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Abstract

We study value-iteration (VI) algorithms for solving general (a.k.a. multichain)
Markov decision processes (MDPs) under the average-reward criterion, a funda-
mental but theoretically challenging setting. Beyond the difficulties inherent to all
average-reward problems posed by the lack of contractivity and non-uniqueness
of solutions to the Bellman operator, in the multichain setting an optimal policy
must solve the navigation subproblem of steering towards the best connected com-
ponent, in addition to optimizing long-run performance within each component.
We develop algorithms which better solve this navigational subproblem in order
to achieve faster convergence for multichain MDPs, obtaining improved rates of
convergence and sharper measures of complexity relative to prior work. Many key
components of our results are of potential independent interest, including novel
connections between average-reward and discounted problems, optimal fixed-point
methods for discounted VI which extend to general Banach spaces, new sublinear
convergence rates for the discounted value error, and refined suboptimality decom-
positions for multichain MDPs. Overall our results yield faster convergence rates
for discounted and average-reward problems and expand the theoretical foundations
of VI approaches.

1 Introduction

Markov decision processes (MDPs) are the canonical framework for modeling sequential decision-
making problems, and sit at the core of reinforcement learning (RL), operations research, and control
theory. Planning algorithms for solving MDPs therefore play a fundamental role in several fields.
Among planning techniques for MDPs, value-iteration (VI) style methods, which are based upon
solving the Bellman equation, are among the simplest and most fundamental, and also serve as key
primitives within or templates for countless modern RL algorithms.

In this paper we study MDPs with the average-reward criterion, where the objective is to optimize
long-run/steady-state performance. Despite its foundational importance for infinite-horizon problems,
the average-reward setting is less well understood from a theoretical perspective due to its complexity.
Compared to the discounted setting, where the Bellman operator is strongly contractive, the average-
reward Bellman operator is merely nonexpansive and has non-unique solutions. In particular we focus
on the unrestricted setting of general (a.k.a. multichain) MDPs, which poses particular analytical
challenges, due in part to the facts that all optimal policies may induce multiple recurrent classes and
so the optimal average-reward may depend on the initial state, and that multiple Bellman/optimality
equations with different behaviors are needed. In more intuitive terms, one key challenge is that
relative to communicating MDPs (where all states are accessible from one another via some sequence
of actions), multichain MDPs may feature multiple inescapable regions of states that differ in the
maximum performance achievable within said regions, and so algorithms for solving multichain
MDPs must solve the “naviagtion/transient” subproblem of reaching the best possible such region, in
addition to the “recurrent” subproblem of optimizing long-run performance within a region.
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Some recent work has obtained nonasymptotic convergence guarantees for VI methods in multichain
average-reward MDPs, addressing some of these complexities by making connections to the dis-
counted setting or employing Halpern iteration, a fixed-point method with nonasymptotic convergence
properties even for nonexpansive operators. However, past work fails to adequately capture and adapt
to the difficulty of the navigation subproblem: previous algorithms have performance bounds which
degrade with excessively large complexity parameters, which are large even for easier communicating
MDPs or only measure the time needed to solve the navigation problem exactly and yield vacuous
guarantees before this point. Overall, algorithms from prior work fail to achieve optimal performance
for general average-reward MDPs.

In this paper we address these issues, developing faster algorithms in terms of sharper measures of the
complexity of multichain MDPs. To achieve this main goal, we develop many intermediate results of
independent interest. These include new relationships between average-reward and discounted RL
objectives, optimal algorithms for discounted value iteration (and general fixed-point problems in
Banach spaces), algorithms with new sublinear O(1/n) rates for reducing the discounted value error,
and new suboptimality formulas for multichain MDPs which highlight the roles of both Bellman
optimality equations. Beyond our algorithmic improvements, this collection of results advances the
theoretical foundations of VI methods and multichain MDPs.

1.1 Problem setup

A Markov decision process is a tuple (S,A, P, r) where S,A denote the state and action spaces,
respectively, which are assumed to be finite, P : S ×A → ∆(S) is the transition kernel where ∆(S)
denotes the probability simplex over S, and r ∈ [0, 1]S×A is the reward function. A (randomized
Markovian) policy is a mapping π : S → ∆(A), and we let ΠMR denote the set of all such
policies. A deterministic policy π has π(s) with all probability mass on one action for all s ∈ S,
in which case we also treat π as a mapping S → A, and we denote the set of all deterministic
policies by ΠMD. For any initial state s0 ∈ S and any policy π, we let Eπ

s0 denote the expectation
with respect to the induced distribution over trajectories (s0, A0, S1, A1, . . . ) where At ∼ π(St)
and St+1 ∼ P (· | St, At). Let Rt = r(St, At). Fixing some γ ∈ [0, 1), the discounted value
function V π

γ ∈ RS of a policy π is V π
γ (s) = Eπ

s [
∑∞

t=0 γ
tRt]. Define the optimal value function

V ⋆
γ = supπ∈ΠMR V π

γ (where the supremum is taken elementwise). The gain ρπ ∈ [0, 1]S of a policy π

is ρπ(s) = limT→∞
1
T E

π
s [
∑T−1

t=0 Rt]. The optimal gain ρ⋆ ∈ [0, 1]S is defined as ρ⋆ = supπ∈ΠMR ρπ .
The bias function hπ ∈ RS of a policy π is hπ(s) = C-limT→∞ Eπ

s [
∑T−1

t=0 (Rt − ρπ(St))], where
C-lim denotes the Cesaro limit. A policy π is Blackwell-optimal if there exists some γ < 1 such that
for all γ ≥ γ we have V π

γ = V ⋆
γ ; at least one such policy always exists and we denote it π⋆. Any

policy π induces a Markov chain over S, and we let Pπ denote its transition matrix. We let HPπ

denote the Drazin inverse of I−Pπ . We collect some of its properties in Appendix C and also refer to
Puterman [1994, Appendix A]. The suboptimality of π is ∥ρπ − ρ⋆∥∞. An MDP is communicating
if for any pair s, s′ ∈ S, s′ is accessible from s, meaning there exists some π and some k ≥ 1 such
that Eπ

s I(Sk = s′) > 0. An MDP is weakly communicating if it consists of a set of states Sc such
that s′ is accessible from s for all s, s′ ∈ Sc, and a set of states St = S \ Sc which are transient
under all policies. An MDP is general (which we use interchangeably with multichain) if there are no
restrictions. We refer to [Puterman, 1994, Chapter 8.3] for more on MDP classifications. In weakly
communicating MDPs ρ⋆ is equal across all states (a constant vector).

Fixed-point methods For a general operator L : X → X where X is a Banach space with
norm ∥·∥, we say that L is α-Lipschitz if for all x, x′ ∈ X , ∥L(x)− L(x′)∥ ≤ α ∥x− x′∥. L is
(α-)contractive if α < 1, and L is nonexpansive if α = 1. For an initial point x0 ∈ X , Picard
iteration generates the sequence (xt)

∞
t=0 by xt+1 = L(xt), and Halpern iteration generates the

sequence xt+1 = (1− βt+1)x0 + βt+1L(xt) for some sequence (βt)
∞
t=1 where each βt ∈ [0, 1].

Bellman operators For any policy π the policy projection matrix Mπ is an S-by-(S ×A) matrix
such that for any Q ∈ RS×A and s ∈ S, (MπQ)(s) =

∑
a∈A π(a | s)Q(s, a). The maximization

operator M : RS×A → RS has (MQ)(s) = maxa∈A Q(s, a). We often treat P as a (S × A)-
by-S matrix with Psa,s′ = P (s′ | s, a), and with this definition we have Pπ = MπP . For any
V ∈ RS and any γ ∈ [0, 1), the γ-discounted Bellman operator Tγ : RS → RS is defined as
Tγ(V ) = M(r + γPV ). The average-reward Bellman operator is T := T1, that is, T (V ) =
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M(r + PV ). For a vector V ∈ RS , the discounted and average-reward fixed-point errors (a.k.a.
Bellman errors) are ∥Tγ(V )− V ∥∞ and ∥T (V )− V − ρ⋆∥∞, respectively, and the discounted value
error is

∥∥V − V ⋆
γ

∥∥
∞. For a policy π, the discounted and average-reward Bellman evaluation operators

are T π
γ (V ) = Mπ(r + γPV ) and T π(V ) = Mπ(r + PV ), respectively. Tγ , T π

γ are γ-contractive,
and T , T π are nonexpansive, all with respect to ∥·∥∞. V ⋆

γ is the unique fixed-point of Tγ .

Bellman equations Let ρ, h ∈ RS . The (standard/unmodified) multichain optimality conditions
are

max
a∈A

Psaρ = ρ(s) ∀s ∈ S, (1a)

max
a∈A:Psaρ=ρ(s)

r(s, a) + Psah = ρ(s) + h(s) ∀s ∈ S. (1b)

The necessity for two optimality equations is unique to the multichain setting, in particular the fact
that optimality requires solving both the transient/navigational subproblem, of steering towards the
optimal recurrent class (expressed in equation (1a)), as well as the recurrent subproblem of attaining
long-run optimality within each such class. The complications introduced by the restricted maximum
of (1b) motivate the introduction of the modified multichain optimality conditions

max
a∈A

Psaρ = ρ(s) ∀s ∈ S, (2a)

max
a∈A

r(s, a) + Psah = ρ(s) + h(s) ∀s ∈ S. (2b)

These can be written in vectorized form as M(Pρ) = ρ and T (h) = M(r+Ph) = ρ+h. Solutions
always exist to both equations: for any Blackwell-optimal policy π⋆, (ρ⋆, hπ⋆

) satisfies the unmodified
Bellman equations, and there exists some M > 0 sufficiently large so that (ρ⋆, hπ⋆

+Mρ⋆) satisfies
both the modified and unmodified Bellman equations [Puterman, 1994, Proposition 9.1.1]. All
solutions (ρ, h) to the unmodified equations (1a) and (1b) have ρ = ρ⋆. However, a solution (ρ, h)
to the modified equations (2a) and (2b) do not necessarily have ρ = ρ⋆ (see [Bertsekas, 2018,
Example 5.1.1]). A sufficient condition for ρ = ρ⋆ is that there exists a single policy π satisfying
both maximums simultaneously, meaning Mπ(Pρ) = M(Pρ) and Mπ(r + Ph) = M(r + Ph)
[Puterman, 1994, Theorem 9.1.2ab]. Potentially of independent interest, in Lemma D.1 we show
that a solution (ρ, h) of the modified optimality equations admits such a simultaneously maximizing
policy if and only if (ρ, h) also satisfies the unmodified optimality equations.

Complexity parameters For any policy π ∈ ΠMR we define Rπ to be the set of states which are
recurrent in the Markov chain Pπ and we let Uπ = S \Rπ be the set of transient states. We define the
transient time parameter Bπ of policy π to be the maximum (over all starting states) expected amount
of time spent by π in transient states, that is maxs0 Eπ

s0τRπ , where τRπ = inf{t ≥ 0 : St ∈ Rπ}
is the hitting time of the set Rπ. We define the bounded transient time parameter of the MDP P
to be B = maxπ∈ΠMD Bπ [Zurek and Chen, 2025b]. We define the minimum gain-optimality gap
∆ = min {ρ⋆(s)− Psaρ

⋆ : ρ⋆(s)− Psaρ
⋆ > 0, s ∈ S, a ∈ A} [Lee and Ryu, 2024]. For v ∈ RS

we define the span seminorm ∥v∥sp = maxs∈S v(s)−mins∈S v(s).

1.2 Prior work and their limitations

In this subsection we provide a detailed description of results from recent work which are directly
comparable with our main theorems. However, since the full set of our results intersects with several
different areas, we provide more extensive related work in Appendix B, including references to VI
analyses for multichain MDPs which give only asymptotic guarantees, and more information on
Halpern iteration. Here we focus on the two most relevant prior works, which are the first to obtain
nonasymptotic guarantees for general average-reward MDPs with VI approaches.

Zurek and Chen [2025b] focus on statistical complexity of average-reward RL but develop a reduction
from average-reward (gain) suboptimality to discounted suboptimality, which implies the following:
Proposition 1.1. Suppose that n ≥ 4. Set γ so that 1

1−γ = n
2 log(n) . Then for the policy π̂ such that

T π̂
γ (Vn) = Tγ(Vn) where Vn = T (n)

γ (0), we have

∥ρπ̂ − ρ⋆∥∞ ≤ 2
3B+ 3∥hπ⋆∥sp + 2

n
log(n).
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See Appendix E for its proof, which follows easily from Zurek and Chen [2025b]. A key shortcoming
is that B is nonzero and potentially very large even in MDPs where ρ⋆ is constant, thus failing to
adapt to situations when the navigation problem is trivial. Also the rate scales worse than O(1/n).

Lee and Ryu [2024, Theorem 2], based on Halpern iteration, obtains the following guarantees:
Proposition 1.2. Let (ρ⋆, h) be a solution to both the modified and unmodified Bellman equa-
tions.1 There exists an algorithm that, for any input V0 ∈ RS , if n > K where K =
3∥r∥∞+12∥V0−h∥∞+3∥ρ⋆∥∞

∆ after n iterations produces output Vn ∈ RS such that

∥ρπ̂ − ρ⋆∥∞ ≤ ∥T (Vn)− Vn − ρ⋆∥∞ ≤ 8

n+ 1
∥V0 − h∥∞ +

K

n+ 1
∥ρ⋆∥∞

where π̂ satisfies T π̂(Vn) = T (Vn).

Note the ∥r∥∞, ∥ρ⋆∥∞ terms are generally Θ(1) for the scaling used in this paper. The leading
term involves the quantity K which introduces a dependence on the potentially very large quantity
∥V0−h∥∞

∆ , which is essentially the number of iterations required to estimate ρ⋆ accurately enough
to perfectly solve the navigation problem. Overall, (for a no-prior-knowledge initialization V0 = 0)
these two results yield incomparable rates O((B+ ∥hπ⋆∥sp)

logn
n ) and O(∥h∥∞ (1+ 1

∆ ) 1n ), and both
seem unable to adequately address the complexity of solving the navigation problem, especially when
the iteration budget is not large enough to solve it perfectly. (Also as we show in Theorem D.4, ∥h∥∞
may be much larger than ∥hπ⋆∥sp and introduce an additional 1/∆ dependence.)

1.3 Our contributions

Here we summarize some of our main contributions. Lemma 2.1 and Corollary 2.2 relate policy
suboptimality to both Bellman equations, and motivate the introduction of a refined complexity
measure (3), whose properties we analyze. We identify new conditions that enable us to develop
convergent VI methods, for both T π (Corollary 3.2) and T (Algorithm 1 and Theorems 3.4 and
3.5), leading to optimal nonasymptotic rates and dependencies on the refined complexity measure.
We develop new average-to-discounted reductions (Lemma 4.1). Theorem 4.2 demonstrates the
optimality of Algorithm 2 for general contractive fixed-point problems in Banach spaces, leading
to improvements for the discounted operator Tγ . Lemma 4.3 shows that the discounted value error
∥V ⋆

γ − Vt∥∞ can be reduced at a sublinear O(1/t) rate, even when γ is close to 1, rather than O(γt).
These are combined to develop an algorithm based on discounted VI for multichain MDPs (Theorem
4.5) with different and improved convergence properties.

2 Sensitivity analysis for multichain MDPs

In order to achieve our goal of developing algorithms for multichain MDPs that have the sharpest
dependence on the navigation subproblem’s difficulty and give nonvacuous performance without
solving it perfectly, we first analyze how the degree of error in an approximate solution to the Bellman
optimality equations relates to the suboptimality of a policy constructed from this solution.
Lemma 2.1. For any policy π and any h ∈ RS we have

ρπ − ρ⋆ = HPπ
(Pπρ

⋆ − ρ⋆) + P∞
π (rπ + Pπh− ρ⋆ − h).

The first and second terms on the right-hand side above are related to the first and second modified
Bellman equations (2a) and (2b), respectively. If ∥Pπρ

⋆ − ρ⋆∥∞ = 0, which is always the case
when ρ⋆ is constant (such as when P is weakly communicating), then the first term vanishes and
we essentially recover a standard result [Puterman, 1994, Theorem 8.5.5]. However, in general
this demonstrates the importance of satisfying the first Bellman equation (6). The main theorem
of Lee and Ryu [2024] for general MDPs only provides a guarantee once the number of iterations
is sufficiently large that the output policy π would satisfy ∥Pπρ

⋆ − ρ⋆∥∞ = 0, which incurs a
dependence on the potentially large parameter 1/∆ and hides the role of the first Bellman equation.

1The statement of [Lee and Ryu, 2024, Theorem 2] only requires h to be a modified Bellman equation
solution, but their definition requires the existence of a simultaneously argmaxing policy, which we show in
Lemma D.1 is equivalent to h also satisfying the unmodified equations.
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Generally the vector (Pπρ
⋆ − ρ⋆) has many zero entries for reasons explained shortly, implying some

entries of the matrix HPπ (the Drazin inverse of I − Pπ) are irrelevant. (See Lemma F.3 for more on
HPπ ’s entries.) This directly motivates the definition of our sharp complexity parameter Tπ

drop:

Tπ
drop = max

s∈S
Eπ
s

[ ∞∑
t=0

I (PSt,At
ρ⋆ < ρ⋆(St))

]
. (3)

This is equivalently the expected-total-reward value function of policy π for the indicator reward
function r(s, a) = I{Psaρ

⋆ < ρ⋆(s)}. This connection is used in an essential way for certain proofs.
In words, Tπ

drop measures the maximum (over starting states) amount of time spent by π taking
“gain-dropping” actions. We also define Tdrop = maxπ∈ΠMD Tπ

drop (note that Tdrop could equivalently
be defined as the optimal expected-total-reward value function for the reward r), which similarly is
the maximum amount of time spent taking “gain-dropping” actions by any policy, from any starting
state. (By standard results [Puterman, 1994, Chapter 7], even allowing history-dependent randomized
policies, the maximum is attained by some π ∈ ΠMD.) We call Tdrop the gain-dropping time. These
parameters are essentially defined in the sharpest way so that following bound holds:
Corollary 2.2. For any policy π and any vector h ∈ RS ,

∥ρπ − ρ⋆∥∞ ≤ Tπ
drop ∥Pπρ

⋆ − ρ⋆∥∞ + ∥T π(h)− h− ρ⋆∥∞ .

While the condition Psaρ
⋆ < ρ⋆(s) in (3) appears very quantitative, it is actually closely related to

the MDP’s topological structure: such “non-gain-preserving” state-action pairs (s, a) are necessarily
on the “boundary” of some strongly-connected MDP component in the sense that they have nonzero
probability of transitioning to some s′ such that there is no policy which can eventually reach s from s′

with probability 1 (since if there were, we would have ρ⋆(s′) = ρ⋆(s)). Since many state-action pairs
cannot be on such a boundary (including all state-action pairs which are recurrent under any policy),
we must have Psaρ

⋆ = ρ⋆(s) for some state-action pairs. (Note we always have ρ⋆(s) ≥ Psaρ
⋆.)

As shown in Lemma F.1, Tdrop is always finite in finite MDPs. We always have Tdrop ≤ B and
Tdrop ≤ 1

∆ , as shown in Lemmas F.5 and F.6, respectively, the latter of these facts due to an
interesting Markov-inequality-like argument. Tdrop = 0 if ρ⋆ is constant, whereas B may still be
arbitrarily large in this case. We also show examples where Tdrop is arbitrarily smaller than 1/∆ in
Theorem D.4.

3 Value iteration for multichain average-reward MDPs

3.1 Coupling-based analysis

A key requirement for the convergence of Halpern iteration is that the operator must possess some
fixed point. This is not the case for average-reward MDPs, where T instead satisfies T (h) = h+ ρ⋆

for h satisfying (2b), which implies T has no fixed point (unless ρ⋆ = 0), but the shifted operator
T (x) := T (x)−ρ⋆ does have a fixed point. The gain ρ⋆ is generally unknown so we cannot explicitly
apply the shifted operator T . However, as has been observed in prior work (e.g. Bravo and Contreras
[2024]), when ρ⋆ is a multiple of the all-one vector 1 then it commutes with T in the sense that
T (x+ αρ⋆) = T (x) + αρ⋆ for all α ∈ R (since it is a standard fact that T commutes with 1 in this
sense). This commutativity property is sufficient for obtaining the same guarantees as if the shift ρ⋆
were known, since then the unshifted iterates generated with T can be related to the hypothetical
sequence of iterates which would have been generated with the appropriately shifted operator T .

We observe this style of coupling argument can be abstracted to general fixed-point problems
involving “unshifted” operators without fixed points. In particular we can address the policy evaluation
setting, where for some policy π we seek h such that T π(h) ≈ h + ρπ, where T π is the Bellman
consistency/evaluation operator. Suboptimal policies π generally have non-constant gain ρπ, even
for MDPs where ρ⋆ is state-independent (a multiple of 1), such as weakly communicating MDPs.
Thus prior arguments (such as those within Bravo and Contreras [2024]) are insufficient to analyze
Halpern iteration applied to T π, but since this operator satisfies the key commutativity property
T π(h+ αρπ) = T π(h) + αρπ , a coupling-based analysis still works.
Lemma 3.1. Fix ρ, x0 ∈ X and suppose L : X → X satisfies L(x + αρ) = L(x) + αρ for all
x ∈ X and α ∈ R. Define the shifted operator L : X → X by L(x) = L(x)− ρ. Fix some sequence
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(βt)
∞
t=1 ∈ RN. Then defining the sequences (xt)

∞
t=0 and (yt)

∞
t=0 by y0 = x0 and

xt+1 = (1− βt+1)x0 + βt+1L(xt) and yt+1 = (1− βt+1)y0 + βt+1L(yt),

and letting Λt =
∑t

i=1

∏t
j=i βj , we have for all t ≥ 0 that

xt = yt + Λtρ.

Combining with an analysis of Halpern iteration specialized to affine operators [Contreras and
Cominetti, 2022, Theorem 4.6] for an improved constant, we obtain the following result for finding
fixed points of T π − ρπ , the (shifted) Bellman policy evaluation operator.
Corollary 3.2. Fix h0 ∈ RS , fix some policy π ∈ ΠMR, and let T π be the Bellman con-
sistency/evaluation operator for policy π. Then generating the sequence (ht)

∞
t=0 by ht+1 =

(1− βt+1)h0 + βt+1T π(ht) where βt = 1− 1
t+1 , we have for all t ≥ 0 that

∥T π(ht)− ht − ρπ∥∞ ≤ 2

t+ 1
∥h0 − hπ∥∞ .

This exactly matches the lower bound [Lee and Ryu, 2024, Theorem 4], meaning that this rate for
the fixed-point error of T π − ρπ is unimprovable for any value-iteration-style method satisfying a
certain natural subspace condition (see Lee and Ryu [2024] for details).2

3.2 Leveraging restricted commutativity

However, the commutativity property L(x + αρ) = L(x) + αρ used in Lemma 3.1 does not
generally hold for the Bellman optimality operator T in general MDPs. However, T satisfies a
certain restricted commutativity property: for h satisfying both the modified (2b) and unmodified (1b)
Bellman equations, we have T (h+αρ⋆) = T (h)+αρ⋆ = h+(α+1)ρ⋆ for all α ∈ R. (See Lemma
D.2.) Our next results show that this condition is actually sufficient to develop value-iteration-based
algorithms for solving general MDPs, by using Algorithm 1.

Algorithm 1 Approximately Shifted Halpern Iteration
input: Number of iterations n for each phase, initial point h0

1: Let x0 = h0 ▷ gain estimation and warm-start phase
2: for t = 0, . . . , n− 1 do
3: xt+1 = T (xt)
4: end for
5: Let z0 = xn, form gain estimate ρ̂ = 1

n (xn − x0), form T̂ as T̂ (z) := T (z)− ρ̂
6: for t = 0, . . . , n− 1 do ▷ Halpern iteration phase; begins with xn

7: zt+1 = (1− βt+1)z0 + βt+1T̂ (zt) where βt = 1− 2
t+2

8: end for
9: return policy π̂ such that π̂(s) = argmaxa∈Ar(s, a) + Psazn

Algorithm 1 has two phases, for a total of 2n iterations. First, n Picard steps are performed to obtain
xn = T (n)(h0), and this xn is used both to form a gain estimate ρ̂ = 1

n (x0 − h0) and to initialize
the next phase of the algorithm. The second phase of the algorithm is a standard Halpern iteration,
but with an approximately shifted operator T̂ := T − ρ̂ formed using the gain estimate. The quality
of the gain estimate ρ̂ is ensured by the following fact:3

Lemma 3.3. Suppose h satisfies both the modified (2b) and unmodified (1b) Bellman equations.
Then for any h0 ∈ RS and any integer n ≥ 0, we have

∥∥T (n)(h0)− nρ⋆ − h
∥∥
∞ ≤ ∥h0 − h∥∞.

Therefore xn is close to nρ⋆, and thus ρ̂ approaches ρ⋆ as n increases. This fact alone is sufficient for
the success of the second phase of the algorithm in finding a point zn with small fixed-point residual

2While the lower bound [Lee and Ryu, 2024, Theorem 4] is stated for the optimality operator T − ρ⋆, the
hard instance has |A| = 1 and so this operator is equal to T π − ρπ for π being the unique possible policy.

3While a similar statement appears as [Puterman, 1994, Theorem 9.4.1], due to some ambiguity in the h for
which it holds, we provide a proof and discuss the details in Appendix D.
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∥T (zn)− ρ⋆ − zn∥∞. However as shown in Corollary 2.2, finding such a zn, and taking the greedy
policy π̂ such that T π̂(zn) = T (zn), is insufficient for achieving small suboptimality

∥∥ρπ̂ − ρ⋆
∥∥
∞;

we must also control ∥Pπ̂ρ
⋆ − ρ⋆∥∞, which is related to the navigation subproblem. This is why it is

essential to initialize the second phase with xn: since xn is closely aligned with nρ⋆, it is possible to
show that all subsequent iterates remain aligned with nρ⋆, and hence π̂ will be chosen in a way which
approximately maximizes Pπ̂ρ

⋆ (and the elementwise maximum of this quantity over all policies is
ρ⋆). In summary, the first phase of the above algorithm, and in particular the initialization which is
close in direction to nρ⋆, is essential to how our algorithm solves the navigation subproblem. These
ideas lead to the following theorem.
Theorem 3.4. Let h be any vector satisfying both the modified (2b) and unmodified (1b) equations
(with ρ = ρ⋆). For all n ≥ 1, Algorithm 1 with inputs n, h0 returns zn and a policy π̂ such that∥∥∥ρ⋆ − ρπ̂

∥∥∥
∞

≤
10
3 Tdrop + 13 + 35

n + 20
n2

n
∥h0 − h∥∞ (4)

and

∥T (zn)− ρ⋆ − zn∥∞ ≤
13 + 35

n + 20
n2

n
∥h0 − h∥∞ . (5)

The bound (5) outperforms the fixed-point error convergence rate from [Lee and Ryu, 2024, Theorem
2] by a factor of O(1 + 1/∆), and matches (up to constants) the lower bound of Ω(∥h0 − h∥∞ /n)
shown by [Lee and Ryu, 2024, Theorem 3] for the fixed-point residual in the weakly communicating
setting. Therefore, Theorem 3.4 demonstrates a surprising finding that general MDPs are no harder
than weakly communicating MDPs in terms of fixed-point error, disproving a conjecture in Lee
and Ryu [2024]. This result holds for all n ≥ 1, whereas [Lee and Ryu, 2024, Theorem 2] only
holds for n ≥ C 1+∥h0−h∥∞

∆ for some constant C. The bound (4) also obtains an improved rate
of O(

Tdrop+1
n ∥h0 − h∥∞) for the policy suboptimality, whereas [Lee and Ryu, 2024, Theorem 2]

achieves a rate of O( 1+1/∆
n ∥h0 − h∥∞) (which is worse since Tdrop ≤ 1/∆ as shown in Lemma

F.6). Furthermore, under a large-n setting similar to that of [Lee and Ryu, 2024, Theorem 2], we
obtain a refined guarantee for the policy suboptimality without any algorithmic changes:
Theorem 3.5. Let h be any vector satisfying both the modified (2b) and unmodified (1b) equations
(with ρ = ρ⋆). For all n ≥ 4∥h0−h∥∞

∆ , Algorithm 1 with inputs n, h0 returns a policy π̂ such that∥∥∥ρ⋆ − ρπ̂
∥∥∥
∞

≤
13 + 35

n + 20
n2

n
∥h0 − h∥∞ .

Since Theorem 3.5 matches the best-known convergence rate for policy suboptimality in weakly
communicating MDPs (e.g. [Lee and Ryu, 2024, Corollary 2]), this result suggests that general
MDPs are also no more difficult than weakly communicating MDPs in terms of policy suboptimality,
for a regime of sufficiently large n. We note however that to the best of our knowledge the only
existing lower bound [Lee and Ryu, 2024, Theorem 3] applies specifically to fixed-point error,
and showing a similar lower bound for the policy suboptimality is an interesting open question.
Understanding whether there is a gap between the optimal convergence rates for policy suboptimality
and for fixed-point error outside of this large-n regime is another open question.

Finally we further discuss the restricted commutativity property. Lemma D.2 shows the property
T (h + αρ⋆) = h + (α + 1)ρ⋆ (for all α ∈ R) holds if and only if h solves both the modified and
unmodified Bellman equations. Actually most of the proof can be performed in the abstract setting
of a general nonexpansive “unshifted” operator L where L(x⋆ + αρ) = x⋆ + (α + 1)ρ for some
ρ, x⋆ ∈ X and all α ∈ R (which implies x⋆ is a fixed point of the “shifted” operator L − ρ). See
Theorem H.5, which shows that we can find zn with small shifted fixed-point error ∥L(zn)− ρ− zn∥;
however, there does not seem to be a generic analogue of bounding ∥Pπ̂ρ

⋆ − ρ⋆∥∞.

4 Discounted value iteration

4.1 Discounted reduction

Now we develop algorithms for solving general average-reward MDPs via a discounted VI approach.
We first develop a new reduction lemma, bounding the average-reward suboptimality ∥ρπ − ρ⋆∥∞ in
terms of the discounted fixed-point error ∥Tγ(V )− V ∥∞ and our complexity parameters.
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Lemma 4.1. Suppose for some V ∈ RS that policy π is greedy with respect to r + γPV , that is,
T π
γ (V ) = Tγ(V ), and that γ ≥ 1

2 . Then, letting h satisfy the modified and unmodified Bellman
equations and letting M = min

{
∥h∥sp, ∥hπ⋆∥sp + Tdrop + ∥hπ⋆∥spTdrop

}
, we have

∥ρπ − ρ⋆∥∞ ≤ (Tπ
drop + 1)

[
(1− γ)

(
4 + 7M

)
+ 16∥Tγ(V )− V ∥∞

]
.

See the slightly more general Lemma J.6, from which Lemma 4.1 follows immediately. Fixing some
iteration budget n, Lemma 4.1 suggests that to get a O(1/n) rate, we must set the effective horizon
1/(1− γ) to be at least order Ω(n). Next it remains to control the discounted fixed-point error term
∥Tγ(V )− V ∥∞, which is challenging with this large choice of effective horizon.

4.2 Faster fixed-point error convergence

As part of our first step in minimizing the discounted fixed-point error, we develop a result of
independent interest: a simple algorithm which achieves an optimal fixed-point error convergence
rate (up to constants) for γ < 1 contractive operators in general normed spaces. The algorithm simply
deploys standard Halpern iteration for approximately 1

1−γ steps, then switches to Picard iteration.
While the analysis is trivial, to the best of our knowledge an algorithm obtaining such guarantees was
not previously known despite prior work on related problems, and we find it surprising that such a
simple algorithm and analysis achieves optimality.

Algorithm 2 Halpern-Then-Picard
input: Initial point x0, contraction factor γ < 1, γ-contractive operator L

1: Let E =
⌊

1
1−γ

⌋
− 1

2: for t = 0, . . . , E − 1 do ▷ Halpern iteration for first ≈ 1
1−γ steps

3: xt+1 = (1− βt+1)x0 + βt+1L(xt) where βt = 1− 2
t+2

4: end for
5: for t = E, . . . do ▷ switch to Picard iteration after ≈ 1

1−γ steps
6: xt+1 = L(xt)
7: end for

Theorem 4.2. Let L : X → X be a γ-contractive operator with respect to some norm ∥·∥, and let
x⋆ be its fixed point. Letting (xt)t∈N be the sequence of iterates generated by Algorithm 2, we have

∥L(xt)− xt∥ ≤
{

4
t+1 ∥x0 − x⋆∥ t ≤ E

8(1− γ)γt−E ∥x0 − x⋆∥ t > E
≤ 8e

γt∑t
i=0 γ

i
∥x0 − x⋆∥ .

Park and Ryu [2022] show a lower bound of (1+ γ) γt∑t
i=0 γi ∥x0 − x⋆∥∞ for the fixed-point error (in

the Hilbert space setting, meaning the lower bound may be improvable for our Banach space setting),
which is matched by Algorithm 2 up to a constant of 8e/(1 + γ).

We can immediately apply Algorithm 2 with the discounted Bellman operator Tγ to minimize the
discounted fixed-point error ∥Tγ(V )− V ∥∞. With this particular operator, Lee and Ryu [2023] show
a lower bound on the discounted fixed-point error of γt∑t

i=0 γi

∥∥V0 − V ⋆
γ

∥∥
∞ (for a certain natural

class of algorithms), implying the optimality of Algorithm 2 up to a factor of 8e. Lee and Ryu
[2023] also presents an algorithm for minimizing the discounted fixed-point error, and while their
algorithm achieves a slightly improved constant relative to Theorem 4.2 (with L = Tγ) for certain
initializations, their guarantee does not match the γt∑t

i=0 γi

∥∥V0 − V ⋆
γ

∥∥
∞ lower bound up to constants

for all initializations V0 (including the initializations required in the next subsection), and hence our
Algorithm 2 is the first to do so. See Appendix B.1 for more on comparing with Lee and Ryu [2023].

4.3 Faster value error convergence

Algorithm 2 alone (applied to Tγ) is insufficient to obtain the desired bound on the discounted
fixed-point error ∥Tγ(V )− V ∥∞: the error bound depends on the initial value error ∥V ⋆

γ − V0∥∞,
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and with a generic initialization like V0 = 0, this value error can generally be Ω(1/(1− γ)) = Ω(n)
with our large choice of effective horizon. Hence after O(n) iterations Algorithm 2 would only lead
to a bound like ∥Tγ(V )− V ∥∞ ≤ O(n/n) = O(1), whereas we desire this term to be O(1/n).

To fix this problem, we show that by using undiscounted value iterations and a re-normalization step,
we can reduce the value error at a sublinear O(1/t) rate:

Lemma 4.3. Fix γ ∈ (0, 1). Let h be a solution to both the modified and unmodified Bellman
equations. Then for any integer t such that 0 < t ≤ 1

1−γ , we have

∥∥∥∥ 1

t(1− γ)
T (t)(0)− V ⋆

γ

∥∥∥∥
∞

≤ 2
min

{
∥h∥sp ,

∥∥hπ⋆∥∥
sp + Tdrop +

∥∥hπ⋆∥∥
sp Tdrop

}
t

1

1− γ
.

Goyal and Grand-Clément [2023, Theorem 3] show a lower bound that ∥Vt − V ⋆∥∞ ≥ γt

1−γ for any
Vt produced by an algorithm satisfying a certain iterate span condition.4 This geometric γt rate is
vacuous in situations where γ is very close to 1 (including our setting where γ = 1− 1/n and hence
γn ≈ e−1 = Ω(1)). However, the hard instance in their lower bound depends on the iteration count
t and has ∥h∥sp = ∥hπ⋆∥sp ≥ t (and also Tdrop = 0). If we instead restrict the complexity of the
instance (as measured by the complexity parameters) as the iteration count t is increased, their hard
instance becomes inadmissible, and we find that a sublinear O(1/t) rate is possible.

In particular, with our choice of effective horizon 1/(1− γ) = n, we can use t = n steps to produce
an initialization which has value error independent of n (but depends on the complexity parameters
in Lemma 4.3). Generally when the iteration budget is larger than the effective horizon, we can use
this warm-start procedure to reduce the value error rapidly before switching to Algorithm 2 to get
an improved guarantee for solving discounted MDPs. This “warm-start” phase bears an interesting
similarity to the first phase of Algorithm 1.

Algorithm 3 Warm-Start Halpern-Then-Picard

input: Discount factor γ < 1, number of iterations n such that n ≥
⌊

1
1−γ

⌋
1: Let x0 = 0, E′ =

⌊
1

1−γ

⌋
2: for t = 0, . . . , E′ − 1 do ▷ initialization phase
3: xt+1 = T (xt)
4: end for
5: Obtain V as the (n− E′)th iterate from Algorithm 2 with inputs xE′ , γ, Tγ
6: return V and policy π̂ such that π̂(s) = argmaxa∈Ar(s, a) + γPsaV

Theorem 4.4. For all n ≥ E′ =
⌊

1
1−γ

⌋
, Algorithm 3 returns V such that

∥Tγ(V )− V ∥∞ ≤ 8e

γ

γn−E∑n−E
i=0 γi

M
(⋆)

≤ 8e

γ

(
1 +

e

γ

)
γn∑n
i=0 γ

i
M

where M = min
{
∥h∥sp, ∥hπ⋆∥sp + Tdrop + ∥hπ⋆∥spTdrop

}
, h satisfies the modified and unmodified

Bellman equations, and (⋆) holds if n ≥ 2E′ − 1.

Algorithm 3 thus uses three phases: E′ steps of undiscounted Picard iteration, E steps of discounted
Halpern iteration, and then finally discounted Picard iteration. Combining this with our reduction
result, Lemma 4.1, leads immediately to our final result on solving multichain average-reward MDPs.

Theorem 4.5. Fix an integer n ≥ 2. Set γ = 1− 1
n and run Algorithm 3 with inputs γ, 2n. Let h

satisfy the modified and unmodified Bellman equations. Then the output policy π̂ satisfies

ρ⋆ − ρπ̂ ≤ (Tdrop + 1)
71min

{
∥h∥sp ,

∥∥hπ⋆∥∥
sp + Tdrop +

∥∥hπ⋆∥∥
sp Tdrop

}
+ 2

n− 1
.

4[Goyal and Grand-Clément, 2023, Theorem 3] actually states a weaker result, but as we show in Theorem
B.2, their analysis can be strengthened to obtain the claimed lower bound.
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Theorem 4.5 only makes use of the first two phases of Algorithm 3, but as we show in Theorem
J.9, the constant in Theorem 4.5 could be improved by utilizing the third phase to rapidly decrease
fixed-point error. One interesting advantage of Theorem 4.5 over Theorem 3.4 is that it obtains one
guarantee independent of ∥h∥sp, which as we discuss in Appendix D.1, can hide a dependence on 1

∆

even when Tdrop and ∥hπ⋆∥sp, the span of a Blackwell optimal policy, are small.

5 Conclusion and limitations

In this paper we designed faster VI algorithms for solving multichain average-reward MDPs, and
along the way developed a collection of results advancing the theoretical foundations of VI methods
and multichain MDPs. One limitation of our results is that the Bellman operators may not be exactly
computable, and even if they are, it may be preferable to leverage stochastic evaluations to speed up
computations; we believe these are promising directions for future work.
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A Guide to appendices

In Appendix B we discuss related work in more detail. In Appendix C we introduce more notation
used within the proofs. In Appendix D we discuss topics related to the solutions of the modified
and unmodified Bellman equations. Appendix E contains a proof of Proposition 1.1 discussed in the
introduction. The remaining appendices are mainly devoted to proofs of the results presented in the
paper, and largely proceed in the same order. Appendix F contains proofs of the results from Section
2. Appendices G and H prove the results from Subsections 3.1 and 3.2. Theorem 4.2 is proven in
Appendix I. Other results related to discounted VI are proven in Appendix J.

B Related work

Here we discuss more related work.

Analysis of value iteration in average-reward MDPs Value iteration methods have been exten-
sively studied for average-reward MDPs. We refer to Schweitzer and Federgruen [1977, 1979] and the
references within, which develop asymptotic convergence guarantees for value iteration in multichain
MDPs.

Perturbation analysis for Markov chains Results of a similar nature to our Theorem 2.1 and
Corollary 2.2 have a long history and are referred to as perturbation theory or sensitivity analysis for
Markov chains. Some references include Schweitzer [1968], Meyer [1980, 1994], Ipsen and Meyer
[1994], Cho and Meyer [2000]. Cho and Meyer [2001] provides a comprehensive comparison of
such bounds, all focusing on the case of ergodic Markov chains. Such bounds commonly involve
parameters related to the deviation matrix HP (the Drazin inverse of I − P for a Markov chain with
transition matrix P ). Also see Cao [1999, 2000], Cao and Guo [2004] for similar results focused on
MDPs.

Halpern iteration While Halpern iteration has a long history [Halpern, 1967], its nonasymptotic
convergence properties have been the subject of intense recent study [Sabach and Shtern, 2017].
Lieder [2021] and Park and Ryu [2022] obtain exactly optimal convergence rates in Hilbert spaces,
for nonexpansive and contractive operators. Bravo et al. [2022], Contreras and Cominetti [2022]
consider the general normed space setting, of greater relevance to MDPs. In the context of Markov
decision processes and RL, Bravo and Contreras [2024] develop a Q-learning algorithm based on
Halpern iteration, and Lee and Ryu [2023] and Lee and Ryu [2024] utilize Halpern iteration for
solving discounted and average-reward MDPs, respectively.

Complexity of discounted value iteration Many different approaches have been taken in the
literature to try to accelerate convergence of value iteration methods, especially when the discount
factor is close to 1. Goyal and Grand-Clément [2023] develop faster VI algorithms for solving
discounted MDPs using momentum-like techniques, obtaining faster convergence in terms of the
value error for reversible MDPs and also proving lower bounds. Lee and Ryu [2023] develop an
algorithm for solving discounted MDPs with improved convergence properties for the fixed-point
error, using a variant of Halpern iteration, and also develop lower bounds. There exist many alternative
approaches, less closely related to the present work, based on changing the operator from the Bellman
operator. See [Puterman, 1994, Chapter 6] or [Bertsekas, 2018, Chapter 2] for some of the variants of
value iteration.

Average-reward-to-discounted reductions Solving average-reward MDPs by approximating them
via discounted problems is a very common approach in the RL literature, especially among works
studying statistical (sample) complexity. Jin and Sidford [2021], Wang et al. [2022], Zurek and
Chen [2025a] develop such reductions applicable to weakly communicating MDPs or even more
restrictive classes of MDPs. Fruit et al. [2018], Zurek and Chen [2024a] consider the related approach
of perturbing the transition matrix to ensure contractive properties. Zurek and Chen [2025b] develop
the first such reduction for general MDPs, involving the parameter B. Zurek and Chen [2025b] also
provides lower bounds on the sample complexity of solving general average-reward MDPs in terms
of B. An interesting question is whether it could be replaced by the sharper Tdrop within their results.
Halpern iteration can be understood as regularizing a nonexpansive operator to make it strongly
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contractive, and decaying the regularization strength. From this perspective, there are conceptual
similarities to discounted RL, particularly for problems where γ is not intrinsic but rather functions
as a tuning parameter which trades off long-term performance for computational tractability.

Other related work Schweitzer and Federgruen [1978] study the solutions of the unmodified
Bellman equations.

B.1 Comparison of Algorithm 2 to prior work

Here we give more detail on the comparison of Algorithm 2, when applied to the discounted Bellman
operator Tγ , with Lee and Ryu [2023], who also consider minimizing the discounted fixed-point error
and obtain similar guarantees. The algorithm of Lee and Ryu [2023] can also be seen as interpolating
between Halpern and Picard iterations, but in a more continuous manner (by continuously adjusting
stepsizes) rather than the discrete transition employed in Algorithm 2. For certain specialized
initializations, [Lee and Ryu, 2023, Theorem 2] demonstrates an improved constant relative to that
achieved by our Algorithm 2, but the key limitation of [Lee and Ryu, 2023, Theorem 2] is that it has
order-wise worse performance for some general initializations. Specifically, ignoring constant factors,
their result for general initializations can be written as

∥Tγ(Vn)− Vn∥∞ ≤ γn∑n
i=0 γ

i
max

{∥∥V0 − V ⋆
γ

∥∥
∞ ,
∥∥∥V0 − V̂ ⋆

γ

∥∥∥
∞

}
where they define V̂ ⋆

γ to be the fixed-point of a Bellman anti-optimality operator Tγ,anti defined as

Tγ,anti(Q)(s, a) := r(s, a) + min
a∈A

γ
∑
s′∈S

P (s′ | s, a)Q(s′, a)

(see [Lee and Ryu, 2023, Section 4] for how their [Lee and Ryu, 2023, Theorem 2] can be written in
terms of γn∑n

i=0 γi up to constant factors). Tγ,anti replaces the max in the usual discounted operator

with a min, and as we now show, this can lead its fixed point V̂ ⋆
γ being very far from V ⋆

γ , the fixed
point of Tγ . Consider the following one state, two action MDP:

1

a = 2, r(1, 2) = +0

a = 1, r(1, 1) = +1

Figure 1: A one-state, two-action MDP where V̂ ⋆
γ and V ⋆

γ are far apart. The two actions are denoted
by straight and dashed lines respectively, and are annotated with their associated reward.

It is trivial to check that V ⋆
γ = 1

1−γ and V̂ ⋆
γ = 0, so for any V0 ∈ R we have

max
{∥∥V0 − V ⋆

γ

∥∥
∞ ,
∥∥∥V0 − V̂ ⋆

γ

∥∥∥
∞

}
≥ 1

2
1

1−γ . This issue is prohibitive to good performance in

the setting considered in our Section 4, where we are able to construct a V0 with
∥∥V0 − V ⋆

γ

∥∥
∞

bounded independently of 1
1−γ .

B.2 Lower bounds for discounted value error

[Goyal and Grand-Clément, 2023, Theorem 3] shows the following:
Proposition B.1. Fix γ ∈ (0, 1) and an integer n ≥ 1. Then there exists a discounted MDP
(S,A, P, r, γ) such that for any sequence of iterates (Vt)

∞
t=0 satisfying V0 = 0 and

Vs+1 ∈ span{V0, . . . , Vs, Tγ(V0), . . . , Tγ(Vs)} ∀s ≥ 0,
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we have for any s ∈ {1, . . . , n− 1} that∥∥Vs − V ⋆
γ

∥∥
∞ ≥ γs

1 + γ
.

In fact, by reusing the work done within their proof, it is possible to prove the following stronger
result:
Theorem B.2. Fix γ ∈ (0, 1) and an integer n ≥ 1. Then there exists a discounted MDP
(S,A, P, r, γ) such that for any sequence of iterates (Vt)

∞
t=0 satisfying V0 = 0 and

Vs+1 ∈ span{V0, . . . , Vs, Tγ(V0), . . . , Tγ(Vs)} ∀s ≥ 0,

we have for any s ∈ {1, . . . , n− 1} that∥∥Vs − V ⋆
γ

∥∥
∞ ≥ γs

1− γ
.

Proof. We use the same instance as the one constructed in the proof of [Goyal and Grand-Clément,
2023, Theorem 3], which has S = {1, . . . , n}. As argued in this proof, the optimal value function
satisfies V ⋆

γ (i) = γi−1

1−γ for all i = 1, . . . , n. They also show that for any s ∈ {0, . . . , n − 1},
assuming Vs satisfies the condition in the theorem statement, we have that Vs(i) = 0 for any
i ≥ s+ 1. Therefore for any s ∈ {0, . . . , n− 1},∥∥Vs − V ⋆

γ

∥∥
∞ ≥

∣∣Vs(s+ 1)− V ⋆
γ (s+ 1)

∣∣ = ∣∣∣∣0− γs+1−1

1− γ

∣∣∣∣ = γs

1− γ
.

C More notation

∥W∥∞→∞ denotes the ∥·∥∞ → ∥·∥∞ operator norm of a matrix W . We note that this is also equal
to maxi

∥∥e⊤i W∥∥1, that is, the maximum ℓ1 norm of all rows of W .

For any policy π we let rπ = Mπrπ , or equivalently rπ(s) =
∑

a∈A π(a | s)r(s, a) (for any s ∈ S).
We have V π

γ = (I − γPπ)
−1rπ =

∑∞
t=0 γ

tP t
πrπ. We let π⋆

γ denote a γ-discounted optimal policy

(such that V
π⋆
γ

γ = V ⋆
γ ). There always exists such a discounted optimal policy which is deterministic.

Fixing a policy π, the limiting matrix P∞
π is

P∞
π = C-lim

T→∞
PT
π = lim

T→∞

1

T

T−1∑
k=0

P k
π

where C-lim is the Cesaro limit. We have P∞
π Pπ = PπP

∞
π = P∞

π . We denote the Drazin inverse of
I − Pπ as HPπ . It is sometimes referred to as the deviation matrix. We have

HPπ
= C-lim

T→∞

T−1∑
k=0

(P k
π − P∞

π ).

Additionally HPπ satisfies

(I − Pπ)HPπ
= HPπ

(I − Pπ) = I − P∞
π

HPπ
P∞
π = P∞

π HPπ
= 0

We also have that ρπ = P∞
π rπ and hπ = HPπ

rπ. We refer to [Puterman, 1994, Appendix A] for
more properties of HPπ

The modified Bellman equations can be written in a vectorized form as

M(Pρ) = ρ, (6)
T (h) = M(r + Ph) = ρ+ h. (7)
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D Properties of solutions to Bellman equations

First we show that for some (ρ, h) which satisfy the modified Bellman equations, there exists a
simultaneously argmaxing policy if and only if they also satisfy the unmodified Bellman equations.

Lemma D.1. Suppose (ρ, h) satisfies the modified Bellman equations (6) and (7). Then there exists
a policy π attaining the maximums in both equations simultaneously, that is there exists π ∈ ΠMD

such that

Mπ(Pρ) = ρ (8)
Mπ(r + Ph) = ρ+ h. (9)

if and only if (ρ, h) also satisfies the unmodified Bellman equations (1a) and (1b).

Proof. For the entire proof we fix (ρ, h) satisfying the modified Bellman equations (6) and (7). First
we suppose that there exists some π ∈ ΠMD attaining the maximums in both equations simultaneously
(satisfying (8) and (9)) and try to show that (ρ, h) satisfy the unmodified Bellman equations (1a)
and (1b). It is immediate that (1a) is satisfied since it is the same as equation (2a). To check (1b),
note that by (8) we have that Psπ(s)ρ = ρ, and by (9) and (2b) (for the first and second equalities,
respectively) we have

r(s, π(s)) + Psπ(s)h = ρ(s) + h(s) = max
a∈A

r(s, a) + Psah.

Therefore we have that

max
a∈A:Psaρ=ρ(s)

r(s, a) + Psah ≥ r(s, π(s)) + Psπ(s)h = ρ(s) + h(s)

(since Psπ(s)ρ = ρ) and also trivially

max
a∈A:Psaρ=ρ

r(s, a) + Psah ≤ max
a∈A

r(s, a) + Psah = ρ(s) + h(s),

so we must have maxa∈A:Psaρ=ρ(s) r(s, a) + Psah = ρ(s) + h(s) (that is, the second unmodified
Bellman equation (1b) is satisfied).

Now we assume that (ρ, h) satisfy the unmodified Bellman equations (1a) and (1b) and try to show
that there exists a policy π ∈ ΠMD satisfying (8) and (9). We define (for each s ∈ S) π(s) ∈ A to be
an action attaining the maximum in (1b), that is Psπ(s)ρ = ρ(s) and

r(s, π(s)) + Psπ(s)h = ρ(s) + h(s).

But then since ρ(s) + h(s) = maxa∈A r(s, a) + Psah by the modified Bellman equation (2b), we
clearly have that π satisfies (8) and (9).

Next we show another equivalent property to (ρ, h) satisfying both the unmodified and modified
Bellman equations, the restricted commutativity property, which is essential for Algorithm 1.

Lemma D.2. (ρ⋆, h) satisfies both the modified and unmodified Bellman equations if and only if for
any α ∈ R we have

T (h+ αρ⋆) = h+ (α+ 1)ρ⋆. (10)

Proof. First suppose that (ρ⋆, h) satisfies both the modified and unmodified Bellman equations. By
Lemma D.1, there exists a simultaneously argmaxing policy π satisfying (8) and (9). Now letting
α ∈ R be arbitrary, we have that

T (h+ αρ⋆) ≥ T π(h+ αρ⋆) = rπ + Pπh+ Pπαρ
⋆ = rπ + Pπh+ αρ⋆ = T (h) + αρ⋆

using the properties of π. However we can also bound

T (h+ αρ⋆) = M(r + Ph+ Pαρ⋆) ≤ M(r + Ph) +M(Pαρ⋆) = T (h) + αρ⋆.

Therefore we must have that T (h+ αρ⋆) = T (h) + αρ⋆ = h+ (α+ 1)ρ⋆ as desired (using that h
satisfies the modified Bellman equation in this final equality).
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Now we assume (10) holds for all α ∈ R. Note that we immediately have that (ρ⋆, h) satisfies the
modified Bellman equation by taking α = 0 (and we always have that MPρ⋆ = ρ⋆). Now we choose
α sufficiently large so that the corresponding deterministic argmaxing policy π such that

T (h+ αρ⋆) = T π(h+ αρ⋆)

must satisfy Pπρ
⋆ = ρ⋆. Specifically α >

1+∥h∥sp

∆ suffices, because then if π did not satisfy
Pπρ

⋆ = ρ⋆ (but is deterministic) then we would have Pπρ
⋆ ≤ ρ⋆−∆ = Pπ⋆ρ⋆−∆ by the definition

of ∆, and thus (fixing some arbitrary s ∈ S) we would have

α >
1 + ∥h∥sp

∆
≥ rπ(s)− rπ⋆(s) + e⊤s (Pπ − Pπ⋆)h

∆

=⇒ αe⊤s (Pπ⋆ρ⋆ − Pπρ
⋆) = αe⊤s (ρ

⋆ − Pπρ
⋆) ≥ α∆ > rπ(s)− rπ⋆(s) + e⊤s (Pπ − Pπ⋆)h

=⇒ T π(h+ αρ⋆)(s) = rπ(s) + e⊤s Pπ(h+ αρ⋆) < rπ⋆(s) + e⊤s Pπ⋆(h+ αρ⋆) = T π⋆

(h+ αρ⋆)(s)

and the final inequality contradicts the fact that T (h+ αρ⋆) = T π(h+ αρ⋆). Now using (10) and
then this fact that Pπρ

⋆ = ρ⋆, and then canceling terms, we have
h+ (α+ 1)ρ⋆ = T (h+ αρ⋆) = T π(h+ αρ⋆) = rπ + Pπh+ Pπαρ

⋆ = rπ + Pπh+ αρ⋆

=⇒ h+ ρ⋆ = rπ + Pπh = T π(h).

Using α = 0 in (10) we have that T (h) = ρ⋆ + h, so T π(h) = T (h). Thus we have shown that π is
a simultaneously argmaxing policy for the modified Bellman equation solution (ρ⋆, h) in the sense
of (8) and (9), so by Lemma D.1 h satisfies both the modified and unmodified Bellman equations.

Next we prove Lemma 3.3, and discuss the ambiguity within [Puterman, 1994, Theorem 9.4.1]. To
the best of our understanding, the proof of [Puterman, 1994, Theorem 9.4.1] makes use of a particular
solution h⋆ to the modified Bellman equations which is constructed in [Puterman, 1994, Proposition
9.1.1] by adding a large multiple of ρ⋆ to some h′ which satisfies the unmodified Bellman equations.
This ensures the existence of a simultaneously argmaxing policy (in the sense of equations (8)
and (9)), and such a policy is used in an essential way for the proof. As noted in Subsection 1.1,
not all solutions (ρ, h′′) of the modified Bellman equations have ρ = ρ⋆, with an example provided
in [Bertsekas, 2018, Example 5.1.1]. Also mentioned there, a sufficient condition for ρ = ρ⋆ is
the existence of a simultaneously argmaxing policy. Therefore, not all solutions of the modified
Bellman equations admit a simultaneously argmaxing policy (with [Bertsekas, 2018, Example 5.1.1]
necessarily being an example, and another example provided below), so the proof of [Puterman,
1994, Theorem 9.4.1] does not hold for all solutions to the modified Bellman equations. We note
that the statement of [Puterman, 1994, Theorem 9.4.1] in Lee and Ryu [2024] apparently allows a
general solution to the modified Bellman equations, although in Lee and Ryu [2024] the definition
of a solution to the modified Bellman equation adds the condition that a simultaneously argmaxing
policy must exist.

Proof of Lemma 3.3. We have that∥∥∥T (n)(h0)− nρ⋆ − h
∥∥∥
∞

≤
∥∥∥T (n)(h0)− T (n)(h)

∥∥∥
∞

+
∥∥∥T (n)(h)− nρ⋆ − h

∥∥∥
∞

by the triangle inequality. Since h satisfies both the modified and unmodified Bellman equations, by
Lemma D.2 (used n times) we have∥∥∥T (n)(h)− nρ⋆ − h

∥∥∥
∞

=
∥∥∥T (n−1) (T (h))− nρ⋆ − h

∥∥∥
∞

=
∥∥∥T (n−1) (h+ ρ⋆)− nρ⋆ − h

∥∥∥
∞

=
∥∥∥T (n−1) (h)− (n− 1)ρ⋆ − h

∥∥∥
∞

...

=
∥∥∥T (0) (h)− (0)ρ⋆ − h

∥∥∥
∞

= ∥h− h∥∞ = 0.

By nonexpansiveness of T , it is easy to see that
∥∥T (n)(h0)− T (n)(h)

∥∥
∞ ≤ ∥h0 − h∥∞. Combining

all these calculations yields the desired result.
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D.1 Constructing solutions to the modified Bellman equations

In this subsection we demonstrate how solutions to the modified Bellman equations h may have
∥h∥sp on the order of 1

∆ and arbitrarily large, even when constructed from a vector hπ⋆

solving the
unmodified Bellman equations which has

∥∥hπ⋆∥∥
sp ≤ O(1).

The following lemma demonstrates this construction. This is a non-asymptotic version of Puterman
[1994, Proposition 9.1.1] which was originally shown by Denardo and Fox [1968].

Lemma D.3. Letting h = hπ⋆

+

∥∥∥hπ⋆
∥∥∥

sp
+1

∆ ρ⋆, h satisfies the modified Bellman equation (7) with
ρ = ρ⋆.

Proof. Since we have

M(r + Ph) ≥ Mπ⋆

(r + Ph)

= Mπ⋆

(
r + P

(
hπ⋆

+

∥∥hπ⋆∥∥
sp + 1

∆
ρ⋆

))

= rπ⋆ + Pπ⋆hπ⋆

+

∥∥hπ⋆∥∥
sp + 1

∆
Pπ⋆ρ⋆

= ρ⋆ + hπ⋆

+

∥∥hπ⋆∥∥
sp + 1

∆
ρ⋆

= ρ⋆ + h

since Pπ⋆ρ⋆ = ρ⋆ and rπ⋆ +Pπ⋆hπ⋆

= ρ⋆+hπ⋆

, it suffices to show that for all deterministic policies
π that Mπ(r+Ph) ≤ ρ⋆ + h. If Psπ(s)ρ

⋆ = ρ⋆(s), then since hπ⋆

satisfies the unmodified Bellman
equation (1b) (with ρ = ρ⋆), we have

e⊤s M
π(r + Ph) = r(s, π(s)) + Psπ(s)h

= r(s, π(s)) + Psπ(s)h
π⋆

+

∥∥hπ⋆∥∥
sp + 1

∆
Psπ(s)ρ

⋆

= r(s, π(s)) + Psπ(s)h
π⋆

+

∥∥hπ⋆∥∥
sp + 1

∆
ρ⋆(s)

≤ max
a∈A

r(s, a) + Psah
π⋆

+

∥∥hπ⋆∥∥
sp + 1

∆
ρ⋆(s)

= max
a∈A:Psaρ⋆=ρ⋆(s)

r(s, a) + Psah
π⋆

+

∥∥hπ⋆∥∥
sp + 1

∆
ρ⋆(s)

= ρ⋆(s) + hπ⋆

(s) +

∥∥hπ⋆∥∥
sp + 1

∆
ρ⋆(s)

= ρ⋆(s) + h(s)

as desired. Now we consider the case where Psπ(s)ρ
⋆ < ρ⋆(s). Letting a⋆ ∈

argmaxa∈A:Psaρ⋆=ρ⋆(s)r(s, a) + Psah
π⋆

, first we calculate that

r(s, π(s)) + Psπ(s)h
π⋆

− max
a∈A:Psaρ⋆=ρ⋆(s)

(
r(s, a) + Psah

π⋆
)

= r(s, π(s))− r(s, a⋆) + (Psπ(s) − Psa⋆)hπ⋆

≤ 1 +
∥∥∥hπ⋆

∥∥∥
sp
. (11)
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Also since Psπ(s)ρ
⋆ < ρ⋆(s), by definition of ∆ we have ρ⋆(s)− Psπ(s)ρ

⋆ ≥ ∆, and thus

e⊤s M
π(r + Ph) = r(s, π(s)) + Psπ(s)h

= r(s, π(s)) + Psπ(s)h
π⋆

+

∥∥hπ⋆∥∥
sp + 1

∆
Psπ(s)ρ

⋆

≤ r(s, π(s)) + Psπ(s)h
π⋆

+

∥∥hπ⋆∥∥
sp + 1

∆
(ρ⋆(s)−∆)

≤ max
a∈A:Psaρ⋆=ρ⋆(s)

r(s, a) + Psah
π⋆

+ 1 +
∥∥∥hπ⋆

∥∥∥
sp
+

∥∥hπ⋆∥∥
sp + 1

∆
(ρ⋆(s)−∆)

= ρ⋆(s) + hπ⋆

(s) +

∥∥hπ⋆∥∥
sp + 1

∆
ρ⋆(s)

= ρ⋆(s) + h(s)

making use of (11) in the second inequality.

Now we show a simple example where Tdrop,
∥∥hπ⋆∥∥

sp ≤ O(1) and ∥h∥sp ≈ 1
∆ is arbitrarily large.

1

2

3

4

+0

+1

+0

+1

+1− ε

+0

Figure 2: A four-state MDP parameterized by ε > 0. Each arrow represents a (deterministic) action
and is annotated with its reward. Only state 4 has multiple actions.

Theorem D.4. Fix ε > 0. Then for the MDP in the above Figure 2,

1. Tdrop = 1.

2.
∥∥hπ⋆∥∥

sp = 1.

3. 1
∆ = 1

ε .

4. Letting H denote the set of all solutions to the modified Bellman equations,

inf

{∥∥∥hπ⋆

+ cρ⋆
∥∥∥

sp
: c ∈ R, (ρ⋆, hπ⋆

+ cρ⋆) ∈ H
}

≥ 1

ε
.

Proof. It is immediate to see that

ρ⋆ =

 1
1− ε
0
1

 .

This implies that 1
∆ = 1

ε (by considering the actions in state 4). It is also trivial to see that Tdrop = 1,
since only state 4 has any “gain-dropping” actions available, and they all lead to states other than
state 4 after 1 step. Since necessarily P∞

π⋆hπ⋆

= 0, this implies that the absorbing states s = 1, 2, 3
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must have hπ⋆

(s) = 0. Combining with the unmodified Bellman equation (which hπ⋆

must satisfy)
implies that

hπ⋆

=

 0
0
0
−1

 ,

so we have
∥∥hπ⋆∥∥

sp = 1. Finally, for (ρ⋆, hπ⋆

+ cρ⋆) to satisfy the modified Bellman equation we
must have

0 + c(1) + hπ⋆

(1) ≥ 1 + c(1− ε) + hπ⋆

(2)

⇐⇒ 0 + c(1) + 0 ≥ 1 + c(1− ε) + 0

⇐⇒ c ≥ 1

ε

which implies hπ⋆

(1)+ cρ⋆ ≥ 1
ε for all solutions of this form to the modified Bellman equations, and

furthermore hπ⋆

(3) + cρ⋆(3) = 0 + c0 = 0, which implies the span of hπ⋆

+ cρ⋆ is at least 1
ε .

E Proof of Proposition 1.1

Proof of Proposition 1.1. We have∥∥∥V π̂ − V ⋆
∥∥∥
∞

≤ 2

1− γ
∥Vt − V ⋆∥∞ ≤ 2

1− γ
γn ∥V0 − V ⋆∥∞ ≤ 2

(1− γ)2
γn

where the inequality
∥∥V π̂ − V ⋆

∥∥
∞ ≤ 2

1−γ ∥Vt − V ⋆∥∞ is due to Singh and Yee [1994]. To ensure
the above quantity is ≤ 1, we need

2

(1− γ)2
γn ≤ 1

⇐⇒ γn ≤ (1− γ)2

2

⇐⇒ n log(γ) ≤ log

(
(1− γ)2

2

)

⇐⇒ n ≥
log
(

(1−γ)2

2

)
log γ

=
log
(

2
(1−γ)2

)
log(1/γ)

⇐= n ≥
log
(

2
(1−γ)2

)
1− γ

where for the final implication, we use that log(1/γ) ≥ 1 − γ for any γ. Finally, with the stated
choice of γ, the RHS above is

n

2 log(n)
log

(
2

n2

4 log2(n)

)
≤ n

2 log(n)
log

(
n2

log2(n)

)
≤ n

2 log(n)
2 log(n) = n

as desired. Finally, we can apply [Zurek and Chen, 2025b, Proof of Theorem 6] to give that

ρπ ≥ ρ⋆ − (1− γ)

(
3B+ 3

∥∥∥hπ⋆
∥∥∥

sp
+ 2

)
1.

F Proofs for sensitivity analysis for multichain MDPs

Proof of Lemma 2.1. We prove the more general statement that for any policy π and any vectors
ρ, h ∈ RS , we have

ρπ − ρ = HPπ
(Pπ − I)ρ+ P∞

π (rπ + Pπh− ρ− h).
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(Then we can substitute ρ = ρ⋆ to obtain the statement of Lemma 2.1.)

Since HPπ
(Pπ − I) = P∞

π − I , we have

HPπ
(Pπ − I)ρ = (P∞

π − I)ρ.

Also since P∞
π (Pπ − I) = 0 and ρπ = P∞

π rπ , we have

P∞
π (rπ + Pπh− ρ− h) = P∞

π (rπ − ρ) = ρπ − P∞
π ρ.

Combining these two calculations, we have

ρπ − ρ = (ρπ − P∞
π ρ) + (P∞

π ρ− ρ)

= P∞
π (rπ + Pπh− ρ− h) +HPπ

(Pπ − I)ρ.

Lemma F.1. 1. For any policy π, all states s such that e⊤s Pπρ
⋆ − ρ⋆(s) < 0 are transient.

2. For any policy π, Tπ
drop is finite.

3. Tdrop is finite.

Proof. For the first statement, suppose some state s is recurrent under the Markov chain Pπ . Then all
states in the support of e⊤s Pπ must also be recurrent and in the same maximal closed recurrent class.
By Zurek and Chen [2024b, Lemma 17], any states s′, s′′ in the same recurrent class have ρ⋆(s′) =
ρ⋆(s′′), so we must have e⊤s Pπρ

⋆ = ρ⋆(s). Therefore by contraposition, if e⊤s Pπρ
⋆ − ρ⋆(s) < 0

then s must be transient.

For the second statement, if for some s ∈ S a policy π has nonzero probability of taking some action
a such that Psaρ

⋆ < ρ⋆, then we must have Pπρ
⋆ < ρ⋆. Therefore almost surely I(PSt,At

ρ⋆ <
ρ⋆(St)) ≤ I(e⊤St

Pπρ
⋆ < ρ⋆(St)), which implies

Tπ
drop = max

s∈S
Eπ
s

[ ∞∑
t=0

I (PSt,At
ρ⋆ < ρ⋆(St))

]
≤ max

s∈S
Eπ
s

[ ∞∑
t=0

I
(
e⊤St

Pπρ
⋆ < ρ⋆(St)

)]
.

Hence Tπ
drop is bounded by the expected amount of time spent by the Markov chain Pπ in states which

are transient under Pπ (maximized over all starting states), and since the expected amount of time
spent in transient states in a finite Markov chain is finite [Durrett, 2019], we must have that Tπ

drop is
finite.

For the final statement, since there are only a finite number of policies in ΠMD and Tπ
drop < ∞ for

each π ∈ ΠMD, we have that Tdrop = max∈ΠMD Tπ
drop < ∞.

Lemma F.2. Suppose that π ∈ ΠMD is a deterministic policy. Then

Tπ
drop = max

s∈S
Eπ
s

[ ∞∑
t=0

I
(
e⊤St

Pπρ
⋆ < ρ⋆(St)

)]
.

Proof. Note that for a deterministic policy we have At = π(St), and thus PSt,At
ρ⋆ = PSt,π(St)ρ

⋆ =

e⊤St
Pπρ

⋆. Therefore

Tπ
drop = max

s∈S
Eπ
s

[ ∞∑
t=0

I (PSt,Atρ
⋆ < ρ⋆(St))

]
= max

s∈S
Eπ
s

[ ∞∑
t=0

I
(
e⊤St

Pπρ
⋆ < ρ⋆(St)

)]
.

Lemma F.3. Fix a deterministic policy π ∈ ΠMD, let s, s′ ∈ S be two states, and suppose s′ is
transient under Pπ . Then

(HPπ )ss′ = Eπ
s

[ ∞∑
t=0

I(St = s′)

]
, (12)
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or in words, (HPπ )ss′ is the expected number of visits of state s′ when following policy π and starting
at state s. Therefore

max
s∈S

∑
s′:s′ is transient under Pπ

(HPπ )ss′ = Bπ (13)

and

max
s∈S

∑
s′: e⊤

s′Pπρ
⋆ < ρ⋆(s′)

(HPπ
)ss′ = Tπ

drop. (14)

Proof. Since s′ is transient, we have that e⊤s P
∞
π es′ = 0. Thus

(HPπ
)ss′ = C-lim

T→∞

T−1∑
k=0

e⊤s (P
k
π − P∞

π )es′

= lim
N→∞

1

N

N∑
T=1

T−1∑
k=0

e⊤s (P
k
π − P∞

π )es′

= lim
N→∞

1

N

N∑
T=1

T−1∑
k=0

e⊤s P
k
π es′ s′ is transient

= lim
T→∞

T−1∑
k=0

e⊤s P
k
π es′

= Eπ
s

[ ∞∑
t=0

I(St = s′)

]

where the second-last equality follows from elementary analysis arguments, or can be seen using
the fact that the Cesaro limit of a convergent sequence is simply its usual limit, and the sequence(∑T−1

k=0 e⊤s P
k
π es′

)
T∈N

is convergent since all terms are nonnegative and the infinite sum is finite

since s′ is transient [Durrett, 2019].

The next two statements follow immediately (noting that by Lemma F.1, all states such that e⊤s′Pπρ
⋆ <

ρ⋆(s′) are transient in Pπ , and using the formula for Tπ
drop given in Lemma F.2 for π ∈ ΠMD).

Proof of Corollary 2.2. Combining Lemma 2.1 with the triangle inequality we have

∥ρπ − ρ⋆∥∞ ≤ ∥HPπ
(Pπρ

⋆ − ρ⋆)∥∞ + ∥P∞
π (rπ + Pπh− ρ⋆ − h)∥∞ .

Since ∥P∞
π ∥∞→∞ ≤ 1, we can bound

∥P∞
π (rπ + Pπh− ρ⋆ − h)∥∞ ≤ ∥P∞

π ∥∞→∞ ∥rπ + Pπh− ρ⋆ − h∥∞
≤ ∥rπ + Pπh− ρ⋆ − h∥∞
= ∥T π(h)− h− ρ⋆∥∞ .
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To bound ∥HPπ (Pπρ
⋆ − ρ⋆)∥∞, using Lemma F.3 we have

∥HPπ
(Pπρ

⋆ − ρ⋆)∥∞ = max
s∈S

∣∣e⊤s HPπ
(Pπρ

⋆ − ρ⋆)
∣∣

= max
s∈S

∣∣∣∣∣∑
s′∈S

(HPπ )ss′ e
⊤
s′(Pπρ

⋆ − ρ⋆)

∣∣∣∣∣
(i)
= max

s∈S

∣∣∣∣∣∣
∑

s′∈S: e⊤
s′ (Pπρ⋆−ρ⋆)<0

(HPπ )ss′ e
⊤
s′(Pπρ

⋆ − ρ⋆)

∣∣∣∣∣∣
(ii)
= max

s∈S

∑
s′∈S: e⊤

s′ (Pπρ⋆−ρ⋆)<0

(HPπ
)ss′ e

⊤
s′(ρ

⋆ − Pπρ
⋆)

≤ max
s∈S

∑
s′∈S: e⊤

s′ (Pπρ⋆−ρ⋆)<0

(HPπ )ss′ ∥ρ
⋆ − Pπρ

⋆∥∞

(iii)
= Tπ

drop ∥ρ⋆ − Pπρ
⋆∥∞ .

In (i) we used that e⊤s′(Pπρ
⋆−ρ⋆) ̸= 0 is equivalent to e⊤s′(Pπρ

⋆−ρ⋆) < 0, since e⊤s′(Pπρ
⋆−ρ⋆) > 0

is impossible. In (ii) we used the fact that (HPπ )ss′ ≥ 0 for any state s′ which is transient under Pπ

(implied by Lemma F.3) and the fact that the states s′ such that e⊤s′Pπρ
⋆ < ρ⋆(s) are transient by

Lemma F.1, as well as the fact that e⊤s′(ρ
⋆ − Pπρ

⋆) ≥ 0 again. In (iii) we again use Lemma F.3.

Lemma F.4. For any x, y ∈ RS and policy π such that P∞
π x = P∞

π y = 0, we have that

x ≤ y =⇒ HPπ
x ≤ HPπ

y.

Proof. To show the desired elementwise inequality, it suffices to fix s ∈ S and show e⊤s HPπx ≤
e⊤s HPπy. By an almost identical calculation to that of Lemma F.3 we have that

e⊤s HPπx = lim
T→∞

T−1∑
k=0

e⊤s P
k
πx and e⊤s HPπy = lim

T→∞

T−1∑
k=0

e⊤s P
k
π y.

Since P k
π is a stochastic matrix, x ≤ y implies that

T−1∑
k=0

e⊤s P
k
πx ≤

T−1∑
k=0

e⊤s P
k
π y

for any T , and thus

e⊤s HPπ
x = lim

T→∞

T−1∑
k=0

e⊤s P
k
πx ≤ lim

T→∞

T−1∑
k=0

e⊤s P
k
π y = e⊤s HPπ

y.

Lemma F.5. For any fixed policy π ∈ ΠMD, we have Tπ
drop ≤ Bπ . Consequently Tdrop ≤ B.

Proof. First we prove the statement for a fixed policy π. For any set X ⊆ S let eX ∈ RS be a vector
such that

eX(s) =

{
1 s ∈ X

0 otherwise
.

Let X be the set of states which are transient under Pπ and let Y be the set of states s such that
e⊤s Pπρ

⋆ < ρ⋆(s). By Lemma F.1 we have Y ⊆ X , so elementwise eY ≤ eX . By Lemma F.3 we
have that Bπ = maxs∈S e⊤s HPπ

eX and that Tπ
drop = maxs∈S e⊤s HPπ

eY (also using Lemma F.2).
Then using Lemma F.4, we have that

Tπ
drop = max

s∈S
e⊤s HPπ

eY ≤ max
s∈S

e⊤s HPπ
eX = Bπ.
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Now taking the maximum over all stationary deterministic policies, we have that

Tdrop = sup
π∈ΠMD

Tπ
drop ≤ sup

π∈ΠMD
Bπ = B.

Lemma F.6. For any fixed policy π ∈ ΠMD, we have Tπ
drop ≤ 1

∆ . Consequently Tdrop ≤ 1
∆ .

Proof. First we fix a policy π ∈ ΠMD and show that Tπ
drop ≤ 1

∆ . From the proof of Lemma 2.1, we
have

HPπ
(ρ⋆ − Pπρ

⋆) = ρ⋆ − P∞
π ρ⋆

and also ρ⋆ − P∞
π ρ⋆ ≤ 1 since ρ⋆ ≥ 0 so P∞

π ρ⋆ ≥ 0. We define eY in the same way as in the
proof of Lemma F.5, that is we let Y be the set of states s such that e⊤s Pπρ

⋆ < ρ⋆(s) and eY be the
indicator vector for this set. Then (since Pπρ

⋆ ≤ ρ⋆ so e⊤s Pπρ
⋆ > ρ⋆(s) for some s is impossible)

we have that eY ◦ (ρ⋆ − Pπρ
⋆) = ρ⋆ − Pπρ

⋆. Then by the definition of ∆ we have that

ρ⋆ − Pπρ
⋆ = eY ◦ (ρ⋆ − Pπρ

⋆) ≥ ∆eY .

Since both sides of this elementwise inequality are only supported on states which are transient under
Pπ (so P∞

π (ρ⋆ − Pπρ
⋆) = 0 and P∞

π eY = 0), by Lemma F.4 we have that

HPπ
(ρ⋆ − Pπρ

⋆) ≥ ∆HPπ
eY .

Combining all these inequalities we have that

∆HPπeY ≤ HPπ (ρ
⋆ − Pπρ

⋆) = ρ⋆ − P∞
π ρ⋆ ≤ 1

which implies

∆Tπ
drop = ∆max

s∈S
e⊤s HPπ

eY ≤ 1

(using that Tπ
drop = maxs∈S e⊤s HPπ

eY as shown in the proof of Lemma F.5). Rearranging we
have that Tπ

drop ≤ 1
∆ as desired, and then taking the supremum over all π ∈ ΠMD we have that

Tdrop = supπ∈ΠMD Tπ
drop ≤ 1

∆ .

Lemma F.7. Fix a starting state s0. For any infinite sequence of policies π0, π1, . . . , letting S0 =
s0, At ∼ πt(St), St+1 ∼ P (· | St, At) be its induced distribution over trajectories, and letting
E(πt)

∞
t=0

s0 denote the corresponding expectation, we have that

E(πt)
∞
t=0

s0

[ ∞∑
k=0

r(Sk, Ak)

]
≤ Tdrop

where r(s, a) = I(Psaρ
⋆ < ρ⋆).

Proof. Note that [Puterman, 1994, Assumption 7.1.1] is satisfied, since the reward function r is
non-negative. Therefore by [Puterman, 1994, Theorem 7.1.9] there exists a stationary deterministic
optimal policy π̃ for the expected total reward problem. Therefore we have

E(πt)
∞
t=0

s0

[ ∞∑
k=0

r(Sk, Ak)

]
≤ Eπ̃

s0

[ ∞∑
k=0

r(Sk, Ak)

]
≤ Tπ̃

drop ≤ Tdrop

as desired.
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G Proofs of coupling-based results

Proof of Lemma 3.1. We prove this result by induction. Note that by convention Λ0 = 0 (since it is an
empty summation). Therefore the t = 0 case holds because we have x0 = y0 = y0 +0ρ = y0 +Λ0ρ.

Now we suppose that for some t we have xt = yt+Λtρ. Then (also using the definition that x0 = y0)
we can calculate that

xt+1 = (1− βt+1)x0 + βt+1L(xt)

= (1− βt+1)y0 + βt+1L(yt + Λtρ)

= (1− βt+1)y0 + βt+1L(yt) + βt+1Λtρ

= (1− βt+1)y0 + βt+1L(yt) + βt+1(Λt + 1)ρ

= yt+1 + βt+1(Λt + 1)ρ.

Now it remains to show that Λt+1 = βt+1(Λt + 1), which is true because we have

βt+1(Λt + 1) = βt+1

 t∑
i=1

t∏
j=i

βj + 1

 =

t∑
i=1

t+1∏
j=i

βj + βt+1 =

t+1∑
i=1

t+1∏
j=i

βj = Λt+1.

Proof of Corollary 3.2. Fixing some policy π ∈ ΠMR, we have that T π
(h) := T π(h) − ρπ =

rπ+Pπh−ρπ is an affine operator, and furthermore it has fixed point hπ since by the Poisson/Bellman
equation we have

T π
(hπ) = rπ + Pπh

π − ρπ = ρπ + hπ − ρπ = hπ.

The nonexpansiveness of T π
with respect to ∥·∥∞ also follows immediately from that of T π , since∥∥∥T π

(h)− T π
(h′)

∥∥∥
∞

= ∥T π(h)− T π(h′)∥∞ ≤ ∥h− h′∥∞ .

Therefore we can directly apply [Contreras and Cominetti, 2022, Theorem 4.6] to conclude that, for
any initial point y0 = h0, the Halpern-iteration-generated iterate sequence (yt)

∞
t=0 where

yt+1 = (1− βt+1)y0 + βt+1T
π
(yt)

and βt = 1− 1
t+1 satisfies∥∥∥T π

(yt)− yt

∥∥∥
∞

≤ 2

t+ 1
∥y0 − hπ∥∞ =

2

t+ 1
∥h0 − hπ∥∞ . (15)

To apply Lemma 3.1, notice that for any α ∈ R we have that

T π(x+ αρπ) = rπ + Pπ(x+ αρπ) = rπ + Pπx+ αPπρ
π = rπ + Pπx+ αρπ = T π(x) + αρπ

due to the key fact that Pπρ
π = ρπ . Now applying Lemma 3.1, we have that ht = yt + Λtρ

π (where
ht is defined in the statement of Corollary 3.2). Therefore

∥T π(ht)− ht − ρπ∥∞ = ∥T π(yt + Λtρ
π)− (yt + Λtρ

π)− ρπ∥∞
= ∥T π(yt) + Λtρ

π − (yt + Λtρ
π)− ρπ∥∞

= ∥T π(yt)− yt − ρπ∥∞
=
∥∥∥T π

(yt)− yt

∥∥∥
∞

≤ 2

t+ 1
∥h0 − hπ∥∞

using the commutativity property in the second equality, and applying (15) in the final inequality.

We note that hπ could be replaced with any other fixed point of T π
(h) with an unchanged analysis.
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H Proofs of results for fixed-point methods under restricted commutativity

Here we prove the main results of Subsection 3.2.

H.1 Abstract setting

Recall that a seminorm ∥·∥ is a function X → [0,∞) which satisfies the triangle inequality and
positive homogeneity, that is, for all x, y ∈ X (where X is a vector space) and α ∈ R,

∥x+ y∥ ≤ ∥x∥ + ∥y∥

and

∥αx∥ = |α| ∥x∥ .

Our results in this section hold for the abstract setting that L : X → X is nonexpansive with respect
to a seminorm ∥·∥, meaning

∥L(x)− L(y)∥ ≤ ∥x− y∥

for all x, y ∈ X . We assume that L satisfies

L(x⋆ + αρ) = x⋆ + (α+ 1)ρ (16)

for some ρ, x⋆ ∈ X and for all α ∈ R. We also define the shifted operator L(x) := L(x)− ρ. Note
the above implies that x⋆ is a fixed-point of L. Also L is clearly nonexpansive since L(x)−L(x′) =
L(x)− L(x′) for any x, x′ ∈ X . First we restate Algorithm 1 for this general setting.

Algorithm 4 Approximately Shifted Halpern Iteration (General)
input: Number of iterations n for each phase, initial point x0

1: for t = 0, . . . , n− 1 do
2: xt+1 = L(xt)
3: end for
4: Let z0 = xn, form gain estimate ρ̂ = 1

n (xn − x0) ▷ Halpern iteration phase; begins with xn

5: Form approximate shifted operator L̂ as L̂(z) := L(z)− ρ̂
6: for t = 0, . . . , n− 1 do
7: zt+1 = (1− βt+1)z0 + βt+1L̂(zt) where βt = 1− 2

t+2
8: end for
9: return zn

For the rest of the proofs we treat n and x0, the inputs to Algorithm 4, as fixed. Before beginning
the proofs, we define z⋆ = x⋆ + nρ, and we note that z⋆ is also a fixed-point of L (by taking α = n
in (16)). For all integers t ≥ 1 define

Λt =

t∑
i=1

t∏
j=i

βj = βtβt−1 · · ·β1 + βtβt−1 · · ·β2 + · · ·+ βtβt−1 + βt. (17)

We also assume that β0 = 0 and let Λ0 = 0.

Lemma H.1. If βt = 1− 2
t+2 then Λt =

t
3 .

Proof. We show this by induction. By definition Λ0 = 0, so the desired formula holds for t = 0.
Note that by definition of Λt, for all t ≥ 1 we have Λt = βt(1 + Λt−1). Therefore supposing the
desired formula holds for some Λt where t ≥ 0, we have

Λt+1 = βt+1(1 + Λt) =

(
1− 2

t+ 3

)(
1 +

t

3

)
=

t+ 1

t+ 3

t+ 3

3
=

t+ 1

3

as desired.
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Lemma H.2.

∥ρ̂− ρ∥ ≤ 2

n
∥x0 − x⋆∥

and
∥z0 − z⋆∥ ≤ ∥x0 − x⋆∥ .

Proof. First we show that ∥∥∥L(n)(x0)− x0 − nρ
∥∥∥ ≤ 2 ∥x0 − x⋆∥ . (18)

We calculate that∥∥∥L(n)(x0)− x0 − nρ
∥∥∥ ≤

∥∥∥L(n)(x0)− x⋆ − nρ
∥∥∥ + ∥x⋆ − x0∥

=
∥∥∥L(n)(x0)− L(n)(x⋆)

∥∥∥ + ∥x⋆ − x0∥

≤ ∥x⋆ − x0∥ + ∥x⋆ − x0∥ .

Next, we have

ρ̂ =
L(n)(x0)− x0

n
,

so using (18),

∥ρ̂− ρ∥ =

∥∥∥∥L(n)(x0)− nρ− x0

n

∥∥∥∥ ≤
2 ∥x0 − x⋆∥

n
.

Next, since z⋆ = x⋆ + nρ = L(n)(x⋆), we have by nonexpansiveness that

∥z0 − z⋆∥ =
∥∥∥L(n)(x0)− L(n)(x⋆)

∥∥∥ ≤ ∥x0 − x⋆∥ .

Now we show the Halpern iterates remain bounded using the shifted Bellman operator L̂.
Lemma H.3. For all t ≤ n,

∥zt − z⋆∥ ≤ 5

3
∥x0 − x⋆∥ .

Proof. We show the stronger bound

∥zt − z⋆∥ ≤ ∥x0 − x⋆∥ + 2
Λt

n
∥x0 − x⋆∥

by induction. This obviously holds for t = 0 since Λ0 = 0 and by using Lemma H.2. Letting t be
arbitrary and assuming the above statement holds for t− 1, we have

∥zt − z⋆∥ =
∥∥∥(1− βt)z0 + βtL̂(zt−1)− z⋆

∥∥∥
≤
∥∥(1− βt)z0 + βtL(zt−1)− z⋆

∥∥ + βt ∥ρ− ρ̂∥
≤ (1− βt) ∥z0 − z⋆∥ + βt

∥∥L(zt−1)− z⋆
∥∥ + βt ∥ρ− ρ̂∥

≤ (1− βt) ∥z0 − z⋆∥ + βt ∥zt−1 − z⋆∥ + βt ∥ρ− ρ̂∥

≤ (1− βt) ∥z0 − z⋆∥ + βt ∥zt−1 − z⋆∥ +
2βt

n
∥x0 − x⋆∥

≤ (1− βt) ∥z0 − z⋆∥ + βt

(
∥x0 − x⋆∥ + 2

Λt−1

n
∥x0 − x⋆∥

)
+

2βt

n
∥x0 − x⋆∥

= (1− βt + βt) ∥z0 − z⋆∥ + 2
βtΛt−1 + βt

n
∥x0 − x⋆∥

= ∥z0 − z⋆∥ + 2
Λt

n
∥x0 − x⋆∥

≤ ∥x0 − x⋆∥ + 2
Λt

n
∥x0 − x⋆∥
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where the first two inequalities are by triangle inequality, then we use nonexpansiveness of L and
the fact that L(z⋆) = z⋆, then we use Lemma H.2 to bound ∥ρ− ρ̂∥, then we use the inductive
hypothesis, in the penultimate equality we use that Λt = βt(1 + Λt−1), and in the final inequality we
use Lemma H.2 to bound ∥z0 − z⋆∥.

We conclude by using Lemma H.1 and the fact that t ≤ n.

Lemma H.4. For all t ≤ n, ∥∥L(zt)− z0
∥∥ ≤ 8

3
∥x0 − x⋆∥ .

Proof. ∥∥L(zt)− z0
∥∥ =

∥∥L(zt)− L(z⋆) + z⋆ − z0
∥∥

≤
∥∥L(zt)− L(z⋆)

∥∥ + ∥z⋆ − z0∥
≤ ∥zt − z⋆∥ + ∥z⋆ − z0∥

≤ 8

3
∥x0 − x⋆∥

using Lemmas H.3 and H.2 in the final step.

Now we can prove the main theorem.

Theorem H.5. ∥∥L(zn)− zn
∥∥ ≤

13 + 35
n + 20

n2

n
∥x0 − x⋆∥ .

Proof. For any t ≥ 1, we have

zt+1 − zt = (1− βt+1)z0 + βt+1L̂(zt)− (1− βt)z0 + βtL̂(zt−1)

= (βt − βt+1)z0 + (βt+1 − βt)L̂(zt) + βt

(
L̂(zt)− L̂(zt−1)

)
= (βt+1 − βt)

(
L̂(zt)− z0

)
+ βt

(
L̂(zt)− L̂(zt−1)

)
= (βt+1 − βt)

(
L(zt)− z0

)
+ βt

(
L(zt)− L(zt−1)

)
+ (βt+1 − βt)(ρ− ρ̂).

Therefore

∥zt+1 − zt∥ ≤ (βt+1 − βt)
∥∥L(zt)− z0

∥∥ + βt

∥∥L(zt)− L(zt−1)
∥∥ + (βt+1 − βt) ∥ρ− ρ̂∥

≤ (βt+1 − βt)
8

3
∥x0 − x⋆∥ + βt ∥zt − zt−1∥ + (βt+1 − βt)

2

n
∥x0 − x⋆∥

= βt ∥zt − zt−1∥ + (βt+1 − βt)

(
8

3
+

2

n

)
∥x0 − x⋆∥ (19)

using the triangle inequality, and then Lemmas H.4 and H.2. We also note that

∥z1 − z0∥ =
∥∥∥(1− β1)z0 − β1L̂(z0)− z0

∥∥∥ = β1

∥∥∥z0 − L̂(z0)
∥∥∥

≤ β1

∥∥z0 − L(z0)
∥∥ + β1

∥∥∥L(z0)− L̂(z0)
∥∥∥ = β1

∥∥z0 − L(z0)
∥∥ + β1 ∥ρ− ρ̂∥

≤ β12 ∥z0 − z⋆∥ + β1 ∥ρ− ρ̂∥

≤ 4

3
∥x0 − x⋆∥

using Lemma H.2, the fact that β1 = 1
3 , and also the inequality∥∥z0 − L(z0)

∥∥ ≤ ∥z0 − z⋆∥ +
∥∥L(z⋆)− L(z0)

∥∥ ≤ 2 ∥z0 − z⋆∥
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since z⋆ is a fixed-point of L. Now supposing inductively that ∥zt − zt−1∥ ≤
16
3 + 4

n

t+1 ∥x0 − x⋆∥
(which we have just confirmed for the case that t = 0), we can use the bound (19) to obtain that

∥zt+1 − zt∥ ≤ βt ∥zt − zt−1∥ + (βt+1 − βt)

(
8

3
+

2

n

)
∥x0 − x⋆∥

≤ βt

16
3 + 4

n

t+ 1
∥x0 − x⋆∥ + (βt+1 − βt)

(
8

3
+

2

n

)
∥x0 − x⋆∥

=

(
βt

t+ 1
+

βt+1 − βt

2

)(
16

3
+

4

n

)
∥x0 − x⋆∥

≤ 1

t+ 2

(
16

3
+

4

n

)
∥x0 − x⋆∥

where the final inequality is because

βt

t+ 1
+

βt+1 − βt

2
=

1− 2
t+2

t+ 1
+

1− 2
t+3 − 1 + 2

t+2

2

=
t

(t+ 1)(t+ 2)
+

1

(t+ 2)(t+ 3)

≤ t+ 1

(t+ 1)(t+ 2)
=

1

t+ 2
.

Therefore by induction we have that

∥zt − zt−1∥ ≤
16
3 + 4

n

t+ 1
∥x0 − x⋆∥

for all t ≥ 1.

Now relating ∥zt − zt−1∥ to the fixed-point error, we have

zt+1 − zt = (1− βt+1)z0 + βt+1L̂(zt)− zt

= (1− βt+1)(z0 − zt) + βt+1(L̂(zt)− zt)

= (1− βt+1)(z0 − zt) + βt+1(L(zt)− zt) + βt+1(ρ− ρ̂)

which implies

βt+1(L(zt)− zt) = (zt+1 − zt)− βt+1(ρ− ρ̂)− (1− βt+1)(z0 − zt)

so by triangle inequality

βt+1

∥∥L(zt)− zt
∥∥ ≤ ∥zt+1 − zt∥ + βt+1 ∥ρ− ρ̂∥ + (1− βt+1) ∥z0 − zt∥
≤ ∥zt+1 − zt∥ + βt+1 ∥ρ− ρ̂∥ + (1− βt+1) (∥z0 − z⋆∥ + ∥zt − z⋆∥)

≤
16
3 + 4

n

t+ 2
∥x0 − x⋆∥ + βt+1

2

n
∥x0 − x⋆∥ + (1− βt+1)

8

3
∥x0 − x⋆∥

=

( 16
3 + 4

n

t+ 2
+

t+ 1

t+ 3

2

n
+

2

t+ 3

8

3

)
∥x0 − x⋆∥ .

Rearranging and simplifying, we obtain∥∥L(zt)− zt
∥∥ ≤ 1

βt+1

( 16
3 + 4

n

t+ 2
+

t+ 1

t+ 3

2

n
+

2

t+ 3

8

3

)
∥x0 − x⋆∥

=
t+ 3

t+ 1

( 16
3 + 4

n

t+ 2
+

t+ 1

t+ 3

2

n
+

2

t+ 3

8

3

)
∥x0 − x⋆∥

=
2

n
∥x0 − x⋆∥ +

t+ 3

t+ 1

( 16
3 + 4

n

t+ 2
+

1

t+ 3

16

3

)
∥x0 − x⋆∥

≤ 2

n
∥x0 − x⋆∥ +

t+ 3

t+ 1

(
1

t+ 2
+

1

t+ 3

)(
16

3
+

4

n

)
∥x0 − x⋆∥

=
2

n
∥x0 − x⋆∥ +

t+ 3

t+ 1

2t+ 5

(t+ 2)(t+ 3)

(
16

3
+

4

n

)
∥x0 − x⋆∥ .
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Now substituting t = n, and using that n+2.5
n+2 =

1+ 2.5
n

1+ 2
n

≤ 1 + 2.5
n , we have

∥∥L(zt)− zt
∥∥ ≤ 2

n
∥x0 − x⋆∥ +

2 + 5
n

n+ 1

(
16

3
+

4

n

)
∥x0 − x⋆∥

≤
2 + 32

3 + 80
3n + 8

n + 20
n2

n
∥x0 − x⋆∥

≤
13 + 35

n + 20
n2

n
∥x0 − x⋆∥ .

H.2 Undiscounted value iteration setting

Here we specialize to the case of L = T and prove Theorems 3.4 and 3.5.

First we develop a result to control the first term of Corollary 2.2.

Lemma H.6. Let h satisfy both the modified and unmodified Bellman equations. Suppose that
z ∈ RS satisfies ∥z − Γρ⋆ − h∥∞ ≤ B for some Γ, B > 0. Then if π is greedy with respect to
r + Pz (T π(z) = T (z)), we have

Pπρ
⋆ ≥ ρ⋆ − 2B

Γ
1.

Proof. Since h satisfies both the modified and unmodified Bellman equations, by Lemma D.1 there
exists a policy π̃ which attains the maximum in both simultaneously, meaning T π̃(h) = ρ⋆ + h and
Pπ̃ρ

⋆ = ρ⋆. Then we can calculate

Pπρ
⋆ =

1

Γ
Pπ (Γρ

⋆)

=
1

Γ
Pπ (Γρ

⋆ + h− h)

≥ 1

Γ
Pπ (z − ∥z − Γρ⋆ − h∥∞ 1− h)

≥ 1

Γ
Pπ (z −B1− h)

≥ 1

Γ
(Pπ (z −B1) + rπ − ρ⋆ − h)

=
1

Γ
(rπ + Pπz −B1− ρ⋆ − h)

≥ 1

Γ
(rπ⋆ + Pπ⋆z −B1− ρ⋆ − h)

≥ 1

Γ
(rπ⋆ + Pπ⋆ (Γρ⋆ + h)− Pπ⋆ ∥z − Γρ⋆ − h∥∞ 1−B1− ρ⋆ − h)

≥ 1

Γ
(rπ⋆ + Pπ⋆ (Γρ⋆ + h)− 2B1− ρ⋆ − h)

= ρ⋆ − 2B

Γ
1

where we used the fact that (by the modified Bellman equation (7)) rπ + Pπh = T π(h) ≤ T (h) =
ρ⋆ + h which implies −Pπh ≥ rπ − ρ⋆ − h, and then the fact that since π is greedy with respect to
r + Pz we have rπ + Pπz = T π(z) = T (z) ≥ T π̃(z) = rπ̃ + Pπ̃z, and then in the final equality
we used that Pπ̃ρ

⋆ = ρ⋆ and that rπ̃ + Pπ̃h = ρ⋆ + h.

Lemma H.7. Let h satisfy both the modified and unmodified Bellman equations. The policy π̂ output
by Algorithm 1 satisfies

∥Pπ̂ρ
⋆ − ρ⋆∥∞ ≤

10
3 ∥h0 − h∥∞

n
.
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Proof. Specializing ∥·∥ = ∥·∥∞, L = T , and x⋆ = h, by Lemma H.3, we have

∥zn − nρ⋆ − h∥∞ = ∥zn − z⋆∥∞ ≤ 5

3
∥x0 − x⋆∥∞ =

5

3
∥h0 − h∥∞ .

By Lemma H.6 this implies that

Pπ̂ρ
⋆ ≥ ρ⋆ −

10
3 ∥h0 − h∥∞

n
.

Also we trivially have Pπ̂ρ
⋆ ≤ ρ⋆.

Lemma H.8. Let h satisfy both the modified and unmodified Bellman equations. The vector zn and
policy π̂ output by Algorithm 1 satisfy∥∥∥T π̂(zn)− ρ⋆ − zn

∥∥∥
∞

≤
13 + 35

n + 20
n2

n
∥h0 − h∥∞ .

Proof. This follows immediately from Theorem H.5 by specializing ∥·∥ = ∥·∥∞, L = T , and
x⋆ = h. We note that π̂ is defined so that T (zn) = T π̂(zn).

Proof of Theorem 3.4. This follows immediately by using Lemmas H.7 and H.8 to bound the two
terms in Corollary 2.2.

Proof of Theorem 3.5. Under the assumption that n ≥ 4∥h0−h∥∞
∆ , we have by Lemma H.7 that

∥Pπ̂ρ
⋆ − ρ⋆∥∞ ≤

10
3 ∥h0 − h∥∞

n
≤ 10

12
∆ < ∆.

By the definition of ∆ and since π̂ is a deterministic policy, this implies that ∥Pπ̂ρ
⋆ − ρ⋆∥∞ = 0.

Using this fact, as well as Lemma H.8 to bound the other term in Corollary 2.2, we immediately
obtain the desired conclusion.

I Proof of Theorem 4.2

The following theorem on the performance of Halpern iteration for general normed spaces is due to
[Sabach and Shtern, 2017, Lemma 5]. Their result is presented for Euclidean spaces but the proof
holds for general norms. See [Contreras and Cominetti, 2022, Remark 2] for more discussion of this
bound.

Theorem I.1. Suppose L is nonexpansive with respect to some norm ∥·∥. Let x⋆ be a fixed point of
L, and fix some initial point x0. For all t = 1, 2, . . . , let xt+1 = (1− βt+1)x0 + βt+1L(xt), where
βt = 1− 2

t+2 . Then for all t ≥ 0 we have

∥L(xt)− xt∥ ≤ 4

t+ 1
∥x0 − x⋆∥ .

Proof of Theorem 4.2. Let x⋆ be the unique fixed point of L. Let E =
⌊

1
1−γ

⌋
− 1, which is ≥ 0

since 1
1−γ ≥ 1. Since Algorithm 2 generates iterates x0, . . . , xE in an identical manner to the

Halpern iteration described in Theorem I.1, and also if L is γ-contractive for γ < 1 then it is clearly
nonexpansive, by Theorem I.1 we have that

∥L(xt)− xt∥ ≤ 4

t+ 1
∥x0 − x⋆∥

for all t = 0, . . . , E. In particular

∥L(xE)− xE∥ ≤ 4

E + 1
∥x0 − x⋆∥ ≤ 4⌊

1
1−γ

⌋ ∥x0 − x⋆∥ .
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Now for t = E +1, E +2, . . . , since we have xt = L(xt−1), it is immediate from γ-contractivity of
L that

∥L(xt)− xt∥ = ∥L(xt)− L(xt−1)∥ ≤ γ ∥xt − xt−1∥ = γ ∥L(xt−1)− xt−1∥ .
Therefore for all t = E + 1, E + 2, . . . we have

∥L(xt)− xt∥ ≤ γt−E ∥L(xE)− xE∥ ≤ γt−E 4⌊
1

1−γ

⌋ ∥x0 − x⋆∥ .

Now we relate these bounds to the quantity γt∑t
i=0 γi . First we note the useful fact that

sup
γ∈(0,1)

γ− 1
1−γ +1 = e. (20)

which we will verify later. Now for the case that t = 0, . . . , E, we can bound
4

t+1
γt∑t
i=0 γi

= 4

∑t
i=0 γ

i

t+ 1
γ−t ≤ 4

∑t
i=0 1

t+ 1
γ−E ≤ 4e

using (20) in the final inequality, since γ−⌊ 1
1−γ ⌋+1 ≤ γ− 1

1−γ +1. Next for the case that t ≥ E + 1,
we can bound

4

⌊ 1
1−γ ⌋

γt−E

γt∑t
i=0 γi

= 4

 1⌊
1

1−γ

⌋ t∑
i=0

γi

 γ−E ≤ 4e

1
1−γ⌊
1

1−γ

⌋
where in the final inequality we used (20) again and that

∑t
i=0 γ

i ≤
∑∞

i=0 γ
i = 1

1−γ .

Therefore we have shown that

∥L(xt)− xt∥ ≤

{
4

t+1 ∥x0 − x⋆∥ t ≤ E

4 1

⌊ 1
1−γ ⌋

γt−E ∥x0 − x⋆∥ t > E ≤ 4e

1
1−γ⌊
1

1−γ

⌋ γt∑t
i=0 γ

i
∥x0 − x⋆∥ . (21)

In the case that 1
1−γ is an integer, we thus have that

∥L(xt)− xt∥ ≤
{

4
t+1 ∥x0 − x⋆∥ t ≤ E

4(1− γ)γt−E ∥x0 − x⋆∥ t > E
≤ 4e

γt∑t
i=0 γ

i
∥x0 − x⋆∥ . (22)

In the case that 1
1−γ is not an integer, using the fact that

⌊
1

1−γ

⌋
≥ 1

2
1

1−γ since 1
1−γ ≥ 1, we obtain

∥L(xt)− xt∥ ≤
{

4
t+1 ∥x0 − x⋆∥ t ≤ E

8(1− γ)γt−E ∥x0 − x⋆∥ t > E
≤ 8e

γt∑t
i=0 γ

i
∥x0 − x⋆∥ .

Now it remains to verify (20). Note γ 7→ γ− 1
1−γ +1 is a smooth function on (0, 1), and it suffices to

show that the function γ 7→ log(γ− 1
1−γ +1) is non-decreasing and approaches 1 as γ → 1 (since log

is monotone increasing). To show γ 7→ log(γ− 1
1−γ +1) is non-decreasing it suffices to show that its

derivative is ≥ 0. We have
d

dγ
log(γ− 1

1−γ +1) =
d

dγ

γ

γ − 1
log(γ) =

1

γ

γ

γ − 1
+

γ − 1− γ

(γ − 1)2
log(γ) =

γ − 1− log(γ)

(γ − 1)2

and by Taylor’s theorem applied to log(γ) about γ = 1, for any γ ∈ (0, 1) there exists some ξ ∈ (0, 1)
such that log(γ) = 0+1(γ−1)−ξ−2(γ−1)2 < γ−1, and so γ−1− log(γ) > 0 for any γ ∈ (0, 1)

and thus the function log(γ− 1
1−γ +1) is nondecreasing. Next, to show that the limit of this function as

γ → 1 is 1, by L’Hopital’s rule we have

lim
γ→1

log(γ− 1
1−γ +1) = lim

γ→1

γ

γ − 1
log(γ) = lim

γ→1

log(γ) + 1

1
= 1

as desired. Thus supγ∈(0,1) log(γ
− 1

1−γ +1) = 1, and so since log is monotone increasing we have

that supγ∈(0,1) γ
− 1

1−γ +1 = exp(1) = e as desired.
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J Proofs of DMDP Results

J.1 Gain approximation lemmas

In this section we develop several different bounds on the quantity
∥∥∥V ⋆

γ − 1
1−γ ρ

⋆
∥∥∥
∞

.

Lemma J.1. For any γ ∈ (0, 1), we have that∥∥∥∥V ⋆
γ − 1

1− γ
ρ⋆
∥∥∥∥
∞

≤
∥∥∥hπ⋆

∥∥∥
sp
+ Tdrop +

∥∥∥hπ⋆
∥∥∥

sp
Tdrop.

Proof. By Zurek and Chen [2024b, Lemma 20],
∥∥∥V π⋆

γ − 1
1−γ ρ

⋆
∥∥∥
∞

≤
∥∥hπ⋆∥∥

sp, which implies

V ⋆
γ ≥ V π⋆

γ ≥ 1

1− γ
ρ⋆ −

∥∥∥hπ⋆
∥∥∥

sp
.

Thus it remains to upper-bound V ⋆
γ . Let π⋆

γ be a deterministic discounted optimal policy (such

that V ⋆
γ = V

π⋆
γ

γ ), which is guaranteed to exist Puterman [1994]. From the unmodified Bellman
equation (1b) (with ρ = ρ⋆), if s ∈ S satisfies e⊤s Pπ⋆

γ
ρ⋆ = ρ⋆(s), then

ρ⋆(s) + hπ⋆

(s) = max
a∈A:Psaρ=ρ(s)

r(s, a) + Psah
π⋆

≥ r(s, π⋆
γ(s)) + Psπ⋆

γ(s)
hπ⋆

= rπ⋆
γ
(s) + e⊤s Pπ⋆

γ
hπ⋆

.

If instead we have that e⊤s Pπ⋆
γ
ρ⋆ < ρ⋆(s), then instead we can bound

rπ⋆
γ
(s) + e⊤s Pπ⋆

γ
hπ⋆

− rπ⋆(s)− e⊤s Pπ⋆hπ⋆

≤ ∥r∥sp + e⊤s (Pπ⋆
γ
− Pπ⋆)hπ⋆

≤ 1 +
∥∥∥hπ⋆

∥∥∥
sp
,

and since rπ⋆(s) + e⊤s Pπ⋆hπ⋆

= ρ⋆(s) + hπ⋆

(s), we have that

ρ⋆(s) + hπ⋆

(s) + 1 +
∥∥∥hπ⋆

∥∥∥
sp
≥ rπ⋆

γ
(s) + e⊤s Pπ⋆

γ
hπ⋆

.

Thus, similarly to what we have done in above proofs, letting Y be the set of states s such that
e⊤s Pπ⋆

γ
ρ⋆ < ρ⋆(s), and letting eY be the indicator vector for this set, combining the two cases we

obtain the elementwise inequality

rπ⋆
γ
+ Pπ⋆

γ
hπ⋆

≤ ρ⋆ + hπ⋆

+

(
1 +

∥∥∥hπ⋆
∥∥∥

sp

)
eY . (23)

Thus using the fact that all entries of (I − γPπ⋆
γ
)−1 are nonnegative, we have that

V ⋆
γ = (I − γPπ⋆

γ
)−1rπ⋆

γ

≤ (I − γPπ⋆
γ
)−1ρ⋆ + (I − γPπ⋆

γ
)−1(I − Pπ⋆

γ
)hπ⋆

+

(
1 +

∥∥∥hπ⋆
∥∥∥

sp

)
(I − γPπ⋆

γ
)−1eY . (24)

Now we bound all the terms in (24). First, since Pπ⋆
γ
ρ⋆ ≤ ρ⋆, we can derive that

P k
π⋆
γ
ρ⋆ = P k−1

π⋆
γ

Pπ⋆
γ
ρ⋆ ≤ P k−1

π⋆
γ

ρ⋆ ≤ · · · ≤ ρ⋆

for any integer k ≥ 0, and thus

(I − γPπ⋆
γ
)−1ρ⋆ =

∞∑
k=0

γkP k
π⋆
γ
ρ⋆ ≤

∞∑
k=0

γkρ⋆ =
1

1− γ
ρ⋆.

Next, by Lemma K.1 we have that (I − γPπ⋆
γ
)−1(I − Pπ⋆

γ
)hπ⋆ ≤

∥∥hπ⋆∥∥
sp 1. Finally, as shown in

Lemma F.1, eY is only nonzero on states which are transient under the Markov chain Pπ⋆
γ
, which

implies P∞
π eY = 0. Therefore for any γ′ we have that

(I − γ′Pπ⋆
γ
)−1eY = (I − γ′Pπ⋆

γ
)−1eY − 1

1− γ′P
∞
π eY
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and so by Lattimore and Szepesvári [2020, Exercise 38.9] we have that

lim
γ′↑1

(I − γ′Pπ⋆
γ
)−1eY = lim

γ′↑1
(I − γ′Pπ⋆

γ
)−1eY − 1

1− γ′P
∞
π eY = HPπ⋆

γ
eY = T

π⋆
γ

drop

where the final equality is due to Lemma F.3. But we also have that (I−γ′Pπ⋆
γ
)−1eY is (elementwise)

non-decreasing as γ′ ↑ 1, so this implies that

(I − γPπ⋆
γ
)−1eY ≤ lim

γ′↑1
(I − γ′Pπ⋆

γ
)−1eY = T

π⋆
γ

drop.

Finally using these three bounds in (24), we obtain that

V ⋆
γ ≤ 1

1− γ
ρ⋆ +

∥∥∥hπ⋆
∥∥∥

sp
+

(
1 +

∥∥∥hπ⋆
∥∥∥

sp

)
T
π⋆
γ

drop ≤ 1

1− γ
ρ⋆ +

∥∥∥hπ⋆
∥∥∥

sp
+

(
1 +

∥∥∥hπ⋆
∥∥∥

sp

)
Tdrop.

Lemma J.2. For any γ ∈ (0, 1), letting h be any solution to both the modified and unmodified
Bellman equations (2b) and (1b), we have that∥∥∥∥V ⋆

γ − 1

1− γ
ρ⋆
∥∥∥∥
∞

≤ ∥h∥sp .

Proof. By Lemma D.1, there exists a policy π attain both maximums in the modified Bellman
equations simultaneously in the sense of (8) and (9), that is, Pπρ

⋆ = ρ⋆ and rπ + Pπh = T π(h) =
T (h) = ρ⋆ + h. Rearranging, this implies that rπ = ρ⋆ + (I − Pπ)h. Then we have

V ⋆
γ ≥ V π

γ

= (I − γPπ)
−1rπ

= (I − γPπ)
−1 (ρ⋆ + (I − Pπ)h)

= (I − γPπ)
−1ρ⋆ + (I − γPπ)

−1(I − Pπ)h.

Since Pπρ
⋆ = ρ⋆, this implies that P t

πρ
⋆ = ρ⋆ for all t ≥ 0, so we have that

(I − γPπ)
−1ρ⋆ =

∞∑
t=0

γtP t
πρ

⋆ =

∞∑
t=0

γtρ⋆ =
1

1− γ
ρ⋆.

Also (I − γPπ)
−1(I − Pπ)h ≥ −∥h∥sp 1 by using Lemma K.1. Therefore we have shown that

V ⋆
γ ≥ 1

1−γ ρ
⋆ − ∥h∥sp 1.

By the second modified Bellman equation (2b) we have that

ρ⋆ + h = M(r + Ph) ≥ Mπ⋆
γ (r + Ph) = rπ⋆

γ
+ Pπ⋆

γ
h.

Rearranging we have that rπ⋆
γ
≤ ρ⋆ + (I − Pπ⋆

γ
)h. Then by monotonicity of (I − γPPπ⋆

γ
)−1 we

have that
V ⋆
γ = (I − γPπ⋆

γ
)−1rπ⋆

γ

≤ (I − γPπ⋆
γ
)−1

(
ρ⋆ + (I − Pπ⋆

γ
)h
)

= (I − γPπ⋆
γ
)−1ρ⋆ + (I − γPπ⋆

γ
)−1(I − Pπ⋆

γ
)h.

Since Pπ⋆
γ
ρ⋆ ≤ ρ⋆, this implies that P t

π⋆
γ
ρ⋆ ≤ ρ⋆ for all t ≥ 0, and we have that

(I − γPπ⋆
γ
)−1ρ⋆ =

∞∑
t=0

γtP t
π⋆
γ
ρ⋆ ≤

∞∑
t=0

γtρ⋆ =
1

1− γ
ρ⋆.

Again using Lemma K.1 we have that (I − γPπ⋆
γ
)−1(I − Pπ⋆

γ
)h ≤ ∥h∥sp 1. Thus we have checked

the other direction that V ⋆
γ ≤ 1

1−γ ρ
⋆ + ∥h∥sp 1, so combining with the above lower-bound and

rearranging, we have that ∥∥∥∥V ⋆
γ − 1

1− γ
ρ⋆
∥∥∥∥
∞

≤ ∥h∥sp .
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J.2 Discounted reduction results

In this subsection we relate the terms appearing in Corollary 2.2 to those which are directly controlled
by solving discounted MDPs, that is, the discounted fixed-point error ∥Tγ(V )− V ∥∞ and the value
error

∥∥V − V ⋆
γ

∥∥
∞.

Lemma J.3. Suppose for some V ∈ RS that some policy π is ε-greedy with respect to r + γPV ,
that is, T π

γ (V ) ≥ Tγ(V )− ε1. Then

∥T (V )− V − ρ⋆∥∞ ≤ ∥Pπρ
⋆ − ρ⋆∥∞ + ∥Tγ(V )− V ∥∞ + (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+ ε.

In particular if π is greedy with respect to r + γPV (ε = 0) then

∥T (V )− V − ρ⋆∥∞ ≤ ∥Pπρ
⋆ − ρ⋆∥∞ + ∥Tγ(V )− V ∥∞ + (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

.

Proof. We just need to prove the first statement, from which the second follows immediately. We can
lower-bound T (V ) as

T (V ) = M(r + PV ) = M (r + γPV + (1− γ)PV )

≥ M

(
r + γPV + (1− γ)P

1

1− γ
ρ⋆ − (1− γ)P

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

)
= M

(
r + γPV + Pρ⋆ − (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

)
= M (r + γPV + Pρ⋆)− (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

≥ Mπ (r + γPV + Pρ⋆)− (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

= Mπ (r + γPV ) + Pπρ
⋆ − (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

= T π
γ (V ) + Pπρ

⋆ − (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

= Tγ(V )− ε1+ Pπρ
⋆ − (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1.

We upper-bound T (V ) as

T (V ) = M(r + PV ) = M (r + γPV + (1− γ)PV )

≤ M

(
r + γPV + (1− γ)P

1

1− γ
ρ⋆ + (1− γ)P

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

)
= M

(
r + γPV + Pρ⋆ + (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

)
= M (r + γPV + Pρ⋆) + (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

≤ M (r + γPV ) +M (Pρ⋆) + (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

= Tγ(V ) + ρ⋆ + (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1.

35



Subtracting V + ρ⋆ from both inequalities and combining, we obtain

Tγ(V )− V − ε1+ Pπρ
⋆ − ρ⋆ − (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

≤ T (V )− V − ρ⋆

≤ Tγ(V )− V + (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1.

Therefore

∥T (V )− V − ρ⋆∥∞ ≤ ∥Pπρ
⋆ − ρ⋆∥∞ + ∥Tγ(V )− V ∥∞ + (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+ ε.

Lemma J.4. Suppose for some V ∈ RS that some policy π is ε-greedy with respect to r + γPV ,
that is, T π

γ (V ) ≥ Tγ(V )− ε1. Then

ρ⋆ − Pπρ
⋆ ≤ (1− γ)

1 + ε+ ∥Tγ(V )− V ∥∞
γ

1+ 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1.

Proof. First we calculate that

PπV =
1

γ
V +

(
PπV − 1

γ
V

)
=

1

γ
V +

1

γ
(γPπV − V )

=
V − rπ

γ
+

rπ + γPπV − V

γ
=

V − rπ
γ

+
T π
γ (V )− V

γ

≥ V − rπ
γ

+
Tγ(V )− V

γ
− ε

γ

which implies

V − PπV ≤ V − V

γ
+

∥rπ∥∞ + ε

γ
1+

∥Tγ(V )− V ∥∞
γ

≤
1 + ε+ ∥Tγ(V )− V ∥∞

γ
1.

Using this key bound, we have that

ρ⋆ − Pπρ
⋆ ≤ (1− γ)V + (1− γ)

∥∥∥∥ 1

1− γ
ρ⋆ − V

∥∥∥∥
∞

1− Pπρ
⋆

≤ (1− γ)V + (1− γ)

∥∥∥∥ 1

1− γ
ρ⋆ − V

∥∥∥∥
∞

1− (1− γ)PπV + Pπ(1− γ)

∥∥∥∥ 1

1− γ
ρ⋆ − V

∥∥∥∥
∞

1

= (1− γ) (V − PπV ) + 2(1− γ)

∥∥∥∥ 1

1− γ
ρ⋆ − V

∥∥∥∥
∞

1

≤ (1− γ)
1 + ε+ ∥Tγ(V )− V ∥∞

γ
1+ 2(1− γ)

∥∥∥∥ 1

1− γ
ρ⋆ − V

∥∥∥∥
∞

1.

Lemma J.5. Suppose for some V ∈ RS that some policy π is ε-greedy with respect to r + γPV ,
that is, T π

γ (V ) ≥ Tγ(V )− ε1. Then

∥T π(V )− V − ρ⋆∥∞ ≤ ∥T (V )− V − ρ⋆∥∞ + ∥Pπρ
⋆ − ρ⋆∥∞ + 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+ ε.

Proof. Note that since T π(V ) ≤ T (V ), we immediately have that

T π(V )− V − ρ⋆ ≤ T (V )− V − ρ⋆ ≤ ∥T (V )− V − ρ⋆∥∞ 1.
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Thus it remains to lower-bound T π(V )− V − ρ⋆. Let π̃ be some policy such that M(r + PV ) =
M π̃(r + PV ). Now we calculate that

T π(V ) = Mπ(r + PV ) = Mπ(r + γPV ) + (1− γ)PπV

≥ M(r + γPV )− ε1+ (1− γ)PπV

≥ M π̃(r + γPV )− ε1+ (1− γ)PπV

= M π̃(r + PV )− (1− γ)Pπ̃V − ε1+ (1− γ)PπV

= M(r + PV )− ε1− (1− γ) (Pπ̃ − Pπ)V

= T (V )− ε1− (Pπ̃ − Pπ) ρ
⋆ − (1− γ) (Pπ̃ − Pπ)

(
V − 1

1− γ
ρ⋆
)

≥ T (V )− ε1− (Pπ̃ − Pπ) ρ
⋆ − 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

≥ T (V )− ε1− (ρ⋆ − Pπρ
⋆)− 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1

where in the final inequality we used that Pπ̃ρ
⋆ ≤ ρ⋆. Subtracting V + ρ⋆ from both inequalities we

obtain that

T π(V )− V − ρ⋆ ≥ T (V )− V − ρ⋆ − ε1− (ρ⋆ − Pπρ
⋆)− 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

1.

Combining this with the upper bound, taking ∥·∥∞, and using the triangle inequality, we obtain the
desired statement.

Lemma J.6. Suppose for some V ∈ RS that some policy π is ε-greedy with respect to r + γPV ,
that is, T π

γ (V ) ≥ Tγ(V )− ε1. Then

∥ρπ − ρ⋆∥∞ ≤
(
Tπ

drop + 1
)(

7(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+
2− γ

γ
∥Tγ(V )− V ∥∞ + 2

1− γ

γ
+

2

γ
ε

)
.

Furthermore, letting h satisfy the modified Bellman equations (7), we have

∥ρπ − ρ⋆∥∞ ≤
(
Tπ

drop + 1
)(

7(1− γ)min

{
∥h∥sp ,

∥∥∥hπ⋆
∥∥∥

sp
+ Tdrop +

∥∥∥hπ⋆
∥∥∥

sp
Tdrop

}
+

2 + 6γ

γ
∥Tγ(V )− V ∥∞

+ 2
1− γ

γ
+

2

γ
ε

)
.

Additionally assuming γ ≥ 1
2 , we have

∥ρπ − ρ⋆∥∞ ≤
(
Tπ

drop + 1
)(

(1− γ)

(
4 + 7min

{
∥h∥sp ,

∥∥∥hπ⋆
∥∥∥

sp
+ Tdrop +

∥∥∥hπ⋆
∥∥∥

sp
Tdrop

})

+ 16 ∥Tγ(V )− V ∥∞ + 4ε

)
.

Proof. By Corollary 2.2 we have

∥ρπ − ρ⋆∥∞ ≤ Tπ
drop ∥Pπρ

⋆ − ρ⋆∥∞ + ∥T π(V )− V − ρ⋆∥∞ (25)

so it remains to control the terms ∥Pπρ
⋆ − ρ⋆∥∞ and ∥T π(V )− V − ρ⋆∥∞. By Lemma J.4 we have

∥ρ⋆ − Pπρ
⋆∥∞ ≤ (1− γ)

1 + ε+ ∥Tγ(V )− V ∥∞
γ

+ 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

. (26)
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Starting with Lemma J.5, we have

∥T π(V )− V − ρ⋆∥∞ ≤ ∥T (V )− V − ρ⋆∥∞ + ∥Pπρ
⋆ − ρ⋆∥∞ + 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+ ε

(i)

≤
(
∥Pπρ

⋆ − ρ⋆∥∞ + ∥Tγ(V )− V ∥∞ + (1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+ ε

)
+ ∥Pπρ

⋆ − ρ⋆∥∞ + 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+ ε

= 2 ∥Pπρ
⋆ − ρ⋆∥∞ + 3(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+ ∥Tγ(V )− V ∥∞ + 2ε

(ii)

≤ 2

(
(1− γ)

1 + ε+ ∥Tγ(V )− V ∥∞
γ

+ 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

)
+ 3(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+ ∥Tγ(V )− V ∥∞ + 2ε

= 7(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+

(
2
1− γ

γ
+ 1

)
∥Tγ(V )− V ∥∞

+ 2
1− γ

γ
+ 2

(
1− γ

γ
+ 1

)
ε

= 7(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+
2− γ

γ
∥Tγ(V )− V ∥∞ + 2

1− γ

γ
+

2

γ
ε

(27)

where we used Lemma J.3 in (i) to bound ∥T (V )− V − ρ⋆∥∞, and then we used (26) in (ii) to
bound ∥Pπρ

⋆ − ρ⋆∥∞.

Now using this bound (27) on ∥T π(V )− V − ρ⋆∥∞ and the bound (26) on ∥Pπρ
⋆ − ρ⋆∥∞ in (25),

we have that

∥ρπ − ρ⋆∥∞ ≤ Tπ
drop

(
(1− γ)

1 + ε+ ∥Tγ(V )− V ∥∞
γ

+ 2(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

)
+

(
7(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+
2− γ

γ
∥Tγ(V )− V ∥∞ + 2

1− γ

γ
+

2

γ
ε

)
≤
(
Tπ

drop + 1
)(

7(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+
2− γ

γ
∥Tγ(V )− V ∥∞ + 2

1− γ

γ
+

2

γ
ε

)
.

(28)

This is the first statement of the lemma.

For the second statement of the lemma, we have by the triangle inequality and Lemmas J.1 and J.2
that∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

≤
∥∥V − V ⋆

γ

∥∥
∞ +

∥∥∥∥V ⋆
γ − 1

1− γ
ρ⋆
∥∥∥∥
∞

≤
∥∥V − V ⋆

γ

∥∥
∞ +min

{
∥h∥sp ,

∥∥∥hπ⋆
∥∥∥

sp
+ Tdrop +

∥∥∥hπ⋆
∥∥∥

sp
Tdrop

}
≤ 1

1− γ
∥Tγ(V )− V ∥∞ +min

{
∥h∥sp ,

∥∥∥hπ⋆
∥∥∥

sp
+ Tdrop +

∥∥∥hπ⋆
∥∥∥

sp
Tdrop

}
(29)

where for the final inequality we used the standard fact that
∥∥V − V ⋆

γ

∥∥
∞ ≤ 1

1−γ ∥Tγ(V )− V ∥∞
(which follows from∥∥V − V ⋆

γ

∥∥
∞ ≤ ∥V − Tγ(V )∥∞ +

∥∥Tγ(V )− Tγ(V ⋆
γ )
∥∥
∞ ≤ ∥V − Tγ(V )∥∞ + γ

∥∥V − V ⋆
γ

∥∥
∞
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and then rearranging). Combining (29) with (28), we have that

∥ρπ − ρ⋆∥∞ ≤
(
Tπ

drop + 1
)(

7(1− γ)

∥∥∥∥V − 1

1− γ
ρ⋆
∥∥∥∥
∞

+
2− γ

γ
∥Tγ(V )− V ∥∞ + 2

1− γ

γ
+

2

γ
ε

)
≤
(
Tπ

drop + 1
)(

7(1− γ)

(
1

1− γ
∥Tγ(V )− V ∥∞ +min

{
∥h∥sp ,

∥∥∥hπ⋆
∥∥∥

sp
+ Tdrop +

∥∥∥hπ⋆
∥∥∥

sp
Tdrop

})

+
2− γ

γ
∥Tγ(V )− V ∥∞ + 2

1− γ

γ
+

2

γ
ε

)

=
(
Tπ

drop + 1
)(

7(1− γ)min

{
∥h∥sp ,

∥∥∥hπ⋆
∥∥∥

sp
+ Tdrop +

∥∥∥hπ⋆
∥∥∥

sp
Tdrop

}
+

2 + 6γ

γ
∥Tγ(V )− V ∥∞

+ 2
1− γ

γ
+

2

γ
ε

)
as desired.

The final statement follows immediately from the facts that γ ≤ 1 and 1
γ ≤ 2.

J.3 Faster value error convergence

In this subsection we present results which relate the output of undiscounted Picard iterations to the
discounted value function V ⋆

γ , with the objective of proving Lemma 4.3.

The following lemma basically follows from [Puterman, 1994, Theorem 9.4.1], although as discussed
in Appendix D, there are some ambiguities in its requirements on h. For this reason we provide a
complete proof.
Lemma J.7. Suppose that (ρ⋆, h) satisfies both the modified and unmodified Bellman equations.
Then for any n ≥ 0, we have ∥∥∥T (n)(0)− nρ⋆

∥∥∥
∞

≤ ∥h∥sp .

Proof. First we note that elementwise
h− (max

s∈S
h(s))1 ≤ 0 ≤ h− (min

s∈S
h(s))1.

By monotonicity of T (applied n times for each inequality), we have that

T (n)

(
h− (max

s∈S
h(s))1

)
≤ T (n)(0) ≤ T (n)

(
h− (min

s∈S
h(s))1

)
. (30)

Using the constant shift property of T (that T (x+ c1) = T (x)+ c1 for any x ∈ RS and any c ∈ R),
as well as Lemma D.2 which guarantees that T (h+ cρ⋆) = h+ (c+ 1)ρ⋆, we have that

T (n) (h+ c1) = T (n−1) (T (h+ c1)) = T (n−1) (h+ ρ⋆ + c1)

= T (n−2) (T (h+ ρ⋆ + c1)) = T (n−2) (2ρ⋆ + c1)

...

= T (0) (nρ⋆ + c1) = nρ⋆ + c1.

Therefore using this calculation to evaluate the left- and right-hand sides of (30), we have that

nρ⋆ + h− (max
s∈S

h(s))1 ≤ T (n)(0) ≤ nρ⋆ + h− (min
s∈S

h(s))1.

Rearranging we have

h− (max
s∈S

h(s))1 ≤ T (n)(0)− nρ⋆ ≤ h− (min
s∈S

h(s))1

which implies∥∥∥T (n)(0)− nρ⋆
∥∥∥
∞

≤ max

{
max
s′∈S

h(s′)− (min
s∈S

h(s)),−
(
min
s′∈S

h(s′)− (max
s∈S

h(s))

)}
= ∥h∥sp .
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Lemma J.8. For any n ≥ 0, we have∥∥∥T (n)(0)− nρ⋆
∥∥∥
∞

≤
∥∥∥hπ⋆

∥∥∥
sp
+ Tdrop +

∥∥∥hπ⋆
∥∥∥

sp
Tdrop.

Proof. Let πk be some policy attaining the maximum during the kth application of T , that is

T (k)(0) = T πk

(
T (k−1)(0)

)
.

Then it is straightforward to compute that

T (n)(0) = rπn + Pπnrπn−1 + PπnPπn−1rπn−2 + · · ·+
(
PπnPπn−1 · · ·Pπ2

)
rπ1

=

n∑
t=1

(
t+1∏
k=n

Pπk

)
rπt (31)

where we take the product
∏t+1

k=n Pπk
to be equal to the identity matrix if it is empty (if n < t+ 1,

which happens only for t = n).

Using steps identical to those used to obtain (23) but replacing π⋆
γ by πt, we obtain for any t that

rπt
≤ ρ⋆ + (I − Pπt

)hπ⋆

+

(
1 +

∥∥∥hπ⋆
∥∥∥

sp

)
eSt

where eSt is the indicator function for the set of states St = {s : e⊤s Pπtρ
⋆ < ρ⋆(s)}. Recalling

the reward function r(s, a) = I{Psaρ
⋆ < ρ⋆(s)} defined in Section 2, this is equivalent to eSt =

Mπtr = rπt
. Combining with (31) (and using monotonicity of Pπ for any π) we have that

T (n)(0) ≤
n∑

t=1

(
t+1∏
k=n

Pπk

)(
ρ⋆ + (I − Pπt

)hπ⋆

+

(
1 +

∥∥∥hπ⋆
∥∥∥

sp

)
rπt

)
(32)

and now we upper bound each term in (32). For any policy π we have Pπρ
⋆ = MπPρ⋆ ≤ MPρ⋆ =

ρ⋆, and so applying this fact many times we have that
n∑

t=1

(
t+1∏
k=n

Pπk

)
ρ⋆ ≤

n∑
t=1

ρ⋆ = nρ⋆.

Next, we have that
n∑

t=1

(
t+1∏
k=n

Pπk

)
(I − Pπt

)hπ⋆

=

n∑
t=1

(
t+1∏
k=n

Pπk

)
hπ⋆

−
n∑

t=1

(
t∏

k=n

Pπk

)
hπ⋆

= hπ⋆

−

(
1∏

k=n

Pπk

)
hπ⋆

.

Since
(∏1

k=n Pπk

)
= Pπn · · ·Pπ1 is a stochastic matrix, we have that hπ⋆ −

(∏1
k=n Pπk

)
hπ⋆ ≤∥∥hπ⋆∥∥

sp 1. Finally, we have

n∑
t=1

(
t+1∏
k=n

Pπk

)
rπt ≤ Tdrop1

using Lemma F.7, since each coordinate of the left-hand side is bounded by the expected total reward
value function of the nonstationary policy (π1, π2, . . . ) (with terms after time n dropped). Combining
these three bounds with (32), we obtain that

T (n)(0) ≤ nρ⋆ +
∥∥∥hπ⋆

∥∥∥
sp
1+

(
1 +

∥∥∥hπ⋆
∥∥∥

sp

)
Tdrop1.

Finally it remains to lower-bound T (n)(0). Since we have 0 ≥ hπ⋆ −maxs∈S hπ⋆

(s)1 =: x, by
monotonicity of T we have that

T (n)(0) ≥ T (n)(x).
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Furthermore since T (h) ≥ T π⋆

(h) for any h we have that

T (n)(x) ≥
(
T π⋆

)(n)
(x).

Furthermore we have
T π⋆

(x) = rπ⋆ + Pπ⋆(hπ⋆

−max
s∈S

hπ⋆

(s)1) = rπ⋆ + Pπ⋆hπ⋆

−max
s∈S

hπ⋆

(s)1

= ρ⋆ + hπ⋆

−max
s∈S

hπ⋆

(s)1 = ρ⋆ + x.

Repeating this fact n times we have(
T π⋆

)(n)
(x) = nρ⋆ + x ≥ nρ⋆ −

∥∥∥hπ⋆
∥∥∥

sp
1.

Therefore
T (n)(0) ≥ nρ⋆ −

∥∥∥hπ⋆
∥∥∥

sp
1,

and so combining with the upper bound on T (n)(0) we conclude that∥∥∥T (n)(0)− nρ⋆
∥∥∥
∞

≤
∥∥∥hπ⋆

∥∥∥
sp
+

(
1 +

∥∥∥hπ⋆
∥∥∥

sp

)
Tdrop.

Now we can combine both of these lemmas along with Lemmas J.2 and J.1 to prove Lemma 4.3.

Proof of Lemma 4.3. By triangle inequality we have∥∥∥∥ 1

t(1− γ)
T (t)(0)− V ⋆

γ

∥∥∥∥
∞

≤
∥∥∥∥ 1

t(1− γ)
T (t)(0)− 1

1− γ
ρ⋆
∥∥∥∥
∞

+

∥∥∥∥ 1

1− γ
ρ⋆ − V ⋆

γ

∥∥∥∥
∞

=
1

t(1− γ)

∥∥∥T (t)(0)− tρ⋆
∥∥∥
∞

+

∥∥∥∥ 1

1− γ
ρ⋆ − V ⋆

γ

∥∥∥∥
∞

. (33)

Using Lemma J.7 to bound the first term and Lemma J.2 on the second term, we obtain that∥∥∥∥ 1

t(1− γ)
T (t)(0)− V ⋆

γ

∥∥∥∥
∞

≤ 1

t(1− γ)
∥h∥sp + ∥h∥sp

≤ 2

t(1− γ)
∥h∥sp

using the fact that t ≤ 1
1−γ (so 1

t(1−γ) ≥ 1) in the second inequality.

Using identical steps but instead bounding the first and second terms of (33) with Lemmas J.8 and
J.1, respectively, we obtain that∥∥∥∥ 1

t(1− γ)
T (t)(0)− V ⋆

γ

∥∥∥∥
∞

≤ 2

t(1− γ)

(∥∥∥hπ⋆
∥∥∥

sp
+ Tdrop +

∥∥∥hπ⋆
∥∥∥

sp
Tdrop

)
.

We conclude by taking the minimum of these two bounds on
∥∥∥ 1
t(1−γ)T

(t)(0)− V ⋆
γ

∥∥∥
∞

.

J.4 Discounted VI results

Proof of Theorem 4.4. Let M = min
{
∥h∥sp, ∥hπ⋆∥sp + Tdrop + ∥hπ⋆∥spTdrop

}
. Since E′ =⌊

1
1−γ

⌋
≥ 1

1−γ , we can apply Lemma 4.3 to obtain that∥∥xE − V ⋆
γ

∥∥
∞ =

∥∥∥T (E)(0)− V ⋆
γ

∥∥∥
∞

≤ 2

E(1− γ)
M

≤ 2(
1

1−γ − 1
)
(1− γ)

M

=
2

γ
M.
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We can immediately combine this with Theorem 4.2 to obtain that

∥Tγ(V )− V ∥∞ ≤ 16e

γ

γn−E′∑n−E′

i=0 γi
M.

The second statement of the theorem would follow if we could show the bound

γn−E′∑n−E′

i=0 γi
≤
(
1 +

e

γ

)
γn∑n
i=0 γ

i

under the condition that n ≥ 2E′ − 1. By rearranging, this is equivalent to showing that

n∑
i=0

γi ≤ (1 + e)γE′
n−E′∑
i=0

γi =

(
1 +

e

γ

) n∑
i=E′

γi. (34)

Writing
∑n

i=0 γ
i =

∑E′−1
i=0 γi +

∑n
i=E′ γi, (34) would follow from showing that

E′−1∑
i=0

γi ≤ e

n∑
i=E′

γi. (35)

Under the assumption that n ≥ 2E′ − 1, we have that

n∑
i=E′

γi = γE′
n−E′∑
i=0

γi ≥ γE′
E′−1∑
i=0

γi

(since n−E′ ≥ E′ − 1). By rearranging and using the bound γ− 1
1−γ +1 ≤ e from (20), we have that

γ−E′ ≤ γ− 1
1−γ ≤ e

γ , and so

E′−1∑
i=0

γi ≤ γ−E′
n∑

i=E′

γi ≤ e

γ

n∑
i=E′

γi

showing (35) as desired.

Proof of Theorem 4.5. Let M = min
{
∥h∥sp, ∥hπ⋆∥sp + Tdrop + ∥hπ⋆∥spTdrop

}
. By Lemma 4.3 we

have ∥∥∥T (n)(0)− V ⋆
γ

∥∥∥
∞

≤ 2M

n(1− γ)
=

2M

n 1
n

= 2M.

By applying (22) from the proof of Theorem 4.2 with L = Tγ , x0 = T (n)(0), x⋆ = V ⋆
γ , and t = n,

since ⌊ 1
1−γ ⌋ − 1 = n− 1 we obtain that it outputs V such that

∥Tγ(V )− V ∥∞ ≤ 4(1− γ)γn−(n−1)
∥∥∥T (n)(0)− V ⋆

γ

∥∥∥
∞

≤ 4

n+ 1

∥∥∥T (n)(0)− V ⋆
γ

∥∥∥
∞

≤ 4

n+ 1
2M

where for the second inequality we used that (1−γ)γ =
1− 1

n

n ≤ 1
n+1 , since 1− 1

n

n = 1
n

(n+1)(1− 1
n )

n+1 =

1
n

n+1−1− 1
n

n+1 .
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Now combining this bound with Lemma J.6, we have that the policy π̂ which is greedy with respect
to r + γPV satisfies∥∥∥ρπ̂ − ρ⋆

∥∥∥
∞

≤
(
Tπ̂

drop + 1
)(

7(1− γ)M +
2 + 6γ

γ
∥Tγ(V )− V ∥∞ + 2

1− γ

γ

)
≤ (Tdrop + 1)

(
7

n
M +

2 + 6

1− 1
n

8M

n+ 1
+ 2

1
n

1− 1
n

)

= (Tdrop + 1)

(
7

n
M +

64M

n− 1
n

+
2

n− 1

)
≤ (Tdrop + 1)

(
71M + 2

n− 1

)
.

Now we demonstrate the effects of using more iterations from the “third phase” of Algorithm 3.
Note that the below theorem involves (2 + k)n iterations, so to compare its convergence rate to that
of Theorem 4.5, it should be multiplied by (2 + k), and the guarantee of Theorem 4.5 should be
multiplied by 2 (since it uses 2n iterations).
Theorem J.9. Fix an integer n ≥ 2 and a number k ≥ 0 such that kn is an integer. Set γ = 1− 1

n
and run Algorithm 4.4 with inputs γ, (2 + k)n. Then∥∥∥ρπ̂ − ρ⋆

∥∥∥
∞

≤ (Tdrop + 1)

(
(7 + e−k64)M + 2

n− 1

)
.

Proof. Let M = min
{
∥h∥sp, ∥hπ⋆∥sp + Tdrop + ∥hπ⋆∥spTdrop

}
. By identical steps to the previous

proof, we have that the vector V output by Algorithm 4.4 satisfies

∥Tγ(V )− V ∥∞ ≤ 4(1− γ)γ(k+1)n−(n−1)
∥∥∥T (n)(0)− V ⋆

γ

∥∥∥
∞

≤ 4(1− γ)γ(k+1)n−(n−1)2M

≤ 8

n
γknM.

Furthermore we have γkn =
(
1− 1

n

)kn ≤ e−k. Combining with Lemma J.6, we have that the policy
π̂ which is greedy with respect to r + γPV satisfies∥∥∥ρπ̂ − ρ⋆

∥∥∥
∞

≤
(
Tπ̂

drop + 1
)(

7(1− γ)M +
2 + 6γ

γ
∥Tγ(V )− V ∥∞ + 2

1− γ

γ

)
≤ (Tdrop + 1)

(
7

n
M +

2 + 6

1− 1
n

e−k 8M

n
+ 2

1
n

1− 1
n

)

= (Tdrop + 1)

(
7

n
M + e−k 64M

n− 1
+

2

n− 1

)
≤ (Tdrop + 1)

(
(7 + e−k64)M + 2

n− 1

)
.

We remark that the function (2 + k)(7 + 64e−k) is minimized at k ≈ 3.78 with value ≈ 48.9, which
is a factor of approximately 142/48.9 ≈ 2.9 smaller than the value at k = 0.

K Auxiliary lemmas

The following calculation, which we use several times and hence include for completeness, is
essentially identical to one within the proof of Zurek and Chen [2024b, Lemma 20].

43



Lemma K.1. For any policy π and any h ∈ RS , we have that

∥∥(I − γPπ)
−1(I − Pπ)h

∥∥
∞ ≤ ∥h∥sp .

Proof. Using the Neumann series to expand (I − γPπ)
−1, we have

(I − γPπ)
−1(I − Pπ) =

∞∑
t=0

γtP t
π −

∞∑
t=0

γtP t+1
π

= I + γPπ

∞∑
t=0

γtP t
π − Pπ

∞∑
t=0

γtP t
π

= I + (γ − 1)Pπ

∞∑
t=0

γtP t
π

= I − Pπ(1− γ)(I − γPπ)
−1.

I, Pπ , and (1− γ)(I − γPπ)
−1 are all stochastic matrices (all entries are non-negative and all rows

sum to 1), and hence Pπ(1 − γ)(I − γPπ)
−1 is also a stochastic matrix. Then it is immediate for

any stochastic matrix Q that elementwise we have mins∈S h(s)1 ≤ Qh ≤ maxs∈S h(s)1, which
implies

∥∥(I − γPπ)
−1(I − Pπ)h

∥∥
∞ =

∥∥Ih− Pπ(1− γ)(I − γPπ)
−1h

∥∥
∞ ≤ ∥h∥sp

as desired.

L Experiments

While this paper focuses on theoretical complexity analysis, we provide a few preliminary experi-
mental examples.

First we describe, for parameters k, T ≥ 1 and ε > 0, the parameterized MDP M(k, T ) on which
we run our experiments. M(k, T ) has k + 1 states, where state 0 is absorbing (has only one action,
which leads back to state 0). The remaining k states each have two actions, titled “good” and “bad”.
The “good” actions all lead deterministically to another of the states {1, . . . , k} such that if the
“good” action is taken in all such states then it forms a cycle of length k. For convenience we let
πc denote this policy which takes the “good” action in all states in {1, . . . , k}. The reward for the
“good” action is chosen randomly to be 0 or 0.5 with equal probability. The “bad” action in state s
for any s ∈ {1, . . . , k} has reward 1, and leads to state 0 with probability 1/T and back to the given
state s with probability 1− 1/T . Finally, we define the reward of the only action in the absorbing
state 0 to be ρπc(1) − ε (that is, we compute the reward of the cycle, and then subtract ε). Hence
the optimal policy is πc (considered to take the only available action in state 0), which will have
ρπc(s) = ρπc(1) for all s ∈ {1, . . . , k} and ρπc(0) = ρπc(1)− ε. Note all other policies have gains
equal to (ρπc(1)− ε)1. It is straightforward to compute that ∆ = ε

T and Tdrop = T .

Below we plot the fixed point error ∥T (ht)− ht − ρ⋆∥∞ for the tth iterate as generated by Algorithm
1, standard value iteration (VI), and [Lee and Ryu, 2024, Theorem 2] (LR). We intentionally focus on
the case where the number of iterations n is smaller than k (the total number of states). We plot both
ε = 1/2 and ε = 1/20, keeping T = 10, k = 300. All experiments were run on a single consumer
laptop in less than a minute.
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We note that due to periodicity, VI does not converge. In this experiment, decreasing ε seems not to
affect the convergence of Algorithm 1, whereas LR seems to converge more slowly. We emphasize
that these experiments only consider the fixed-point error, whereas our sensitivity analysis reveals
that it is essential to additionally control ∥Pπρ

⋆ − ρ⋆∥∞ in order to obtain suboptimality bounds.
Overall, much more thorough experimental study on more domains and metrics is needed to better
understand the practical performance of our algorithms.
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paper’s contributions and scope?
Answer: [Yes]
Justification: All claims made in the abstract and introduction are substantiated throughout
Sections 2, 3, and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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are provided in the appendices.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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is also provided.
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whether the code and data are provided or not.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
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some way (e.g., to registered users), but it should be possible for other researchers
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• If the authors answer No, they should explain the special circumstances that require a
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eration due to laws or regulations in their jurisdiction).
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• The conference expects that many papers will be foundational research and not tied
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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