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ABSTRACT

Reconstructing dynamic videos from fMRI is important for understanding visual
cognition and enabling vivid brain-computer interfaces. However, current meth-
ods are critically limited to single-shot clips with video-level alignment and re-
construction, failing to address the multi-shot nature of real-world experiences.
To bridge this gap, we propose MindShot, a novel shot-level framework that ef-
fectively reconstructs multi-shot videos from fMRI via a divide-and-decode strat-
egy. Specifically, our framework consists of three stages: (1) Shot Decomposition:
We first identify shot boundaries within fMRI, then decompose the mixed signals
into distinct, shot-specific segments. (2) Keyframe Decoding: Each segment is
decoded into a textual description representing the keyframe of its corresponding
shot. (3) Video Reconstruction: The final video is generated from these keyframe
captions, effectively mitigating noise from fMRI redundancy. Addressing the lack
of data for multi-shot reconstruction, we construct a large-scale multi-shot fMRI-
video dataset, synthesized from existing datasets. Experimental results demon-
strate our framework outperforms state-of-the-art methods in both single-shot and
multi-shot reconstruction fidelity. Ablation studies confirm the critical role of
shot-level reconstruction in multi-shot video reconstruction, with decomposition
significantly improving decoded caption CLIP similarity by 71.8%. This work
establishes a new paradigm for multi-shot fMRI reconstruction, enabling accurate
recovery of complex visual narratives through explicit decomposition and seman-
tic prompting.

1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a powerful, non-invasive tool for studying the hu-
man brain, particularly the visual system, through indirect measurement of neural activity(Horikawa
& Kamitani, 2017). Reconstructing dynamic visual sequences from fMRI data is critical not only
for advancing our understanding of dynamic visual perception and cognition, but also for develop-
ing next-generation brain-computer interfaces (BCIs) capable of more vivid and dynamic “mind-
reading” applications (Wen et al., 2018; Fang et al., 2020; 2023). However, existing video recon-
struction research mainly focuses on short-duration, single-shot videos (depicting a single, contin-
uous scene or event) (Sun et al., 2025; Chen et al., 2023; Li et al., 2024; Lu et al., 2025), ignoring
the multi-shot visual experiences that characterize real-world cognition, such as watching films or
recalling episodic memories.

Reconstructing multi-shot video presents substantial challenges beyond single-shot reconstruction,
especially for existing video-level paradigm. Whether aggregating signals over longer sequences
or decoding short, fixed-length clips, these approaches attempt to reconstruct entire video clips
from corresponding brain activity segments. This paradigm, however, critically neglects that nat-
ural videos are often composed of multiple semantic events. Consequently, when the fMRI signals
correspond to multiple scenes, the video-level approach leads to temporal mixing of semantically
distinct neural patterns. This not only confines current methods to effectively handling only single-
shot videos but also introduces significant ambiguity and noise into the reconstructions, making it
challenging to disentangle and accurately reconstruct the separate visual events (Figure 1).

To address this limitation, we propose a paradigm shift from video-level to shot-level reconstruction.
Rather than reconstructing from temporally mixed neural representations, our framework adopts the
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Figure 1: Illustration of the key innovation of our proposed shot-level paradigm. The conventional
video-level framework decodes from temporally mixed fMRI signals, leading to semantically entan-
gled results. In contrast, our shot-level paradigm explicitly decomposes the signals into shot-specific
components before decoding, enabling clean and coherent reconstruction of each shot.

shot as the basic decoding unit. Specifically, we segment the continuous fMRI time series into
shot-specific segments that align with corresponding video shots. This segmentation yields clean,
semantically coherent neural signals, each corresponding to a single visual context. By grounding
the reconstruction process in shot-level neural representations, our approach effectively mitigates
the temporal mixing problem and enables accurate reconstruction of complex, multi-shot videos.

Based on this shot-level paradigm, we propose MindShot, a novel divide-and-decode framework
for multi-shot video reconstruction. Inspired by text-to-video generation paradigms where a nar-
rative is segmented into prompts corresponding to individual shots (Zhao et al., 2024; Wu et al.,
2025), we introduce a shot boundary predictor for fMRI segmentation. Instead of aggregating the
entire fMRI data, this shot boundary predictor learns to segment it into shot-specific components
corresponding to individual shots, enabling explicit and independent reconstruction of each shot. To
address the limitations imposed by the fMRI-video temporal resolution mismatch, we propose to
decode keyframe captions from fMRI data to achieve semantically precise reconstruction. For each
segmented shot-specific fMRI, we decode a textual caption describing the keyframe using Large
Language Models (LLMs). This leverages the observation that humans remember salient events at
a semantic level, which is more robust to temporal blurring. The decoded caption then provides a
precise semantic prompt for the subsequent video generation stage. To overcome data scarcity, we
develop novel synthesis strategies to construct a large-scale multi-shot fMRI-video dataset. Lever-
aging existing publicly available fMRI-video datasets, including the benchmark CC2017 (Wen et al.,
2018) and the dataset by (Chen et al., 2023), we synthesize 20k sample pairs for each dataset, en-
abling effective training of our proposed model. Our contributions in this work can be summarized
as follows:

• We introduce a new shot-level paradigm for fMRI-video reconstruction by establishing the
shot as the fundamental unit of decoding. This shot-level paradigm enables the explicit
reconstruction of complex, multi-shot videos for the first time.

• We design a learnable shot boundary predictor that automatically segments fMRI time
series into shot-specific components, effectively mitigating the temporal mixing problem
without manual intervention.

• We develop novel synthesis strategies to create large-scale multi-shot training data from
existing datasets, facilitating model development for multi-shot video reconstruction.

2 RELATED WORK

2.1 FMRI-TO-IMAGE RECONSTRUCTION

Benefiting from large-scale datasets like the Natural Scenes Dataset (NSD) (Scotti et al., 2023), gen-
erative vision models conditioned on fMRI signals have demonstrated unprecedented performance
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in reconstructing static images from brain responses. Existing research primarily focuses on en-
hancing reconstruction fidelity through improved semantic alignment, such as contrastive learning
techniques that align fMRI embeddings with image or text representations (Xia et al., 2024), or
by incorporating low-level image features to preserve visual detail consistency (Wang et al., 2024).
Additional efforts have developed subject-unified methods to address cross-subject alignment and
model generalization (Scotti et al., 2024). Despite significant progress, reconstructing dynamic
video sequences presents substantially greater challenges than static images.

2.2 FMRI-TO-VIDEO RECONSTRUCTION

As a pioneering work of fMRI-to-video reconstruction, MindVideo (Chen et al., 2023) achieves no-
table fidelity by aligning fMRI features to CLIP (Radford et al., 2021) space for latent diffusion
model prompting. Subsequent studies enhance temporal modeling in fMRI encoders (Sun et al.,
2025) or explore cross-subject alignment via fMRI projection (Li et al., 2024). Crucially, most of
existing methods are confined to single-shot scenarios, neglecting the multi-shot dynamics inherent
in real-world cognition. While NeuroClips (Gong et al., 2024) generates multiple shots by fusing
semantically similar keyframes, it relies on post-hoc processing rather than intrinsic fMRI signal
decomposition, failing to optimize encoders for disentangling mixed shot information within fMRI
windows. Moreover, contrastive alignment in video reconstruction may be challenging due to the
temporal resolution mismatch between fMRI and video. In contrast to prior work, we propose to ex-
plore the multi-shot video reconstruction by shot-specific fMRI segmentation and keyframe caption
decoding for semantically precise reconstruction, circumventing contrastive alignment constraints.

3 METHOD

Our method can be divided into three main stages, as shown in Figure 2. In the first stage, the shot
boundary predictor partitions fMRI into shot-specific components. Each segmented fMRI is then
decoded to shot-specific keyframe caption via direct interaction with a LLM. These captions serve
as precise semantic prompts input to a text-to-video diffusion model for final video synthesis.

Figure 2: Overview of our proposed method, consisting of three main stages: Shot-Specific fMRI
Segmentation, Generative Keyframe Captioning, and Shot-Centric Video Reconstruction.

3.1 DATASET SYNTHESIS

Given the absence of publicly available multi-shot fMRI-video datasets, we develop novel synthesis
strategies to enable effective model training. Our approach leverages two public resources: CC2017
(Wen et al., 2018) and Li et al.’s fMRI-WebVid dataset (Li et al., 2024).

Synthesis from fMRI-WebVid. Using 2,000 single-shot training clips and 400 test clips from
fMRI-WebVid (each 4s video with 5 fMRI scans), we generate multi-shot videos by randomly con-
catenating distinct clips while preserving 4-second duration. To enhance data diversity, we vary shot
duration ratios across samples, including partial-shot allocations (e.g., 2:3 fMRI frame split) and
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degenerate cases reducing to single-shot. For each resulting shot, we extract the middle frame of its
video segment as shot-specific keyframes and generate captions using BLIP-2 (Li et al., 2023). This
yields 20,000 training and 1,000 test samples (fMRI-WebVid-Syn) with aligned fMRI sequences,
video keyframes, and keyframe captions.

Synthesis from CC2017. From 1,440 training and 400 test clips in CC2017 (each 6s video with
3 fMRI scans), we synthesize two-shot videos by concatenating distinct clips while maintaining 6-
second duration. The number of synthesized fMRI scans is set to 4, considering about the duration
of each shot. To ensure single-shot sources, we first apply SceneSeg (Rao et al., 2020) to decompose
original videos into constituent shots at scene boundaries. For each synthesized video, we randomly
select two shots from different source clips, temporally cropping each according to sampled duration
ratios (e.g., 3:1) before concatenation. Following the fMRI-WebVid-Syn protocol for keyframe
extraction and caption generation, we produce 20,000 training and 1,000 test samples (CC2017-
Syn) with aligned fMRI sequences, video keyframes, and keyframe captions.

3.2 SHOT-SPECIFIC FMRI SEGMENTATION

A primary challenge in multi-shot video reconstruction is the temporal mixing of neural signals
across different shots. Achieving semantically precise reconstruction thus requires decomposing
video-level fMRI into shot-specific components. The most intuitive approach is to detect shot bound-
aries that occur across successive fMRI volumes (TRs), transforming the problem into sequence
boundary prediction for subsequent fMRI separation and aggregation. Therefore, we propose to
detect boundaries by introducing a shot boundary predictor. It is important to note that due to the
temporal integration inherent in fMRI signal acquisition within a single TR, resolving scene tran-
sitions that occur entirely within one TR presents a fundamentally different and more challenging
problem. Consequently, this work focuses on establishing a robust framework for shot-level recon-
struction by addressing inter-TR segmentation, which captures the majority of scene transitions in
conventionally sampled fMRI data, while leaving the challenge of intra-TR decomposition for future
research with advanced acquisition techniques.

Leveraging the fMRI encoder from (Li et al., 2024), we get fMRI embeddings embf ∈ RM×c,
where M is the number of fMRI scans, and c = 1024 represents the embedding dimension. Theses
embeddings are then processed by our proposed shot boundary predictor, which comprises a two-
layer bidirectional LSTM (Bi-LSTM) to model bidirectional temporal dependencies in fMRI signals,
and a linear layer generating boundary probabilities.

Formally, given fMRI embeddings embf ∈ RM×c, the boundary probabilities are computed as:

H = Bi-LSTM(embf ) (1)

where H ∈ RM×d are hidden states (d = 512), P = WH + b ∈ [p1, p2, . . . , pM−1] denotes
boundary probabilities and pi represents the boundary probability of a boundary between fMRI
scans i and i+ 1.

The model is optimized via binary cross-entropy loss:

Lsbp = − 1

M − 1

M−1∑
i=1

[yi log pi + (1− yi) log(1− pi)] (2)

where yi ∈ {0, 1} indicates ground-truth boundaries, and the true number of shots N satisfies

N = 1 +

M−1∑
i=1

yi (3)

At inference, by binarizing pi with a threshold τ , we get

oi =

{
1 if pi > τ

0 otherwise
(4)

where τ = 0.5 in this work. Using the binarized boundaries oi, we partition the fMRI sequence
into Ñ segments, where Ñ = 1 +

∑M−1
i=1 oi is the predicted number of shots. The shot-specific

embeddings are then aggregated as embsf ∈ RÑ×c.
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3.3 GENERATIVE KEYFRAME CAPTIONING

Beyond temporal signal mixing, the fMRI-video temporal resolution mismatch makes direct recon-
struction via contrastive alignment challenging. However, human cognition encodes experiences
through semantic abstractions of key events rather than continuous visual streams. We therefore
reformulate the task as keyframe-centered semantic reconstruction, where decoding keyframe cap-
tions bypasses strict temporal alignment requirements. Specifically, we learn to generate keyframe
captions directly from shot-specific fMRI signals using an LLM, and the keyframe captions are then
used for final video synthesis.

Using ground-truth shot boundaries during training, we obtain shot-specific fMRI embeddings
embsf ∈ RN×c and concatenate them with an instruction prompt and input into a frozen LLM.
Leveraging the multimodal understanding capabilities of the LLM, the dialogue format is structured
as follows: System: [system message]. User: < instruction > < fMRI embedding >. Assistant:
< answer >. The tag < instruction > denotes natural language query, while < image > is a place-
holder for fMRI embedding. The model generates the response < answer > as predicted captions.
The objective for optimizing this decoding process is to minimize the text modeling loss Lcaption,
which evaluates the ability of LLM to generate target captions from fMRI embeddings. This loss is
formally defined as the negative log-likelihood of the target captions given context:

Lcaption = −
T∑

k=1

logPθ

(
tk|t<k, I; embsf

)
(5)

where T is the length of target text, tk is the k-th token, t<k represents the preceding tokens, I is
the input prompt (‘Describe this image < image >’ in this work), and Pθ is the token probability
distribution parameterized by LLM weights θ.

We empirically found that introducing contrastive alignment and noise prediction during training
can improve the final results. Given {keyframe, keyframe caption} pairs, CLIP loss is calculated for
fMRI-keyframe and fMRI-caption pairs. With fixed CLIP encoders, we obtain keyframe embedding
embi ∈ RN×c and text embedding embt ∈ RN×c. The contrastive alignment loss is:

Lalign =
1

2

(
LCLIP (embsf , embi) + LCLIP (embsf , embt)

)
(6)

We also freeze the U-Net of video diffusion model for noise prediction, with MSE loss:

Lmse = Eembsf ,ϵ
t
gt∼N (0,1),t

[∥∥ϵtgt − ϵtpr
∥∥2
2

]
(7)

where embsf is input as condition embeddings, ϵtpr = U-Net(embti, embsf , t) is predicted noise
conditioned on shot-specific fMRI, and ϵtgt is ground-truth noise.

The overall training loss combines all components:

L = Lsbp + λ1Lcaption + λ2Lalign + λ3Lmse (8)

where λ1, λ2, and λ3 are learnable parameters for automatic optimization. Only the fMRI encoder
and shot boundary predictor are trained while other modules remain frozen.

3.4 SHOT-CENTRIC VIDEO RECONSTRUCTION

Following the generation of keyframe captions, we reconstruct the final video by generating each
shot individually and concatenating them according to their original duration. The video generation
is conditioned only on the textual captions using a frozen text-to-video diffusion model. While
incorporating the original fMRI embeddings could provide supplemental multimodal information, it
may introduce substantial noise, particularly given the temporal mixing inherent in multi-shot fMRI
data.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENT AND RESULTS

4.1 EXPERIMENTAL SETTING

Dataset. We evaluated our method on both synthesized and original datasets, including CC2017 and
fMRI-WebVid. CC2017 (Chen et al., 2023) contains three subjects with fMRI frames acquired using
a 3T scanner (TR=2s), where each sample includes a 6s video and 3 fMRI scans. fMRI-WebVid (Li
et al., 2024) involves five subjects with fMRI data acquired using a 3T scanner sampled at 1 frame
per 0.8s. Stimuli videos (596×336) are sourced from WebVid (Bain et al., 2021), with each sample
containing a 4s video and 5 fMRI scans. For synthesized datasets, we balanced samples across
different duration ratios to avoid data bias. CC2017-Syn used fMRI ratios of [(1,3), (2,2), (3,1)] for
4 synthesized fMRI scans, while fMRI-WebVid-Syn used ratios of [(0,5), (2,3), (3,2)]. Synthesized
training data originated only from original training data with no test overlap.

fMRI Preprocessing Following (Qian et al., 2023), each fMRI scan was projected to 32k fs LR
brain surface space through anatomical structure and transformed to a 256×256 single-channel im-
age, where only early and higher cortical regions retained values. fMRI data were averaged across
multiple runs for the same video in both datasets.

Evaluation Metrics For video reconstruction, we utilized N-way top-K accuracy for semantic eval-
uation and SSIM for pixel-level assessment. Shot-specific fMRI segmentation employed segmenta-
tion accuracy, normalized mutual information (NMI), and adjusted rand index (ARI) following video
scene segmentation research (Mahon & Lukasiewicz, 2024). For evaluating LLM-decoded captions,
we used the CLIP text score to measure semantic alignment between generated and ground-truth de-
scriptions.

Implementation Details For original CC2017, we processed 3 fMRI scans to generate 6s videos at
3 FPS. CC2017-Syn used 4 fMRI scans for 6s/6 FPS output. Original fMRI-WebVid processed 5
fMRI scans into 4s/3 FPS videos, while its synthesized counterpart used 5 fMRI scans for 4s/6 FPS
reconstruction. All videos were generated at dimensions of 576×320. Theoretically, any text-to-
video diffusion model can be used for video generation based on the decode captions. In this work,
ModelScopeT2V (Wang et al., 2023) was used as our video generator, performing inference with
30 DDIM steps and adopt a 6.0 classifier-free guidance score. The image encoder and text encoder
were initialized using CLIP ViT-H/14 from OpenCLIP (Cherti et al., 2023), and Qwen3-0.6B (Yang
et al., 2025) served as the LLM decoder.

4.2 COMPARISON RESULTS

We compare our method against three fMRI-to-video baselines: MindVideo (Chen et al., 2023),
NeuroClips (Gong et al., 2024), and GLFA (Li et al., 2024). Visual comparisons are shown in
Figure 3, and quantitative results are presented in Table 1.

According to Table 1, our method outperforms all baselines, particularly in semantic-level metrics,
demonstrating the effectiveness of our approach. Specifically, on the original fMRI-WebVid dataset,
our method achieves a 7.5% improvement in frame-based 2-way classification score compared to the
best baseline, while the 50-way classification score shows a substantial 55.1% improvement. These
results suggest that decoding keyframe captions provides a more effective solution for fMRI-to-
video reconstruction.

The visual comparisons in Figure 3 reveal that our shot-specific fMRI division strategy significantly
contributes to multi-shot video reconstruction quality. In contrast, other baselines exhibit obvious
quality degradation and fail to effectively reconstruct coherent multi-shot sequences.

4.3 ABLATION RESULTS

4.3.1 IMPACT OF SHOT SEGMENTATION

To evaluate the effectiveness of our proposed shot-specific fMRI segmentation, we conducted abla-
tion studies focusing on three key aspects: (1) segmentation performance, semantic caption decoding
accuracy, and final video reconstruction quality. We compare our full method incorporating the Shot
Boundary Predictor (w/ Lsbp) against a baseline (w/o Lsbp) where Lsbp loss component is disabled.
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Table 1: Quantitative comparison of fMRI-to-video reconstruction methods across four datasets,
including two original datasets (fMRI-WebVid and CC2017) and two synthesized datasets (fMRI-
WebVid-Syn and CC2017-Syn).

Dataset Model
Video-Based Frame-Based

Semantic-Level Semantic-Level Pixel-Level

2-way↑ 50-way↑ 2-way↑ 50-way↑ SSIM↑

fMRI-WebVid
MindVideo 0.736±0.04 0.075±0.01 0.760±0.03 0.109±0.01 0.097

GLFA 0.790±0.03 0.107±0.01 0.729±0.03 0.118±0.01 0.143
ours 0.790±0.03 0.135±0.01 0.817±0.03 0.183±0.02 0.145

fMRI-WebVid-Syn
MindVideo 0.788±0.03 0.117±0.01 0.735±0.03 0.122±0.01 0.095

GLFA 0.800±0.03 0.109±0.01 0.727±0.04 0.092±0.01 0.108
ours 0.819±0.03 0.122±0.01 0.803±0.03 0.138±0.01 0.129

CC2017

MindVideo 0.853±0.03 0.202±0.02 0.792±0.03 0.172±0.01 0.171
NeuroClips 0.834±0.03 0.220±0.01 0.806±0.03 0.203±0.01 0.211

GLFA 0.871±0.03 0.219±0.02 0.715±0.04 0.096±0.01 0.083
ours 0.891±0.03 0.235±0.02 0.800±0.03 0.206±0.01 0.244

CC2017-Syn
MindVideo 0.813±0.03 0.164±0.01 0.780±0.03 0.107±0.01 0.107

GLFA 0.877±0.02 0.181±0.02 0.752±0.04 0.087±0.01 0.124
ours 0.889±0.02 0.235±0.02 0.781±0.03 0.140±0.01 0.196

Figure 3: Qualitative comparison of fMRI-to-video reconstruction results on four datasets. Visual
examples from four datasets demonstrate the superiority of our method compared to three baselines.
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In the w/o Lsbp baseline, the entire fMRI sequence is processed as a single unit and the fMRI en-
coder is optimized using a weighted sum of the lossess Lcaption, Lalign, and Lmse. Here, Lcaption

is trained to decode a single, video-level caption describing the entire multi-shot sequence.

Table 2: Ablation results of shot-specific fMRI segmentation on fMRI-WebVid-Syn dataset.

Shot Segmentation Caption CLIP Segmentation Metrics Video Reconstruction Metrics

ACC↑ ARI↑ NMI↑ 2-way↑ 50-way↑
w/o Lsbp 0.177 - - - 0.814±0.03 0.112±0.01
w/ Lsbp 0.304 0.685 0.683 0.690 0.819±0.03 0.122±0.01

Table 3: Ablation results of different prompt settings for video diffusion model.

Prompt
Video-Based Frame-Based

Semantic-Level Semantic-Level Pixel-Level

2-way↑ 50-way↑ 2-way↑ 50-way↑ SSIM↑
fMRI Only 0.810±0.03 0.097±0.01 0.790±0.03 0.130±0.01 0.145
Text Only 0.822±0.03 0.147±0.013 0.815±0.03 0.181±0.01 0.144

Dual-Modal 0.809±0.03 0.108±0.01 0.821±0.03 0.171±0.02 0.101

As shown in Table 2, the shot boundary predictor achieves a segmentation accuracy of 0.685, and
scores of 0.683 in ARI, and 0.690 in NMI, demonstrating the capability of shot boundary predictor
to effectively identify transitions between distinct visual shots within the fMRI signal.

We also evaluate the impact of segmentation on the semantic precision of decoded captions. For
the w/o Lsbp baseline, the decoded caption represents the entire video. Therefore, CLIP similarity
is calculated against the ground-truth video-level caption. In contrast, for w/ Lsbp method, CLIP
similarity is computed between the ground-truth keyframe captions and decoded keyframe captions
for each individual shot. Results in Table 2 show that introducing shot segmentation improves CLIP
similarity by 71.8%. This substantial improvement validates that dividing fMRI signals into shot-
specific components and decoding keyframe captions per shot yields more semantically precise
descriptions than attempting to decode a single, aggregated video-level caption from the mixed
fMRI signal. Qualitative examples in Figure 4 illustrate that captions from w/o Lsbp are often
semantically imprecise and biased towards unrelated content instead of reconstructing any specific
shot, whereas captions from w/ Lsbp accurately focus on the core content of each individual shot.

Figure 4: Comparison of decoded captions with
and without shot-specific fMRI segmentation.

Finally, we assess the impact of segmentation
on the ultimate video reconstruction. Quanti-
tative metrics in Table 2 show improvements
of w/ Lsbp compared to w/o Lsbp. This
demonstrates that the enhanced semantic pre-
cision achieved through shot segmentation and
keyframe caption decoding also contributes to
higher-fidelity dynamic video reconstructions.

In summary, the divide-and-decode strategy ef-
fectively mitigates the semantic ambiguity in-
herent in processing mixed fMRI signals from
multi-shot sequences, enabling the final high-
fidelity multi-shot video reconstruction.

4.3.2 IMPACT OF LLM DECODING

To evaluate the effectiveness of caption decod-
ing against contrastive alignment for semantic extraction from fMRI, we conduct ablation experi-
ments evaluating CLIP similarity under different training regimes. For contrastive alignment, since
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there are no decoded captions, we calculate the CLIP similarity between fMRI embeddings and
ground-truth caption embeddings.

As shown in Table 4, caption decoding (Lcaption only) improves CLIP similarity by 6.7% over the
alignment baseline (Lalign only), demonstrating that decoding text descriptions better reconstruct
semantics by mitigating temporal ambiguity. Although caption decoding outperforms the alignment
baseline, semantic extraction is further enhanced by the multi-task framework that combines align-
ment, decoding, and reconstruction objectives. We ascribe this to the complementary information
provided by different tasks, where alignment task helps preserve structural details while decoding
primarily captures semantics.

4.3.3 IMPACT OF PROMPT SETTINGS

Table 4: Ablation results on semantics extraction
methods on fMRI-WebVid-Syn dataset.

Loss Function Metric

Lcaption Lalign Lmse CLIP↑
- ✓ - 0.283
- ✓ ✓ 0.280
✓ - - 0.302
✓ ✓ - 0.313
✓ - ✓ 0.300
✓ ✓ ✓ 0.336

Our method uses decoded keyframe captions as
input prompts for the video generation model.
To validate this design choice, we compare
three prompt configurations: fMRI-only, text-
only, and dual-modal. The fMRI-only setting
uses fMRI embeddings directly as prompt em-
beddings for video diffusion model, while the
dual-modal approach combines fMRI embed-
dings and text embeddings of decoded cap-
tions with equal weighting. As shown in Ta-
ble 3, using only decoded keyframe captions as
prompts achieves the best results, particularly
on semantic-level metrics. Notably, dual-modal
results are worse than text-only and even un-
derperform fMRI-only on some metrics. We
ascribe this degradation to the fact that combining embeddings may alter their representations in
the latent space, contrary to our expectation that the combination would preserve visual details from
fMRI while maintaining high semantic quality from decoded captions. Additionally, the inclusion of
fMRI embeddings may introduce noise due to the inherent temporal signal mixing, which degrades
reconstruction performance in multi-shot context.

5 LIMITATION AND FUTURE WORK

In this work, we establish a novel shot-level paradigm for multi-shot video reconstruction via shot-
specific fMRI segmentation. However, several limitations remain to be addressed in future research.
First, our current approach focuses on segmenting shot transitions that occur across different TRs.
Decomposing intra-TR transitions presents a more challenging problem, as it requires modeling
the underlying biomedical characteristics of fMRI signals in conjunction with acquisition protocols.
Exploring this direction constitutes an important avenue for future work. Second, while our ablation
studies indicate that using only textual captions for video generation yields better results than dual-
modality conditioning, explore more sophisticated multimodal alignment and fusion mechanisms
may further improve reconstruction quality.

6 CONCLUSION

In this work, we propose a novel divide-and-decode framework for reconstructing multi-shot videos
from fMRI with high semantic fidelity. The shot-specific fMRI segmentation explicitly decouples
mixed neural signals, providing cleaner shot-specific components for later semantics extraction and
final video reconstruction. Decoding keyframe captions from shot-specific fMRI mitigates the tem-
poral ambiguity caused by fMRI-video temporal resolution mismatch. By integrating these inno-
vations, our framework achieves high-fidelity multi-shot reconstruction where prior methods fail.
As one of the pioneering explorations in multi-shot fMRI decoding, we hope that our method can
inspire future multi-shot video reconstruction endeavors.
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A LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text. It is important to note that the LLM
was not involved in the research methodology, or experimental design. All research concepts, ideas,
and analyses were developed and conducted by the authors. The contributions of the LLM were
solely focused on improving the linguistic quality of the paper, with no involvement in the scientific
content or data analysis. The authors take full responsibility for the content of the manuscript.
including any text generated or polished by the LLM. We have ensured that the LLM-generated text
adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.
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