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ABSTRACT

Recent models for video generation have achieved remarkable progress and are
now deployed in film, social media production, and advertising. Beyond their cre-
ative potential, such models also hold promise as world simulators for robotics
and embodied decision making. Despite strong advances, however, current ap-
proaches still struggle to generate physically plausible object interactions and lack
physics-grounded control mechanisms. To address this limitation, we introduce
KineMask, an approach for physics-guided video generation that enables realistic
rigid body control, interactions, and effects. Given a single image and a specified
object velocity, our method generates videos with inferred motions and future ob-
ject interactions. We propose a two-stage training strategy that gradually removes
future motion supervision via object masks. Using this strategy we train video dif-
fusion models (VDMs) on synthetic scenes of simple interactions and demonstrate
significant improvements of object interactions in real scenes. Furthermore, Kine-
Mask integrates low-level motion control with high-level textual conditioning via
predictive scene descriptions, leading to effective support for synthesis of com-
plex dynamical phenomena. Extensive experiments show that KineMask achieves
strong improvements over recent models of comparable size. Ablation studies
further highlight the complementary roles of low- and high-level conditioning in
VDMs. Our code, model, and data will be made publicly available.

1 INTRODUCTION

Recent years have seen substantial advances in video generation, with Video Diffusion Models
(VDMs) emerging as a leading paradigm for high-resolution, temporally consistent synthesis (Ho
et al., 2020; Blattmann et al., 2023b; Yang et al., 2025; Kong et al., 2024). This progress has elevated
visual quality and enabled early commercial use in creative performances (Miller, 2023), experimen-
tal filmmaking (Chayka, 2023), and advertising (Roth, 2025). Beyond content creation, VDMs have
also been explored as world models (Ha & Schmidhuber, 2018), capable of anticipating real-world
interactions and supporting robotics and embodied decision making (Agarwal et al., 2025; Alonso
et al., 2024; Ding et al., 2024). Realizing this vision, however, requires strict physical plausibility
and control, since small deviations from realistic physics can accumulate into large errors in pre-
dicted dynamics. Yet current VDMs struggle to capture fundamental traits (Motamed et al., 2025;
Kang et al., 2025) such as object permanence and causal interactions. Hence, methods for physically
accurate video generation are a key step toward establishing VDMs as reliable world models.

Recent frameworks such as PhysGen (Liu et al., 2024b) and WonderPlay (Li et al., 2025c) integrate
physics-based simulators into data-driven video generation, but they rely on explicit scene recon-
struction, a challenging task on its own. Around the time of this work, Force Prompting (Gillman
et al., 2025) introduced physics-guided controls into VDMs using simulated training data. While
promising, it remains limited in handling rigid-body interactions, often producing unrealistic dy-
namics, and distorted shapes. Motivated by these limitations, we propose an approach that enables
video diffusion models to generate physically realistic object interactions, as a core requirement for
robotics and advanced video generation. We focus on two central questions: (1) Can a video diffu-
sion model generate realistic interactions between objects given initial dynamic conditions, and (2)
how do data and textual conditioning influence the emergence of causal physical effects in generated
videos?
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“On a wooden counter there are two cups of 
coffee. The cup on the left begins to move toward 
the cup on the right. It collides with the cup …..”

Velocity Mask

Predicted Video Description

Input Image and Motion Output Video

Added for Visualization

Figure 1: KineMask results. We enable object-based control with a novel training strategy. Paired
with synthetic data constructed for the task, KineMask enables pretrained diffusion models to syn-
thesize realistic object interactions in real-world input scenes.

To address these questions, we introduce KineMask, a physics-guided framework for generating
object interactions and effects in complex scenes (Figure 1). KineMask provides low-level kine-
matic control over parameters such as object direction and speed, while inferring object interactions
directly within the VDM. KineMask is trained on simulator-rendered videos that capture not only
physically valid dynamics but also explicit object interactions, paired with textual descriptions of
the underlying events. We further leverage object masks as guidance, which enables refined control
over motion trajectories and improves the model’s understanding of object shapes. Beyond low-level
control, KineMask integrates high-level prompt conditioning through textual descriptions of future
scene dynamics. At inference, it predicts dynamics from an input image and enables the generation
of complex effects such as glass shattering or liquid spilling. Extensive experiments demonstrate
that KineMask not only introduces new control capabilities but also outperforms state-of-the-art
models of comparable size, while ablation studies highlight the importance of both the proposed
training strategy and the integration of low- and high-level controls.

In summary, we propose the following contributions:

• We introduce KineMask, a mechanism for object motion conditioning in VDMs, based on
a novel two-stage training and conditioning encoding.

• We train KineMask on a synthetic dataset of dynamic scenes with simple object interactions
and demonstrate generalization of our model to complex interactions in real scenes.

• We combine low-level motion control with high-level text conditioning, yielding significant
gains over comparable models in realistic video synthesis.

2 RELATED WORKS

Video Diffusion Models. Early video diffusion directly extended image generators by inserting
temporal layers into denoising U-Nets (Agarwal et al., 2022; Blattmann et al., 2023a; Guo et al.,
2024b; Wang et al., 2023; 2025b; Chen et al., 2023; Bar-Tal et al., 2024). Later, video synthesis
improved through the usage of Diffusion Transformers (DiTs) (Peebles & Xie, 2023), inheriting
scaling properties from native transformer-based architectures. The use of DiTs allowed for
higher-resolution videos and stronger visual quality (Yang et al., 2025; Kong et al., 2024; Wan et al.,
2025; HaCohen et al., 2024). We build KineMask on CogVideoX (Yang et al., 2025), benefiting
from the advantages of DiTs. Beyond creative purposes, diffusion-based video generation is now
used for world modeling, by synthesizing the possible outcomes of actions in an environment.
(Alonso et al., 2024; Valevski et al., 2025) first proposed diffusion-based world models on restricted
scenarios. Some like GAIA (Hu et al., 2023; Russell et al., 2025) train at scale on specific domains
such as autonomous driving, while Cosmos (Agarwal et al., 2025) uses large-scale data to handle
heterogeneous domains. These models still suffer from limited realism in generating object
interactions, motivating our study.

Control for video generation Significant efforts have been made to extend control on generated
videos beyond textual conditioning. On images, ControlNet (Zhang et al., 2023) and similar ap-
proaches (Mou et al., 2024; Zhao et al., 2023) proposed plug-and-play control trainable components
for dense conditioning such as edges, depth, or human poses. In videos, VideoControlNet (Hu & Xu,
2024) propagated conditions frame by frame using optical flow, while others focused on pose-driven
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human video generation (Zhang et al., 2024b) or keyframe-to-video propagation (Li et al., 2024a).
More recent works such as SparseCtrl (Guo et al., 2024a) uses just a few keyframes for sketch,
depth, or image conditioning, ignoring motion conditions. On motion, DragDiffusion (Shi et al.,
2024) and MotionCtrl (Li et al., 2024b) allow interactive editing and trajectory-aware condition-
ingm. Motion Prompting (Geng et al., 2025) introduces point-track motion prompts, Tora (Zhang
et al., 2025) designs trajectory-oriented diffusion transformers. All these require pre-defined trajec-
tories. Some drive motion by directly guiding attentions (Pondaven et al., 2025) or noise (Burgert
et al., 2025) using reference videos. Beyond single modalities, Cosmos-Transfer (Abu Alhaija
et al., 2025) demonstrates adaptive multimodal conditioning. To our knowledge, KineMask is the
first approach designed to generate object interaction by controlling initial object velocity.

Physics-aware video generation The interactions between physical understanding and video gen-
eration is a growing research field. A first line of work integrates physical simulations with learning-
based techniques. In particular, PhysDreamer (Zhang et al., 2024a) generates oscillatory motions on
3D Gaussians, while DreamPhysics learns physical properties of dynamic 3D Gaussians with video
diffusion priors (Huang et al., 2025). On video generation, WonderPlay (Li et al., 2025c) bridges
physics solvers and generative video models to synthesize dynamic 3D scenes across diverse phys-
ical phenomena. PhysGen (Liu et al., 2024b) applies a similar approach using only 2D information
for rigid body interactions. However, the use of a simulator requires significant engineering efforts
and limits the flexibility of models. Differently, C-Drag (Li et al., 2025b) uses a LLM for infer-
ring causal motion on output videos, also requiring tracking-based control. Using purely diffusion
models, InterDyn (Akkerman et al., 2025) explores the capability of video models to render realistic
object dynamics. However, it exploits frame-wise masks of controlling elements, which are typi-
cally unavailable at test time. Similarly to us, Li et al. (2025a) explores physics post-training but
focuses on gravity effects. The concurrent work Force Prompting (Gillman et al., 2025) explores
similar ideas to ours but does not consider object interactions and deploys simpler motion control.
We experimentally compare to Force Prompting and demonstrate improved performance.

3 KINEMASK

KineMask is designed to synthesize realistic interactions among objects given the image of an initial
scene and initial object velocity encoded by the object mask, see Figure 2. Below we introduce
preliminaries in Section 3.1, we then describe our conditioning mechanism in Section 3.2 and outline
the training and inference procedure in Section 3.3.

3.1 PRELIMINARIES

Video diffusion Models. VDMs generate data by reversing the noising process. In training, a
clean video x0 ∈ RF×H×W×C is perturbed into a noisy version xt by adding Gaussian noise at a
randomly sampled timestep t, and the model is optimized to approximate the corresponding reverse
transition. At inference, the process is inverted: starting from pure Gaussian noise xT , the model de-
noises through intermediate states {xt}Tt=1 until it recovers a clean output video x0 after T steps. To
be grounded to real scenes, we use image-to-video (I2V) models, where the video synthesis is condi-
tioned on a reference image y. Formally, we denote by pθ the VDM with parameters θ. Conditioned
on a high-level text description of the desired output c and a reference image y, the denoising step is:

xt−1 ∼ pθ(xt−1 | xt, c,y), (1)

where xt−1 is a tensor defined over the frame dimensions. The training loss minimizes the KL
divergence between the true reverse conditional p and the model distribution:

Ldiff(θ;x0,y, c, t) = DKL

(
p(xt−1 | xt,x0)

∥∥ pθ(xt−1 | xt, c,y)
)
. (2)

In practice, this objective is implemented by a noise prediction task in which the network learns to
estimate the Gaussian noise added to x0.

ControlNet. To allow additional guidance, a ControlNet (Zhang et al., 2023) branch ψϕ, param-
eterized by ϕ, can encode an arbitrary dense control signal u ∈ RF×H×W×D driving the output
generation. For more details, please refer to Zhang et al. (2023). The denoising step then becomes:

xt−1 ∼ pθ
(
xt−1 | xt, c,y, ψϕ(u)

)
. (3)
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Figure 2: KineMask pipeline. We encode our low-level control signal as a mask encoding the
instantaneous velocity of the moving objects for each frame, to train a ControlNet (left) in two
stages using Blender-generated videos of objects in motion. In the first one, we train with all frames,
whereas in the second one, we randomly drop part of the final frames. We also provide a high-level
textual control extracted by a VLM. At inference (right), we construct the low-level conditioning
with SAM and use GPT to infer high-level outcomes of object motion from a single frame.

When training the ControlNet, the parameters of the backbone model θ are kept frozen, while only
the control branch ϕ is optimized. The corresponding loss is

Lctrl(ϕ;x0,y,u, c, t) = DKL

(
q(xt−1 | xt,x0)

∥∥ pθ(xt−1 | xt, c,y, ψϕ(u)
))
. (4)

3.2 ENABLING MOTION CONTROL

First-stage training. We now want to enable object-wise motion control for KineMask. Specif-
ically, our goal is to move an object in an input scene y with controlled direction and velocity,
allowing us to study the effects of object interactions in the videos generated with diffusion models.
To do so, we assume access to a dataset D of captioned videos depicting objects in motion. Let
f ∈ {1, . . . , F} denote the frame index. For each frame f and object in the scene, we are given a
mask mf ∈ RH×W×3 aligned with the image resolution. The three channels encode the instanta-
neous velocity vector, with the red, green, and blue channels corresponding to motion along the x-,
y-, and z-axes, respectively, in the pixels defined by a segmentation mask of the object. In this way,
D provides not only spatial information about object locations, but also explicit ground-truth dynam-
ics in three dimensions. The velocity masks are then aggregated into a tensor m ∈ RF×H×W×3

and used to condition ψϕ. Similarily to Akkerman et al. (2025), we annotate in this way only the
velocity of the objects moving in the first frame of the rendered video, leaving blank the mask for
objects potentially moved by interactions. We visualize our strategy in Figure 2 (top). This enforces
the model to synthesize interactions without explicitly relying on pixel control information. We can
then train a first-stage KineMask ControlNet ϕ′ by solving

ϕ′ = argmin
ϕ

E(x0,y,m,c)∼D,t

[
Lctrl(ϕ;x0,y,m, c, t)

]
, (5)

The ϕ′ network learns to map dense pixel-wise supervision into structured guidance for object mo-
tion in the generated videos. We show the training masks in Figure 2 (top).

Second-stage training. KineMask ϕ′ enables motion control given motion masks m provided for
all the frames of a video. While such a setup simplifies training, it does not correspond to our desired
scenario of video generation conditioned only by the object motion at the first video frame. Towards
this goal, we propose a mask dropout strategy, erasing the last part of the velocity masks in m at
training time, as shown in Figure 2 (bottom). Formally, we define a truncated mask tensor

m⊙ = {m⊙,f = mf if f ≤ f∗, 0 otherwise}Ff=0. (6)

where f∗ denotes the cutoff frame index corresponding to the dropout ratio. Thus, only the first
frames contain velocity supervision, while the remainder of the sequence is set to zero. We then
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train a second-stage KineMask ϕ′′ by finetuning ϕ′ with this strategy, solving

ϕ′′ = argmin
ϕ′′

E(x0,y,m,c),∼D,t

[
Lctrl(ϕ

′;x0,y,m⊙, c, t)
]
. (7)

As a result of the dropout during training, the VDM equipped with ϕ′′ is able to move objects by
taking as input only the initial velocity, with m⊙ = {m0,0, ...,0}. Ultimately, to render realistic
videos, the VDM must synthesize motion dynamics starting from initial conditions only.

3.3 DATA

Training. We show our training pipeline in Figure 2 (left). For training ϕ′′, we assumed the avail-
ability of a dataset D = {(x0,y,m, c)}. Besides the target video x0 and the reference conditioning
image y, we require both low-level and high-level conditioning for physical dynamics. At the low
level, we require the aggregated velocity masks m defined in Section 3.2. At the high level, instead,
we associate each video with a textual description c summarizing the effects of physical interactions.
Since collecting real-world videos with such annotations is impractical, we generate synthetic data in
Blender. Importantly, such simulated data still allows to generalize to real scenes, as we empirically
verify in our experiments. We render scenes with boxes and cylinders placed on textured surfaces,
and assign to each controlled object an initial velocity with random direction and magnitude. This
procedure yields x0 as the rendered video, y as the first frame of the sequence (used for image-
to-video conditioning), and m as the stack of per-frame velocity masks, which provide supervision
of motion. To obtain the high-level descriptions c, we instead process each rendered video with a
vision–language model (VLM), prompted to provide detailed video captions with particular focus
on object interactions. The full prompt used for caption generation is reported in Appendix A.2.

Inference. At inference time, we assume as input an unseen image y. An object mask can be easily
obtained for the target object e.g., using SAM2 (Ravi et al., 2025), while the desired object velocity
at the first frame is assumed to be provided by the user. We use this information to construct m⊙.
We also prompt GPT-5 (OpenAI, 2025) for a description cinfer of the effects on the scene if the object
starts moving in the direction indicated by the user. The full prompt is in Appendix A.2. Combining
those with random noise xT ∼ N (0, 1), we construct the input tuple {xT ,yinput,m⊙, cinfer} com-
patible with our VDM equipped with ϕ′′. Our inference pipeline is illustrated in Figure 2 (right).

4 EXPERIMENTS

We now present our experiments and describe the experimental setup in Section 4.1. Section 4.2
next presents our main results and compares KineMask to the state of the art. Finally Section 4.3
presents a comprehensive analysis with ablations for different components of our method. Further
ablations are in Appendix A.3.

4.1 SETUP

Datasets. We generate two datasets for training and evaluation. Following Section 3.3, we render
cubes and cylinders with random colors, moving on textured backgrounds from AmbientCG (Am-
bientCG, 2018-2025). The first Interactions dataset contains objects moving in random directions
and interacting with each other. We also construct a Simple Motion dataset, where isolated objects
are moving in random directions without collisions. For both, we generate 10,000 training and 100
test samples. Test videos use disjoint colors and textures compared to training to ensure diversity.
We visualize samples of the generated data in Appendix A.2. We also include a Real World set
of 50 images, collected from the web or generated with ChatGPT’s image generator (Hurst et al.,
2024), used to assess generalization to real scenes with complex objects. Note that unlike Simple
Motion and Interactions, Real World does not include ground-truth motion trajectories. We use
Tarsier (Wang et al., 2025a) to extract predictive captions c.

Implementation. We adopt CogVideoX-I2V-5B (CogVideoX) as backbone for KineMask. We
use ControlNet on the first 8 layers of the model, with weight at 0.5 during training. For ϕ′′, we
also apply a non-uniform sampling strategy for f∗, where frame selection is biased toward earlier
frames, as rigid-body interactions occur most frequently at the beginning of the simulated sequences.
Further details are provided in Appendix A.2. We generate 49 frames at inference.
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Figure 3: Qualitative comparison with CogVideoX. While CogVideoX often suffers from several
failure modes, such as hallucinations and incorrect motions, KineMask follows target motion and
generates realistic object interactions. In details, we improve object interactions in collisions (top
row), show causal effects of object motion (bottom left), and move multiple objects (bottom right).

Baselines. We consider two baselines using pretrained image-to-video models: CogVideoX (Yang
et al., 2025) and Wan2.2-I2V-5B (Wan et al., 2025) (Wan). We prompt both baselines with the
same cinfer as used for KineMask. Since we use CogVideoX as a backbone for KineMask, these
two methods only differ by our training procedure. Additionally, we evaluate Force Prompting
(FP) (Gillman et al., 2025), by mapping our input velocity to input force prompts (Gillman et al.,
2025). Force Prompting is also built on CogVideoX. More details on baselines are in Appendix A.2.

Metrics. For visual quality, we report the Fréchet Video Distance (FVD) (Unterthiner et al., 2019)
and the mean squared error (MSE) between generated and ground-truth videos in our synthetic test
sets. For motion, we compute the Fréchet Video Motion Distance (FVMD) (Liu et al., 2024a),
which isolates motion quality from appearance. Finally, we use SAM2 (Ravi et al., 2025) to extract
semantic masks of objects in both generated and ground-truth videos, and compute Intersection over
Union (IoU) between them to assess geometric consistency.

4.2 COMPARISON WITH BASELINES
88%

72%

68%

Motion
79%

64%

69%

Interactions

Ours better Equal Baseline better

77%

59%

63%

CogVideoX

Wan

Force Prompting

Physical

Figure 4: User study. We significantly out-
perform baselines on motion fidelity, interaction
quality, and overall physical consistency.

Qualitative comparison. We demonstrate
the improvements of KineMask against the
CogVideoX backbone in Figure 3. We also
provide extensive video comparison on all Real
World against all baselines in the supplemen-
tary material (details are in Appendix A.1). We
noticed that CogVideoX suffers mainly from
hallucinations, making multiple objects fly or
completely disappear. Instead, KineMask generates realistic interactions with other objects if they
are present in the path of motion of the initial moving object showing a correct understanding
of rigid body dynamics. We also show (Figure 3, bottom left) complex interactions that require
implicit 3D understanding, making the glass of juice fall and crash as a result of motion, and
multi-object motion and interactions (bottom right). We preserve the input motion direction and
object consistency in different types of real-world scenarios, showing a strong generalization of the
knowledge acquired from simulated videos.

User study. In Figure 4, we show results of a user study with 30 participants, who perform
pairwise comparisons of videos generated by KineMask and baselines for Real World. Participants
are presented with initial images and desired object velocities indicated by arrows. We ask
participants to evaluate output videos derived from Real World on three different axes: motion
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Direction Speed Object

(a) Degrees of freedom.

Simple Motion

Method MSE↓ FVD↓ FMVD↓ IoU↑

CogVideoX 158.3 601.1 1504.6 0.051
ϕ′′ only 86.3 288.8 201.0 0.237
Ours (ϕ′ + ϕ′′) 47.2 160.3 199.8 0.367

ϕ′ w/ masks 24.9 89.7 165.6 0.684

(b) Quantitative results.

Figure 5: Analysis on low-level motion control. In Figure (a), we show different controls of
KineMask. We can choose different directions, speed, and objects, opening potential for world
modeling. In Table (b), we show that our two-stage training strategy allows to considerably boost
results and approach the first-stage training exploiting privileged information (ϕ′ w/ masks).

fidelity to the control signal (Motion), realism of the object interactions (Interactions), overall
physical consistency (Physical). Each answer is collected with a three-answer forced choice format,
where we compare our outputs with baselines and we ask for user preferences, allowing also to
reply “both have the same quality”. The full details are presented in Appendix A.2. The collected
user preferences indicate that our method significantly outperforms all baselines in all questions.
This clearly demonstrates the superiority of KineMask in rendering realistic objects interactions.

4.3 ANALYSIS AND ABLATION STUDIES

4.3.1 LOW-LEVEL MOTION CONTROL

In our first set of experiments, we evaluate KineMask on low-level motion control. To do so, we
train KineMask on Simple Motion with a prompt c∅ =“An object moving on a surface”, hence
discarding the rich description c extracted by Tarsier. At inference, we assume cinfer = c∅. Doing
so, we isolate the effects of low-level conditioning from those of high-level textual control, allowing
for a fair assessment of KineMask as a motion conditioning method.

Fine-grained control. In Figure 5a, we present our results on different degrees of freedom of
KineMask. Despite being trained on basic synthetic data, KineMask generalizes motion control
to complex real-world scenes, coherently with the findings in Gillman et al. (2025). In particular,
we show that KineMask achieves disentangled control over different directions, speed, and objects.
This allows for a fine-grained evaluation of motion dynamics, precious for world modeling.

Two-stage training. We now show the importance of our two-stage training introduced in
Section 3.2. We test KineMask on Simple Motion only, to study the effects of motion control in
isolation. We first report results of CogVideoX prompted with c as a backbone lower bound. Then,
we show the performance of KineMask training directly ϕ′′, without first-stage pretraining. As an
upper bound, we also evaluate ϕ′ using ground truth object masks provided for every frame at test
time. In Table 5b, we show how our two-stage strategy boosts considerably all metrics compared to
training ϕ′′ directly, approaching considerably the upper bound ϕ′. We noticed that the IoU is very
sensitive to minor displacement errors of the moving objects (0.367 vs 0.684), that do not impact
the overall quality of motion as captured by the other metrics.

4.3.2 IMPACT OF DATA

We next explore KineMask for generating realistic interactions of rigid bodies. We compare models
trained on synthetic samples with and without interactions, and draw conclusions on the capability
of VDMs to learn motion. We still use c∅ at both training and inference, as in Section 4.3.1.

Data influence. We evaluate KineMask’s capability to synthesize object interactions depending
on the training data. We first test the model trained on Simple Motion and apply it to Real World data.
We deliberately set input velocities to directions that should generate collisions among objects in the
scene (Figure 6, top). The VDM fails to render realistic collisions. However, KineMask trained on
the Interactions set produces accurate interactions for the same input velocities (Figure 6, bottom).
Hence, KineMask trained on appropriate data allows to render complex object interactions.
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Trained on Simple Motion

Trained on Interactions

Trained on Simple Motion

Trained on Interactions

Figure 6: Impact of training data. While KineMask trained on Simple Motion is able to generalize
to Real World images, the lack of object interactions in Simple Motion results in hallucinations (top).
Training on Interactions results in collisions and plausible motion of pushed objects (bottom).
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Figure 7: Causal effects. The VDM with
KineMask correctly identifies causality, with
objects having different effects on the scene
depending on their initial velocity.

Interactions
Method Training MSE↓ FVD↓ FMVD↓ IoU↑
CogVideoX - 344.6 807.3 3514.9 0.192
Wan - 431.4 977.7 3649.8 0.192
Force Prompt - 312.8 453.7 285.9 0.273

KineMask Simple Motion 166.2 301.1 160.5 0.334
KineMask Interactions 158.7 250.7 143.8 0.355

Table 1: Effects of data. Compared with
models trained on Simple Motion, Interac-
tions data considerably boosts performance.

Moreover, this experiment yields important insights:
while VDMs are robust to visual distribution shift, as
even synthetic training data do not influence the real-
ism of Real World generated scenes, training on syn-
thetic data with specific motion appears to instead
limit the model’s generative capabilities. Indeed, the
model trained on Simple Motion is unable to gen-
erate interactions. This raises questions on VDMs
catastrophic forgetting.

Emergence of causality. Figure 7 shows results
of KineMask trained on Interactions and tested with
three different velocities on a Real World scene
with interacting objects. As velocity increases, the
resulting interactions also change, indicating that
the model captures the causal structure of motion. In
particular, the final position of the second television
varies with the velocity of the first, moving further
if the first hits it at higher speeds. This property
is valuable for world modeling, as it enables the
analysis of different outcomes of object interactions
and supports informed planning.

Quantitative evaluation. We further validate our
findings with a quantitative evaluation on Interac-
tions data, following the same protocol as in Sec-
tion 4.3.1. As shown in Table 1, KineMask achieves
the best results when trained on Interactions. No-
tably, even when trained only on Simple Motion,
it still outperforms all baselines, highlighting that
KineMask is the most suitable method for rendering
motion give an initial velocity.

4.3.3 HIGH-LEVEL TEXT CONDITIONING

We now enable the usage of c at training and cinfer at inference. This allows us to assess the effects
of text introduced in KineMask, and to draw insights on generalization.

Qualitative evaluation. We compare KineMask trained with c∅ against training with c, while
using cinfer for inference in both cases. Doing so, we aim to evaluate the effects of textual prompts
describing interactions during training. As shown in Figure 8, training with rich captions c allows the
method to render interactions beyond those used for training, successfully exploiting the VDM prior
knowledge in the rendered videos. Indeed, the model trained with c∅ fails to follow some effects
in cinfer, such as vase breaking, or small waves forming. Instead, the model trained with c is able

8
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“A ceramic pot moves left, falls from the chair to the floor, and 
completely shatters into many small pieces. After breaking, the 
pot disappears and only broken ceramic fragments remain ....”

“Two yellow rubber ducks are floating on a wet surface with
shallow water. The duck on the left begins moving to the right,
heading towards the duck on the right. As the duck .....”

w
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𝑐 ∅
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Figure 8: Impact of text. Training with rich captions c allows KineMask to generate effects that
go beyond the synthetic data used for training, exploiting the prior knowledge of the VDM. Indeed,
while we prompt both models with cinfer, KineMask trained with c (bottom row) is still able to
generate complex effects of the interactions, such as crashing objects, and water effects. See the full
prompts in Appendix A.2.

to benefit from additional information described in cinfer, correctly breaking the vase and perturbing
the water. Please also note that the captions used in training are always tied to synthetic elements in
Interactions, and therefore have limited diversity. Nevertheless, this still enables successful transfer
to cinfer prompts describing complex effects that go beyond the training distribution of KineMask.

Interactions

Train Infer MSE ↓ FVD ↓ FMVD ↓ IoU ↑
c∅ c∅ 158.7 250.7 143.8 0.355
c∅ cinfer 174.4 238.8 161.3 0.356
c cinfer 160.9 231.3 174.4 0.376

Table 2: Impact of text. Training with
c, we improve object consistency and
general quality on synthetic data.

Quantitative evaluation. We also evaluate metrics
with different configurations of textual conditioning in
Table 2. We consider trainings with c∅, using c∅ or cinfer
at inference. Results demonstrate that using c at training
time boosts object consistency (IoU 0.376 vs 0.356 of
the second best configuration) and overall realism (FVD
231.3 vs 238.8, MSE on par), while we lose some motion
consistency (FMVD 174.4 vs 143.8 of the best model).
However, note that Table 2 includes only evaluation
on synthetic data, where we have access to a motion ground truth. Considering the improved
qualitatives on Real World and the benefit on complex interactions (see Figure 8) we believe the use
of captions c during training is still beneficial for the final model to preserve its capabilities.

5 DISCUSSION

We introduced KineMask, a physics-guided framework that combines low-level motion control with
high-level text conditioning to enable video generation of object interactions and effects in complex
scenes. Our experiments show that KineMask achieves significant improvements over state-of-the-
art models of comparable size, synthesizing realistic multi-object interactions while allowing control
over variable object velocities. We believe this methodology can inform future work on world
models, with potential implications for robotic manipulation, planning, and other applications of
embodied decision making.

While effective, KineMask’s low-level conditioning is limited to velocity, whereas real-world mo-
tion also depends on factors such as friction, shape, mass, and air resistance. Incorporating such
controls is a promising direction for making VDM-generated motion more physically accurate. In
our inference pipeline on real images (Section 3.3), we further use ChatGPT to generate textual
descriptions of rigid-body interactions. As shown in Section 4.3.3, combining text-based condition-
ing with KineMask enhances realism, highlighting the complementary roles of high-level textual
guidance and low-level video control. These results support the joint use of both modalities for
physically grounded world modeling, and we speculate that advances in multimodal language mod-
els (Shukor et al., 2025; Team et al., 2023) may enable text-based physical reasoning to complement
video generation.

9
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REPRODUCIBILITY STATEMENT

We currently provide all the details, related to architecture, training stages and hyperparameters in
the main paper, Section 4.1, and Appendix A.2. We also include the exact prompts used for the
LLMs in Appendix A.2. To further improve reproducibility, will release data, the model, and the
source code, along with usage instructions.
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A APPENDIX

A.1 VIDEO QUALITATIVE RESULTS

For a comprehensive qualitative evaluation on videos, we refer the reader to the attached supple-
mentary material, in which we provide qualitative examples for all Real World images animated
with KineMask and baselines. We organize the results by using a website that can be easily opened
in any browser. To visualize the videos, simply click on the index.html file after unzipping the
material. Please note that for transparency we include randomly selected outputs from all images in
Real World. Hence, quality across samples may differ.

A.2 ADDITIONAL DETAILS

Used prompts We report here the prompt used for c generation at training time and cinfer used for
inference time. We prompt Tarsier (Wang et al., 2025a) to extract c with: “Describe the video in a
concise way, covering all motions and collisions between objects.”. This simple prompt is already
resulting in sufficiently good descriptions. For inference, instead, we rely on GPT prompting with
in-context learning examples to extract suitable descriptions. We report the prompt below, along the
associated in-context examples in Figure 9.

Inference-time cinfer generation prompt

Reference: The first five attached examples are the first frames of simulated videos that contain multiple objects on a
surface, in each example one or two objects can start moving, and these objects can or cannot collide with other objects de-
pending on their initial velocity and direction. The range of velocities for the initial motion of these objects is from 0.5m/s to 1.5m/s.

- In the first initial frame the green cube moves at 1.23m/s and the red cylinder at 1.07m/s. The entire video description for this
video is: ”On a wooden floor, there are four objects: a red cylinder, a green cube, a yellow cube, and a white cylinder. The red
cylinder starts in the center and moves to the right, while the green cube moves to the left. The red cylinder continues to move to
the right and eventually collides slightly with the white cylinder. The green cube continues to move left and collides slightly with
the yellow cube. The red cylinder and the white cylinder remain stationary after the collision.”.

- In the second initial frame the white cube moves at 0.67m/s and the purple cube at 1.35m/s, the entire description for this video
is: ”On a grassy background, there are a yellow cylinder, a purple cube, a pink cube, and a white cube. The white cube moves
towards the yellow cylinder and collides slightly with it. The white cube then stops next to the yellow cylinder. The purple cube
moves towards the pink cube and collides with it, moving it towards the top right, after the collision all objects remain stationary.”.

- In the third initial frame the white cube moves at 1.5m/s and the light blue cube at 1.43m/s, the entire description for this video is:
”Four cubes of different colors (yellow, green, blue, and purple) are on a textured, brown surface. The blue cube moves towards the
green cube, colliding with it and pushing it downwards. The yellow cube moves towards the pink cube, they collide and the purple
cube moves out of the frame. After the collision the blue and green cylinder are static next to each other, while the yellow cube is
positioned in the top right part of the frame.”.

- In the fourth initial frame, the gray cube moves at 0.64m/s, the entire description for this video is: ”The scene is set on a brick
ground with patches of green moss. A white cylinder is stationary in the background. A gray cube, initially positioned on the left
side of the frame, moves horizontally to the right and eventually stops in the center of the frame. Two pink cubes, one on the right
side and another slightly behind it, remain stationary throughout the sequence.”.

- In the fifth initial frame the white cylinder moves at 0.71m/s and the pink cylinder moves at 0.55m/s. The entire description for
this video is: ”The scene consists of a grassy background with four 3D shapes: a purple cube, a white cylinder, a pink cylinder, and
another purple cube. The white cylinder and the pink cylinder move slightly to the left. The purple cubes in the foreground remain
stationary throughout the sequence.”.

Objective: -The last attached initial frame consists of a real picture, in this case the xxx on the xxx moves to the xxx at xxxm/s
!!. According to this information and taking into account the provided examples from simulated videos, please provide an entire
description, predicting what is going to happen in this scene. The provided video description should follow the same style and
words used in the given simulated examples !! , reason about the real scene and describe if collisions happen or not, if they do,
describe them, consider the distance and velocity between objects in the real scene to determine how the objects move, and how
strong the collisions are. Make sure the description would include realistic effects if they happen produced by the movement or
collisions that may occur between objects, for example movement of liquids, steam effects, falling objects, etc. If these effects are
not present in the scene please do not include anything related to them in the prompt !!. Do not include velocity values in it, friction
effects, information from the surface, inclinations, rotations, or produced sounds.

Training Hyperparameters We train KineMask using bf16 mixed precision for 1000 steps with
a total batch size of 40 and saved checkpoints every 250 steps. Our backbone is initialized from the
pretrained THUDM/CogVideoX-5b-I2V model. For the Controlnet we used the first 8 transformer
layers, a downscaling factor of 8 and a control-weight of 0.5. We use AdamW as the optimizer with
a learning rate of 1×10−4, β1=0.9, β2=0.95, a cosine-with-restart learning-rate schedule and a max
gradient norm of 1.0.
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Figure 9: In-context learning examples. Providing examples to GPT helps the generation of the
text cinfer following a desired format.

Baseline implementation details We compare KineMask with Force Prompting, CogvideoX, and
Wan. All methods use an input prompt and an initial image. Additionally, Force Prompting takes the
point coordinates of where to apply the force, the force prompt, and the angle of movement. In all
cases, we apply the same prompt cinfer that we extract by querying GPT. In the extracted prompts, the
moving object and its interactions are always described. Our results demonstrate that for low-level
control (CogvideoX and Wan), the simple application of textual conditioning results in ambiguous
information, ultimately yielding generation artifacts.

Synthetic Samples Figure 10 shows our synthetic dataset along with the velocity masks for each
case. Please note that the masks are extracted only for objects that move at the beginning of the
video, these change their color and intensity depending on motion direction and velocity magnitude.

Prompts for Figure 8 We report here the prompts used for rendering Figure 8, that we omitted
due to the lack of space.

Full Prompt Figure 8 (left)

”A ceramic pot moves left, falls from the chair to the floor, and completely shatters into many small pieces. After breaking, the pot
disappears and only broken ceramic fragments remain scattered on the floor.”

Full Prompt Figure 8 (right)

”Two yellow rubber ducks are floating on a wet surface with shallow water. The duck on the left begins moving to the right, heading
towards the duck on the right. As the duck on the left advances, small ripples spread outward from its base, disturbing the water.
The duck on the left continues its motion and collides firmly with the duck on the right. The impact creates overlapping ripples and
small splashes around both ducks. The duck on the right shifts to the side, while the duck on the left comes to a stop next to it. After
the collision, the water ripples gradually spread and fade, and both ducks remain stationary.”

Details for user study We now provide additional details for our user study. First, we divide
users into 5 groups, randomizing the videos to display to limit the time necessary to complete our
study. We display the videos in couples, along the original frame with the represented control, via
a Telegram bot specifically used for the task and represented in Figure 11. For each video pair, we
ask:

1. Which of these two outputs follow better the motion indicated by the arrow in terms of
direction?

2. Which of the two outputs has the most realistic object interactions?
3. Which of the two outputs have the best overall physical realism?

We aggregate replies from all users in order to build the plots in Figure 4.

A.3 ADDITIONAL RESULTS

Velocity encoding We propose an ablation on our encoding mechanism. In KineMask, we as-
sume to encode the instantaneous velocity of objects in frame t, hence vt. This leads to barely
visible masks in the presence of low velocity magnitude when the velocity decreases in presence of
interactions. We have tested another configuration, by encoding instead for each frame the initial
velocity v0, thus having well-defined masks for all the motion trajectory. However, from the results
in Table 3a, we see that encoding the per frame velocity vt yields better results. We speculate that
this strategy would help the model understand the decrease trend of velocity that naturally occurs in
motion, ultimately serving as an implicit regularization term for training.
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Figure 10: Samples from our synthetic videos and velocity masks used as training dataset.

Dropout density In Section 4.1, we mentioned that we sample non-uniformly the frame f∗ for our
second-stage training. In Table 3b, we present a quantitative evaluation of the effects of this design
choice. As visible, sampling the dropout around the frames where collisions occur in the training
set helps KineMask to focus on interaction-rich representations.

Handling complex objects In Figure 12, we report an interesting failure mode of the concurrent
Force Prompting succesfully handled by KineMask. As visible, Force Prompting struggles when

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 11: User study interface. We use a telegram bot to display pairwise comparisons of videos
and baselines, mixing their order. We collect pairwise user preference on direction, interactions
realism, and consistency of objects.

Interactions

Encoding MSE↓ FVD↓ FMVD↓ IoU↑

v0 205.7 277.3 216.3 0.294
vt (ours) 160.9 231.3 174.4 0.376

(a) Velocity encoding

Interactions

Sampling MSE↓ FVD↓ FMVD↓ IoU↑

Uniform 232.0 303.1 190.9 0.323
Non-uniform (ours) 160.9 231.3 174.4 0.376

(b) Non-uniform sampling

Table 3: Additional ablation studies. We report an additional encoding strategies for our condition-
ing masks in Table (a), proving that our design choice of using vt is best. Furthermore, we showcase
that removing our non-uniform sampling on interactions-rich frames during dropout harms perfor-
mance (b).

the control is applied to object with thin support structures, or with piled objects. This is the result
of an architectural decision, since their control mechanism does not employ masks for identifying
the object to move. Instead, KineMask correctly generates motion on these edge cases.

Failure Cases Figure 13 shows some failure cases of KineMask, other similar examples can be
found in Supplementary Materials. In the first case, we have found that objects that do not have a
considerable height tend to ignore others during their motion, thus a collision is not created. The
second and third cases, show complex scenarios with many object. This sometimes creates ambi-
guities, by resulting in object duplication or disappearance. We speculate here that the text prompt
may also encourage ambiguity, due to the presence of multiple elements that can be associated to
the same textual identifier.

Qualitatives For ease of visualization, we report in Figure 14 some additional qualitative results
of interactions rendered with KineMask. As visible, in several real scenarios, we are able to render
realistic object interactions, where objects move coherently with the users’ prompt.
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KineMask Force Prompting

Figure 12: Motion control comparison. Our mask-based control is robust to ambiguous scenes
where objects overlap, while Force Prompting (the second-best method) suffers from hallucinations
(right) due to the ambiguous mapping of the control signal to objects in the scene.

Figure 13: Failure Cases

A.4 LLM USAGE

In this research, we used an LLM, specifically GPT-5, to aid writing. The usage was limited to
polishing some sentences and grammatical checks, as well as to identifying inconsistencies in the
used terminologies.
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Figure 14: Additional Qualitative Examples of KineMask.
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