

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INFER : LEARNING IMPLICIT NEURAL FREQUENCY RESPONSE FIELDS FOR CONFINED CAR CABIN

Anonymous authors

Paper under double-blind review

ABSTRACT

Accurate modeling of spatial acoustics is critical for immersive and intelligible audio in confined, resonant environments such as car cabins. Current tuning methods are manual, hardware-intensive, and static, failing to account for frequency selective behaviors and dynamic changes like passenger presence or seat adjustments. To address this issue, we propose **INFER** (Implicit Neural Frequency Response fields), a frequency-domain neural framework that is jointly conditioned on source and receiver positions, orientations to directly learn complex-valued frequency response fields inside confined, resonant environments like car cabins. We introduce three key innovations over current neural acoustic modeling methods: (1) an end-to-end neural frequency response field that directly learns frequency-specific attenuation in 3D space; (2) perceptual and hardware-aware spectral supervision that emphasizes critical auditory frequency bands and deemphasizes unstable crossover regions; and (3) a physics-based Kramers–Kronig consistency constraint that regularizes frequency-dependent attenuation and delay. We evaluate our method over real-world data collected in multiple car cabins. Our approach significantly outperforms time- and hybrid-domain baselines on both simulated and real-world automotive datasets, cutting average magnitude and phase reconstruction errors by over 39% and 51%, respectively. Our experiments show that INFER achieves state-of-the-art performance frequency response modeling in automotive spaces.

1 INTRODUCTION

Accurate modeling of acoustic environments is fundamental to diverse applications, including architectural design, immersive audio rendering, and human–computer interaction Koyama et al. (2025). While techniques for room acoustics and open-field settings are relatively mature, car cabins have recently emerged as a critical yet underexplored application space. Unlike conventional rooms, cabins are compact, irregularly shaped enclosures with a heterogeneous mix of reflective and absorptive materials, whose acoustic responses are further complicated by their highly dynamic usage—seats recline, windows open, passengers Yoshiimura et al. (2012). These properties create transfer characteristics that are difficult to capture using traditional measurement or simulation pipelines. At the same time, the acoustic environment inside the cabin is becoming central to the in-vehicle experience, enabling high-fidelity entertainment and safety-critical spatial alerts. Modern audio pipelines, such as Dolby Atmos and Sony 360 Reality Audio, aspire to deliver immersive sound in vehicles but require precise characterization of these transfer functions. Existing approaches rely on labor-intensive manual tuning, extensive in-situ measurements, or costly simulations based on idealized CAD models, all of which degrade under real-world perturbations. These factors collectively motivate the need for a data-driven, physically grounded, and adaptive modeling framework that can generalize across diverse cabin conditions while preserving perceptual fidelity and spatial audio quality.

Recent advances in neural implicit representations (INRs) Molaei et al. (2023); Zhang et al. (2025) provide a compelling alternative to handcrafted acoustic models. INRs learn continuous, resolution-agnostic mappings from spatial coordinates to signal values using multilayer perceptrons, enabling geometry-free reconstruction of complex fields. Extensions such as Neural Acoustic Fields (NAF) Luo et al. (2022), INRAS Su et al. (2022), and AV-NeRF Liang et al. (2023) have shown

054 that impulse responses can be compactly encoded by learning emitter–receiver transfer functions
 055 directly from data. Yet these models predominantly operate in the time domain and treat individual
 056 frequency components uniformly. For car cabins, however, both physical acoustics and human
 057 perception demand frequency-selective modeling: low-frequency modes dominate room-scale reso-
 058 nances, speaker crossovers introduce mid-band artifacts, and perceptual salience varies with spectral
 059 weighting of phase and magnitude.

060
 061 **Learning acoustic frequency response fields directly in the frequency domain can lead to fine-**
 062 **grained and physically-aware modeling of confined, resonant spaces such as car cabins.** While
 063 frequency-domain representations have been explored for specific audio tasks (Lee & Lee, 2023;
 064 Di Carlo et al., 2024), existing neural acoustic field methods predict time-domain impulse responses
 065 and do not model continuous frequency response fields with spatial conditioning. By predicting
 066 each frequency bin independently, our approach naturally captures sharp spectral features and modal
 067 resonances that are often blurred in time-domain formulations. The spectral formulation also facil-
 068 itates hardware-aware supervision: unreliable or unstable frequency bands can be identified and
 069 downweighted, and perceptually important regions—such as phase-sensitive low frequencies Oxen-
 070 ham (2018)—can be emphasized using auditory-inspired weighting schemes. Moreover, frequency-
 071 domain forward modeling encodes propagation delays exactly as phase shifts, eliminating the inter-
 072 polation artifacts and discretization errors that plague time-domain approaches.

073 We propose **INFER** (Implicit Neural Frequency Response fields), a neural implicit represen-
 074 tation framework that learns continuous frequency response fields in confined environments through
 075 fully spectral modeling. Our formulation couples a differentiable frequency-domain renderer with a
 076 complex-valued neural network that predicts the frequency response field conditioned on emitter lo-
 077 cation, receiver location, and their direction. We propose a novel frequency-specific spectral weight-
 078 ing for both phase and amplitude, enabling perceptual and hardware-aware loss design. Finally, we
 079 introduce physically grounded consistency constraints derived from Kramers–Kronig relations to
 080 regularize the joint behavior of attenuation and phase delay, leading to more interpretable and phys-
 081 ically plausible reconstructions. Our approach delivers consistent performance boosts across the
 082 spectrum, outperforming the closest baseline by 39% in magnitude error and 51% in phase error on
 083 average (Table 4). These gains reflect both spectral fidelity and directional accuracy, and are visually
 084 evident in Fig. 1.

085 Our key contributions in this paper can be summarized as:

- 086 • A novel end-to-end frequency-domain modeling framework that parameterizes continuous
 087 frequency response fields with frequency-dependent complex attenuation in 3D space.
- 088 • A perceptually motivated, frequency-weighted supervision strategy that emphasizes critical
 089 bands and accounts for hardware artifacts such as crossovers and directivity lobes.
- 090 • A physically consistent formulation using Kramers–Kronig relations that jointly regularizes
 091 spectral amplitude and phase, enhancing generalization and interpretability.
- 092 • A comprehensive evaluation on both simulated and real car cabin datasets, demonstrating
 093 state-of-the-art phase and magnitude field reconstruction.

096 2 RELATED WORK

097 **Neural Implicit Representations for Physical Fields.** Neural implicit representations (INRs)
 098 have emerged as a powerful framework for modeling continuous physical signals by learn-
 099 ing coordinate-to-signal mappings using multilayer perceptrons. Foundational methods such as
 100 SIREN Sitzmann et al. (2020) and Fourier feature encodings Tancik et al. (2020) allow compact
 101 modeling of high-frequency functions, enabling applications in 3D vision Mildenhall et al. (2021);
 102 Martel et al. (2021) and implicit surface reconstruction Wang et al. (2021). These ideas have been
 103 extended to domains like fluids Holl et al. (2020), mmWave Takawale & Roy (2025), and wave prop-
 104 agation Orekondy et al. (2023), demonstrating the versatility of coordinate-based learning. Our work
 105 builds on these insights and targets learning frequency response fields of spatially varying acoustic
 106 transfer functions within a confined car cabin, where modal resonances, material absorption, and
 107 directionality jointly shape the acoustic field. This setting requires jointly modeling amplitude and
 phase attenuation over a frequency spectrum.

Figure 1: **Acoustic field modeling inside a car cabin.** **Left:** Measurement setup in the backseat of a Tesla Model X, where a speaker emits sound and spatial responses are recorded over a 2D grid. **Middle:** Spatial distribution of phase at 720Hz for ground truth (GT), our method (Ours), and baselines (AVR, NAF, INRAS). **Right:** Corresponding log-magnitude (energy) plots. Our method reconstructs smoother and physically consistent fields that preserve wavefront geometry and acoustic shadowing, outperforming baselines that exhibit artifacts or spatial inconsistency.

Neural Modeling of Acoustic Fields. Accurate modeling of sound fields in complex environments has traditionally relied on geometric acoustics, ray tracing, or numerical methods such as FEM and BEM Feng et al. (2013); Mo et al. (2015); Etgen & O’Brien (2007). These methods are physically grounded but computationally expensive and require detailed knowledge of geometry and material parameters. To address this, recent works like NAF Luo et al. (2022) and INRAS Su et al. (2022) have proposed neural implicit models to learn audio impulse responses from spatial data, often in time domain and with limited physical constraints. Recent methods have explored hybrid pipelines that uses both time-domain and frequency-domain forward modeling. For instance, AVR Lan et al. (2024) uses both sample delay and phase correction to model time-of-flight. However, AVR ultimately predicts time-domain impulse responses and assumes frequency-independent attenuation, limiting its ability to capture spectral variability across the scene. Furthermore, AVR employs uniform weighting across all frequencies during supervision, ignoring known variations in human perception and hardware characteristics. In contrast, our method INFER directly predicts frequency response fields, allowing frequency-aware supervision, perceptual spectral weighting, and physically grounded modeling of dispersion and absorption using Kramers–Kronig constraints—capabilities that existing impulse-response field prediction methods do not offer.

Car Cabin Acoustic Modeling and Applications. Acoustic field modeling inside car cabins presents unique challenges due to the confined space, material heterogeneity, complex modal behavior, and intricate reflection patterns Accardo et al. (2018); Yoshimura et al. (2012). Classical simulation techniques based on FEM or BEM Wang et al. (2013); Liu et al. (2017) are accurate but computationally prohibitive for design iteration or personalization. Empirical IR measurements Farina et al. (1998) and equalization techniques often ignore the global structure of the acoustic field, focusing instead on specific locations. Recent learning-based methods lack frequency-aware modeling and typically neglect physically grounded constraints essential for accurate modeling. Our method addresses these limitations by learning a continuous, physically grounded frequency-domain representation of the cabin’s 3D acoustic field, enabling accurate reconstruction of both amplitude and phase, with explicit modeling of dispersion, crossover behavior, and material absorption—critical features not captured by prior empirical or neural approaches.

3 PRIMER: PHYSICS OF ACOUSTIC PROPAGATION IN LOSSY MEDIA

3.1 PROBLEM PREMISE

Achieving physically consistent and perceptually accurate acoustic modeling in confined spaces like car cabins requires a deeper understanding of how sound propagates in complex, lossy media. Unlike free-field environments, car interiors exhibit complex modal behavior, intricate multipath interference, and frequency-dependent absorption—making frequency-domain analysis not just convenient but essential. As established in Sec. 1, our method adopts a frequency-by-frequency modeling ap-

proach that gives the neural network the flexibility to understand these phenomena. To motivate and ground our spectral formulation, this section introduces the three key physical concepts underpinning our design: (1) how free-field propagation naturally maps to a frequency-domain formulation, (2) how rich multipath effects can be modeled via the Huygens–Fresnel principle, and (3) how signals interact in real media and experience attenuation and dispersion.

3.2 FREE-FIELD PROPAGATION AND ITS FREQUENCY DOMAIN REPRESENTATION

To understand acoustic propagation, we begin with the classical time-domain free-space model. When a point source at $\mathbf{p}_{tx} \in \mathbb{R}^3$ emits an impulse at $t = 0$, the pressure at a receiver located at $\mathbf{p} \in \mathbb{R}^3$ in an ideal, lossless medium experiences decay in energy and arrives with a delay and is given by the 3D Green’s function Kuttruff (2016):

$$h(t) = \frac{1}{4\pi r} \delta\left(t - \frac{r}{v}\right), \quad r = \|\mathbf{p} - \mathbf{p}_{tx}\|, \quad v = \text{speed of sound} \quad (1)$$

The energy decay is due to $1/r$ spherical spreading of the pressure wave and the delay corresponds to the time-of-flight r/v . To arrive at the frequency domain representation of this phenomena, we apply the Fourier transform which yields : $H(f) = \frac{1}{4\pi r} \exp\left(-j\frac{2\pi f r}{v}\right)$, The magnitude remains governed by $1/r$, while the propagation delay is now expressed as a frequency specific phase shift $e^{-j\omega\tau}$, where $\omega = 2\pi f$. This forms the building block of our frequency domain rendering approach.

3.3 THE HUYGENS–FRESNEL PRINCIPLE FOR MULTIPATH EFFECT MODELING

Acoustic wavefields in confined spaces arise from intricate multi-path interactions involving reflections, diffractions, and scattering. To capture this behavior, we draw inspiration from the Huygens–Fresnel principle Lian (2023), which posits that each point on a wavefront acts as a secondary emitter. In the frequency domain, the resulting complex pressure at a point \mathbf{x} can be modeled as:

$$P(\mathbf{x}, \omega) = \int_{\Omega} G(\mathbf{x}, \mathbf{x}'), S(\mathbf{x}', \omega), d\mathbf{x}', \quad (2)$$

where $G(\mathbf{x}, \mathbf{x}')$ is the Green’s function encoding phase and amplitude propagation from \mathbf{x}' to \mathbf{x} , $\Omega \in \mathbb{R}^3$ is the volume being modelled, and $S(\mathbf{x}', \omega)$ is the frequency-domain strength of secondary emission. In practice, for lossy media, $G(\mathbf{x}, \mathbf{x}')$ cannot be computed analytically and depends on the spatial distribution of material properties along the propagation path. In Section 3.4, we introduce the local complex attenuation field $\delta(f, x)$, whose path-integrated effects determine the effective Green’s function between any two points. This formulation motivates our design: instead of tracing discrete reflection paths, we model the volume as a continuous field of directional secondary emitters. Each voxel learns to re-radiate incoming energy in all directions, capturing reverberation and scattering in a physically grounded, data-driven manner.

3.4 ATTENUATION AND DISPERSION IN MEDIA

Real acoustic environments are inherently lossy. As the sound propagates, amplitudes decay due to absorption and scattering (*attenuation*) and phases evolve at frequency-dependent speeds (*dispersion*). Crucially, these two effects are not independent artifacts - attenuation and dispersion are *inherently linked*. In any linear, time-invariant medium, the way amplitude varies with frequency determines how phase varies with frequency (and vice versa); one cannot be chosen independently of the other. This coupling is formalized by the Kramers–Kronig (KK) relation O’Donnell et al. (1981). Practically, this matters because past models fit only amplitude decay which, by construction, miss the paired frequency-dependent phase response that a real medium must exhibit.

Kramers–Kronig relations. The Kramers–Kronig relations express that the phase-bearing and amplitude-bearing parts of the medium’s correction to wavenumber as Hilbert-transform. Physically, they ensure that no component of the response can occur before its excitation, i.e., *causality*. In acoustics, frequency-dependent propagation is written via a complex wavenumber $k(\omega) = k_0(\omega) + \delta(\omega)$, $k_0(\omega) = \omega/v$, where $\delta(\omega) = \text{Re}[\delta(\omega)] + j \text{Im}[\delta(\omega)]$ captures medium-induced modifications. The KK relations impose

$$\text{Re}[\delta(\omega)] = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \frac{\text{Im}[\delta(\omega')]}{\omega' - \omega} d\omega', \quad \text{Im}[\delta(\omega)] = -\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \frac{\text{Re}[\delta(\omega')]}{\omega' - \omega} d\omega'. \quad (3)$$

216 **Complex attenuation fields.** We operationalize this principle by predicting, at each spatial point,
 217 a *complex attenuation* that separates amplitude loss and phase modification: $\delta(f, \mathbf{x}) = \sigma(f, \mathbf{x}) +$
 218 $j\beta(f, \mathbf{x})$, where $\sigma \geq 0$ is the absorption coefficient and β encodes dispersion-induced phase-velocity
 219 deviation. The KK-consistency is maintained through the Kramers–Kronig consistency regularizer
 220 explained in 4.3.

222 **Physically consistent volume rendering.** Once δ is known locally, its effects *accumulate* along a
 223 path as multiplicative transmittance and additive phase. For a small segment of length Δu ,

$$T_{\text{mat}}(\Delta u) = \exp(-\delta \Delta u) = \underbrace{\exp(-\sigma \Delta u)}_{\text{amplitude decay}} \cdot \underbrace{\exp(j \beta \Delta u)}_{\text{phase shift}}. \quad (4)$$

227 Over a full path $\mathbf{p}(s)$ of length L , amplitude and phase accumulate as $T_{\text{amp}} =$
 228 $\exp(-\int_0^L \sigma(f, \mathbf{p}(s)) ds)$, and $\phi_{\text{mat}} = -\int_0^L \beta(f, \mathbf{p}(s)) ds$. Prior acoustic neural fields typically
 229 model absorption or overall amplitude but ignore the causally paired, frequency-dependent phase
 230 response. In contrast, we are the first to encode KK-consistent complex attenuation in a neural
 231 acoustic renderer, preventing non-physical phase behavior and improving both interpretability and
 232 generalization.

245 **Figure 2: System Overview.** Illustration of our frequency-domain acoustic forward model. For each
 246 point sampled along rays cast from the microphone, the MLP predicts a frequency-domain signal
 247 and attenuation. A TOF: time-of-flight based phase shift is applied to the signal and material based
 248 absorption and phase shifts are applied to produce the final response by accumulating signal from
 249 all directions.

4 METHODS FOR IMPLICIT NEURAL FREQUENCY RESPONSE FIELD

253 We introduce INFER, a fully frequency-domain neural rendering framework for modeling spatially
 254 varying frequency response fields in real-world environments. Unlike prior time-domain meth-
 255 ods, INFER directly learns complex frequency responses—capturing sub-sample propagation de-
 256 lays, frequency-dependent attenuation, and dispersive phase shifts. This allows flexible perceptual
 257 weighting across frequencies, such as down-weighting hardware-specific crossover bands or empha-
 258 sizing phase at low frequencies for localization. Fig. 2 gives a brief overview of INFER.

4.1 NEURAL FIELD PARAMETERIZATION

261 Given a scene with a sound source located at \mathbf{p}_{tx} and oriented along the unit vector $\hat{\mathbf{n}}_{\text{tx}}$, we define a
 262 neural field F_{Θ} that predicts the local frequency-domain behavior at any spatial query point \mathbf{p} and
 263 frequency f :

$$F_{\Theta} : (\mathbf{p}, \hat{\mathbf{n}}, \mathbf{p}_{\text{tx}}, \hat{\mathbf{n}}_{\text{tx}}) \mapsto \{\delta(f, \mathbf{p}), S(f, \mathbf{p}, \hat{\mathbf{n}})\} \quad (5)$$

265 Here, $\delta(f, \mathbf{p}) \in \mathbb{C}$ is the complex attenuation encoding the frequency-dependent transmission loss
 266 at point \mathbf{p} , and $S(f, \mathbf{p}, \hat{\mathbf{n}}) \in \mathbb{C}$ is the directional spectrum re-radiated from that point toward the
 267 unit vector $\hat{\mathbf{n}}$. Together, they fully characterize how an incoming acoustic wave is transformed and
 268 retransmitted from each location in the volume. Unlike other neural acoustic rendering models,
 269 INFER predicts all quantities directly in the frequency domain. The goal of the neural field is thus
 to answer: given a source at $(\mathbf{p}_{\text{tx}}, \hat{\mathbf{n}}_{\text{tx}})$, what frequency domain signal is re-emitted in any direction

270 $\hat{\mathbf{n}}$ from point \mathbf{p} , and what is the frequency-specific material-induced attenuation along the way?
 271 We implement F_Θ using a two-branch architecture. The first branch takes $(\mathbf{p}, \mathbf{p}_{tx})$ and predicts
 272 $\delta(f, \mathbf{p})$ via a material sub-network. The second branch conditions on the learned features from
 273 δ , the receiver direction $\hat{\mathbf{n}}$, and source direction $\hat{\mathbf{n}}_{tx}$, and predicts the directional retransmission
 274 spectrum $S(f, \mathbf{p}, \hat{\mathbf{n}})$. This decomposition reflects the physical structure of the problem: attenuation
 275 is direction-independent, while retransmission is highly directional.

277 4.2 FREQUENCY-DOMAIN RENDERING

278 Our goal is to predict frequency response at any receiver location. To synthesize the acoustic fre-
 279 quency response at a receiver location \mathbf{p}_{rx} , we cast rays in direction $\hat{\mathbf{n}}$ and sample N points along the
 280 ray as $\mathbf{p}_k = \mathbf{p}_{rx} + u_k \hat{\mathbf{n}}$. We discuss the ray marching strategy in detail in Sec A.4 of the Appendix.
 281 At each sampled point, we query the neural field to evaluate local frequency-domain properties and
 282 accumulate their contributions using a physically motivated rendering equation:

$$284 H_{\hat{\mathbf{n}}}(f) = \sum_{k=1}^N S_k(f) \cdot \frac{1}{4\pi u_k} \cdot e^{-j2\pi f u_k/v} \cdot e^{j\phi_k(f)} \cdot \alpha_k T_k \quad (6)$$

287 This equation models how sound emitted from the transmitter propagates through the environment
 288 and contributes to the received frequency response along direction $\hat{\mathbf{n}}$. At each sampled point, $S_k(f)$
 289 denotes the local directional spectrum predicted by the neural field, $e^{-j2\pi f u_k/v}$ introduces the phase
 290 shift due to time-of-flight delay, and $\frac{1}{u_k}$ accounts for spherical spreading via distance-based ampli-
 291 tude decay. The term $\alpha_k = 1 - \exp(-\sigma_k \Delta u_k)$ represents the discrete opacity arising from local
 292 absorption, while $T_k = \prod_{j < k} (1 - \alpha_j)$ captures accumulated transmittance from earlier samples
 293 along the ray. Finally, $\phi_k(f) = \sum_{j < k} \beta_j \Delta u_j$ models the cumulative phase shift induced by
 294 dispersive propagation through the medium. Together, these terms account for direction-dependent
 295 emission, distance-based decay, frequency-selective absorption, and phase dispersion—without dis-
 296 cretizing time or relying on post-hoc transforms. To model a realistic microphone, which integrates
 297 sound from multiple directions, we perform weighted integration over a discrete set of directions:
 298 $H(f) = \sum_m G(\hat{\mathbf{n}}_m) H_{\hat{\mathbf{n}}_m}(f)$, where $G(\hat{\mathbf{n}}_m)$ models microphone directivity.

300 4.3 SPECTRAL SUPERVISION

301 A central design choice in our framework lies in how we supervise the learning of complex acoustic
 302 responses in the frequency domain. Rather than ultimately predicting time-domain impulse re-
 303 sponses and deriving frequency behavior indirectly—as in prior works—we operate entirely in the
 304 spectral domain and define a suite of loss functions that target perceptual alignment, hardware-aware
 305 weighting, and physically consistent attenuation. Let $H(f), \hat{H}(f) \in \mathbb{C}$ denote the ground-truth
 306 and predicted complex frequency responses at a receiver, and let $w(f) \geq 0$ denote a frequency-
 307 dependant weight that can encode hardware or perceptual importance.

309 **Weighted complex, magnitude, and phase losses.** We decompose the spectral supervision into
 310 three complementary terms: one for the real and imaginary parts (denoted by $Re[\cdot]$ and $Im[\cdot]$), one
 311 for the magnitude, and one for phase. These jointly ensure accurate complex-valued reconstruction
 312 while allowing flexible emphasis through $W_{spec}(f)$, $W_{mag}(f)$ and $W_{phase}(f)$:

$$314 L_{spec} = \sum_f W_{spec}(f) \left(|Re[H(f)] - Re[\hat{H}(f)]| + |Im[H(f)] - Im[\hat{H}(f)]| \right), \quad (7)$$

$$316 L_{mag} = \sum_f W_{mag}(f) \left| |H(f)| - |\hat{H}(f)| \right|, \quad (8)$$

$$319 L_{phase} = \sum_f W_{phase}(f) \left(|\cos \angle H(f) - \cos \angle \hat{H}(f)| + |\sin \angle H(f) - \sin \angle \hat{H}(f)| \right). \quad (9)$$

322 These losses provide fine-grained frequency-level control. For example, frequencies in crossover
 323 regions of a speaker can be downweighted to avoid unstable learning, while perceptually important
 midbands can be emphasized.

Spectral envelope smoothing. Acoustic spectra in real-world environments often exhibit narrow-band fluctuations due to interference, which are perceptually less important than the broader spectral shape. Inspired by standard practices in audio engineering and car-cabin equalization, we regularize the predicted and ground-truth log-magnitude spectra while calculating envelope loss L_{env} using an exponential smoothing filter \mathcal{E} :

$$L_{\text{env}} = \sum_f \left| \mathcal{E}(\log(|H(f)| \cdot w(f) + \epsilon)) - \mathcal{E}(\log(|\hat{H}(f)| \cdot w(f) + \epsilon)) \right|, \quad (10)$$

where ϵ is a small positive constant to avoid singularities. This regularization encourages fidelity to the broadband spectral envelope while tolerating harmless fine-grained ripples, leading to smoother convergence and perceptually cleaner reconstructions.

Kramers–Kronig consistency regularizer. As introduced in Sec. 3.4, in physical media, frequency-dependent attenuation and dispersion are coupled by the Kramers–Kronig (KK) relations. To enforce this constraint in learning, we define:

$$\hat{\beta}(f) = \mathcal{H}\{\sigma\}(f), \quad L_{\text{KK}} = \sum_{f \in \mathcal{B}} \left(\beta(f) - \kappa \hat{\beta}(f) \right)^2, \quad (11)$$

where \mathcal{H} is a discrete Hilbert transform implemented via two-sided even extension and a raised-cosine taper, κ is a learnable scalar for scaling alignment, and \mathcal{B} is a frequency band mask to exclude unreliable bins (e.g., DC/Nyquist). This term ensures the learned attenuation field respects causality and avoids unphysical phase artifacts.

Total objective. The complete spectral loss is a weighted combination of the above components:

$$L_{\text{total}} = \lambda_{\text{spec}} L_{\text{spec}} + \lambda_{\text{mag}} L_{\text{mag}} + \lambda_{\text{phase}} L_{\text{phase}} + \lambda_{\text{env}} L_{\text{env}} + \lambda_{\text{KK}} L_{\text{KK}} + L_{\text{aux}}, \quad (12)$$

where $\lambda_{\{\cdot\}}$ are hyperparameters controlling the contribution of each term. L_{aux} denotes auxiliary loss terms. L_{aux} is carried over from prior work Yamamoto et al. (2020); Majumder et al. (2022) and consists of multi-resolution STFT loss and energy-shape penalties, and are used for stability rather than driving the primary supervision. Together, these losses constitute a principled and physically grounded spectral supervision strategy. They allow our model to align with both perceptual and physical constraints—capturing sharp resonances, respecting causal propagation, and adapting to hardware-specific frequency responses—while operating entirely in the frequency domain.

5 EXPERIMENTS

We evaluate INFER on the task of reconstructing the 3D frequency response field inside car cabins. Given measured impulse responses at 48 kHz, the model is trained to predict the complex frequency-domain response at unseen receiver positions. We compare INFER to prior state-of-the-art methods—NAF, INRAS, and AVR—focusing on reconstruction accuracy across frequency bands.

5.1 DATASETS

Simulated. We evaluate our method on both simulated and real-world datasets. The simulated data is generated using COMSOL’s *Car Cabin Acoustics—Transient Analysis* module, which solves the time-dependent wave equation with realistic, frequency-dependent boundary admittances. We extract impulse responses at 216 receiver positions across the cabin geometry.

Real. For real-world evaluation, we collect measurements in both the BUCK vehicle mock-up and a Tesla Model X using five loudspeakers and a 16-channel UMA-16 microphone array. We record 4096-sample IRs at 48 kHz with physically measured speaker and microphone positions. Fig. 3 shows the data collection environment and hardware for both BUCK(left) and Tesla model X(right).

5.2 IMPLEMENTATION DETAILS

The input to our model consists of a 3D query point $\mathbf{p} \in \mathbb{R}^3$, transmitter location $\mathbf{p}_{\text{tx}} \in \mathbb{R}^3$, and directions $(\hat{\mathbf{n}}_{\text{tx}}, \hat{\mathbf{n}}) \in \mathbb{R}^3$ representing the emitter and receiver orientations. All input coordinates are encoded using a hash grid based encoding. The model outputs the corresponding complex attenuation $\delta[f] \in \mathbb{C}^{\mathbb{T}}$ and directional spectrum $S[f] \in \mathbb{C}^{\mathbb{T}}$ at that query point, from which the frequency

Figure 3: **Data collection setup.** (a)Left: Data is collected in controlled environment - The BUCK, which is a vehicle mockup with realistic car interior and acoustic frontend. (b)Right: Data is also collected in real environment - Tesla Model X.

Table 1: Mean Absolute Error for Metrics for BUCK and Tesla setups (lower is better).

Method	Buck						Tesla									
	Amp	Ang	Spec	STFT	Ene.	Env.	T60	EDT	Amp	Ang	Spec	STFT	Ene.	Env.	T60	EDT
INRAS	0.29	1.54	0.9	1.6	7.13	2.79	3.0	3.0	0.43	1.63	1.0	2.2	3.93	3.82	14.6	109.8
NAF	0.14	0.54	0.3	1.0	5.55	1.13	1.3	1.7	0.48	1.63	1.2	2.2	2.25	4.13	10.0	8.1
AVR	0.21	0.81	0.5	1.5	7.95	2.06	3.2	2.4	0.28	1.61	1.0	2.7	5.28	6.92	49.6	24.0
Ours	0.12	0.50	0.2	1.2	5.56	0.95	9.8	2.6	0.14	0.59	0.3	1.0	1.57	1.45	8.4	4.0

response $H[f]$ is rendered using Eq.6. The model is implemented as MLPs with 6 fully connected layers and 256 hidden units per layer, using ReLU activations. Rendering is performed using ray marching with 64 points per ray, accumulating complex-valued attenuation and delay across the path as described in Sec. 4.2. We integrate over 64×32 azimuth–elevation rays per receiver to form the output signal. We train all models using the Adam optimizer with an initial learning rate of 5×10^{-4} . Training takes approximately 24 hours on a single NVIDIA L40 GPU. All baseline models are trained with the same network size and data splits for fair comparison.

5.3 QUANTITATIVE RESULTS

Across both BUCK and Tesla, INFER achieves the lowest errors on the core frequency-domain metrics (amplitude, angle, spectral, envelope), outperforming NAF, INRAS, and AVR (Table 1). On BUCK, our model is competitive on energy but lags on time-domain reverberation metrics (T60, EDT), which is consistent with our frequency-centric supervision. On Tesla, INFER also leads on the time-domain metrics (lowest T60 and EDT), indicating better generalization. Per-frequency analysis (Table 4) shows consistent gains: INFER attains the best magnitude and phase errors at every reported band, with particularly large phase advantages at low frequencies (e.g., 180 Hz: 0.029 vs. 0.076 for the next best), while maintaining the best average magnitude error. The details on metric calculation can be found in Appendix 8.

Generalizability. Although, INFER targets modeling frequency responses in closed confines spaces like car cabins as its target application, the underlying technique has no components specific to car cabin modeling. Thus, to prove the generalizability of our technique, we evaluate it on room scale datasets such as MeshRIR Koyama et al. (2021), RAF-Furnished, and RAF-Empty Chen et al. (2024) as shown in Table 2. INFER achieves the best or tied-best performance across these settings. We also show that incorporating KK consistency regularizer improves performance compared to and the KK-free ablation.

Ablation Study. We ablate over different scene sampling strategies, training data sparsity and loss components. These results can be found in Table 3.

- **Loss Components:** We find that removing any term degrades performance across all metrics (with only minor fluctuations in T₆₀), indicating that the full multi-objective loss is

432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444

essential for accurately constraining both magnitude and phase behavior, while T_{60} is less sensitive and can slightly improve when the network underfits specific frequency bands.

- **Dataset Sparsity:** We ablate training-data sparsity and observe a smooth degradation in performance as the data become increasingly sparse, indicating that INFER degrades gracefully under reduced sampling density.
- **Sampling parameters:** We vary the number of rays (both azimuth and elevation) and points per ray. We find that both increasing the ray numbers and the sampling points will both enhance performance, but come with the cost of low training speed and high memory consumption

Table 2: Evaluation on room-scale environments.

Method	MeshRIR						RAF-Furnished						RAF-Empty					
	Phase	Amp.	Env.	T60	C50	EDT	Phase	Amp.	Env.	T60	C50	EDT	Phase	Amp.	Env.	T60	C50	EDT
AAC-nearest	1.47	0.91	1.40	8.6	2.20	58.8	1.60	1.09	4.83	13.0	3.41	73.5	1.60	1.09	4.83	13.0	3.41	73.3
AAC-linear	1.44	0.89	1.42	8.2	2.29	58.9	1.60	0.99	3.81	12.4	3.65	90.2	1.59	1.10	5.22	13.1	3.25	71.5
Opus-nearest	1.45	0.72	1.37	5.2	1.26	35.7	1.60	1.19	5.35	14.4	3.78	80.3	1.59	1.16	4.58	13.3	4.25	100.6
Opus-linear	1.43	0.69	1.37	6.9	1.83	49.3	1.60	1.47	5.74	13.1	3.55	77.8	1.59	0.95	4.26	12.7	3.94	95.5
NAF	1.61	0.64	1.59	4.2	1.25	39.0	1.62	0.93	5.34	7.1	0.98	20.6	1.62	0.85	4.67	8.0	1.22	26.3
INRAS	1.61	0.77	1.85	3.4	1.47	40.7	1.62	0.96	6.43	6.9	1.08	21.4	1.62	0.88	4.72	7.6	1.21	25.8
AVR	1.48	0.54	1.15	3.9	0.92	35.1	1.58	0.28	5.79	6.6	1.12	22.88	1.58	0.29	5.16	6.3	1.18	24.3
INFER (without KK)	1.224	0.26	7.40	2.8	0.57	12.71	1.58	0.2337	5.33	6.35	1.15	22.56	1.58	0.23	4.73	6.0	1.07	23.1
INFER	1.194	0.24	7.34	3.14	0.50	12.45	1.58	0.2197	5.40	6.34	1.08	22.17	1.58	0.23	4.76	6.3	1.11	23.5

Figure 4: **Qualitative results.** (Left) Spatial plots comparing ground truth (GT), and our method’s ability to reconstruct magnitude and phase field across various frequency bands.

5.4 QUALITATIVE RESULTS

Baseline comparison (Fig. 1). At 720 Hz the cabin exhibits mid–high modal density with pronounced interference and wrapped phase discontinuities. The left panel (magnitude) shows two dominant high–energy lobes separated by low–energy troughs in the ground truth. Our method reproduces both the location and contrast of these structures, preserving the nodal troughs and avoiding spurious speckle. AVR and NAF show over–textured patterns with high–frequency artifacts and INRAS collapses toward a nearly uniform field. The right panel (phase) smoothly varying phase across two regions. Our prediction aligns with both in terms of the global gradient and the placement, yielding continuous phase evolution. AVR and NAF introduce local phase jitter and INRAS is nearly constant, indicating it does not recover the true phase evolution at this frequency.

Across-frequency behavior (Figs. 4). We evaluate a wide range of frequencies that transition from low–modal regimes to highly complex interference patterns. At 180 Hz the ground truth is dominated by a slowly varying field; our model reproduces this near-uniform phase and the smooth, weakly varying magnitude without introducing spurious structure. At 360–720 Hz, where the cabin begins to exhibit distinct standing-wave patterns, our reconstructions recover both the placement and contrast of high/low-energy lobes together with the associated phase gradients and wrap seams. At higher frequencies (1440–2880 Hz) the field contains rapid spatial oscillations and multiple discontinuities. Despite this, our predictions remain stable: magnitude maps retain fine-scale contrast without speckle or over-smoothing, and phase maps capture the correct number and placement of wraps with coherent local gradients.

Table 3: Model ablations. Performance for the model variants on Buck dataset.

Study Objectives	Variation	Phase.	Amp.	Env.	T60	EDT
Loss Component	w/o mag loss	0.74	0.18	1.6	8.9	7.1
	w/o phase loss	0.98	0.2	1.8	7.8	6.2
	w/o energy loss	0.5	0.12	0.99	24.0	3.5
	w/o kk loss	0.77	0.18	1.7	9.8	7.3
	w/o stft loss	0.64	0.15	1.4	7.0	4.4
	w/o spec loss	1.44	0.25	2.6	2.4	2.7
	w/o env loss	0.57	0.13	1.2	5.7	3.9
Sampling Parameters	w/o frequency weighting	0.55	0.13	1.2	2.8	3.4
	w/ all loss components	0.48	0.12	0.95	9.8	2.6
Training Data Reduction	30%	1.08	0.25	1.9	3.6	4.4
	50%	0.81	0.19	1.4	3.2	3.7
	60%	0.68	0.15	1.3	3.5	3.7
	75%	0.5	0.12	0.95	9.8	2.6
Sampling Parameters	32 × 16 rays, 64 points	0.98	0.43	4.2	13.6	10.2
	48 × 24 rays, 64 points	0.91	0.24	1.9	10.06	6.1
	64 × 32 rays, 64 points	0.5	0.12	0.95	9.8	2.6
	64 × 32 rays, 40 points	1.13	0.32	2.3	7.0	6.9
	64 × 32 rays, 70 points	0.48	0.11	0.91	7.8	2.8

Table 4: Per-frequency Mean Absolute Error for Buck Dataset (lower is better).

Method	Mag Err						Phase Err					
	180	360	720	1440	2880	Avg	180	360	720	1440	2880	Avg
INRAS	0.751	0.602	0.662	0.384	0.280	0.536	0.100	0.824	1.232	1.285	1.376	0.963
NAF	0.331	0.277	0.242	0.154	0.150	0.231	0.076	0.284	0.398	0.500	0.413	0.334
AVR	0.465	0.388	0.255	0.183	0.217	0.302	0.105	0.187	0.151	0.330	0.665	0.288
Ours	0.149	0.152	0.125	0.154	0.118	0.140	0.029	0.076	0.081	0.194	0.322	0.140

6 DISCUSSION AND FUTURE WORK

This work introduces INFER, a novel spectral-domain neural representation for car cabin acoustics, enabling accurate frequency response reconstruction from sparse measurements. Our method surpasses prior baselines in both magnitude and phase fidelity, and remains physically grounded through causality-aware regularization. Beyond its immediate impact on spatial audio modeling and personalization, our approach opens avenues for integrating learned acoustic fields into downstream tasks such as adaptive ANC, directional speech enhancement, and real-time audio rendering. Future extensions include joint modeling across passenger positions, integrating speaker-specific transfer functions, and exploring generalization to unseen vehicle geometries or dynamic cabin conditions.

7 CONCLUSION

We introduced INFER, a novel spectral-domain framework that models acoustic propagation in confined environments using implicit neural representations. By operating directly in the frequency domain, our method enables perceptually grounded supervision, hardware-aware weighting, and physically consistent regularization through the Kramers–Kronig constraint. Our differentiable renderer explicitly accounts for phase and attenuation via complex-valued ray integration, yielding spatially coherent and frequency-resolved reconstructions. Extensive evaluations on real and simulated car cabin datasets demonstrate that INFER substantially outperforms prior time-domain and hybrid approaches, achieving over 50% improvement in phase accuracy and 39% in magnitude fidelity relative to the best baseline. We believe this work paves the way for accurate and physically grounded neural acoustic modeling in automotive spaces.

540 8 REPRODUCIBILITY
541

542 Anonymized code and demo datasets will be available on our webpage (<https://anonymous1415510-spec.github.io>). We provide details about comparison with other
543 algorithms to facilitate reproducing our results. All details about the hyperparameters, environment
544 specifications, and real-world experiment setup are provided in the appendix or the website.
545

546
547 REFERENCES
548

549 Giampiero Accardo, Paolo Chiariotti, Bram Cornelis, Mahmoud El-Kafafy, B. Peeters, K. Janssens,
550 and Milena Martarelli. Experimental acoustic modal analysis of an automotive cabin: Challenges
551 and solutions. In *Journal of Physics: Conference Series*, volume 1075, pp. 012026. IOP Publishing,
552 2018.

553 Ziyang Chen, Israel D Gebru, Christian Richardt, Anurag Kumar, William Laney, Andrew Owens,
554 and Alexander Richard. Real acoustic fields: An audio-visual room acoustics dataset and bench-
555 mark. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
556 pp. 21886–21896, 2024.

557 Diego Di Carlo, Aditya Arie Nugraha, Mathieu Fontaine, Yoshiaki Bando, and Kazuyoshi Yoshii.
558 Neural steerer: Novel steering vector synthesis with a causal neural field over frequency and
559 direction. In *2024 IEEE International Conference on Acoustics, Speech, and Signal Processing
560 Workshops (ICASSPW)*, pp. 740–744. IEEE, 2024.

561 John T. Etgen and Michael J. O’Brien. Computational methods for large-scale 3d acoustic finite-
562 difference modeling: A tutorial. *Geophysics*, 72(5):SM223–SM230, 2007.

563 Angelo Farina, Emanuele Ugolotti, et al. Spatial equalization of sound systems in cars. In *Pro-
564 ceedings of the 15th AES Conference: Audio, Acoustics & Small Spaces, Copenhagen, Denmark*,
565 volume 31, pp. 10–2, 1998.

566 Jinlong Feng, Xiaoping Zheng, Haitao Wang, Hongtao Wang, Yuanjie Zou, Yinghua Liu, and Zhen-
567 han Yao. Low-frequency acoustic-structure analysis using coupled fem-bem method. *Mathemat-
568 ical Problems in Engineering*, 2013(1):583079, 2013.

569 Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable physics.
570 *arXiv preprint arXiv:2001.07457*, 2020.

571 Shoichi Koyama, Tomoya Nishida, Keisuke Kimura, Takumi Abe, Natsuki Ueno, and Jesper
572 Brunnström. Meshrir: A dataset of room impulse responses on meshed grid points for eval-
573 uating sound field analysis and synthesis methods. In *2021 IEEE workshop on applications of
574 signal processing to audio and acoustics (WASPAA)*, pp. 1–5. IEEE, 2021.

575 Shoichi Koyama, Enzo De Sena, Prasanga Samarasinghe, Mark R. P. Thomas, and Fabio Antonacci.
576 Past, present, and future of spatial audio and room acoustics. In *ICASSP 2025–2025 IEEE In-
577 ternational Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE,
578 2025.

579 Heinrich Kuttruff. *Room Acoustics*. CRC Press, 2016.

580 Zitong Lan, Chenhao Zheng, Zhiwei Zheng, and Mingmin Zhao. Acoustic volume rendering for
581 neural impulse response fields. *Advances in Neural Information Processing Systems*, 37:44600–
582 44623, 2024.

583 Jin Woo Lee and Kyogu Lee. Neural fourier shift for binaural speech rendering. In *ICASSP 2023–
584 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.
585 1–5. IEEE, 2023.

586 Ren-Zun Lian. Generalized huygens–fresnel principle. In *2023 9th International Conference on
587 Computer and Communications (ICCC)*, pp. 1616–1627. IEEE, 2023.

594 Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Av-nerf: Learning neu-
 595 ral fields for real-world audio-visual scene synthesis. *Advances in Neural Information Processing*
 596 *Systems*, 36:37472–37490, 2023.

597

598 Yanshan Liu, Xiangyang Zeng, and Haitao Wang. 3d meshless fem-bem model for prediction of
 599 sound fields in cabins due to external sound disturbances. *Journal of Vibroengineering*, 19(7):
 600 5346–5360, 2017.

601

602 Andrew Luo, Yilun Du, Michael Tarr, Josh Tenenbaum, Antonio Torralba, and Chuang Gan. Learn-
 603 ing neural acoustic fields. *Advances in Neural Information Processing Systems*, 35:3165–3177,
 604 2022.

605

606 Sagnik Majumder, Changan Chen, Ziad Al-Halah, and Kristen Grauman. Few-shot audio-visual
 607 learning of environment acoustics. *Advances in Neural Information Processing Systems*, 35:
 608 2522–2536, 2022.

609

610 Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon
 611 Wetzstein. Acorn: Adaptive coordinate networks for neural scene representation. *arXiv preprint*
 612 *arXiv:2105.02788*, 2021.

613

614 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 615 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 616 *of the ACM*, 65(1):99–106, 2021.

617

618 Qi Mo, Hengchin Yeh, and Dinesh Manocha. Tracing analytic ray curves for light and sound propa-
 619 gation in non-linear media. *IEEE Transactions on Visualization and Computer Graphics*, 22(11):
 620 2493–2506, 2015.

621

622 Amirali Molaei, Amirhossein Aminimehr, Armin Tavakoli, Amirhossein Kazerouni, Bobby Azad,
 623 Reza Azad, and Dorit Merhof. Implicit neural representation in medical imaging: A comparative
 624 survey. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2381–
 625 2391, 2023.

626

627 Matthew O’Donnell, E. T. Jaynes, and J. G. Miller. Kramers–kronig relationship between ultrasonic
 628 attenuation and phase velocity. *Journal of the Acoustical Society of America*, 69:696–701, 1981.

629

630 Tribhuvanesh Orekondy, Pratik Kumar, Shreya Kadambi, Hao Ye, Joseph Soriaga, and Arash Be-
 631 hboodi. Winert: Towards neural ray tracing for wireless channel modelling and differentiable
 632 simulations. In *The Eleventh International Conference on Learning Representations*, 2023.

633

634 Andrew J. Oxenham. How we hear: The perception and neural coding of sound. *Annual Review of*
 635 *Psychology*, 69(1):27–50, 2018.

636

637 Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
 638 zstein. Implicit neural representations with periodic activation functions. *arXiv*, abs/2006.09661,
 639 2020. URL <https://api.semanticscholar.org/CorpusID:219720931>.

640

641 Kun Su, Mingfei Chen, and Eli Shlizerman. Inras: Implicit neural representation for audio scenes.
 642 *Advances in Neural Information Processing Systems*, 35:8144–8158, 2022.

643

644 Harshvardhan Takawale and Nirupam Roy. Spinrv2: Implicit neural representation for passband
 645 fmew radar, 2025.

646

647 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
 648 Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
 649 high frequency functions in low dimensional domains. *Advances in Neural Information Process-
 650 ing Systems*, 33:7537–7547, 2020.

651

652 Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
 653 Learning neural implicit surfaces by volume rendering for multi-view reconstruction. *arXiv*
 654 *preprint arXiv:2106.10689*, 2021.

648 Yiping Wang, Xin Zhen, Jing Wu, Zhengqi Gu, Zhenyi Xiao, and Xue Yang. Hybrid cfd/fem-
 649 bem simulation of cabin aerodynamic noise for vehicles traveling at high speed. *Science China*
 650 *Technological Sciences*, 56(7):1697–1708, 2013.

651 Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A fast waveform gen-
 652 eration model based on generative adversarial networks with multi-resolution spectrogram. In
 653 *ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing*
 654 (*ICASSP*), pp. 6199–6203. IEEE, 2020.

655 T. Yoshimura, M. Saito, S. Maruyama, and S. Iba. Modal analysis of automotive cabin by multiple
 656 acoustic excitation. In *Proceedings of ISMA*, volume 6880, 2012.

657 Xinyun Zhang, Ruiqi Yu, and Shuang Ren. Neural implicit representations for multi-view surface
 658 reconstruction: A survey. *IEEE Transactions on Visualization and Computer Graphics*, 2025.

661 DISCLOSURE OF LLM USAGE FOR WRITING

664 Large Language Models (LLMs) were used solely for grammar refinement and polishing of the
 665 manuscript text. All ideas, technical content, experimental design, and analysis were independently
 666 developed by the authors without LLM assistance.

668 TRAINING DETAILS AND REPRODUCIBILITY

670 A.1 REPRODUCIBILITY

672 Anonymized code and demo datasets will be available on our webpage (<https://anonymous1415510-spec.github.io>). We provide details about comparison with other
 673 algorithms to facilitate reproducing our results. All details about the hyperparameters, environment
 674 specifications, and real-world experiment setup are provided in the appendix or the website.

676 A.2 MODEL ARCHITECTURE, DATASETS AND RENDERER DETAILS

678 We adopt the `AVRModel_complex_FD_FreqDep_PhaseCorrection` model architecture with
 679 the `AVRRenderFD_FreqDep_PhaseCorrection_KK` renderer. This setup is designed for
 680 complex-valued frequency domain rendering and enables physically grounded learning with ex-
 681 plicit modeling of attenuation and phase velocity. [Fig. 5 provides additional details on the input to](#)
 682 [each module of the network](#).

683 **Dataset details:** INFER has been trained on three datasets mentioned in . INFER is trained indepen-
 684 dently in each dataset. Each dataset is divided in 75:15:10 for training set, testing set and validation
 685 set. We provide details of spatial sampling in Table 6

687 Key architectural components:

- 689 • **Complex Frequency Field Prediction:** The model learns frequency-dependent attenua-
 690 tion fields $\delta(f) = \sigma(f) + j\beta(f)$ and complex responses $H(f)$ using MLPs operating on
 691 hash-encoded spatial coordinates.
- 692 • **Separate Signal and Attenuation Networks:** Frequency-specific signal and attenuation
 693 values are predicted using distinct encoders and MLPs.
- 694 • **Directional Encodings:** Transmitter and receiver directions are encoded using spherical
 695 harmonics.
- 696 • **Renderer Pipeline:** Rays are sampled in spherical directions with integration over 64 az-
 697 imuth \times 32 elevation rays, each with 64 samples from near=0 to far=4 meters. Cumulative
 698 attenuation is applied using $\exp(-\sum \sigma_i \Delta u_i + j \sum \beta_i \Delta u_i)$.
- 699 • **Model Size:** The Attenuation Networks contains 670,978 parameters (76,416 for encoder
 700 (3 layers 128 neurons) + 594,562 decoder (3 layers 128 neurons)). The Retransmission
 701 Network has 2,840,578 parameters ((3 layers 512 neurons)). Thus the total parameters are
 3,511,556 parameters (3.51M).

Parameter	Value
Learning Rate	5×10^{-4} (cosine annealing to 5×10^{-5})
Optimizer	Adam
Total Iterations	15,000
Batch Size	1
Rendering Samples	64 per ray
Azimuth \times Elevation Rays	64 \times 32
Speed of Sound	343.8 m/s
Sampling Frequency	48,000 Hz
Path Loss Exponent	1
Layers	8 fully connected layers
Hidden Units	256 neurons per layer
Activation	ReLU
Positional Encoding	10 frequencies for spatial and directional input

Table 5: Training hyperparameters and network architecture for INFER.

Table 6: Dataset Spatial Sampling Characteristics.

Dataset	Mic locs	Speaker locs	Horizontal spacing	Vertical levels
COMSOL	216	1	9.0 cm	3
Tesla	384	5	4.2 cm	3
Buck	384	5	4.2 cm	3

A.3 ADDITIONAL EVALUATIONS

We provide results to additional evaluations here -

- Spatial error plot: Figure 6 provides a spatial visualization of magnitude and phase reconstruction errors across the measurement plane for all baseline methods. INFER exhibits uniformly low error with minimal spatial structure, indicating that the learned frequency-response field interpolates smoothly across unobserved receiver positions. In contrast, competing methods show localized regions of high magnitude and phase error, reflecting their difficulty in modeling fine-grained spatial acoustic variation.
- Evaluation on COMSOL dataset: We additionally evaluate INFER on the COMSOL simulation dataset and observe consistent improvements over all baselines across amplitude, phase, spectral, and energy-based metrics, demonstrating that our frequency-domain modeling generalizes well to fully synthetic volumetric acoustic fields.

Method	Amp	Ang	Spec	STFT	Ene.	Env.	T60	EDT
INRAS	1.28	1.60	2.18	4.11	2.95	12.88	14.6	51.58
NAF	1.53	1.61	2.76	3.53	5.40	19.41	29.09	102.88
AVR	0.81	1.60	2.07	5.01	3.12	17.08	26.36	35.14
INFER	0.78	1.60	2.42	3.10	2.75	7.2	12.9	29.4

Table 7: Evaluation on the COMSOL dataset.

- Per-Frequency Evaluation Across Third-Octave Bands: We further report per-frequency performance across third-octave bands. INFER achieves the lowest magnitude and phase error in nearly every band, including both low-frequency (100–400 Hz) and high-frequency (greater than 2 kHz) regions. This demonstrates that the proposed frequency-domain formulation accurately models both global low-frequency structure and fine high-frequency phase behavior. Competing methods show pronounced degradation at higher frequencies, whereas INFER maintains stable performance across the full spectrum.

Figure 5: A visualization of our network architecture.

Figure 6: Spatial distribution of magnitude and phase reconstruction errors across the measurement plane for all methods. INFER achieves consistently low and spatially uniform errors, whereas baseline methods exhibit localized error concentrations and phase discontinuities.

A.4 RAY-MARCHING

This section provides additional details on the ray-marching procedure used in INFER, addressing the reviewer’s request for clarification. Our approach follows a deterministic, forward-integration scheme that accumulates complex transmittance and directional transfer responses along receiver-centered rays.

Ray Initialization and Sampling Pattern: Rays are cast *from the receiver position \mathbf{p}_r* over a fixed azimuth–elevation grid. We use a uniformly sampled spherical grid (typically $N_\theta \times N_\phi$ directions), which defines a set of ray directions

$$\mathcal{R} = \{ \mathbf{d}_i \mid i = 1, \dots, N_{\text{rays}} \}.$$

Importantly, rays are not required to converge to any specific scene point \mathbf{p} ; instead, each ray explores one possible propagation path toward the receiver.

Along each ray direction, we perform fixed-step marching:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta u \mathbf{d}_i, \quad k = 0, 1, \dots$$

where Δu is the spatial step size. At each step \mathbf{x}_k we query the neural field to obtain the frequency-dependent attenuation and directional response needed for the recursive transmittance update.

No Secondary Rays or Path Branching: INFER does *not* spawn new rays at intermediate points. Although many acoustic simulators rely on explicit secondary rays to model reflections, INFER learns frequency-dependent attenuation and re-transmission fields that implicitly encode multi-bounce behavior. This greatly simplifies the ray geometry while still capturing rich propagation effects through the learned neural field.

Ray Culling and Termination: To improve efficiency, rays are terminated early when the accumulated amplitude becomes negligible. Specifically, if

$$\|T_k(f)\| < \epsilon,$$

Table 8: Per-frequency evaluation across third-octave bands. Lower is better for both metrics.

Freq (Hz)	Magnitude Error				Phase Error			
	INFER (Ours)	AVR	INRAS	NAF	INFER (Ours)	AVR	INRAS	NAF
106	0.050	0.109	0.209	0.211	0.125	0.152	0.199	0.319
129	0.041	0.068	0.197	0.215	0.089	0.138	0.380	0.435
199	0.129	0.392	1.015	0.207	0.044	0.127	0.084	0.122
316	0.139	0.302	0.656	0.259	0.103	0.223	1.413	0.379
398	0.199	0.500	0.980	0.340	0.081	0.197	0.695	0.238
504	0.108	0.198	0.472	0.239	0.143	0.234	0.850	0.431
633	0.086	0.238	0.686	0.206	0.054	0.122	0.797	0.350
797	0.136	0.249	0.380	0.189	0.106	0.167	0.935	0.317
996	0.118	0.204	0.429	0.186	0.175	0.258	1.223	0.456
1,254	0.116	0.214	0.310	0.148	0.174	0.344	1.318	0.593
1,606	0.103	0.155	0.240	0.144	0.262	0.341	1.244	0.382
2,004	0.089	0.133	0.333	0.144	0.281	0.402	1.488	0.426
2,496	0.064	0.079	0.097	0.135	0.373	0.414	1.547	0.381
3,152	0.112	0.233	0.249	0.124	0.414	0.672	1.335	0.358

for all considered frequencies (we use $\epsilon = 10^{-4}$ by default), the ray is culled. We also terminate rays after a maximum traversal distance equal to the bounding volume of the scene.

In summary:

- Rays originate from the receiver and fan out over a spherical grid.
- No rays are required to converge to particular points; instead, each ray samples and integrates complex contributions along its path.
- No secondary rays are spawned; multi-bounce effects are captured implicitly through the learned attenuation and retransmission fields.
- Rays are culled when transmittance falls below a threshold.

A.5 LOSS FUNCTIONS AND WEIGHTS

The total training objective is composed of multiple terms designed to supervise the model’s output across spectral amplitude, phase, energy structure, and physical consistency. The overall loss is expressed as:

$$L_{\text{total}} = \lambda_{\text{spec}} L_{\text{spec}} + \lambda_{\text{mag}} L_{\text{mag}} + \lambda_{\text{phase}} L_{\text{phase}} + \lambda_{\text{env}} L_{\text{env}} + \lambda_{\text{energy}} L_{\text{energy}} + \lambda_{\text{KK}} L_{\text{KK}} + \lambda_{\text{STFT}} L_{\text{MR-STFT}}. \quad (13)$$

In our experiments, we set $\lambda_{\text{spec}} = 16$, $\lambda_{\text{mag}} = 4$, $\lambda_{\text{phase}} = 1$, $\lambda_{\text{env}} = 0.25$, $\lambda_{\text{energy}} = 2$, $\lambda_{\text{KK}} = 0.25$, and $\lambda_{\text{STFT}} = 0.25$. Beyond these global weights, we apply frequency-dependent weighting: for L_{phase} we emphasize low and mid frequencies by setting $w(f) = 1.2$ up to 1.5 kHz (125 bins), $w(f) = 1$ until 5 kHz (425 bins), and then smoothly tapering to 0.8 across the log-frequency axis; for L_{mag} , weights are 1 up to 1.5 kHz, 1.25 until 5 kHz, and then tapered to 0.8; and for L_{spec} , we assign 1.25 up to 5 kHz before tapering. These schedules follow psychoacoustics informed weighting strategies, prioritizing perceptually critical bands while de-emphasizing unreliable high-frequency bins.

A.6 TRAINING PIPELINE

We use the script `avr_runner_complex_FD_kk.py` for training. Each step involves:

1. Ray-based spherical integration using normalized receiver and transmitter coordinates.
2. Prediction of complex signals and attenuation fields.
3. Loss computation including frequency-weighted spectrum and KK regularization.

864 4. Gradient backpropagation with NaN filtering and norm clipping.
 865 5. Mixed precision training and GPU memory optimization.
 866

867 **Special Considerations:**

869 • Gradient clipping to max norm 1.
 870 • Automatic mixed precision (AMP) to save memory.
 871 • Complex loss handling via separate $\Re[H(f)]$ and $\Im[H(f)]$ paths.
 872 • KK regularizer computed using discrete Hilbert transform with frequency masking and
 873 tapering.
 874

876 **A.7 REPRODUCIBILITY CHECKLIST**

878 **Software Environment:**

880 • Python 3.8, PyTorch 1.12.0, CUDA 11.6
 881 • tinyCUDANN 1.6, auraloss 0.4.0, tensorboard 2.8.0
 882

883 **Training Script (Single GPU):**

```
885 python avr_runner_complex_FD_kk.py \
  886   --config config_files/avr_buck_complex_dir_FD.yml \
  887   --model_type AVRModel_complex_FD_FreqDep_PhaseCorrection \
  888   --renderer_type AVRRenderFD_FreqDep_PhaseCorrection_KK \
  889   --batchsize 1 \
  890   --dataset_dir /path/to/dataset
```

891 **A.8 HARDWARE REQUIREMENTS**

893 **Minimum:**

895 • GPU: NVIDIA RTXA6000 (10GB+ VRAM)

897 **Recommended:**

899 • GPU: L40S

901 Training time is approximately 24 hours on a single L40S.

903 **A.9 EVALUATION METRICS**

905 All metrics reported in Tables 1, 3, and 4 represent **Mean Absolute Error (MAE)** unless otherwise
 906 specified. Lower values indicate better performance across all metrics.

908 **FREQUENCY-DOMAIN METRICS**

910 **Envelope Error.** Given the time domain ground truth impulse response $h^*[n]$ and our prediction
 911 $h[n]$, we compute the envelope error by first obtaining the envelope using the Hilbert transform to
 912 get the analytic signal and then applying the absolute value, as follows:

$$\text{Env}^* = |\text{Hilbert}(h^*)| \quad (14)$$

915 The normalized *envelope error* is defined as follows (we multiply by 100 to report as percentage):

$$\text{Envelope error} = 100 \times \text{Mean} \left(\frac{|\text{Env}^* - \text{Env}|}{\max(\text{Env}^*)} \right) \quad (15)$$

918 **Phase and Amplitude Error.** Given the frequency domain ground truth impulse response $H^*[f]$
 919 and our prediction $H[f]$, we use cosine and sine functions to quantify the *phase error*:
 920

$$921 \text{Phase error} = \text{Mean}(|\cos(\angle H^*) - \cos(\angle H)| + |\sin(\angle H^*) - \sin(\angle H)|) \quad (16)$$

923 The *amplitude error* is defined as:

$$924 \text{Amplitude error} = \text{Mean} \left(\frac{|\text{abs}(H^*) - \text{abs}(H)|}{\text{abs}(H^*)} \right) \quad (17)$$

927 **Spectral Error (Spec).** Mean absolute difference between real and imaginary components:

$$929 \text{Spec} = \text{Mean}(|\Re[H^*] - \Re[H]| + |\Im[H^*] - \Im[H]|) \quad (18)$$

931 TIME-DOMAIN METRICS

933 **Multi-Resolution STFT Loss (STFT).** We compute the multi-resolution spectral distance using
 934 multiple STFT window sizes following Yamamoto et al. (2020):

$$935 L_{\text{MR-STFT}} = \frac{1}{M} \sum_{m=1}^M \left(L_{\text{sc}}^{(m)} + L_{\text{mag}}^{(m)} \right) \quad (19)$$

938 where L_{sc} is the spectral convergence loss and L_{mag} is the log-magnitude loss, computed over M
 939 different FFT sizes.

941 **Energy Error (Ene.).** Cumulative energy deviation in the frequency domain:

$$943 \text{Energy error} = \text{Mean} \left| \sum_f |H^*[f]|^2 - \sum_f |H[f]|^2 \right| \quad (20)$$

947 PERCEPTUAL ACOUSTIC METRICS

949 **T60 Reverberation Time.** The T60 metric measures the time required for sound pressure level to
 950 decay by 60 dB after the source stops. We compute the MAE between predicted and ground truth
 951 T60 values in milliseconds. Lower error indicates better preservation of room decay characteristics.

952 **Early Decay Time (EDT).** EDT measures the initial decay rate (first 10 dB) and is particularly
 953 important for perceived spaciousness. We report MAE in milliseconds.

955 **Clarity C50 (dB).** The C50 metric quantifies speech intelligibility as the ratio of early (0-50ms)
 956 to late energy. We report MAE in decibels.

959 PER-FREQUENCY ANALYSIS

960 For Table 4, we report frequency-band-specific MAE computed at center frequencies of third-octave
 961 bands (180 Hz, 360 Hz, 720 Hz, 1440 Hz, 2880 Hz) for both magnitude and phase errors. This
 962 allows fine-grained analysis of model performance across the audible spectrum.

964 A.10 AUDIO HARDWARE SPECIFICATION

966 We detail here the acoustic transducer setup used for our data collection in the *BUCK* testbed and
 967 the production *Tesla Model X* vehicle. Both systems were equipped with a rich spatial arrange-
 968 ment of loudspeakers and a high-fidelity microphone array to facilitate spatial audio capture and
 969 reconstruction.

970 **Speaker Configuration.** While the Tesla Model X uses the default speakers, In BUCK, the active
 971 speakers used for sound excitation include:

- 972 • **Center Dash Speaker:** A 3.5-inch wideband driver, such as the SLA Ram3 or Dayton
973 Audio DMA90-4, capable of full-range output from 85.00 Hz to 20.00 kHz. In typical
974 configurations, these are high-passed at approximately 100.00 Hz to avoid low-frequency
975 distortion.
- 976 • **Rear Door Speakers:** Morel Tempo Ultra Integra 402 or 602 coaxial hybrids with
977 wideband support (55.00 Hz to 22.00 kHz), high sensitivity, and power handling up to
978 120.00 WRMS. These speakers internally crossover between woofer and tweeter around
979 2.50 kHz–3.00 kHz.
- 980 • **Rear Height Speakers:** Tang Band T2-2136SF full-range modules and Morel CCWR254
981 midrange drivers, mounted in ceiling/rear hatch positions to introduce vertical spatial
982 content, spanning 80.00 Hz to 20.00 kHz. Crossover filters are typically applied around
983 800.00 Hz–1.00 kHz depending on system design and companion driver.

984 This layout approximates a 7.1.4 immersive audio setup and enables extensive sampling of rever-
985 berant and directional field responses across both testbeds.

987 **Microphone Array.** We use the commercially available **MiniDSP UMA-16** USB microphone
988 array, which offers 16 omnidirectional MEMS microphones in a linear array form factor. This
989 array supports high-resolution spatial sampling across the cabin, enabling dense reconstruction of
990 directional impulse responses.

992 A.11 BASELINE METHODS

994 To rigorously evaluate the effectiveness of our proposed system INFER, we compare against three
995 representative baselines, each reflecting a different class of acoustic modeling approach:

- 997 • **AVR:** A hybrid time–frequency domain neural field that learns time-domain impulse
998 responses via a differentiable renderer. While AVR applies frequency-domain path delays
999 in its rendering, the model is supervised in the time domain and does not explicitly learn
1000 frequency-dependent attenuation or dispersion.
- 1001 • **NAF (Neural Acoustic Field):** A neural field trained directly in the time domain using
1002 MSE and time-domain perceptual losses. NAF ignores frequency-domain supervision and
1003 is evaluated primarily on time-domain waveform fidelity.
- 1004 • **INRAS (Impulse Response as Signal):** A signal regression approach where the model
1005 directly regresses to the complex impulse response waveform as a 1D signal. INRAS uses
1006 STFT-based perceptual loss, but it does not exploit any spatial priors or directional condi-
1007 tioning.

1008 Each baseline is re-implemented in our codebase with their respective loss functions and evaluation
1009 metrics faithfully reproduced, using the same training datasets, preprocessing pipelines, and neural
1010 architecture backbones where applicable.

1012 A.12 TRAINING CONFIGURATION

1014 All baselines are trained with identical configurations to ensure fair comparisons:

- 1015 • **Dataset:** We use the same training/validation/test splits from our real (BUCK) and syn-
1016 synthetic (Tesla) datasets for all methods.
- 1017 • **Resolution:** The frequency bins, spatial sampling resolution, and directional integration
1018 are matched across all methods.
- 1019 • **Training Epochs:** All models are trained for 500 epochs with early stopping based on
1020 validation loss.
- 1021 • **Batch Size:** Batch size of 1 is used due to GPU memory constraints, consistent with prior
1022 volumetric rendering works.
- 1023 • **Evaluation:** All comparisons are evaluated on both magnitude and phase accuracy across
1024 the frequency range of interest, in addition to perceptual STFT loss and energy-based met-
1025 rics.

1026 A.13 LOSS FUNCTION IMPLEMENTATION
10271028 **AVR.** We follow the original AVR formulation and use the same set of losses described in the
1029 paper.1030
1031 **NAF.** The NAF baseline is trained using the standard losses introduced in its original work, without
1032 any additional frequency-domain regularization.1033
1034 **INRAS.** For INRAS, we adopt the exact losses specified in the original paper, without modifica-
1035 tion.1036 A.14 ARCHITECTURAL MODIFICATIONS
10371038 To isolate the effects of spectral supervision and renderer formulation, all baseline models are built
1039 upon the same backbone MLP architecture as our method:1040
1041 • 8-layer fully connected network with sinusoidal positional encoding.
1042 • Input: $(\mathbf{p}_{tx}, \hat{\mathbf{n}}_{tx}, \mathbf{x}, \hat{\mathbf{n}})$ with appropriate frequency and spatial encodings.
1043 • Output: Real-valued waveform or complex spectrum depending on method.
10441045 A.15 NOTES ON FAIRNESS AND ROBUSTNESS
1046

1047 To ensure fairness in evaluation:

1048
1049 • All models are trained with the same GPU hardware, random seed initialization, and Py-
1050 Torch version.
1051 • We use the same optimizer (Adam) and learning rate schedule across all models unless
1052 otherwise noted.
1053 • All baselines are evaluated using our standardized renderer and metric pipeline to eliminate
1054 post-processing inconsistencies.
1055 • We tune loss weights and learning rates for each baseline to ensure their best performance
1056 under our training conditions.
10571058 Overall, our comparison demonstrates that INFER substantially outperforms these baselines across
1059 spectral and perceptual metrics due to its physics-informed supervision and frequency-aware mod-
1060 eling.
10611062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079