibit clear sepa-
ration, with pathogenic variants having higher values. However, FGSM shifts the entire PLLR
distribution downward, compressing the score range and blurring the margin between classes.
Figures 2(e) and (f) break down PLLR distributions by label. Under clean conditions (e),
pathogenic variants exhibit high PLLR with wide spread, while benign variants are tightly cen-
tered at low values. After FGSM, the pathogenic distribution becomes narrower and overlaps
more with the benign class in Figure 2(f). This reduction in separation shows that FGSM
weakens the signal used to distinguish variant pathogenicity. The degree of PLLR change is
quantified in Figure 2(g), which plots the A PLLR (FGSM - clean) for each label. Pathogenic
variants show a larger and more variable drop in PLLR than benign ones. This asymmetric sen-
sitivity suggests that FGSM has a stronger effect on confident predictions—Ilikely due to steeper
gradient directions near high-PLLR regions.

Figure 2(h) visualizes which samples switch predicted labels due to FGSM. Clean vs. FGSM
PLLR values are plotted, and purple points mark samples that cross the decision threshold.
Many lie just above the threshold under clean conditions and are pushed below it after attack.
This illustrates that the model’s decision boundary is not robust, especially for borderline cases.

Lastly, to evaluate whether the observed robustness patterns generalize across models, we fur-
ther analyze AUC and AUPR performance of four fine-tuned variant effect predictors under clean
and FGSM conditions. As shown in Figure 2(i—j), FGSM consistently reduces model performance
across all architectures, confirming that adversarial vulnerability is not model-specific. The
model identifiers shown in Figure 2 (e.g., esm2 t33 650M _URS50D, esm2 t30 150M UR50D,
esmlb_ t33 650M URS0S, and esmlv_t33 650M UR90S) refer respectively to the ESM2-
650M, ESM2-150M, ESM1b-650M, and ESM1v-650M genomic foundation model variants. The
performance degradation is most pronounced in the AUPR metric, where even high-capacity
models like ESM1b and ESM1v suffer drops of up to 5 percentage points. These results extend
our earlier findings by demonstrating that adversarial perturbations universally reduce discrimi-
native power—even in robust fine-tuned models—emphasizing the need for integrated robustness
during model development.

Together, these analyses reveal that PLLR-based scoring is vulnerable to adversarial pertur-
bations, particularly for confident pathogenic predictions. The consistent degradation in both
AUC and score separability underscores the need for adversarial robustness in genomic language
models.
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Figure 3. Evaluation on the arrhythmia (ARM) dataset under clean and adversarial (FGSM)
conditions. (a) ROC performance slightly degrades under FGSM. (b—d) Violin plots show score
distribution compression and asymmetric vulnerability across variant labels. (e—f) AUC and
AUPR performance degradation across GFMs under FGSM perturbation.

Robustness Analysis on the Arrhythmia Dataset

We further evaluate adversarial robustness on the ARM dataset, with results shown in Figure 3.
The ROC curve in Figure 3(a) indicates a moderate drop in classification performance under
FGSM perturbation, where AUC declines from 0.80 to 0.78. Although this drop is smaller than
on the CM dataset, it still reflects a sensitivity to input perturbations.

Figures 3(b) and (c) show the PLLR distributions stratified by ground-truth labels. Under
clean conditions (b), the model assigns clearly separable scores: benign variants center tightly
near zero, while pathogenic variants occupy a broader, higher range. However, FGSM reduces
the variance and separation in the pathogenic distribution (c), compressing the score space and
pushing many predictions closer to the decision boundary.

The APLLR violin plot in Figure 3(d) quantifies the impact of FGSM perturbations per label.
Pathogenic variants (label=1) show a broader and more negative shift in PLLR, confirming that
confident high-scoring predictions are more easily degraded. In contrast, benign predictions
remain relatively stable. This pattern suggests that the model’s internal representations for
pathogenic variants are more brittle under adversarial conditions, consistent with findings from
the CM dataset. Figures 3(e) and (f) summarize the impact of FGSM perturbations on AUC
and AUPR across multiple GFMs evaluated on the ARM dataset. Across all model architec-
tures, FGSM leads to a consistent drop in performance, confirming its effectiveness in disrupting
decision boundaries even in models trained for clinical variant interpretation. Smaller models

such as ESM2 with 150M parameters experience the largest degradation, while higher-capacity



models like ESM1b and ESM1v, although more resilient, still exhibit large performance loss.
These results reinforce that no model is inherently robust and that adversarial perturbations
can significantly impair the predictive reliability of GFMs in sensitive clinical contexts such as
arrhythmia variant classification.

Overall, these results demonstrate that although the ARM model is slightly more robust
than the CM model in AUC terms, it remains susceptible to adversarial degradation, especially
for pathogenic predictions with initially high confidence.

Targeted Soft Prompt Attack (Benign—Pathogenic) on CM

To ensure statistical robustness, we extend our analysis with confidence intervals and bootstrap-
based significance testing. Specifically, we report 95% confidence intervals on APLLR in Fig-
ures 4(b,f), and use bootstrapping (1,000 samples) to compute empirical confidence intervals
on benign APLLR in Figures 4(a,e). Statistical tests (paired t-tests and bootstrapped Cls) are
applied separately to CM and ARM datasets to validate the significance and asymmetry of the
targeted soft prompt attack.

We evaluate the effectiveness of a targeted soft prompt attack designed to selectively elevate
the PLLR of benign variants, forcing them to be misclassified as pathogenic. Figure 4(a) shows
that benign predictions shift significantly after the attack, with the PLLR distribution moving
rightward while pathogenic scores remain largely unchanged. This observation is statistically
supported by both a paired t-test (p = 9.23x10™%) and a bootstrap confidence interval on benign
APLLR (mean = 0.156, 95% CI = [0.071, 0.250]), confirming a consistent and meaningful shift
in prediction behavior. To quantify per-class vulnerability, Figure 4(b) presents the change in
PLLR (APLLR) across labels, with error bars indicating 95% confidence intervals around the
mean. The attack exhibits a clear asymmetric effect: benign variants experience a significant
positive shift (APLLR = 0.16 £ 0.09), while pathogenic variants show no meaningful change
(APLLR = -0.07 £ 0.09). This confirms that the soft prompt optimization objective selectively
targets benign variants, leaving the pathogenic class relatively unaffected.

The impact on downstream decision-making is illustrated in Figure 4(c), which plots the
precision-recall (PR) curve before and after the attack. The area under the PR curve (AUPR)
drops from 0.69 to 0.65, indicating a reduced ability to separate benign from pathogenic variants,
driven by an increased false positive rate.

Finally, Figure 4(d) provides a sorted waterfall plot of APLLR for benign variants. While
the majority of benign variants exhibit modest changes, a subset shows large increases in PLLR,
exceeding +1.0. These outliers demonstrate that the soft prompt is particularly effective at
amplifying confidence on select benign cases, resulting in focused prediction flips.

Together, these results reveal the asymmetric nature of the targeted attack: it preserves the
pathogenic class while systematically degrading the model’s trustworthiness on benign samples.
This highlights the importance of adversarial robustness measures in variant effect prediction.

Targeted Soft Prompt Attack (Benign—Pathogenic) on ARM

To evaluate generalizability, we applied the same targeted soft prompt attack to the ARM
dataset. The attack again targets benign variants, aiming to increase their PLLR and induce
misclassification. Figure 4(e) shows the PLLR distribution before and after the attack for both
benign and pathogenic variants. As in CM, benign variants exhibit a clear rightward shift in
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Figure 4. Targeted soft prompt attack results. (a-d) CM dataset; (e-h) ARM dataset. (a,
e) PLLR before vs. after. (b, f) APLLR by label. (¢, g) PR curves. (d, h) Benign APLLR
waterfall plots. All results shown are based on the ESM2-650M model.

PLLR, while the pathogenic distribution remains largely unchanged. This is statistically sup-
ported by a paired t-test on benign variants (p = 1.67 x 10~7) and a bootstrap confidence
interval for benign APLLR (mean = 0.264, 95% CI = [0.175, 0.359]), both of which confirm
the robustness of the attack effect. The APLLR violin plot in Figure 4(f) further validates this
asymmetric behavior, with 95% confidence intervals overlaid on the mean shifts. Benign variants
again show a substantial positive change (APLLR = 0.26 4+ 0.09), whereas pathogenic variants
exhibit a smaller positive but still meaningful shift (APLLR = 0.38 £ 0.18). Compared with
the CM dataset, the ARM results suggest that pathogenic variants in ARM are slightly more
susceptible to soft prompt perturbations, although the targeted attack still most strongly affects
the benign class. Together, these findings demonstrate that the targeted soft prompt attack gen-
eralizes across datasets, consistently inducing asymmetric PLLR shifts that disproportionately
affect benign predictions.

Figure 4(g) shows that the AUPR drops from 0.83 to 0.79, reflecting degraded performance
due to the increased false positive rate. This consistent performance drop across datasets demon-
strates that the attack generalizes. Finally, Figure 4(h) presents the APLLR waterfall plot for
benign ARM variants. Again, we observe that while many benign samples shift modestly, a sub-
set displays extreme increases in PLLR—evidence that the soft prompt focuses on high-impact
samples even in new distributions.

These results demonstrate that the targeted attack is not only effective in CM but also
generalizes to ARM, indicating a broader vulnerability in model confidence estimation across
datasets.



Comparative Analysis of Attack Effectiveness

To quantify and compare the impact of different adversarial strategies, we evaluate three at-
tack methods—FGSM, SPA _Confidence Hijack (soft prompt attack with confidence hijack),
and SPA_Targeted Attack—across two benchmarks (CM and ARM) and two evaluation met-
rics (AUC and AUPR). Results are summarized in Figure 5(a—d). For clarity, full model names
(e.g., esm2_t30_150M_UR50D) are abbreviated in text (e.g., ESM2-150M) following standard
naming conventions. On both CM and ARM, we observe that all attack methods reduce model
performance to varying degrees. FGSM consistently causes moderate drops in both AUC and
AUPR, reflecting its role as a standard untargeted perturbation baseline. The confidence hijack
attack (SPA_Confidence Hijack) leads to more pronounced performance degradation, especially
in AUPR (Figure 5(b, d)), confirming its effectiveness at collapsing the confidence margin be-
tween classes. The most severe performance degradation is observed under the SPA Targeted
Attack condition, which directly optimizes the PLLR of benign samples to mimic pathogenic
profiles. This method consistently yields the lowest AUC and AUPR across all model variants,
particularly on the ARM benchmark (Figure 5(c-d)). This sharp performance decline highlights
the increased vulnerability of models to targeted soft prompt optimization, especially under
low-signal or low-data settings.

Overall, the comparative results demonstrate that soft prompt-based attacks can be more
effective than input-space perturbations (like FGSM), particularly when targeted or designed to
manipulate model confidence.

To examine whether adversarial vulnerabilities are unique to large-scale genomic foundation
models or extend to other sequence models, we include ProteinBERT—a masked language mod-
eling (MLM)-based architecture—as a comparative baseline. Unlike ESM models, which are
trained on massive protein corpora using transformer-based autoregressive or masked objectives
at scale, ProteinBERT represents a smaller, MLM-style model with more constrained capacity
and pretraining scope. As shown in Figure 5, ProteinBERT demonstrates the lowest baseline
performance across all models and suffers the most conspicuous degradation under adversarial
attack, particularly under the SPA  Confidence Hijack condition. The model’s susceptibility to
embedding-space manipulation suggests that robustness is not solely a function of model scale
but also of pretraining strategy and architectural depth. These findings show that MLM-based
protein models, while effective in clean settings, are highly brittle under adversarial prompt-
ing, reinforcing the broader need for robustness evaluation across the full spectrum of sequence

models used in genomics.

Comparative Analysis Under Different Adversarial Attack Strategies

To further contextualize the robustness of GFMs, we evaluated four additional adversarial at-
tacks: Carlini & Wagner (C&W) [15], DeepFool [16], Projected Gradient Descent (PGD) [17],
and Boundary Attack [18], alongside FGSM and soft prompt attacks. For clarity, full model
names (e.g., esm2_t30_150M_UR50D) are abbreviated in text (e.g., ESM2-150M) following stan-
dard naming conventions for Tables 1 and 2. As shown in Tables 1 and 2, the newly introduced
gradient-based attacks, PGD, C&W, and DeepFool, produced significantly stronger degradation
than FGSM across all model types. On the CM dataset, these attacks reduced AUC by over 30
percentage points on some models. For example, PGD reduced the AUC of ESM2-650M from
0.740 to 0.470, and DeepFool reduced ESM1b from 0.810 to 0.492. Similar trends were observed
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Figure 5. Performance under different adversarial attack methods across CM and ARM

datasets. (a) AUC on CM. (b) AUPR on CM. (c) AUC on ARM. (d) AUPR on ARM. FGSM,
SPA Confidence Hijack, and SPA Targeted Attack all degrade model performance, with the
targeted attack showing the strongest effect.
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Table 1. AUC scores on the CM dataset under different attack strategies.

Model ESM2-650M ESM2-150M  ESM1b-650M ESM1v-650M ProteinBERT
Base 0.740 0.630 0.810 0.760 0.762
FGSM 0.710 0.600 0.780 0.730 0.429
DeepFool 0.490 0.585 0.492 0.471 0.424
C&W 0.494 0.593 0.497 0.479 0.430
PGD 0.470 0.588 0.482 0.465 0.426
Boundary Attack 0.710 0.585 0.764 0.718 0.425
SPA  Confidence Hijack 0.720 0.610 0.790 0.740 0.465
SPA  Targeted Attack 0.700 0.550 0.740 0.710 0.425

Table 2. AUC scores on the ARM dataset under different attack strategies.

Model ESM2-650M ESM2-150M ESM1b-650M ESM1v-650M ProteinBERT
Base 0.850 0.780 0.890 0.920 0.901
FGSM 0.810 0.740 0.850 0.870 0.700
DeepFool 0.676 0.624 0.640 0.661 0.663
C&W 0.682 0.631 0.645 0.665 0.680
PGD 0.674 0.651 0.647 0.669 0.650
Boundary Attack 0.805 0.702 0.844 0.859 0.642
SPA _Confidence Hijack 0.830 0.750 0.870 0.910 0.444
SPA Targeted Attack 0.800 0.680 0.840 0.840 0.653

on ARM, where PGD reduced ProteinBERT’s AUC from 0.901 to 0.650, while DeepFool and
C&W dropped it further to 0.663 and 0.680, respectively. These results confirm that PGD
and C&W are substantially more effective than FGSM, and that DeepFool-—though designed
for minimal perturbation—can still induce significant errors in GFM predictions. Interestingly,
the black-box decision-based Boundary Attack also achieved comparable degradation on smaller
models such as KESM2-150M and ProteinBERT, indicating that even models without gradient
access remain vulnerable. Taken together, these findings reveal that both shallow and deep
GFMs are susceptible to a range of adversarial attacks, and that attack strength correlates with

model capacity and architecture.

Cross-Model Transferability of Adversarial Soft Prompts

For cross-model transfer, we froze the adversarial prompt learned on a source GFM after full fine-
tuning and applied it to other GFMs using their respective adversarially fine-tuned checkpoints,
with no further updates. This setting tests whether adversarial perturbations in the embedding
space exploit shared vulnerabilities across different model architectures, analogous to universal
adversarial triggers in NLP [19].

Table 3 and Table 4 present AUC scores on the CM and ARM benchmarks, respectively. Fach
row corresponds to a target model being evaluated, while each column indicates the source model
from which the prompt was trained. A random prompt baseline is also provided. We observe
consistent AUC degradation when using soft prompts transferred across models. For example, a
prompt trained on ESM2-150M reduces the AUC of ESM1b-650M from 0.809 (random) to 0.741
on CM, and from 0.899 to 0.832 on ARM. These results suggest that adversarial soft prompts
possess partial transferability across GFM architectures, demonstrating the results of shared

inductive biases and latent vulnerabilities.
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Table 3. Cross-model soft prompt transfer on the CM dataset. Rows denote target models, and columns
indicate the source models from which the adversarial soft prompts were derived.

Target Model ESM2-650M ESM2-150M ESM1b-650M ESM1v-650M Random

ESM2-650M 0.70 0.708 0.71 0.706 0.75
ESM2-150M 0.54 0.55 0.565 0.552 0.635
ESM1b-650M 0.738 0.741 0.74 0.743 0.809
ESM1v-650M 0.696 0.716 0.721 0.71 0.763

Table 4. Cross-model soft prompt transfer on the ARM dataset. Rows denote target models, and columns
indicate the source models from which the adversarial soft prompts were derived.

Target Model ESM2-650M ESM2-150M  ESM1b-650M ESM1v-650M Random

ESM2-650M 0.800 0.811 0.795 0.784 0.854
ESM2-150M 0.678 0.680 0.688 0.692 0.782
ESM1b-650M 0.841 0.832 0.840 0.821 0.899
ESM1v-650M 0.844 0.822 0.835 0.840 0.921

Gene-Level Vulnerability Analysis Under PGD Attacks

To investigate gene-specific adversarial vulnerabilities, we applied a Gaussian Mixture Model
(GMM) to cluster perturbed PLLR values following PGD attacks. We then quantified the mis-
match between the GMM-assigned cluster and the true pathogenicity label for each variant,
using this mismatch rate as a proxy for prediction instability under adversarial perturbation.
As shown in Figure 6, we conducted this analysis under two PGD configurations: 5 steps and
10 steps. Across both settings, the gene MYH?7 consistently exhibited the highest number of
mismatches (63 under PGD-5 and 64 under PGD-10), indicating strong susceptibility to ad-
versarial perturbations and substantial model fragility in its interpretation. MYBPCS was the
second-most affected gene in both analyses, reinforcing that variants in commonly mutated car-
diomyopathy genes are especially sensitive to adversarial manipulation. Several genes showed
step-dependent vulnerability patterns. For example, DES, PLN, and LAMP2 appeared among
the most mismatched genes under PGD-5 but were less prominent under PGD-10, suggesting
that some adversarial errors resolve or shift with extended optimization. Conversely, MYLS3
only emerged as highly vulnerable under PGD-10, indicating that stronger attacks can uncover
subtler weaknesses in variant-level representations. These trends are illustrated in Figures 6 (a)
and 6 (b), which show the mismatch counts for the top genes under each setting. To further
investigate how adversarial inputs alter embedding geometry, we include a UMAP visualization
of variant-level embeddings before and after targeted soft prompt attacks in Figure 6(c). This
panel projects clean and confidence hijacked representations, color-coded by ground truth la-
bel, and shows benign — pathogenic label flips. Variants from genes such as MYL3, SCN5A,
and TNNT2 visibly shift toward the pathogenic region in embedding space, consistent with
adversarial goal alignment. These transitions provide geometric evidence that the soft prompt
attacks move benign representations across decision boundaries, reinforcing the plausibility of
the observed classification flips in panels (a—b). Overall, these results demonstrate the impor-
tance of examining adversarial robustness not only in aggregate but also at a gene-specific level.
Genes that are disproportionately destabilized by adversarial inputs may benefit from improved
calibration, targeted data augmentation, or the incorporation of biological priors to enhance the
reliability of genomic foundation models deployed in clinical genomics.
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Figure 6. Gene-level mismatch counts under PGD attacks. (a) Mismatch count per
gene between true labels and GMM-clustered predictions under a 5-step PGD attack. (b) Same
analysis performed under a 10-step PGD attack. Genes with high mismatch counts reflect
greater adversarial instability in model predictions for variants affecting those genes. (¢c) UMAP
projection of clean vs. soft-prompt (confidence hijack) embeddings, with benign — pathogenic
flips highlighted. Labeled genes (e.g., TNNT2, MYL3, SCN5A) show clear shifts toward the
pathogenic region under adversarial prompting, suggesting geometry-aligned decision boundary
vulnerabilities.
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Clinical Robustness Metrics Under PGD Attacks

To evaluate model reliability in clinically relevant regimes, we computed calibration- and decision-
focused robustness metrics under both 5-step and 10-step PGD attacks on the CM dataset, in-
cluding the Brier score, Expected Calibration Error (ECE), and the false positive rate at a fixed
true positive rate of 95% (FPRQTPR=0.95). As shown in Table 5, both PGD-5 and PGD-10
substantially degrade calibration across all GFM variants. Under PGD-10, Brier scores range
from 0.46 to 0.50 and ECE values from 0.28 to 0.33, indicating severe miscalibration and unreli-
able confidence estimates. PGD-5 produces similarly elevated Brier scores (0.44-0.51) and ECE
values (0.29-0.33), demonstrating that even moderate adversarial perturbations meaningfully
disrupt model probability estimates.

Most critically, the decision-level metric FPRQTPR=0.95 reveals a complete collapse of clin-
ical specificity under both attack strengths. For PGD-10, achieving 95% sensitivity results in
a false positive rate of 0.99-1.00 across all models, meaning that nearly all benign variants are
misclassified as pathogenic. PGD-5 yields an identical outcome, with FPR values of 1.00 for
every model evaluated. These results demonstrate that PGD attacks not only undermine dis-
crimination but also severely compromise clinical decision utility in high-sensitivity operational

regimes.

Table 5. Calibration and decision reliability metrics under PGD-5 and PGD-10 on the CM dataset.

Attack Metric ESM2-650M ESM2-150M ESM1b-650M ESM1v-650M
Brier Score 0.4606 0.5040 0.4701 0.4593

PGD-10 ECE 0.2840 0.3250 0.2984 0.2765
FPRQTPR—=0.95 1.0000 0.9900 1.0000 1.0000
Brier Score 0.4587 0.5110 0.4831 0.4424

PGD-5 ECE 0.3210 0.3280 0.3082 0.2884
FPRQTPR-0.95 1.0000 1.0000 1.0000 1.0000

Ablation Studies on FGSM Perturbation Strength and Soft Prompt Length

To assess the sensitivity of our adversarial framework to design choices, we conducted ablations
on the FGSM perturbation magnitude e and the number of soft prompt tokens. Table 6 shows
the AUC of ESM2-650M on the CM dataset across a range of FGSM perturbation strengths.
Very small perturbations (¢ < 0.005) yield minimal degradation, whereas e = 0.01 produces the
strongest and most stable reduction in AUC without introducing optimization instability. This

supports our choice of € = 0.01 in the main experiments.

Table 6. AUC on the CM dataset under FGSM with different perturbation magnitudes.

¢ AUC (CM)
0.001 0.724
0.005 0.723
0.010 0.710
0.020 0.716
0.050 0.725

Table 7 reports the effect of varying the number of soft prompt tokens. Increasing prompt
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length strengthens the adversarial attack, decreasing AUC from 0.734 with 5 tokens to 0.582
with 100 tokens. We therefore select 10 tokens in the main experiments as a balanced configura-
tion: long enough to induce meaningful adversarial perturbation, yet short enough to maintain

computational efficiency and avoid overfitting the prompt to a specific model.

Table 7. AUC on the CM dataset under soft prompt attacks with different prompt lengths.

Soft Prompt Tokens AUC (CM)

) 0.734
10 0.702
50 0.641
100 0.582

DISCUSSION

Despite growing concerns around privacy and robustness in genomic machine learning, most
prior efforts have focused narrowly on data anonymity or privacy-preserving mechanisms. For
instance, Kuo et al. [20] emphasized the field’s primary concern as the protection of genomic
identity, particularly in light of widespread services like 23andMe. Techniques such as differential
privacy have been shown vulnerable to de-anonymization attacks [21], while others have explored
secure data access methods to prevent malicious retrieval [22]. However, these studies primarily
target data privacy, not model integrity.

A separate line of work has emerged to explore attacks on the models themselves, with Montser-
rat and Joannidis [23] demonstrating gradient-based white-box attacks on deep learning models
used for genomic classification. Feature Importance Model-agnostic Black-box Attack (FIMBA)
builds on this direction by introducing a black-box, interpretability-driven framework to compro-
mise gene expression models [24]. By leveraging SHAP-based feature importance [25], FIMBA
successfully perturbs top-ranked features to degrade classifier accuracy, even without access to
model gradients—marking an important advance in model-agnostic adversarial genomics.

Yet, these efforts still operate on conventional architectures (e.g., MLPs [26, 27|, CNNs [28])
and predominantly tabular gene expression data. In contrast, our work moves adversarial robust-
ness research into the era of GFMs—Ilarge-scale pre-trained transformers capable of generalizing

across diverse biological tasks. We propose two types of adversarial attacks:

¢ FGSM perturbation: a token-space attack that introduces gradient-based noise to the
input embeddings, simulating small but adversarial changes to the biological sequence.

e Soft prompt attack: an embedding-space strategy that prepends learnable prompt to-

kens to the input, steering the model’s predictions without modifying the original sequence.

Unlike FIMBA, which relies on perturbing high-importance input features derived from
model interpretability tools, our methods operate at a deeper semantic level, targeting the la-
tent representation space of GFMs. By crafting semantically aligned adversarial inputs—either
through optimized gradient perturbations or soft prompt embeddings—we reveal vulnerabili-
ties that are invisible to surface-level feature-based attacks. These latent space manipulations
exploit the internal structure of GFMs, where meaning is encoded across multiple dimensions,

making the attacks not only more effective but also more informative for understanding model
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behavior and failure modes. This aligns with recent findings in computational pathology, where
vision transformers [29] were shown to exhibit more robust latent representations than CNNs
under adversarial stress, suggesting that semantic structure in embedding space is a key factor in
model resilience [30]. However, while that study focused on visual embeddings, our work offers
a parallel in the genomic domain by directly targeting and probing vulnerabilities in the latent
space of sequence-based foundation models. Additionally, our soft prompt attack mechanism
enables task-specific manipulation without retraining or modifying model weights. This novel
approach creates a flexible framework to test and stress the robustness of transformer-based
models under adversarial prompts—advancing both our understanding of model generalization
and our capacity to build defense mechanisms.

FGSM and the soft prompt attack serve complementary roles in this study. FGSM evaluates
the model’s sensitivity to small, direct perturbations in the input sequence, offering insights
into its robustness against minimally altered genomic variants. In contrast, the soft prompt
attack targets the model’s internal representation space by optimizing a set of trainable prompt
embeddings, effectively misleading the model toward confident yet incorrect predictions without
modifying the input sequence. This targeted degradation of the confidence margin not only
reveals latent vulnerabilities in GFMs, but also anticipates potential failure modes that are
difficult to detect through surface-level perturbations. In particular, our observations align with
recent work in vision-language models [31], where aligning the confidence distributions between
clean and adversarial samples has been proposed as an effective defense strategy. However,
unlike prior work that assumes such distributions are already measurable or optimizable |31,
32|, our attacks directly create such pathological shifts in confidence from within the input
space—offering a valuable adversarial probe that can expose and quantify semantic instability
in GFMs. As such, our work not only contributes a new attack mechanism but also lays the
groundwork for developing future defenses that operate in latent and distributional space, rather
than relying solely on input-level regularization.

In summary, while prior studies have primarily focused on protecting data privacy or expos-
ing vulnerabilities in shallow genomic classifiers, our work systematically advances adversarial
robustness research into the realm of GFMs. By introducing both gradient-based and prompt-
based attack paradigms, we uncover failure modes at multiple semantic levels—ranging from
input perturbations to latent representation manipulations. These insights directly address the
emerging security challenges posed by powerful, general-purpose sequence models in genomics,
and also provide actionable tools for evaluating the resilience of such models in clinical and
biomedical applications.

Adversarial robustness has gained increasing attention in scientific machine learning domains
beyond genomics. In drug discovery, models for molecular property prediction and generation
have been shown to be vulnerable to perturbations of molecular graphs or SMILES strings,
leading to invalid molecules or manipulated outputs [33|. In protein design, recent work has
demonstrated that small adversarial changes to amino acid sequences can disrupt predictions
of fitness or structure [34]. Prompt-based attacks have also emerged as an effective strategy
in LLMs, where soft prompts—trainable embeddings prepended to input sequences—can be
adversarially optimized to elicit targeted outputs or reduce model reliability [35]. Our work draws
inspiration from this line of research by adapting soft prompt attacks to Genomic Foundation
Models, demonstrating that similar vulnerabilities extend to DNA-level sequence models.

Table 8 summarizes key findings from our evaluation of adversarial robustness in GFMs
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Table 8. Summary of key findings from adversarial robustness evaluation of genomic foundation models across
CM and ARM datasets.

Evaluation Aspect Observation and Implication
Adversarial susceptibility All GFMs exhibited consistent degradation in AUC and
(overall) AUPR under adversarial perturbations, indicating a general

lack of robustness across both CM and ARM tasks.

Impact of FGSM (input-space) FGSM introduced minor but reproducible performance drops,
showing that even simple gradient-based input perturbations
can undermine prediction stability.

Impact of soft prompt attack Thisembedding-space attack subtly collapsed confidence mar-

(confidence hijack) gins between wild-type and variant sequences, leading to sys-
tematic but less dramatic reductions in classification perfor-
mance.

Impact of soft prompt attack Targeted prompt optimization produced the largest perfor-

(targeted) mance degradation, particularly in smaller models, with AUC

reductions of up to 10 percentage points.

Relative robustness of larger Larger architectures such as ESM1b and ESMlv demon-

models strated better baseline performance and marginally greater re-
silience, though they remained vulnerable to targeted prompt-
based attacks.

Relevance to clinical genomics  The observed vulnerabilities demonstrate the necessity of ad-
versarial robustness evaluation in clinical genomic models,
where decision reliability is critical for pathogenicity inter-
pretation.

across CM and ARM datasets. The results highlight model vulnerabilities under different attack

strategies and their implications for clinical deployment.

METHODS

GFMs, including protein language models such as ESM1b, are typically trained using the Masked
Language Modeling (MLM) objective. Within this MLM paradigm, specific amino acid residues
in protein sequences are “masked” or hidden, and the model is trained to predict the identity
of these masked residues. As the model makes these predictions, it produces raw scores or
predictions for each potential amino acid that could replace the masked residue, commonly
referred to as “MLM logits”. The logits predicted by a protein language model for observing the
input amino acid s; at position ¢ given the sequence s are shown in red frames. When passed
through an activation function like softmax, these logits provide probabilities over the possible

amino acids, guiding the prediction process.

Pseudo-log-likelihood ratio computation In order to fine-tune GFMs on each pair of

WT mut

wild-type and mutant sequences, i,e., s and s™" we create a siamese network with two
weight-sharing protein language model branches (shown in Figure 1 (a) and (b)) to update
the weights such that the produced MLM logits are both semantically meaningful and can be
compared via pseudo-log-likelihood ratio (PLLR). For a sequence s = s1,...,5r, the pseudo-

log-likelihood is calculated as PLL(s) = ZZ‘L:1 log P(x; = si|s), where L denotes the sequence
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length, s; represents the amino acid at position i, and log P(z; = s;|s) denotes the log-likelihood
predicted by the protein language model when observing amino acid s; at position ¢ within
sequence s. The PLLR between the sWT and s™ is then computed as:

A = [PLL(sW7T) — PLL(s™)], (1)

because a wild-type sequence typically tends to have a higher log-likelihood in a protein language
model and a mutation disrupts the protein with a lower log-likelihood.

Classification objective function To perform the classification of pathogenic vs benign
genetic variant via the siamese network, we will utilize a binary cross entropy loss. Binary
cross entropy, often referred to as logarithmic loss or log loss, penalizes the model for incorrect
labeling of data classes by monitoring deviations in probability during label classification. In
order to fine-tune the siamese network using binary cross entropy loss, we calibrate the PLLR to
a probability 6 between 0 to 1 by: 6(\) = 20(A) — 1, due to the sigmoid function o is between
0.5 to 1 for |[PLLR| between 0 to +00. We then fine-tune the siamese network with the binary
cross entropy loss as follows:

Lper =y -log(6(A) + (1 —y) - log(1 — 6(X)). (2)

Thus, the objective is to maximize the PLLR to distinct the MLM logits between sV and s™ut

if the mutation is pathogenic and vice versa.

Attack Models

To evaluate the adversarial vulnerabilities of GFMs, we implement two distinct attack strategies:
the FGSM and a soft prompt attack. While FGSM introduces direct input-space perturbations,
the soft prompt attack operates in the embedding space and includes two variants: a confidence
hijack that disrupts decision margins, and a targeted version that specifically shifts benign
variants toward pathogenic predictions.

Fast Gradient Sign Method (FGSM)

The FGSM [36] is a widely used adversarial attack that generates perturbed inputs by leveraging
the gradient of the loss function with respect to the input. Given an original input sequence
s € A" and its corresponding label y € {0,1}, FGSM constructs an adversarial input s,q, using
the following formula:

Sadv = § + € -sign(VsL(s,y)),

where L(s,y) is the classification loss, V£ denotes the gradient of the loss with respect to the
input sequence embeddings, and € is a small scalar controlling the perturbation magnitude. The
sign function ensures that the perturbation is aligned with the direction that most increases the
loss, while keeping the perturbation norm minimal.

In this study, FGSM is used to evaluate the robustness of the ESM-based variant effect
predictor by introducing subtle perturbations to the wild-type and mutant sequences. We apply
FGSM to the embedding space of each input and monitor changes in pseudo-log-likelihood
ratio (PLLR) and downstream classification outcomes. This allows us to identify cases where
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the model is overly sensitive to near-identical input sequences, thereby revealing adversarial
weaknesses in genomic prediction tasks.

Soft Prompt Attack

To assess the adversarial vulnerability of the GFMs, we implement a soft prompt attack in
which a trainable embedding sequence is prepended to both wild-type and mutant sequences.
In contrast to prompt-tuning with a frozen model, we allow full model fine-tuning during the
attack to maximize adversarial impact. Both the soft prompt and the underlying protein lan-
guage model are updated during optimization, enabling more effective perturbation of internal

representations.

1. Confidence Hijack Objective. In the full-class adversarial setting, we aim to mislead
the model by increasing its confidence in incorrect predictions across both classes. Specif-
ically, we retain the pseudo-log-likelihood ratio (PLLR) computation A = |[PLL(sW7T) —
PLL(s™)|, and define a calibrated probability 6()\) = 20(\) — 1, where o(-) is the sigmoid
function. For a ground-truth label y € {0, 1}, the adversarial objective flips the labels and

maximizes the binary cross entropy loss as:
»Cattack = (1 - y) : log(&(A)) +y- log(l - a-()‘)) (3)

This objective explicitly encourages benign variants (y = 0) to exhibit high PLLRs
(pathogenic-like) and pathogenic variants (y = 1) to exhibit low PLLRs (benign-like),

thereby increasing misclassification confidence.

2. Targeted Soft Prompt Attack (Benign—Pathogenic). In the targeted one-class
attack scenario, we optimize the soft prompt solely to misclassify benign variants. Given
a mask over benign examples (y = 0), we define the attack loss as:

ﬁbenign = - log(&(A))7 for y = 0. (4)

This targeted objective forces the model to output high PLLR values for benign vari-
ants, thereby mimicking confident pathogenic predictions. No gradients are applied to
pathogenic examples, preserving their outputs while selectively increasing false positive

rates.

Optimization and Evaluation During attack optimization, we jointly update both the soft
prompt embeddings and all GFM backbone parameters via gradient descent, allowing full model
fine-tuning under the adversarial objective. The model is evaluated under the original labels
using ROC AUC, AUPR, and threshold-based metrics to assess the degradation in classification
performance caused by the adversarial soft prompt. This setup allows us to isolate the effect of

soft input perturbations on model robustness without altering biological content.

Settings

To evaluate the robustness of our variant effect prediction framework, we implemented two
distinct adversarial strategies: FGSM and soft prompt attacks. For the FGSM setup, we applied

20



perturbations directly to the input embeddings of the GFM using the Fast Gradient Sign Method,
with an attack strength of e = 0.01. The gradient was computed with respect to the classification
loss, and the perturbed embeddings were then passed through a frozen GFM encoder followed
by a trainable classification head. For PGD, we used 5 attack steps with a step size of 0.002
and maximum perturbation € = 0.01, applying projection onto the £, ball after each step.
For the C&W attack, we optimized the adversarial objective using 1,000 binary search steps
and 9 optimization iterations per step, with a confidence parameter of 0. The soft prompt
attack prepended n = 10 learnable prompt tokens to each input sequence. These prompt
embeddings, initialized via Xavier uniform distribution [37], were optimized jointly with the
classification head. For both experiments, we trained the models using the Adam optimizer with
a learning rate of 1 x 10™* [38] and batch size of 4 over 10 epochs. All attacks are now performed
over five independent runs with different random initializations. Additionally, we apply 1,000-
sample bootstrap resampling to quantify the stability of the attack effect across samples in
Figure 4. The loss function used was binary cross-entropy, and training was conducted on a single
A100 GPU. This design enables a direct comparison between perturbation-based (FGSM) and
representation-based (soft prompt) adversarial robustness under a consistent training regime.

Data and Code Availability

This study focuses on clinically relevant variant sets associated with inherited cardiomyopathies
(CM) and arrhythmias (ARM). We draw on a previously curated collection of rare missense
variants labeled as pathogenic or benign, organized using a cohort-driven framework for disease-
specific analysis, as described by Zhang et al. [39]. The dataset is publicly accessible via https:
//github.com /Imperial CardioGenetics/CardioBoost manuscript. To supplement this resource,
compiled data are available on Zenodo at https://zenodo.org/records/ 13397296 [40]. The code
is publicly available at: https://anonymous.4open.science/r/SafeGenes-9086 /.

The statistics for both datasets are shown in Table 9.

Table 9. Datasets

Cardiomyopathies Arrhythmias
Pathogenic Benign VUS Total Pathogenic Benign VUS Total
Train 238 202 - 440 168 158 - 326
Test 118 100 - 218 84 79 - 163
Total 356 302 - 658 252 237 - 489
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