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Abstract: Real-world robotic tasks require complex reward functions. When we
define the problem the robot needs to solve, we pretend that a designer specifies
this complex reward exactly, and it is set in stone from then on. In practice,
however, reward design is an iterative process: the designer chooses a reward,
eventually encounters an “edge-case” environment where the reward incentivizes
the wrong behavior, revises the reward, and repeats. What would it mean to
rethink robotics problems to formally account for this iterative nature of reward
design? We propose that the robot not take the specified reward for granted, but
rather have uncertainty about it, and account for the future design iterations as
future evidence. We contribute an Assisted Reward Design method that speeds
up the design process by anticipating and influencing this future evidence: rather
than letting the designer eventually encounter failure cases and revise the reward
then, the method actively exposes the designer to such environments during the
development phase. We test this method in a simplified autonomous driving task
and find that it more quickly improves the car’s behavior in held-out environments
by proposing environments that are “edge cases” for the current reward.

Keywords: Reward Design, Safety, Human-in-the-loop

1 Introduction
One popular way to design robotic agents is to program them to maximize the cumulative reward in
their environments. While we have made great progress in solving this optimization problem, we
often delegate finding a good reward function to the human designer. In reality, reward design is an
iterative and challenging process. Human designers spend tremendous effort iterating on the reward
function as they test the robot in more and more environments. What is more, once deployed, reward
functions can still be incorrect in edge-case environments, leading to failures.
Take, for instance, autonomous cars. They have to correctly balance safety, efficiency, comfort, and
abiding by the law. A human designer starts by looking at some representative traffic scenarios and
specifying a reward function that leads to desired behaviors in each of them. But working well in
this set of environments is not enough — the reward function has to incentivize the right behavior
in any environment the car will encounter in its lifetime1. The engineer will test-drive the car in
both simulation and in the real world. Almost inevitably, optimizing for the specified reward will
lead to some undesirable behavior in some further environments. The engineer will then revise the
initial reward and repeat the process. If they are lucky, they will have converged to a suitable reward
function by deployment time. But for many systems, this is a never ending process: the car will
encounter some edge-cases in the real world that they did not foresee — an unseen road layout or
traffic situation — and the engineer revises the reward again on the new environment.
In this work, we explore what it would mean for the robot to explicitly account for this iterative nature
of reward design. Rather than treating the current reward as set in stone, we envision a system in
which the robot works together with the designer and helps them design the right reward function,
as in Fig. 1: the robot takes the reward function specified by the designer, and proposes a new
environment for the designer to investigate where the reward function might fail. To capture this
formally, we first enable the robot to explicitly account for the uncertainty in the reward function

1While there are challenges to building a world model, planning algorithms, etc., for this paper, we assume
success in that and focus on designing the reward function.
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Figure 1: In theAssistedRewardDesign process, the designer specifies a proxy reward F̃ on a set of environments
"1,...=. The robot agent takes the current proxy, infers about the true reward F∗ and queries the designer with a
new environment where the proxy fails. The designer then revises her proxy to work on this new environment.
itself: every reward revision does not define the reward function fully, but is instead an evidence
about it. Previous work on Inverse Reward Design [1] incorporates this uncertainty into the reward
function with the goal of making the robot plan more conservatively in new environments. In this
work, rather than passively updating the robot’s estimate of the reward, we argue that it is the robot’s
job to actively help the engineer design more robust reward functions, with the goal of performing
well at deployment time. We refer to this as Assisted Reward Design. The key insight is that:
By accounting for the iterative nature of reward design, the robot does not just passively estimate

the reward it receives but proactively influences the future evidence it can gather from the designer.
Our contributions are three-fold:
1. Formalizing reward design as an iterative process. We formalize the problem of iterative
reward design as a Meta MDP with hidden state. Under this formulation, the robot can and should
account for the future iterations of the reward as future evidence. The robot can then make these
pieces of evidence more informative by exposing the designer to environments where revisions are
most likely needed. Rather than letting the designer eventually encounter edge-case environments,
our method proposes candidate environments and asks for reward designs, inserting itself in the
design process loop, as in Fig. 1. This has two implications. In cases where the designer would
converge to a good reward before deployment time, our method speeds up the iterations by focusing
on informative environments. Perhaps more importantly, in cases where the designer might still
otherwise have the wrong reward when deploying the system, our method has the potential to expose
the edge-case environments that cause failures, prompting fixes in the reward ahead of time.
2. Providing an approximate algorithm for our method. It is intractable to compute the reward
uncertainty given the high-dimensional nature of the reward space and the environment space. We
propose an approximate algorithm based on particle filtering to enable efficient computation.
3. Analyzing Assisted Reward Design in a simplified autonomous car domain. We evaluate our
method’s practicality and effectiveness in designing reward functions for autonomous cars, using
the open-source environment proposed by Sadigh et al. [2]. We conduct experiments with both
simulated reward designers and robotics experts. We find that our method uncovers more difficult
test scenarios and speeds up the reward design process. We also showcase that it proposes interesting
environments that tend to be edge cases where the current reward estimate fails.
Overall, this paper takes a step towards making our robotic systems understand reward specification
as an iterative process. In the end, we would like robotic systems not just to optimize what we design
for them but help us design better and more robust reward functions. Even though admittedly more
work is needed to put these ideas in real-world systems, especially in light of the need for a simulator
or learned model of environments, we are excited to see our method assist in difficult reward design
tasks and produce edge-case environments without any hand-coded heuristics.

2 Related Work
Designing robots to work reliably in an open world remains a challenging problem. Our work
bridges three lines of work towards this goal: teaching robots the correct behaviors, enabling robots
to actively learn from humans, and ensuring safety and robustness when deploying robots.
Learning Rewards fromDiverse Human InputGiven the difficulty of specifying reward functions,
researchers have explored awide variety of different methods to enable robots to learn rewards instead
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from human input, especially demonstrations [3, 4, 5, 6]. Using this idea, recent works have explored
learning from a diverse set of modalities. These include language instructions [7, 8], numerical
feedback [9, 10], comparisons [11, 12], advice [13], facial expressions [14], collaborative behavior
[15], or corrections [16, 17]. In contrast, our work builds on [1], which uses the specified reward
function itself as the human input to learn from. We generalize this idea to an iterative, active process.
Active Reward Learning Our work is an instance of active reward learning. Prior work has focused
on actively querying for comparisons [18, 19], demonstrations [20, 21, 22, 23], or reward labels [24].
Such queries are typically for trajectories or states in a given environment (MDP). Recent work has
proposed active learning to synthesizes the environment itself to gain more information about the
reward (either the initial configuration and behavior of other agents in the scene, such as [12], or
the entire environment [24]). We also propose to actively query new environments, but the human
feedback is a proxy reward designed to work only in that environment. This is interesting for two
reasons. First, we show that it leads to the robot proposing edge cases to the designer where the
previous reward is likely to fail, thus aiding in revising the reward. Second, we argue that the same
active reward learning ideas from the literature can be applied to the reward engineering process —
when we design a reward function, we should not just have the robot go optimize it blindly. We
should instead think about it as an iterative process through the lens of active reward learning.
Reward ShapingMany prior works have also focused on recovering reward functions for suboptimal
planners, given a ground truth reward function that is difficult to optimize, e.g. due to sparsity or
non-differentiability [25, 26]. Note that in many real-world problems, such as autonomous cars, the
ground truth reward is not obvious to write down. Assisted Reward Design is different from the
reward shaping problem in that we do not assume access to a ground-truth reward function, but seek
techniques that leverage proxy rewards that are the designer’s best guesses.
Safety in Real-World Robots Robots deployed in the open-world need to handle a large set of
possible environment configurations, be it a busy road for an autonomous car or a messy kitchen for
a home robot. Given this challenge, there has been a rising number of work on safeguarding robot
behaviors by generating edge cases. Koren et al. [27] and O’Kelly et al. [28] studied using black-box
optimizers to perform adaptive testing and generate failure cases. [29] trains a generative model of
environments from datasets. Uesato et al. [30] generates edge cases by learning a failure predictor.
These methods require defining hard constraints that the robot should not violate. Similarly, reward
shaping work has looked at how to incorporate such constraints into the reward [31].
In contrast, we focus on settings where such hard constraints are incomplete or difficult to specify.
Our method does not assume access to such constraints. We show that our method can learn to
develop edge-case scenarios that implicitly violate constraints without having to specify them.

3 Problem Statement
We first describe the Unassisted Reward Design problem works, then we formulate the Assisted
Reward Design problem and introduce our method.

3.1 The Unassisted Reward Design Problem
Problem Setup Let an “environment” " be a Markov Decision Process without the reward function.
At development time, we assume access to a large set of such environments,Mdevel. We assume this
is a large set that the designer cannot exhaustively test. This can be, for instance, all the environments
in a several-million-mile autonomous driving dataset. Or, it can be a parameteric set of possible
environment configurations, such as placements of objects, roads, and other agents. Finally, it can
also be a generative model of the world. The robot will run at deployment time in a different set of
environmentsMdeploy, which we do not have access to during development time. 2

We further assume access to a space of reward functions parameterized by F ∈, — these can be
linear weights on pre-defined features or weights in a neural network mapping raw input to scalar
reward. We denote by F∗ weights of the ground truth reward function, which induces the desired
behavior inMdevel andMdeploy. We denote by bF," the trajectory (or policy, but for this work, we
consider deterministic MDPs with set initial states) optimal to the cumulative reward induced by F

2Ourmethodworks best whenwe can induce a vast setMdevel that includes all possible scenarios inMdeploy.
Otherwise, ifMdeploy is allowed to be drastically different, and ifMdevel is not enough to design a robust reward
function, this exposes the robot to unanticipated failures after deployment.
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Figure 2: Left: (a) The driving environment with autonomous vehicle (yellow) and human-driven vehicles (red).
(b)(c)(d) highlights selected features: obstacle distance, vehicle distance, progress. Right: the distribution of
Mdevel (blue) andMdeploy (pink) based on difficulty metric.
in " , bF," = argmaxb 'F (b;"). Our assumption is that there exists a F∗ such that bF∗ ," is the
desired behavior for any " ∈Mdevel and any " ∈Mdeploy. We do not have access to F∗.
The Process of UnassistedRewardDesignThe designer takes a subset of environmentsM ⊆Mdevel
and specify a reward function (via parameters F̃) that leads to good behavior in those environments.
In a one-shot design, they would select a setM, assume it is representative ofMdeploy, design a F̃ for
thatM, and deploy the system with F̃ (never changing the reward again). However, in reality, this is
an iterative process. They start with anM0, design a F̃0, and eventually encounter during their testing
a new environment" ′ on which optimizing F̃0 does not lead to desirable behavior. Then, they would
augment their set toM1 =M0 ∪ {" ′}, and re-design the reward: M0→ F̃0→M1→ F̃1→ ....
This might continue into deployment if the reward at the time of deployment still fails onMdeploy.
Implicitly, at every step along the way, the robot treats the current F̃8 as equivalent to F∗.

3.2 The Assisted Reward Design Problem
We formulate the Assisted Reward Design Problem by introducing a meta-MDP problem, where
the meta-agent receives proxy rewards as observations from the designer and acts by proposing new
environments. The goal is to minimize regret of the reward design over deploymentMdeploy.
Meta-States, Meta-Actions, Observations, Transitions.3 In the Assisted RewardDesign problem,
the notion of a “state” is a setM of environments — this is what changes over time and is directly
observable— along with the hidden state F∗. The meta-agent starts at state (M0,F

∗) (environments
either chosen by the designer to be representative, or simply the empty set). It transitions to the
next state by “acting”, i.e. adding one more environment "8 to the set: M8+1 =M8 ∪"8 . Every
time it enters a state (M8+1,F∗), it receives an observation F̃8+1 about F∗ from the designer. For the
meta-agent to assist the designer, it needs to treat the observed reward F̃8 not the same as F∗, but as
a proxy that emulates F∗ only on the currentM8 . It can then interpret F̃ as evidence about F∗ and
use all past evidence to obtain a belief of F∗. To assist the designer, the key step is to account for
(and thus influence) the future evidence in order to get a better reward estimate.
Observation Model. Reward designers tend to select proxy rewards that work well in training
environments. With this intuition, previous work [1] introduced an observation model that computes
the probability of observing proxy reward F̃ under F∗ and designer’s training environment setM:

%design (F̃ |F∗,M) ∝ exp
[∑ |M |

8=1 V'F∗ (bF̃8 ,"8
)
]

(1)
with V controlling how close to optimal we assume the person to be. This distribution informs the
meta-agent that it is receiving proxy rewards from an approximately optimal designer who looks at
the currentM. We can then leverage this model to infer a belief over F∗: 1M (F∗).
Objective. The objective of Assisted Reward Design is to achieve high reward at deployment time.
What the meta-agent controls are a sequence of actions, i.e. a sequence of environmentsM) it can
propose. These lead to observations about F∗. At deployment time, the meta-agent uses its belief
to generate optimal trajectories and accumulates reward according to F∗. We want to find the set
of environmentsM) such that when given to the designer, these environments induce a belief that
leads to the best performance inMdeploy:

maxM)
E"∼MdeployEF∼1M)

(F∗)'F∗ (bF," ) (2)

3For the rest of this paper, all our references to “state” and “action” stand for “meta state” and “meta action”.
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where 1M)
(F∗) is the meta-agent’s belief at deployment time, based on the evidence gathered from

the statesM0, ..,M) ; bF," = argmaxb 'F (b;") is the optimal trajectory.
As currently stated, this objective is impossible to optimize directly because the meta-agent does
not knowMdeploy. In what follows, we introduce a solution to Assisted Reward Design based on
the heuristic objective of identifying F∗ — if the meta-agent uses its actions to disambiguate what
F∗ should be, then it can achieve optimum performance on the objective in Eq. 2 because it can
plan optimally to F∗. We first introduce the Maximal Information objective. Then we show how the
meta-agent can track a belief and perform future belief updates in order to propose new environments.

4 Assisted Reward Design via Active Info-Gathering.
Maximal Information. We invert the probability model of Eq. 1 to obtain a belief over F∗:
%(F∗ |F̃,M). Our key insight is that we can reduce the belief uncertainty by proposing future
environments to influence the designer. In other words, we would like to find environments that can
disambiguate the reward as much as possible — if we can identify F∗ exactly, the meta-agent attains
zero regret at deployment. Thus, we introduce an approximate strategy for the meta-agent: proposing
environments that provide the most information gain over its belief distribution, as commonly done
in active learning [32, 33] and robot active exploration [34]. For computational tractability, we do a
one-step look-ahead only, although the meta-agent could benefit from reasoning over multiple future
iterations. Given an action " (MDP), we compute its mutual information with F:

5 ("8+1) = I[F;"8+1] = H[F |M0:8 , F̃0:8]− (3)
EF∗∼%8 (F) ,F̃8+1∼%design (F̃8+1 |F∗ ,M8+1) [H[F |M0:8+1, F̃0:8+1]]

HereH[F |M0:8 , F̃0:8] is the entropy of posterior distribution of %8 (F), and F̃8+1 is a new observation
sampled from the updated designer model %design (F̃8+1 |F∗,M8+1). After observing F̃8+1, we can
compute the conditional entropy H[F |M0:8+1, F̃0:8+1] using methods from Sec. 4.1. In our imple-
mentation, we set F̃8+1 = F∗ to make Eq. 3 more tractable and find that it empirically works well.
Next we introduce two update rules to compute conditional entropy — joint and independent mode.

4.1 Updating Beliefs over F∗

Joint reward design. At iteration 8 +1 of Assisted Reward Design, the meta-agent takes an action
"8+1 (proposes an environment), and receives an observation F̃8+1 – a reward that works over all
environmentsM8+1 =M8 ∪{"8+1}. Assuming that F̃8+1 is independent from previous observations,
we can use F̃8+1 to update the belief over F using Eq. 1:

%8+1 (F |F̃8 ,M8) ∝ %8 (F)%design (F̃8 |F,M8) (4)

with %0 the meta-agent’s prior (uniform in our experiments). We take a sequential-importance-
resampling particle filtering approach to approximate %8+1: we sample #? particles from %8 , compute
importance weights based on Eq. 1 for each particle, and resample using the importance weights. In
order to compute the normalized %design, we approximate the normalizer in Eq. 1 via samples.
Independent reward design. We also allow designers to provide an observation F̃8 based solely
on the new environment "8 . Prior work [35] finds that this model puts less burden on the designer.
Under this assumption, our belief update simplifies to relying on a single new environment:

%8+1 (F |F̃8 , "8) ∝ %8 (F)%design (F̃8 |F,"8) (5)
4.2 Adding New Features
Reward engineering often requires adding new features to the environment. Ourmethod is compatible
with the designer adding features. See appendix for more details.

5 Experiments with Simulated Designers
We evaluate Assisted Reward Design in a simplified autonomous driving task. In this section, we
hypothesize a ground truth reward function and simulate designer behaviors. Note that our method
does not require such unique ground truth F∗ – this is merely used here for evaluation. In Sec. 6, we
conduct an expert study where we do not have the ground truth.

5.1 Experiment Setup
Driving task. As illustrated in Fig. 2, the autonomous car is to merge to the leftmost lane. Since
there may be other human vehicles (simplified as constant speed) and obstacles, the autonomous car
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Figure 3: Experiment with simulated designers. Left: independent mode, right: joint mode. (a)(c) shows the
regret of the posterior mean compared to true reward under different acquisition functions. (b)(d) shows the
efficacy of the proposed environment. The “box” denotes 5th to 95th percentile.

Figure 4: Visualization of the top proposed environments based on each acquisition function.

needs to decide whether to overtake or to slow down. Our reward function based on Sadigh et al. [2]
is a weighted sum of six features, including vehicle distance, progress, control effort, etc. Please refer
to supplementary material for their details. A good reward function should correctly balance these
terms and reflect our desired behaviors in all different situations. To obtainMdevel, we parametrize
environments over the initial placements of obstacles and other vehicles.
Environment Difficulty. Successful merging tends to be more difficult when human vehicles and
obstacles are closer to the autonomous vehicle. We can use a simple metric to describe each
environment: difficulty =

∑
8 1/3human vehicle 8

+∑
9 1/3traffic cone 9 . We visualize the distribution of

Mdevel andMdeploy in Fig. 2 using this metric. Note that bothMdevel andMdeploy have a “long-tail”
distribution of events — events that are rare to encounter daily, but could be highly useful for the
reward design. An ideal acquisition function in should be able to identify these events.
Baselines. We compare our Maximal Information acquisition function with two baselines that
represent common design paradigms where the designer selects (1) the most difficult tasks ranked
by " ∈Mdevel (2) random environments fromMdevel.

5.2 Experiment Results
Evaluation. A good Assisted Reward Design method should help the reward designer quickly
recover high-quality reward functions. To evaluate this, we specify one set of ground truth reward
F∗. At every iteration, we simulate the designer using F∗ under both independent mode and joint
mode as described in Sec. 4.1. Please refer to the appendix for experiment details. We plot the
performance of posterior mean and the proxy reward F̃ under different methods in Fig. 3. Tomitigate
the effect of the choice of initial environments, we experiment on six random initial environments
and find that our active method outperforms the proxy reward F̃, as well as the random and difficult
baseline in both joint and independent modes (p < 0.05).
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Our active method (orange) outperforms both the random baseline (grey) and the difficulty heuristic
(blue) as shown in Fig. 3. This means that certain environments, despite being rated “easy” by
heuristics, turn out useful for the reward design. These environments are often edge-cases that subtly
trigger undesirable behaviors — in Fig. 1 a rather empty road with two human vehicles triggered the
autonomous vehicle to crash. Next we further investigate this.
Edge-Case Nature of Proposed Environments To study why our method performs better
than the baselines, we measure the quality of the proposed environments using: A ("next) =
EF̃∼% (F=F∗)

[
Regret(F̃;F∗, "next)

] /
EF̃∼% (F=F∗)E"∼Mdeploy

[
Regret(F̃;F∗, ")

]
, the ratio of regret

on next environment versus average regret in deployment. Higher A ("next) means the next envi-
ronment better uncovers the overall regret of the current posterior. As shown in Fig. 3, our active
method proposes environments of highest relative regret. This suggests that to find the most useful
environment for Assisted Reward Design, simply relying on heuristic environment ranking is not
enough. It is more effective to utilize all proxy rewards and their induced uncertainty over F∗.

6 Experiments on Real Reward Design
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Figure 5: Experiment with robotic experts. The left
shows the violation under different acquisition func-
tions. The right compares the relative value of proposed
environments.

We conducted a study with 14 robotics experts4
on the simplified autonomous driving tasks,
where we ask them to design reward functions
to generate their preferred driving behaviors.

6.1 Experiment Setup
We give the experts 10 minutes to familiarize
with the features. We then let them design re-
ward functions over four consecutive iterations,
under three differentmethods and three different
random seeds. This gives a total of 36 individ-
ual reward designs. We use counterbalancing to
randomize the sequence of different methods.
All our experiments are conducted over Zoom.
Violation. Since we do not have the ground truth reward function, we cannot measure posterior
regret as in Sec. 5. For evaluation purposes only, we introduce seven violation criteria to measure
the quality of our reward design, including collision, driving off track, stopping, etc. Please refer to
the appendix for detailed definitions. We use these criteria as unit tests on the behavior to capture
unwanted behaviours. We then count the total number of violations of each trajectory. Better reward
functions should induce lower violation counts. Although we could explicitly incorporate these tests
as hard constraints in the “reward” function [31], we keep the reward features oblivious to them.
This is for two main reasons. First, in the real world, constraint violations are acceptable in some
edge-case scenarios: slamming on the brake, despite uncomfortable, is justifiable at the sight of traffic
accidents. Such trade-offs are difficult to specify and it is our goal to exploit potential edge-cases.
Second, violation tests only capture a subset of unwanted behaviors. Tailgating, for instance, does
not break the tests. Yet, it is undesirable in most cases for the autonomous vehicle. In Sec. 6.2 we
provide qualitative examples from the experiment to illustrate such undesirable behaviors.

6.2 Experiment Results
Evaluation. We perform Assisted Reward Design where experts answer the queries stemming from
our algorithm, as well as the baselines. We visualize the result in Fig. 5 left. Maximal Information
outperforms the other acquisition functions in causing fewest average violations onMdeploy. This
shows that Assisted Reward Design can help us tune a reward function that fails fewer tests as a
measurable proxy for the good driving behaviors in the real world.
Edge-Case Nature of Proposed Environments. To measure the quality of the proposed environ-
ments at each iteration, we ask the experts to watch the trajectories that their proxy designs generate
on the proposed tasks. We then use the Likert scale questions in Fig. 4 and ask the users to rate how
much they agree with the statement on a scale of 1-7. We then compute the normalized score&1−&2
as a measure of how good the behavior is. A lower score indicates better behavior. We use the inverse
of the score to indicate edge-caseness in Fig. 5. Our maximal information method outperforms the
heuristic difficulty metric in finding edge-case environments that contain more violations.

4from the authors’ institution
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Figure 6: Selected environments proposed by Maximal Information with the highest rating by users. The robot
plans a trajectory using previously designed FMAP. Normalized Likert scale rating is shown on the bottom
right of each scenario. Higher rating means more likely to be an edge case. Notice that these trajectories are
failure cases but do not violate the pre-defined difficulty metrics such as collision.

Qualitative Analysis of Proposed Environments We randomly sample an initial environment
and query designer. We then use maximal information, heuristic difficulty, and random acquisition
function to propose the next environments. Wevisualize the trajectory ofMAPestimateFMAP on each
of these new environments in Sec. 6. Notice that interestingly, our method tends to find environments
where the current MAP estimate fails, even though we do not explicitly optimize for finding failure
cases. It turns out that these environments help reward designers effectively narrow down on the true
reward. In comparison, heuristic difficulty finds environments with dense interactions. Yet, they do
not induce failure in the resulting trajectories likely because such difficulties have been addressed by
past reward designs. Heuristic difficulty tends to generate repetitive environments.
Can Violation Count Replace the Maximal Information? Sec. 6.2 uses violation counts to
evaluate trajectories. One may ask the question: can we simply use the violation count as an
acquisition function to find edge-case environments? In other words, environments where the design
leads to high collision, off-track counts, etc. should be proposed as edge cases. On a surface level,
this seems to be a reasonable approach. In fact, this is commonly used in industry [36]. However, we
argue that setting violation counts as the acquisition function limits the scope that we can identify edge
cases. We highlight this in Fig. 6, where we visualize selected environments proposed by Maximal
Information. They exhibit subtle failures and lead to the highest Likert-scale ratings despite obeying
all violation criteria. Interestingly in the second, fourth, and seventh examples, the vehicle narrowly
avoids the collision. Such behaviors found by Maximal Information are hard to capture with hand-
designed violation metrics. By acting on the edge of violations, the algorithm pushes the reward
designer to better specify her “decision boundaries”. As a result, Maximal Information can propose
more diverse edge cases and gather designer preference more quickly.

7 Discussion
WecontributeAssistedRewardDesign, an active reward learningmethod that generates environments
and queries for reward functions as user inputs. We find experimentally that our method exposes
edge cases — environments where the current proxy reward leads to high regret. Experiments with
robotic experts confirmed that these environments are edge cases that lead to undesirable behaviors.
Ourmethod is applicable tomodel predictive control problems such as drone, indoor robot navigation,
motion planning for manipulation [35] where we have known dynamics, as well as RL problems
given the environment simulator or learned model. Given that naively applying RL in the inner loop
of reward inference is intractable, it remains an open question how to efficiently combine with RL.
There are several limitations to our approach. Firstly, our environment proposal algorithm could
be more efficient. One may explore synthesis and continuous optimization over the environment
parameters. Secondly, we need of formal analysis and guarantee of generating edge cases. Thirdly,
our method assumes access to a distribution of environments. Obtaining such realistic distributions
[37, 38, 29] for simulation remain an open problem for the community.
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A Algorithm

Algorithm. We now present our main algorithm for Assisted Reward Design. At every iteration 8,
we use the Maximal Information acquisition functions to select the next environment "8+1 and query
the reward designer. Note that the environment spaceMdevel is continuous and high dimensional and
it is intractable to exhaustively search through it. We thus use uniform sampling to select a candidate
setMcand ∈ Mdevel. Note that one can employ different heuristics for selecting such candidate sets,
and we leave the heuristic design to future work.
Representing Belief Distribution. We use particles to represent %̃8 (F = F∗): at each step, we
sample #? particles from %̃8 (F = F∗), compute importance weights based on Eq. 1 for each particle,
and resample using the importance weights.

Algorithm 1 Assisted Reward Design via Info-Gathering
Require prior %0 (F),Mdevel, #cand, #? , initial training environmentsM0
Initialize posterior %̃0 (F = F∗) = %0 (F)
for 8 = 0, ..,) do
F̃8 ∼ %user (F |F∗,M8) { Query the designer onM8 }
Compute posterior %̃8+1 (F = F∗) using Eq. 4 or Eq. 5
Sample #cand candidate environmentsMcand ⊆Mdevel
for " ∈Mcand do

Compute 5 (")
end
Select "8+1 = argmax" ∈Mcand 5 (")
M8+1 =M8 ∪ {"8+1}

end

Complexity. Our algorithm is bounded by the number of particles #? for representing posterior
distribution and the number of candidates #cand. At every iteration, the algorithm needs to solve
for each particle F in each candidate environment, which leads to a total of O(#? ·#cand) planning
problems in order to compute belief update. This is the main speed limit. While one can potentially
speed up by learning fast planners [39], we leave this to future work. In our experiments, we
implement the environment as in Sec. B such that the dynamics and reward function are both
vectorizable. We then concatenate the reward functions of O(#? · #cand) problems and compute
batch forward planning using gradient-based planner. Note that this is not feasible for general
planning problems with non-differentiable dynamics or reward functions.
Adding New Features. When the designer adds in new feature q:+1 on environment "=, the
new proxy reward has 3 + 1 dimensions while the previous proxies have 3 dimensions. We can
still perform reward inference on all of the 3 + 1 dimensions, as long as we incorporate all proxies
received so far. The meta-agent would then have to revisit all the reward designs it’s gotten so far
and recompute posterior over the new augmented space. To do so, we invert Eq. 1 using the formula
from [1]:

%(F = F∗ |F̃1:=, "̃1:=) ∝ %(F)
∏
8=1:=

exp
(
VF) q̃8

)
/̃

, /̃ (F) =
∫
F̂

exp
(
VF) q̂8

)
3F̂

with %(F) being the prior. We use MCMC to infer the distribution. During inference, every sample
F is of 3 +1 dimensions, and q̃8 are of 3 +1 dimensions, computed from all previous proxy rewards
(of 8 or 8 + 1 dimensions) on the existing tasks. To compute the normalizer, we integrate over F̂ in
the 3 +1 dimensional space.

B Driving Environment Implementation

This section provides the details of the driving environment used in the paper. We introduce
definitions of environment dynamics, feature and reward functions, the environment distributions,
and how we implement the environment efficiently for trajectory optimization.
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Environment Features
Feature Name Raw Feature

qraw

Transformation qfull Meaning

Speed E −(qraw− Egoal)2 How much the vehicle deviates
from the goal speed.

Control [Dsteer, Dacc] −||qraw | |2 The control effort by the vehicle.
Lane G N(qraw− ®Ggoal, 3lane) How much the vehicle deviates

from target lane center.
Car [G, H] −∑

8N(qraw− ®Gcar i, 3car i) Howmuch the vehicle is driving
close to other vehicles.

Obstacle [G, H] −∑
8N(qraw−®Gobs i, 3obs i) Howmuch the vehicle is driving

close to the obstacles.
Fence G −[Gfence left−qraw]+

−[qraw− Gfence right]+
Howmuch the vechile is outside
the fence

Table 1: Environment Feature Table

Dynamics We represent the forward dynamics of the MDP as GC+1 = 5 (GC , DC ), where we have the
full knowledge of G. To model system dynamics, we use simple point-mass vehicle model with
holonomic constraint. Let Gcar = [G, H, \, E]>, where G, H are the corrdinates of the vehicle, \ is the
heading, and E is the speed. We let D = [Dsteer, Dacc]> be the control input, where Dsteer is the steering
input and Dacc is the acceleration. We also use U as the friction coefficient. The model for a single
vehicle is:

[ ¤G ¤H ¤\ ¤E] = [E · cos(\) E · sin(\) Dsteer Dacc−U · E] (6)
We model human vehicles as moving forward at constant speed and traffic cones as static objects.
Feature and Reward Functions. In the following Table 1 we introduce the environment features
q in the driving environment. Each feature composes of qraw, a subset of the current state GC and
control DC , and a non-linear transformation on qraw. The nonlinear transformation is designed such
that when maximized, it induces the desired behaviour in that feature, such as moving to the target
lane. These environment features are are differentiable and that we can characterize the desired
driving behavior via a linear weighed sum F>q.
Violations. Here we provide in Table 2 the definition of environment constraint functions used in the
experiment section to evaluate driving quality. Each constraint is a boolean function that returns true
or false for one timestep, and we compute the final violation count for each trajectory by summing
over constraints over the time horizon. These constraint functions are not used for optimization, but
as an evaluation criterion for the case study experiment. Lower violation counts correspond to better
driving behavior.

Environment Constraints
Feature Name Definition Meaning
Overspeed E > Emax The vehicle is driving over the maximal al-

lowed speed.
Underspeed E < Emin The vehicle is driving below the minimum

speed on highway (i.e. backing up).
Uncomfortable | |D | |∞ > | |Dmax | |∞ The vehicle is applying too much force that it’s

uncomfortable (i.e. accerlating too much or
jerky).

Collision | | ®G− ®Gcar i | | ≤ 3min The vehicle crashes into the other vehicles.
Crash Object | | ®G− ®Gobj i | | ≤ 3min The vehicle crashes into the obstacles.
Offtrack G < Gfence left or

G > Gfence right

The vehicle drives off the left or the right fence.

Wronglane | |G− Glane left | | ≤ 3lane The vehicle drives drives onto the wrong lane
while merging.

Table 2: Environment Constraints Table

Planning Speed. We implement the dynamics and reward function using JAX [40] and leverage
the JIT compilation to speed up running time. We use shooting method and perform gradient-based
planning using the Adam optimizer for 200 steps. We plan at a horizon of 10 timesteps and replan
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every 5 timesteps. When planning for a single environment, we can generate 2.57 trajectories per
second. Because we can vectorize the planning problem and plan for multiple trajectories at once, we
can achieve 157.72 trajectories per second, by planning for 500 trajectories in batch. Computations
are benchmarked on the c2-standard-4 instance on Google Cloud. We use batch planning for
computing the belief distribution and environment proposals, as discussed in Sec. A as the main
bottleneck of our algorithm.
Environment Distribution. We use a simple method to define the distribution of environments
Mdesign,Mdeploy. There are two human vehicles and two traffic cones positioned on the three-lane
highway. We assume that the autonomous vehicle starts from the center of the scene (G = 0, H = 0), and
sample the starting position of the other vehicles and obstacles. The other vehicles can start anywhere
in Gmin car ≤ Gcar ≤ Gmax car, Hmin car ≤ H ≤ Hmax car and the obstacles can be initialized anywhere in can
start anywhere in Gmin obs ≤ Gobs ≤ Gmax obs, Hmin obs ≤ H ≤ Hmax obs. We filter out situations where the
other vehicles or obstacles are initialized to be colliding with the main vehicle.
Note that this is a very coarsely designed distribution to showcase our method. We have several
limitations. For instance, we do not exclude the environments where the other vehicles runs into
obstacles. These are relatively unlikely environments, and in principle we can define more realistic
distributions by more careful environment engineering or by loading real world driving datasets.
The difference betweenMdevel andMdeploy is that inMdeploy, we define a tighter feasible range of Gcar
centered around the autonomous vehicle. This results in a shifted distribution of pseudo-difficulty
metric with long-tail events. After discretization, Mdevel has 274k environments and Mtest has
91k environments. Given these large number of possible environments, it is impossible for reward
designers to enumerate them manually.

C Experiment Details

Optimal Planning For the autonomous driving task, we compute trajectories of 10 timesteps. We use
finite-horizon optimal planning with regard to given rewards. We plan at a horizon of 10 timesteps,
and replan every 5 timesteps.

Reward Design We use rationality factor V = 0.1
| |M | | to simulate noisy designer, and V = 1 in the

inverse model. This is because we find empirically that the proxy reward quickly approaches the
ground truth reward when we have multiple proxy environments. We thus divide the rationality
factor V it by the number of proxy environments to maintain its noisiness. To compute the posterior
probability in Eq. 4 or Eq. 5, we need to approximate the normalizing constant. We follow the
approach in [1] by sampling F. In the section 4.2 of [1], they find empirically that it helped to include
the candidate sample F in the normalizing sum. This requires planning with F and computing its
feature sum in the MCMC inner loop, which largely slows down the inference. Instead, we include
the candidate F, but multiplies it with proxy F̃’s feature sum in the normalizing constant.
We then compare three methods (random, difficulty, maximal information) in iterative fashions. We
use the same initial environment for the three methods and perform 9 iterations. We aggregate results
over five random seeds.
Environment Proposal. During environment proposal, we use #? = 500 particles on #cand = 64
environments. We implement a vectorized car dynamic model using JAX [40] and Ray [41] for
batch planning. Our environment proposal step takes 4 minutes on c2-standard-4 instance on Google
Cloud.
Evaluation. To examine the quality of our inferred posterior of the reward function, we need to
evaluate the posterior in new driving environments. We thus sample 500 environments uniformly
from Mdeploy as the deployment set for evaluation. We compute the regret, note that because of
the different placement of vehicles and objects, different environment have different maximum and
minimum reward they can produce. Thus it is unfair to compute the absolute regret Amax − AF . We
thus compute the relative regret, by first taking the worst cases reward Amin in each environment.
Then the relative regret is regretF = (Amax− AF )/(Amax− Amin) = (AF∗ − AF )/(AF∗ − Amin).
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