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Abstract

Soybean yield prediction is a challenging problem in plant
breeding that is often affected by many different factors si-
multaneously. Hyperspectral reflectance data from plants pro-
vide breeders with useful data about the health of soybean
plants and using this data for yield prediction is an active area
of research. Often breeding programs suffer from issues such
as data imbalance and several external factors such as geno-
type variablility in different environments which can pose a
serious challenge for developing yield prediction models for
large scale breeding programs. In this work we demonstrate
a cluster based ensemble approach for yield prediction that
can perform well for large scale breeding programs by effi-
ciently harnessing useful information from data through an
unsupervised approach.

1 Introduction
Plant breeders strive to select superior genetic lines to meet
the needs of farmers, industry and consumers, with seed
yield as one of the most important traits under selection.
Traditional methods of estimating seed yield consist of ma-
chine harvesting plots at the end of the growing season, and
using these data to make breeding decisions to select or dis-
card. Furthermore, large population sizes are included, ne-
cessitating phenotyping for multiple traits, across numerous
locations and several years. Therefore, the plant breeding
process is resource and time intensive, and requires signifi-
cant labor, land and capital to develop new varieties (Singh,
Singh, and Singh 2021). To overcome these challenges, plant
breeders and scientists have proposed new methods of as-
sessing lines by using the power of remote sensing combined
with machine learning to predict yield in season and to re-
duce the time and labor requirements at harvest (Li et al.
2022; Yoosefzadeh-Najafabadi et al. 2021; Chiozza et al.
2021; Shook et al. 2021; Riera et al. 2021; Guo et al. 2021;
Singh et al. 2021). Accurate in season yield prediction is
a difficult task due to the complexity of the differences in
genotype, variability in macro and micro environments, and
other factors which can be difficult to measure and quantify
across the growing season. Hyperspectral reflectance data
has been shown to be able to capture plant health indica-
tors not observable in the visible light spectrum (Nagasub-
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ramanian et al. 2018) and in-season seed yield prediction
with rank performance (Parmley et al. 2019b). Hyperspec-
tral data and vegetation indices have a large number of pre-
dictors and typically few observed data points due to the
complexity of the data machine learning (ML) has shown
to be a valuable tool to deal with these complex and often
nonlinear prediction problems (Parmley et al. 2019a). How-
ever, this is an evolving field and continual improvement are
desired to achieve a high level of success in yield prediction
for improved decision making by breeders.

Ensemble learning is a powerful ML concept that works
by constructing a set of individual models and then com-
bines the output of all the constructed models using a deci-
sion fusion strategy to produce a single answer for a given
problem. The two main challenges of ensemble learning are:
(1) how to select appropriate training data and learning al-
gorithms to make the individual learning tasks as diverse
as possible, and (2) how to finalize the learning results by
proper fusion of the individual learning tasks (Huang, Xie,
and Xiao 2009). Essentially, ensemble learning is able to
take into account the effects of the individual learning tasks
to provide an efficient solution to the main problem. Since
large scale breeding programs are affected by experimental
plot design, ensemble learning can help in developing effi-
cient prediction algorithms that can factor in the effect from
the plot design to provide yield prediction for large scale
scenarios. With this motivation, we develop two ensemble
approaches that are able to identify and factor in potential
experimental design effects in the modelling paradigm. The
first approach called a field ensemble model tries to leverage
the experimental design information specific to a breeding
program to perform predictions, while the second method
called cluster ensemble approach tries to infer the possible
effects within the dataset through a unsupervised learning
approach and then build a ensemble strategy based on the
derived information.

2 Description of Data
Data was collected across two years (2020 and 2021), in
preliminary yield trials (PYT), and the advanced yield tri-
als (AYT) each having multiple experiments in each year.
Hyperspectral reflectance was collected for each plot using
a Thorlabs CCS200 spectrometer (Newton, NJ) using a sys-
tem similar to that described in (Bai et al. 2016). Each plot



Table 1: Number of datapoints in each of the four fields.

Field No. Number of observations
1 770
2 912
3 800
4 679

had data from 200 to 1000 nm and was collected at three
timepoints each year. Plot level seed yield data was collected
for each plot with an Almaco small plot combine (Nevada,
IA), and was adjusted to 13% moisture and converted to
Kg/ha. Data was collected in blocks based on the layout of
the breeding program, which grouped lines based on similar
genetic backgrounds and their maturity groups. We report
on the third timepoint because these measurments have the
highest feature importance values, and as measurments get
closer to physiological maturity there is a greater relation-
ship between reflectance data and yield. We grouped data
from all the experiments within each test (PYT and AYT)
for each year (2020 and 2021) to create four datasets, hereon
referred to as fields.

Using the hyperspectral reflectance values we computed
fifty-two health indices taken from Li et al. (2022) details
of which are given in table 4 in appendix A. The number of
data points in each of the four fields are given in table 1.

Before computing the health indices we performed pre-
processing on the data to remove outliers from our analysis.
The steps taken for preprocessing are as follows:

1. All observations for band values less than 400 nm were
removed. This was done since we noticed many anoma-
lies in the readings in those bands.

2. All datapoints which had negative hyperspectral values
in any of the bands ranging from 400 nm to 1000 nm
were removed.

3. All datapoints which had negative seed yield values were
removed.

3 Methodology
In this section, we describe two ensemble approaches: (a)
field weighted ensemble model that used four fields de-
scribed in section 2, and then (b) cluster based ensemble
approach, which is developed on the combined data from
the four fields.

3.1 Field weighted ensemble model
The ensemble framework described in this section aims to
leverage field information in the modelling paradigm by fit-
ting separate models to each of the four fields and then com-
bine predictions from each of the four tasks to arrive at the
final prediction. The steps to build the ensemble framework
are given below

1. Let Dk = (Xk,Yk) denote the dataset for the kth field Fk

(dataset for kth task), where Xk denotes the predictors
(health indices) and Yk the response (seed yield), k =

1, 2, 3, 4. Divide Dk into DTr
k = (X Tr

k ,YTr
k ) and DTe

k =
(X Te

k ,YTe
k ), where DTr

k and DTe
k denote the training and

test set for Dk respectively.
2. Fit a random forest regression model (Breiman 2001) to

every DTr
k .

3. Let WK = (X Tr
k , Zk), where Zk = k for every data

point in X Tr
k denote a new dataset. Here Zk denotes the

field membership of X Tr
k . Combine Wk row wise to cre-

ate a combined dataset W .
4. Fit a multinomial logistic regression classifier (Abdillah

et al. 2020) on W . This classifer provides the ensemble
weights for new observations.

Now, let DTe = (X Te,YTe) denote the dataset obtained
by combining DTe

k , k = 1, 2, 3, 4 row wise.. Then for any
datapoint Xi from X Te, let ŷik denote the prediction ob-
tained from the kth task. Let (ωi1, ωi2, ωi3, ωi4) denote the
classification weights for Xi obtained using the multinomial
classifier, where ωik is the probability that Xi belongs to Fk(∑4

k=1 ωik = 1
)
. The final prediction of Xi is then obtained

as

ŷi =

4∑
k=1

ωikŷik (1)

3.2 Cluster ensemble model
The cluster ensemble method uses a unsupervised approach
to find clusters in the data that serve as datasets for the indi-
vitual tasks. The appeal of this method is that it does not re-
quire any additional field information separately, but is able
to determine it from the full dataset. The steps to build the
cluster ensemble framework are given below:

Let D = (X ,Y) be a dataset where X are the predic-
tors (health indices) and Y is the response (seed yield). In
this setting we do not assume any field information about D.
The aim here is to first identify possible clusters within D,
and then use the obtained cluster information to build our
ensemble approach for prediction. For this setup we split the
data D into train and test parts namely DTr = (X Tr,YTr)
and DTe = (X Te,YTe)

1. Divide X Tr into K homogeneous groups using k-
means (MacQueen 1967) and elbow method. Let C be
a variable denoting the cluster memberships of X Tr.

2. Based on C divide DTr into K groups DTr
k =

(X Tr
k ,YTr

k ), k = 1, 2, . . . ,K. DTr
k is hence the dataset

for the kth task.
3. Fit a random forest regression model to every DTr

k , k =
1, 2, . . . ,K.

4. Fit a logistic regression classifier to (X Tr, C) to deter-
mine the ensemble weights.

Now for any observation Xi from X Te let ŷik denote
the prediction from the kth task, k = 1, 2, . . . ,K. Let
(ωi1, ωi2, . . . , ωiK) be the ensemble weights for Xi ob-
tained using the classifier where ωik is the probability that
the Xi belongs to the kth group (

∑K
k=1 ωik = 1). Then the



final predicted value for Xi is obtained as

ŷi =

K∑
k=1

ωikŷik (2)

Choice of model for individual tasks: Choice of the ap-
propriate model for each individual task is an important as-
pect of this framework. We fitted several models for each
task. These included linear regression, Ridge regression and
Gaussian Process, but random forest regression yielded the
best accuracy in terms of R-squared.

Our framework was implemented using the python library
scikit-learn (Pedregosa et al. 2011)

4 Results and Discussions
In this section we compare the accuracy of the two ap-
proaches, and discuss the usefulness of the cluster ensem-
ble approach for large scale scenarios and potential use in
variety development.

4.1 Field weighted ensemble model
For this experiment we performed a eighty-twenty train-test
split on each of the four fields. Each individual task was fit-
ted using a 3-fold cross validation and eighty-twenty train-
test split. To make sure we have fitted a good classifier to
our combined training data we use a eighty-twenty train-test
split and a 3-fold cross validation on our combined data ( de-
noted by W under section 3.1). Our fitted classifier achieved
an R2 of 0.96 indicating that our fitted classifier will be able
to generate appropriate ensemble weights for the weighted
average prediction

The accuracy of each of the four tasks and the ensem-
ble model for the combined test data are given in table 2. It
is evident that the individual field models do not achieve a
good accuracy, with R-squared values ranging from -0.19 to
0.20. The field ensemble model is able to achieve a higher
accuracy than all of the individual fields. This is because
the ensemble weights are able to leverage the contributions
of the four individual models for every test data to give an
increase in accuracy. Although the increase in this case is
not significant, this example is a clear indication that ensem-
bling using the classification weights tends to provide better
prediction. The main reason behind this low accuracy of the
overall framework is because each of the individual fields
have a poor fit and that is mainly because of the low amount
of data in each of the fields. We hypothesize that where fields
have a sufficient amount of data to provide a good fit the en-
semble can result in increased accuracy, and will be future
research direction.

4.2 Cluster ensemble model
The first step in implementing the cluster ensemble model
is creation of data for the individual tasks, i.e. clustering the
predictors in our training set (we used a eight-twenty train-
test split on the whole data). Figure 1 shows the values of the
sum of squared distances for k (number of clusters) values
one to ten. The elbow plot suggest the optimum number of
groups in the combined data to be two. The first cluster has

Table 2: Test accuracy (measured by R2) for fitted random
forest model for each of the four fields and the field ensem-
ble model.

Field No. Accuracy
1 0.20
2 0.02
3 -0.19
4 0.04

Field ensemble 0.26

Figure 1: Sum of squared distances for k values 1-9.

2100 observations and the second 428 observations.. To train
our classifier and cluster ensemble model we use the same
principle as section 4.1. The obtained test accuracy for the
classifier is 0.95. In each of the obtained clusters we fitted a
random forest regression using a 3-fold cross validation. The
test accuracy of the individual models and the task ensemble
model are given in table 3. The results of cluster ensemble
model points to an important fact that combining data from
the different fields appropriately leads to much better accu-
racy of the individual tasks hence pointing to the fact that the
different fields are indeed related in some way. The cluster
ensemble model is able to identify such types of combina-
tions efficiently and leverage the individual models through
the ensemble weights which enables it to provide predic-
tions with much higher accuracy compared to the field en-
semble model. The potential for this type of learning task in
a large breeding program could help to overcome problems
with class imbalance that can be common in breeding pro-

Table 3: Test accuracy (measured by R2) for fitted random
forest model on the two clusters, the cluster ensemble model.

Cluster No. Accuracy
1 0.41
2 0.47

Cluster ensemble 0.54



(a) (b)

Figure 2: From left to right: (a) The actual vs predicted plot for field ensemble model, (b) The actual vs predicted plot for cluster
ensemble model.

grams due to skewed representation of genetic backgrounds.
Genomic and pheomic prediction can be biased with im-
proved prediction performance for large classes, but can fail
on smaller subsets of data. Data driven ensemble approaches
can help to increase overall accuracy and confidence in pre-
dictions made across breeding programs and be more precise
in all genetic backgrounds.

To investigate the accuracy of the cluster ensemble model
even further we fitted a random forest regression to the full
data with the same train-test split as the cluster ensemble
model and 3-fold cross validation. The R2 for the fitted
model turned out to be 0.53 which indicates that even though
the cluster ensemble approach is a significant improvement
over the field ensemble approach it is not significantly bet-
ter than a simple random forest on the whole data. This we
believe happens because the dataset used here is not suffi-
ciently large to produce a significant increase in accuracy for
the cluster ensemble model. Larger breeding programs giv-
ing rise to large scale datasets can give rise to more clusters
each with sufficient amounts of data which can increase the
accuracy’s of the individual tasks which in turn will increase
the accuracy of the ensemble model.

5 Conclusions
In this study we demonstrated the effectiveness of ensem-
ble methods, particularly the cluster ensemble methods for
soybean yield prediction, using known vegetation indicies.
Initial prediction modeling used the raw reflectance data,
but yielded poor results. Significant improvements in model
accuracies were obtained by using the vegetation indices
described in table A. This aligns with previous work that

has shown significant improvements by using known in-
dices over raw reflectance data(Parmley et al. 2019a; Li et al.
2022). We find that the cluster ensemble model performs sig-
nificantly better compared to the field ensemble model even
though we do not see any significant improvement over a
simple random forest approach over the full dataset. This
happens most probably due to the size and nature of the
data used for this study but larger datasets can potentially
give rise to better accuracy compared to a simple model. Fu-
ture work in this area includes analyzing if blocking the data
based on layout of the breeding program by grouping lines
based on similar genetic backgrounds can result in models
with better accuracy. We also aim to include other external
factors like soil health and weather data along with hyper-
spectral reflectance to create robust models for yield predic-
tion (Shook et al. 2021).
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A Table of health indices



Table 4: Summary of the 52 health indices. Here Tx denote the hyperspectral reflectance value at x nm.

Full form Spectral Index/Ratio Formula
Curvature index Cl T675× T690/T6832

Chlorophyll Index red-edge Clre T750/T710− 1
Datt1 (T850− T710)/(T850− T680)
Datt4 T672/(T550× T708)
Datt6 T860/(T550× T708)

Double difference index DDI (T749− T720)− (T701− T672)
Double peak index DPI (T688 + T710)/T6972

Gitelson2 (T750− T800)/(T695− T740)− 1
Green normalized difference vegetation index GNDVI (T750− T550)/(T750 + T550)

Modified chlorphyll absorption ratio index MCARI [(T700− T670)− 0.2(T700− T550)](T700/T670)
MCARI3 [(T750− T710)− 0.2(T750− T550)](T750/T715)

Modified normalized difference MND1 (T800− T680)/(T800 + T680− 2× T445)
MND2 (T750− T705)/(T750 + T705− 2× T445)

Modified simple ratio mSR (T800− T445)/(T680− T445)

Modified simple ratio 2 mSR2 (T750/T705− 1)/(
√

T750/T705 + 1)
MERIS terrestrail cholrophyll index MTCI (T754− T709)/(T709− T681)

Modified traingular vegetation index 1 MTVI1 1.2[1.2(T800− T550)− 2.5(T670− T550)]
Normalized difference 550/531 ND1 (T550− T531)/(T550 + T531)
Normalized difference 682/553 ND2 (T682− T553)/(T682 + T553)

Normalized difference chlorophyll NDchl (T925− T710)/(T925 + T710)
Normalized difference red edge NDRE (T790− T720)/(T790 + T720)

Normalized difference vegetation index NDVI1 (T750− T650)/(T750 + T650)
NDVI2 (T750− T550)/(T750 + T550)
NDVI3 (T750− T710)/(T750 + T710)

Normalized pigment cholrophyll index NPCL (T680− T430)/(T680 + T430)
Normalized difference pigment index NPQI (T415− T435)/(T415 + T435)

Optimized soil-adjusted vegetation index OSAVI (1 + 0.16)(T800− T670)(T800 + T670− 0.16)
Plant biochemical index PBI T810/T560

Plant pigment ratio PPR (T550− T450)/(T550 + T450)
Physiological reference index PRI (T550− T530)/(T550 + T530)

Pigment-specific normalized difference PSNDb1 (T800− T650)/(T800 + T650)
PSNDc1 (T800− T500)/(T800 + T500)
PSNDc2 (T800− T470)/(T800 + T470)

Plant senescence reflectance index PSRI (T678− T500)/T750
Pigment-specific simple ratio PSSRc1 T [800]/T [500]

PSSRc2 T [800]/T [740]
Photosynthetic vigor ratio PVR T ([550]− T [650])/(T [550] + T [650])

Plant water index PWI T970/T900

Renormalized difference vegetation index RDVI (T800− T670)/
√
(T800 + T670)

Red-edge stress vegatation index RVSI ((T718 + T748)/2)− T733
Soil-adjusted vegatation index SAVI 1.16((T800− T670)/(T800 + T670 + 0.16))

Structure intensive pigment index SIPI (T800− T445)/(T800 + T680)
Simple ratio SR1 T430/T680

SR2 T440/T740
SR3 T550/T672
SR4 T550/T750

Disease -water stress index 4 DSWI-4 T550/T680
Simple ratio pigment index SRPI T430/T680

Transformed chlorophyll absorption ratio TCARI 3((T700− T670)− 0.2(T700− T550)(T700/T670))

Traingular cholrophyll index TCI 1.2(T700− T550)− 1.5(T670− T550)×
√
T700/T670

Triangular vegetation index TVI 0.5(120(T750− T550)− 200(T670− T550))
Water band index WBI T970/T902


