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Abstract

Label embedding is a framework for multiclass classification problems where each label is rep-
resented by a distinct vector of some fixed dimension, and training involves matching model
output to the vector representing the correct label. While label embedding has been success-
fully applied in extreme classification and zero-shot learning, and offers both computational
and statistical advantages, its theoretical foundations remain poorly understood. This work
presents an analysis of label embedding in the context of extreme multiclass classification,
where the number of classes C is very large. We present an excess risk bound that reveals
a trade-off between computational and statistical efficiency, quantified via the coherence
of the embedding matrix. We further show that under the Massart noise condition, the
statistical penalty for label embedding vanishes with sufficiently low coherence. Our analysis
supports an algorithm that is simple, scalable, and easily parallelizable, and experimental
results demonstrate its effectiveness in large-scale applications.

1 Introduction

In standard classification, the goal is to learn from feature-label pairs {(xi, yi)}N
i=1 a classifier h : X → Y

that maps a feature vector x in the feature space X to its label y in the label space Y. Label embedding is
a framework that represents each label by a vector of fixed dimension, and learns a function that maps a
feature vector to the vector representing its label. At inference time, the label of a test data point is assigned
to match the nearest label representative in the embedding space. The standard multiclass classification
setup can be viewed as a special case of label embedding, where each label is one-hot encoded.

This work examines labeling embedding in the context of extreme classification, which refers to multiclass
and multilabel classification problems involving thousands of classes or more (Wei et al., 2022). Extreme
classification has emerged as an essential research area in machine learning, owing to an increasing number of
real-world applications involving massive numbers of classes, such as image recognition (Zhou et al., 2014),
natural language processing (Le and Mikolov, 2014; Jernite et al., 2017), and recommendation systems (Bhatia
et al., 2015; Chang et al., 2019). Traditional classification methods often struggle to scale effectively in these
scenarios due to the high computational cost and memory requirements associated with handling large label
spaces. Consequently, there is a growing need for efficient and scalable algorithms that can tackle extreme
classification problems without compromising on performance (Prabhu and Varma, 2014; Prabhu et al., 2018;
Deng et al., 2018). Successful applications of label embedding to extreme classification include Yu et al.
(2014); Jain et al. (2019); Bhatia et al. (2015); Guo et al. (2019); Evron et al. (2018); Hsu et al. (2009).
Furthermore, Rodríguez et al. (2018) argues that label embedding can accelerate the convergence rate and
better capture latent relationships between categories. Additionally, the analysis provided by Daniely and
Shalev-Shwartz (2014) offers a bound on the sample complexity required to learn label embeddings, given a
function that maps feature vectors to the embedding space.

Despite its widespread use, the theoretical basis of label embedding has not been thoroughly explored. This
paper presents a new excess risk bound that provides insight into how label embedding algorithms work. The
bound establishes a trade-off between computational efficiency and classification accuracy, and explains the
accuracy penalty in terms of the coherence of the embedding matrix. Our theory applies to various types of
embedding: data-independent embeddings (Weston et al., 2002; Hsu et al., 2009), those anchored in auxiliary
information (Akata et al., 2013), and embeddings co-trained with models (Weston et al., 2010). Intriguingly,
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under the multiclass noise condition of Massart and Nédélec (2006), the statistical penalty associated with a
positive matrix coherence, which results from reducing the dimension of the label space, disappears. Guided
by this theory, we investigate a simple yet efficient label embedding algorithm, and show empirically that in
extreme classification tasks, this algorithms outperforms existing methods.

2 Related work

While label embedding has also been successfully applied to zero-shot learning (Wang et al., 2019; Akata
et al., 2013), we focus here on extreme classification, together with related theoretical contributions.

2.1 Extreme classification

Besides label embedding, existing methods for extreme multiclass classification can be grouped into three
main categories: label hierarchy, one-vs-all methods, and other methods.

Label Embedding. LEML (Yu et al., 2014) leverages a low-rank assumption on linear models and effectively
constrains the output space of models to a low-dimensional space. SLEEC (Bhatia et al., 2015) is a local
embedding framework that preserves the distance between label vectors. Guo et al. (2019) point out that
low-dimensional embedding-based models could suffer from significant overfitting. Their theoretical insights
inspire a novel regularization technique to alleviate overfitting in such models. WLSTS (Evron et al., 2018) is
an extreme multiclass classification framework based on error correcting output coding, which embeds labels
with codes induced by graphs. Hsu et al. (2009) use column vectors from a matrix with the restricted isometry
property (RIP) to represent labels. Their analysis is primarily tailored to multilabel classification.They deduce
bounds for the conditional ℓ2-error, which measures the squared 2-norm difference between the prediction
and the label vector — a metric that is not a standard measure of classification error. In contrast, our work
analyzes the standard classification error.

Label Hierarchy. Numerous methods such as Parabel (Prabhu et al., 2018), Bonsai (Khandagale et al.,
2020), AttentionXML (You et al., 2019), lightXML (Jiang et al., 2021), XR-Transformer (Zhang et al., 2021),
X-Transformer (Wei et al., 2019), XR-Linear (Yu et al., 2022), and ELIAS (Gupta et al., 2022) partition the
label spaces into clusters. This is typically achieved by performing k-means clustering on the feature space.
The training process involves training a cluster-level model to assign a cluster to a feature vector, followed by
training a label-level model to assign labels within the cluster.

One-vs-all methods. One-vs-all (OVA) algorithms address extreme classification problems with C labels
by modeling them as C independent binary classification problems. For each label, a classifier is trained to
predict its presence. DiSMEC (Babbar and Schölkopf, 2017) introduces a large-scale distributed framework to
train linear OVA models, albeit at an expensive computational cost. ProXML (Babbar and Schölkopf, 2019)
mitigates the impact of data scarcity with adversarial perturbations. SLICE (Jain et al., 2019) accelerates
negative sampling based on a generative model approximation. PD-Sparse (Yen et al., 2016) and PPD-Sparse
(Yen et al., 2017a) propose optimization algorithms to exploit a sparsity assumption on labels and feature
vectors.

Other methods. Beyond the above categories, DeepXML (Dahiya et al., 2021) uses a negative sampling
procedure that shortlists O(log C) relevant labels during training and prediction. VM (Choromanska and
Langford, 2015) constructs trees with O(log C) depth that have leaves with low label entropy. Based on the
standard random forest training algorithm, FastXML (Prabhu and Varma, 2014) proposes to directly optimize
the Discounted Cumulative Gain to reduce the training cost. AnnexML (Tagami, 2017) constructs a k-nearest
neighbor graph of the label vectors and attempts to reproduce the graph structure in a lower-dimension
feature space.

2.2 Excess risk bounds

Our theoretical contributions are expressed as excess risk bounds, which quantify how the excess risk associated
to a surrogate loss relates to the excess risk for the 0-1 loss. Excess risk bounds for classification were
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Meta-Algorithm 1 Label Embedding
1: Input: dataset D = {(xi, yi)}N

i=1, embedding matrix G, multi-output regression algorithm A
2: Form the regression dataset Dr = {(xi, gyi

)}N
i=1.

3: Train a regression model f with A on Dr.
4: Return: βG ◦ f .

developed by Zhang (2004); Bartlett et al. (2006); Steinwart (2007) and subsequently developed and extended
by several authors.

Ramaswamy and Agarwal (2012) shows that one needs to minimize a convex surrogate loss defined on at
least a C − 1 dimension space to achieve consistency for the standard C-class classification problem, i.e., any
convex surrogate loss function operating on a dimension less than C − 1 inevitably suffers an irreducible
error. Complementing this, Ávila Pires et al. (2013) validates the consistency of simplex encoding (Mroueh
et al., 2012), a variant of label embedding in a C − 1 dimensional space, and introduces an excess risk bound.
Previous excess risk bounds have been developed for consistent loss functions. In contrast, drawing from
(Steinwart, 2007), we establish a novel excess risk bound for the label embedding framework, which admits
an irreducible error and is inherently inconsistent. This error diminishes as the coherence of the embedding
matrix decreases and ultimately vanishes under Massart’s noise condition (Massart and Nédélec, 2006),
leading to an excess risk bound of the conventional form.

From a different perspective, Ramaswamy et al. (2018) put forth a novel surrogate loss function for multiclass
classification with an abstain option. This abstain option enables the classifier to opt-out from making
predictions at a certain cost. Remarkably, their proposed methods not only demonstrate consistency but also
effectively reduce the multiclass problems to ⌈log C⌉ binary classification problems by encoding the classes
with their binary representations. In particular, the region in X that causes the irreducible error in our
excess risk bound is abstained from in Ramaswamy et al. (2018) to achieve lossless dimension reduction in
the abstention setting.

3 Label embedding by low-coherence matrices

Table 1: Frequently used symbols in Section 3
Symbol Description Symbol Description

G Embedding matrix X Feature space
Y Label space P Probability measure on X × Y

PX Marginal distribution of P on X L01 0-1 loss function
ℓG Squared loss with embedding G RL,P Risk of L under P

R∗
L,P Bayes risk for L under P η(x) Class posterior probabilities

d(·) Difference between top two posteriors λG Coherence of G
βG Decoder from embedding to label LG LG(p, y) = L01(βG(p), y)

We first introduce the definitions of matrix coherence in Section 3.1, followed by the notations and problem
statement in Section 3.2, and then present the associated algorithm in Section 3.3. The excess risk bound and
its interpretation are presented in Section 3.4. Finally, we introduce the condition for lossless label embedding
in Section 3.5. We present frequently used notations in Table 1.

3.1 Matrix coherence

Our theory relies on the notion of the coherence of a matrix A ∈ Cn×C , which is the maximum magnitude of
the dot products between distinct columns.
Definition 1. Let {aj}C

j=1 be the columns of the matrix A ∈ Cn×C , where ∥aj∥2 = 1 for all j. The coherence
of A is λ = max1≤i ̸=j≤C |⟨ai, aj⟩|.
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If n ≥ C, λ is 0 when the columns of A are orthonormal. When n < C, however, the coherence must be
positive. Indeed, Welch (1974) showed that for A ∈ Cn×C and n ≤ C, λ ≥

√
C−n

n(C−1) .

There are a number of known constructions of low-coherence matrices when n < C. A primary class of
examples is the random matrices with columns of unit norms that satisfy the Johnson-Lindenstrauss property
(Johnson and Lindenstraus, 1984). For example, a Rademacher matrix has entries that are sampled i.i.d. from
a uniform distribution on { 1√

n
, − 1√

n
}. With high probability, a Rademacher random matrix of shape n × C

achieves a coherence λ ≤
√

c0 log C
n for some constant c0 (Achlioptas, 2001). While random matrices can be

easily obtained and have a low coherence in general, they require explicit storage (Nelson and Temlyakov,
2011) and can be outperformed in practical problems by some carefully crafted deterministic matrices (Naidu
et al., 2016; Liu and Jia, 2020). Numerous deterministic constructions of low-coherence matrices have been
proposed (Nelson and Temlyakov, 2011; Yu, 2011; Li et al., 2012; Xu, 2011; Naidu et al., 2016). In particular,
Nelson and Temlyakov (2011) propose a deterministic construction that can achieve λ ≈ C− 1

4 with n ≈
√

C,
which avoids explicit storage of the matrix and can achieve a lower coherence in practice. There are also
algorithms that directly optimize matrices for a smaller coherence (Wei et al., 2020; Abolghasemi et al., 2010;
Obermeier and Martinez-Lorenzo, 2017; Li et al., 2013; Lu et al., 2018).

3.2 Problem statement

We first introduce the notations. Let X denote the feature space and Y = {1, . . . , C} denote the label space
where C ∈ N. Let (X, Y ) be random variables in X × Y, and let P be the probability measure that governs
(X, Y ). We use PX to denote the marginal distribution of P on X .

To define the standard classification setting, denote the 0-1 loss L01 : Y ×Y → R by L01(ŷ, y) = 1y ̸=ŷ, where 1
is the indicator function. The risk of a classifier h is E[L01(h(X), Y )], and the goal of classification is to learn
a classifier from training data whose risk is as close as possible to the Bayes risk minh∈H E[L01(h(X), Y )],
where H = {measurable h : X → Y}.

We now describe an approach to classification based on label embedding, which represents labels as vectors in
n < C dimensional Cn. In particular, let G be an n × C matrix with unit norm columns, called the embedding
matrix, having coherence λG < 1. The columns of G are denoted by g1, g2, . . . , gC , and the column gi is used
to embed the i-th label.

Given an embedding matrix G, the original C-class classification problem may be reduced to a multi-output
regression problem, where the classification instance (x, y) translates to the regression instance (x, gy). Given
training data {(xi, yi)} for classification, we create training data {(xi, gyi

)} for regression, and apply any
algorithm for multi-output regression to learn a regression function f : X → Cn.

At test time, given a test point x, a label y is obtained by taking the nearest neighbor to f(x) among the
columns of G. In particular, define the decoding function βG : Cn → Y, βG(p) = min

{
arg mini∈Y∥p − gi∥2

}
,

where p represents the output of a regression model. (Since the arg min is potentially set-valued, the min
breaks ties in favor of the label with the smallest index.) Then the label assigned to x is βG(f(x)).

Thus, label embedding searches over classifiers of the form βG◦f , where f ∈ F = {all measurable f : X → Cn}.
Fortunately, according to the following result, no expressiveness is lost by considering classifiers of this form.
Proposition 2. Recall the decoding function βG(p) = min

{
arg mini∈Y∥p − gi∥2

}
, the regression models

F = {all measurable f : X → Cn}, and the classification models H = {all measurable h : X → Y}. Then
βG ◦ F = H.

It follows that minf∈F EP

[
L01(βG(f(X)), Y )

]
is the Bayes risk for classification as defined earlier. This

allows us to focus our attention on learning f : X → Cn. Toward that end, we now formalize notions of loss
and risk for the task of learning a multi-output function f for multiclass classification via label embedding.
Definition 3. A loss function for label embedding is a function L : Cn × Y → R. Given such a loss function,
define the L-risk of f with distribution P to be RL,P : F → R, RL,P (f) := EP [L(f(X), Y )] and the L-Bayes
risk to be R∗

L,P := inff∈F RL,P (f).
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Using this notation, the target loss for learning is the loss function LG : Cn × Y associated with embedding
matrix G defined by LG(p, y) := L01(βG(p), y). By Prop. 2, the LG-risk of f is the usual classification risk of
the associated classifier h = βG ◦ f . Given G, we’d like to find an f that minimizes RLG,P (f), or in other
words, an f that makes the excess risk RLG,P − R∗

LG,P as small as possible.

While the target loss LG defines our learning goal, it is not practical as a training objective because of its
discrete nature. Therefore, for learning purposes, Hsu et al. (2009); Akata et al. (2013); Yu et al. (2014)
suggest a surrogate loss, namely, the squared distance between f(x) and gy. More precisely, for a given
embedding matrix G, define ℓG : Cn ×Y → R as ℓG(p, y) := 1

2 ∥p − gy∥2
2. This surrogate allows us to learn f by

applying existing multi-output regression algorithms as we describe next. Thus, the label embedding learning
problem is to learn f with small surrogate excess risk. Our subsequent analysis will connect RLG,P − R∗

LG,P
to RℓG,P − R∗

ℓG,P .

3.3 Learning algorithms

Learning algorithms for classification via label embedding, as described thus far, can be summarized by a
conceptually simple meta-algorithm, depicted in Meta-Algorithm 1. This meta-algorithm should not be
considered novel as its essential ingredients have been previously introduced Akata et al. (2013); Rodríguez
et al. (2018), and several existing algorithms can be seen as instances (Hsu et al., 2009; Yu et al., 2014; Bhatia
et al., 2015; Evron et al., 2018; Akata et al., 2013).

The meta-algorithm takes as input a training dataset {(xi, yi)}N
i=1, an embedding matrix G = [g1, g2, . . . , gC ],

and an algorithm A for multi-output regression. It forms the multi-output regression dataset {(xi, gyi
)}N

i=1,
and applies A to produce a function f . The output is the classifier βG ◦ f .

For example, the regression algorithm can be specified by selecting a model class F0 and a surrogate loss ℓG,
and learning f by empirical risk minimization:

min
f∈F0

1
N

N∑
i=1

ℓG(f(xi), yi).

In our experiments we select F0 to be a neural network with n nodes in the output layer, and ℓG to be the
squared error loss mentioned previously, the same surrogate analyzed in the next section.

As a remark, we have treated G as a fixed input to the meta-algorithm, but it can also be trained jointly
with f . Our analysis is independent of model training, and thus applies to this case as well.

In the next section we present theory that supports selecting G with low coherence, which has not previously
been proposed in the label embedding literature.

3.4 Excess risk bound

We present an excess risk bound, which relates the excess surrogate risk to the excess target risk. This
bound justifies the use of the squared error surrogate, and also reveals a trade-off between the reduction in
dimensionality (as reflected by λG) and the potential penalty in accuracy.

To state the bound, define the class posterior η(x) = (η1(x), . . . , ηC(x)) where ηi(x) = PY |X=x(i). Define
d(x) = maxi ηi(x) − maxi/∈arg maxj ηj(x) ηi(x), which is a measure of “noise” at x. We discuss this quantity
further after the main result, which we now state.

Theorem 4. Consider an embedding matrix G with unit norm columns g1, g2, . . . , gC and coherence λG =
maxi ̸=j |⟨gi, gj⟩|. Recall RLG,P and RℓG,P represent risks as defined in Definition 3, with R∗

LG,P and R∗
ℓG,P

being the corresponding Bayes risks. Then for all f ∈ F ,
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RLG,P (f) − R∗
LG,P ≤ inf

r> 2λG

1+λG

{
2λG

1 + λG
PX (d(X) < r)

+

√
4 − 2λG

(1 + λG)2 PX (d(X) < r)(RℓG,P (f) − R∗
ℓG,P

)

+ 4 − 2λG

(r(1 + λG) − 2λG)2

(
RℓG,P (f) − R∗

ℓG,P

)}
All proofs are provided in the Appendix.

As mentioned earlier, the goal of learning is to minimize the excess target risk RLG,P (f) − R∗
LG,P . The

theorem shows that this goal can be achieved up to the first (irreducible) term by minimizing the excess
surrogate risk RℓG,P (f) − R∗

ℓG,P . The excess surrogate risk can be driven to zero by any consistent algorithm
for multi-output regression with squared error loss.

The quantity d(x) can be viewed as a measure of noise (inherent in the joint distribution of (X, Y )) at a point
x. While maxi ηi(x) represents the probability of the most likely label occurring, maxi/∈arg maxj ηj(x) ηi(x)
represents the probability of the second most likely label occurring. A large d(x) implies that arg maxi ηi(x)
is, with high confidence, the correct prediction at x. In contrast, if d(x) is small, our confidence in predicting
arg maxi ηi(x) is reduced, as the second most likely label has a similar probability of being correct.

As pointed out by Ramaswamy and Agarwal (2012), any convex surrogate loss function operating on a
dimension less than C − 1 inevitably suffers an irreducible error, which is measured by the λG, the coherence
of the embedding matrix G. The function f∗ minimizing the ℓG-risk RℓG,P (f) may potentially make a
suboptimal prediction at point x when d(x) < 2λG

1+λG . Conversely, when d(x) > 2λG

1+λG , f∗ will always make the
optimal prediction at point x. Given a classification problem with C classes, a larger embedding dimension n

will lead to a smaller coherence λG, making d(x) > 2λG

1+λG on a larger region in X at the cost of increasing
computational complexity. On the other hand, by choosing a smaller n, d(x) < 2λG

1+λG on a larger region in X ,
increasing the first term in Theorem 4. This interpretation highlights the balance between the benefits of
dimensionality reduction and the potential impact on prediction accuracy, as a function of the coherence of
the embedding matrix, λG, and the noisiness measure, d(x).

3.5 Improvement under low noise

While Theorem 4 holds universally (for all distributions P ), by considering a specific subset of distributions,
we can derive a more conventional form of the excess risk bound. As a direct consequence of Theorem 4,
under the multiclass extension of the Massart noise condition (Massart and Nédélec, 2006), which requires
d(X) > c with probability 1 for some c, the first and second terms in Theorem 4 vanish. In this case, we
recover a conventional excess risk bound, where RLG,P (f) − R∗

LG,P tends to 0 with RℓG,P (f) − R∗
ℓG,P . We

now formalize this.
Definition 5 (Multiclass Massart Noise Condition). The distribution P on X × Y is said to satisfy the
Multiclass Massart Noise Condition if and only if ∃c > 0 such that PX (d(X) ≥ c) = 1.
Corollary 6. Consider the same setup as in Theorem 4 and assume P satisfies the Multiclass Massart Noise
Condition. If λG ∈

(
0, ess inf d

2−ess inf d

)
, then for all f ∈ F

RLG,P (f) − R∗
LG,P ≤ 4 − 2λG

((1 + λG) ess inf d − 2λG)2

(
RℓG,P (f) − R∗

ℓG,P

)
,

where ess inf d is the essential infimum of d, i.e., ess inf d = sup{a ∈ R : PX (d(X) < a) = 0}.

For the special case where all labels are deterministic, we have ess inf d(x) = 1 for all x, leading to the simplified
bound RLG,P (f) − R∗

LG,P ≤ 4−2λG

(1−λG)2 (RℓG,P (f) − R∗
ℓG,P ). This observation suggests that for deterministic
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labels, any embedding matrix coherence less than 1 ensures consistency. Furthermore, a smaller coherence
encourages faster convergence.

4 Experiments

Table 2: Summary of the datasets used in the experiments. Ntrain is the number of training data points,
Ntest the number of test data points, D the number of features, and C the number of classes.

Dataset Ntrain Ntest D C
LSHTC1 83805 5000 328282 12046
DMOZ 335068 38340 561127 11879
ODP 975936 493014 493014 103361

00.51
0.15

0.2

0.25

0.3

Coherence

A
ccu

racyLSHTC1

Gaussian C-Gaussian Rademacher Nelson Cross Entropy Squared Loss
Annex ML Parabel PD-Sparse PPD-sparse WLSTS

00.51

0.4

0.45

Coherence

A
ccu

racy

DMOZ

00.20.40.6

0.15

0.2

Coherence

A
ccu

racyODP

Figure 1: These plots reveal an inverse correlation between embedding matrix coherence and classification
accuracy across different datasets, with coherence on the horizontal axis and accuracy on the vertical. Non-
LOCOLE methods are plotted as horizontal lines.

In this section, we present an experimental evaluation of our proposed method, LOCOLE (LOw COherence
Label Embeding), for extreme multiclass classification. LOCOLE is an instance of Meta-Algorithm 1, as we
explain below.

4.1 Experiment setup

We conduct experiments on three large-scale datasets, DMOZ(Partalas et al., 2015), LSHTC1(Partalas
et al., 2015), and ODP(Bennett and Nguyen, 2009), which are extensively used for benchmarking extreme
classification algorithms. The details of these datasets are provided in Table 2, with DMOZ and LSHTC1
available from (Yen et al., 2016), and ODP from (Medini et al., 2019).

We apply LOCOLE where the multi-output regression algorithm is to train a multilayer perceptron with
n output layer nodes using the surrogate loss ℓG. This is implemented using PyTorch, with a 2-layer fully
connected neural network used for the LSHTC1 and DMOZ datasets and a 4-layer fully connected neural
network for the ODP dataset. The hyperparameters are tuned on a held-out dataset.
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Table 3: Accuracy on Various Datasets. RRM denotes Rademacher Random Matrices, GRM stands for
Gaussian Random Matrices, and CGRM stands for Complex Gaussian Random Matrices.

LSHTC1 DMOZ ODP
Method(-Dim) Acc.(Mean±Std)

GRM–32 18.71 ± 0.22%
GRM–64 24.64 ± 0.23%
GRM–128 28.26 ± 0.19%
GRM–256 29.97 ± 0.16%
GRM–512 30.61 ± 0.22%
CGRM–32 24.77 ± 0.31%
CGRM–64 28.42 ± 0.22%
CGRM–128 29.97 ± 0.21%
CGRM–256 30.58 ± 0.13%
CGRM–512 30.98 ± 0.14%
RRM-32 18.66 ± 0.20%
RRM-64 24.77 ± 0.17%
RRM-128 28.30 ± 0.27%
RRM-256 30.06 ± 0.21%
RRM-512 30.66 ± 0.22%
Nelson-113 29.66 ± 0.12%
Nelson-127 29.71 ± 0.13%
Nelson-251 30.50 ± 0.16%
Nelson-509 31.08 ± 0.15%
MLP (CE) 26.30 ± 0.36%
MLP (SE) 28.03 ± 0.17%
Annex ML 29.06 ± 0.35%
Parabel 22.24 ± 0.00%
WLSTS 16.52 ± 1.43%
PDSparse 22.04 ± 0.06%
PPDSparse 22.60 ± 0.11%

Method(-Dim) Acc.(Mean±Std)

GRM–32 38.66 ± 0.18%
GRM–64 44.16 ± 0.01%
GRM–128 46.76 ± 0.05%
GRM–256 47.58 ± 0.12%
GRM–512 47.92 ± 0.07%
CGRM–32 44.11 ± 0.04%
CGRM–64 46.78 ± 0.07%
CGRM–128 47.51 ± 0.09%
CGRM–256 47.84 ± 0.06%
CGRM–512 47.90 ± 0.08%
RRM-32 38.41 ± 0.17%
RRM-64 44.15 ± 0.05%
RRM-128 46.60 ± 0.04%
RRM-256 47.67 ± 0.09%
RRM-512 47.82 ± 0.06%
Nelson-113 47.57 ± 0.06%
Nelson-127 47.71 ± 0.04%
Nelson-251 48.01 ± 0.04%
Nelson-509 48.02 ± 0.06%
MLP (CE) 46.71 ± 0.06%
MLP (SE) 38.38 ± 0.14%
Annex ML 39.82 ± 0.14%
Parabel 38.56 ± 0.00%
WLSTS 13.60 ± 1.49%
PDSparse 39.76 ± 0.03%
PPDSparse 39.30 ± 0.07%

Method(-Dim) Acc.(Mean±Std)

GRM–256 17.62 ± 0.07%
GRM–512 19.35 ± 0.04%
GRM–1024 20.77 ± 0.03%
GRM–2048 21.81 ± 0.07%
GRM–4096 22.20 ± 0.04%
CGRM–256 19.39 ± 0.07%
CGRM–512 20.74 ± 0.08%
CGRM–1024 21.78 ± 0.04%
CGRM–2048 22.14 ± 0.06%
CGRM–4096 21.90 ± 0.07%
RRM-256 17.63 ± 0.04%
RRM-512 19.36 ± 0.04%
RRM-1024 20.75 ± 0.05%
RRM-2048 21.81 ± 0.06%
RRM-4096 22.13 ± 0.08%
Nelson-331 20.14 ± 0.06%
Nelson-509 20.86 ± 0.09%
Nelson-1021 21.91 ± 0.06%
Nelson-2039 22.30 ± 0.06%
MLP (CE) 13.99 ± 0.11%
MLP (SE) 18.64 ± 0.02%
Annex ML 21.61 ± 0.04%
Parabel 17.09 ± 0.00%
WLSTS Train > 50 hrs
PDSparse Train > 50 hrs
PPDSparse 13.66 ± 0.05%

Table 4: Accuracy and training time across methods. See Section 4.3 for details.
Dataset Metric Single Node Distributed

PD-Sparse LOCOLE PPD-Sparse LOCOLE

LSHTC1 Accuracy 22.04% 23.42% 22.60% 23.38%
Training Time 230s 55s 135s 14s

DMOZ Accuracy 39.76% 41.09% 39.30% 40.57%
Training Time 829s 254s 656s 68s

ODP Accuracy N/A 15.11% 13.66% 15.06%
Training Time > 50 hrs 2045s 668s 350s

We experiment with the following types of embedding matrices:

• Rademacher: entries sampled i.i.d. from a uniform distribution on { 1√
n

, − 1√
n

}.

• Gaussian: entries sampled i.i.d. from N (0, 1
n ). Columns are normalized to have unit norm.

• C-Gaussian: the real and imaginary parts of each entry are sampled i.i.d. from N (0, 1
2n ). Each

column is normalized to have unit norm.
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• Nelson (Nelson and Temlyakov, 2011): a deterministic construction of low-coherence complex matrices
in which n must be prime. If r is an integer, n > r is a prime number, and nr ≥ C, then the
coherence of the constructed matrix is at most r−1√

n
. We choose r = 2 in experiments.

We compare LOCOLE against the following state-of-the-art methods:

• PD-Sparse (Yen et al., 2016): an efficient solver designed to exploit the sparsity in extreme classifica-
tion.

• PPD-Sparse (Yen et al., 2017a): a multi-process extension of PD-Sparse (Yen et al., 2016).
• Parabel (Prabhu et al., 2018): a tree-based method which builds a label-hierarchy.
• AnnexML (Tagami, 2017): a method which constructs a k-nearest neighbor graph of the label vectors

and attempts to reproduce the graph structure from a lower-dimension feature space.
• WLSTS (Evron et al., 2018): a method based on error correcting output coding which embeds labels

by codes induced by graphs.
• MLP (CE) Standard multilayer perceptron classifier with cross-entropy loss.
• MLP (SE): Standard multilayer perceptron classifier with squared error loss.

For these methods, we use the hyperparameters suggested by their papers or accompanying code.

While there are numerous label embedding algorithms (Hsu et al., 2009; Yu et al., 2014; Bhatia et al., 2015;
Evron et al., 2018; Akata et al., 2013) which could be seen as specific subsets or instances of Meta-Algorithm
1, our comparisons will not include all of them. The approach in Akata et al. (2013) is not tailored for extreme
classification and requires auxiliary information to construct the embedding matrices. On the other hand,
methods like Yu et al. (2014); Bhatia et al. (2015); Hsu et al. (2009) have been outperformed significantly by
the current state-of-the-art algorithms as shown in prior work (Yen et al., 2016; Bengio et al., 2010).

While our theoretical framework is adaptable to any form of embedding, whether trained, fixed, or derived
from auxiliary information, we focus on fixed embeddings in our empirical studies. This choice stems from
the absence of a standardized approach to train or construct embeddings with auxiliary data. By centering
on fixed embeddings, we ensure a controlled evaluation, minimizing confounding factors and emphasizing the
role of coherence of the embeddings.

All neural network training is performed on a single NVIDIA A40 GPU with 48GB RAM. We explore different
embedding dimensions and provide figures showing the relationship between the coherence of G and the
accuracy. Full experimental details are presented in the appendix.

4.2 Experimental results

The experimental results presented in Table 3 highlight the superior performance of our proposed method
across various datasets. In Table 3, the column ‘Method (-Dim)’ denotes the method or embedding type
along with its dimension, while the ‘Acc. (Mean ± Std)’ column presents the mean and standard deviation of
accuracy in 5 randomized repetitions. We highlight the best-performing method for each dataset.

We plot the accuracies as the coherence of the embedding matrix decreases in Figure 1 for the LSHTC1,
DMOZ, and ODP datasets. Alongside, we include several baselines for comparison. Figure 1 demonstrates
a negative correlation between the coherence of the embedding matrix and the accuracy, confirming our
theoretical analysis.

4.3 Computational advantage

PD-Sparse (Yen et al., 2016) and PPD-Sparse (Yen et al., 2017b) are among the most computationally
efficient methods for training for extreme classification, to the best of our knowledge. PD-Sparse and
PPD-Sparse both efficiently fit a linear model for classification with a multiclass hinge loss and elastic net
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regularization, which is regularization with both ℓ1 and ℓ2 penalties. For comparison, we apply LOCOLE
using the Rademacher embedding to elastic net-regularized (Zou and Hastie, 2005) linear regression with ℓG

loss. To compare the computational efficiency, we set the embedding dimension to n = 360. In our distributed
implementation (multi-output linear regression can be trivially parallelized by solving multiple scalar-output
linear regressions), each node independently solves a subset of elastic net linear regressions with scalar output,
effectively spreading out the computation. In Table 4, we compare LOCOLE with Rademacher embedding
with PD-sparse and PPD-sparse. LOCOLE clearly outperforms PD-sparse and PPD-sparse in both runtime
and accuracy. We train the PD-Sparse method and Single-Node LOCOLE on Intel Xeon Gold 6154 processors,
equipped with 36 cores and 180GB of memory. The distributed LOCOLE and the PPD-Sparse method —
also implemented in a distributed fashion — are trained across 10 CPU nodes, harnessing 360 cores and
1.8TB of memory in total.

5 Conclusion and future work

We provide a theoretical analysis for label embedding methods in the context of extreme multiclass classification.
Our analysis confers a deeper understanding of the tradeoffs between dimensionality reduction and accuracy.
We derive an excess risk bound that quantifies this tradeoff in terms of the coherence of the embedding
matrix, and show that the statistical penalty for label embedding vanishes under the multiclass Massart
condition. Through extensive experiments, we demonstrated that label embedding with low-coherence
matrices outperforms existing techniques in both accuracy and runtime.

While our analysis focuses on excess risk, the reduction of classification to regression means that existing
generalization error bounds (for multi-output regression with squared error loss) can be applied to analyze
the generalization error in our context. For example, Reeve and Kabán (2020) show that the generalization
error grows with the dimension of the output space. This suggests that smaller embedding dimension leads
to tighter control of the generalization error.

Building on out theoretical framework, future work may consider extension to multilabel classification, online
learning, zero-shot learning, and learning with rejection.

6 Limitations

Lossless label embedding relies on Massart’s noise condition. Although Massart’s condition is a well-recognized
assumption in learning theory, it is important to note that it remains a theoretical construct that cannot be
directly verified in most practical scenarios. This assumption facilitates theoretical analysis but may not
always reflect real-world data distributions.

10
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A Proofs

In this section, we present the proofs of the results in the main paper.

A.1 Proof of proposition 2

Proof. This stems from the following facts: (i) for any given f ∈ F , the function βG ◦ f is also measurable,
i.e., βG ◦ F ⊂ H, (ii) for all h ∈ H, the function f(x) = gh(x) ensures that βG ◦ f = h, and (iii) f(x) = gh(x)
is measurable as it only attains finite number of values. So (ii) and (iii) imply H ⊂ βG ◦ F .

A.2 Proof of the main theorem

Recall that βG(p) = min
{

arg mini∈Y∥p − gi∥2
}

.
Lemma 7. ∀p ∈ Cn, ∀x ∈ X , C1,x(p) = maxi ηi(x) − ηβG(p)(x). .

Proof. Recall that LG(p, y) = L01(βG(p), y) = 1{min{arg mini∈Y ∥p−gi∥2}̸=y}. The result follows from the
observation that CLG,x(p) = 1 − ηβG(p)(x) and C∗

LG,x = 1 − maxi ηi(x).

Lemma 8. C2,x is strictly convex and minimized at p∗
x = Gη(x) =

∑C
i=1 ηi(x)gi.

Proof.

CℓG,x(p) = Ey∼PY |X=x
ℓ2(p, gy)

= 1
2

C∑
i=1

ηi(x)∥p − gi∥2
2

= 1
2

C∑
i=1

ηi(x)⟨p − gi, p − gi⟩

= 1
2 ⟨p, p⟩ − Re

〈
C∑

i=1
ηi(x)gi, p

〉
+ 1

2

C∑
i=1

ηi(x)∥gi∥2
2

= 1
2

∥∥∥∥∥p −
C∑

i=1
ηi(x)gi

∥∥∥∥∥
2

2

+ 1
2

C∑
i=1

ηi(x)∥gi∥2
2 − 1

2

∥∥∥∥∥
C∑

i=1
ηi(x)gi

∥∥∥∥∥
2

2

So C2,x(p) is strictly convex and minimized at p∗
x =

∑C
i=1 ηi(x)gi = Gη(x).

We’ll use p∗
x to denote Gη(x) henceforward.

Lemma 9. Let V be a normed space with norm ∥·∥V . Let u : V → R be a strictly convex function. Let u be
minimized at x∗ with u(x∗) = 0. ∀x ∈ V , ∀δ0 > 0, if u(x) < δ := infx:∥x−x∗∥V =δ0 u(x), then ∥x − x∗∥V < δ0.

Proof. We first confirm the fact that ∀t ∈ (0, 1) and q ∈ V − {0}, u(x∗ + tq) < u(x∗ + q).

u(x∗ + tq) = u((1 − t)x∗ + t(x∗ + q))
< (1 − t)u(x∗) + tu(x∗ + q)
= tu(x∗ + q)
< u(x∗ + q).

Assume the opposite: For some u ∈ V , δ0 > 0, u(x) < δ = infx:∥x−x∗∥V =δ0 u(x) and ∥x − x∗∥V ≥ δ0. Then

u(x) = u(x∗ + (x − x∗)) ≥ u(x∗ + δ0

∥x − x∗∥V

(x − x∗)) ≥ δ,

which results in a contradiction.
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Lemma 10. Fix x ∈ X . ∀δ0 > 0 ∀p ∈ Cn, C2,x(p) < 1
2 δ2

0 =⇒ ∥p − p∗
x∥ < δ0.

Proof. Applying Lemma 9 with u = C2,x, V = Cn, ∥·∥V = ∥·∥2, and x∗ = p∗
x, we have ∀p ∈ Cn, C2,x(p) <

infs:∥s−p∗
x∥=δ0 C2,x(s) =⇒ ∥p − p∗

x∥2 < δ0. Furthermore,

inf
s:∥s−p∗

x∥=δ0
C2,x(s) = inf

s:∥s−p∗
x∥=δ0

(
1
2 ⟨s, s⟩ − Re⟨p∗

x, s⟩
)

−
(

1
2 ⟨p∗

x, p∗
x⟩ − Re⟨p∗

x, p∗
x⟩

)
= inf

s:∥s−p∗
x∥=δ0

1
2∥s − p∗

x∥2
2

= 1
2δ2

0 .

To facilitate our proofs, we denote λj,k = ⟨gj , gk⟩, λRe
j,k = Reλj,k, and λG = maxj ̸=k|λj,k|.

Lemma 11. ∀x ∈ X , ∀j, k ∈ [C], ∀p ∈ Cn,

(1 + λG)(ηk(x) − ηj(x)) − 2λG

√
2 − 2λG

> ∥p∗
x − p∥2 =⇒ ∥p − gj∥2 > ∥p − gk∥2.

Proof. We first consider the general case when p ̸= p∗
x. Write p = p∗

x + δ0v where v = p−p∗
x

∥p−p∗
x∥2

and
δ0 = ∥p − p∗

x∥2. Recall that p∗
x = Gη(x). Note the inequality immediately implies ηk(x) > ηj(x).

(1 + λG)(ηk(x) − ηj(x)) − 2λG

√
2 − 2λG

> δ0

=⇒ (1 − λG)(ηk(x) − ηj(x)) − 2λG(1 − (ηk(x) − ηj(x))) > δ0
√

2 − 2λG

=⇒ (1 − λG)(ηk(x) − ηj(x)) − 2λG(1 − ηk(x) − ηj(x)) > δ0
√

2 − 2λG

=⇒
√

1 − λG(ηk(x) − ηj(x)) − 2λG

√
1 − λG

(1 − ηk(x) − ηj(x)) >
√

2δ0

=⇒
√

1 − λRe
j,k(ηk(x) − ηj(x)) + 1√

1 − λRe
j,k

∑
i ̸=j,k

(λRe
i,k − λRe

i,j )ηi(x) >
√

2δ0 (1)

=⇒ (1 − λRe
j,k)(ηk(x) − ηj(x)) +

∑
i ̸=j,k

(λRe
i,k − λRe

i,j )ηi(x) > δ0

√
2 − 2λRe

j,k

=⇒ Re⟨p∗, gk − gj⟩ > δ0∥gj − gk∥2 (2)
=⇒ Re⟨p∗, gk − gj⟩ > Re⟨δ0v, gj − gk⟩ (3)
=⇒ Re⟨p∗ + δ0v, gk⟩ > Re⟨p∗ + δ0v, gj⟩

=⇒ ∥p − gj∥2
2 > ∥p − gk∥2

2 (4)

Inequality (1) follows the fact that ∀i, i′,
∣∣λRe

i,i′

∣∣ ≤ λG. Inequality (2) follows from p∗
x =

∑C
i=1 ηi(x)gi and

∥gj − gk∥2 =
√

2 − 2λRe
j,k. Inequality (3) is implied by the Cauchy-Schwarz inequality. In the last inequality

(4), we use the fact that ∥gj∥2 = ∥gk∥2 = 1.
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Now let p = p∗
x. Let (1+λG)(ηk(x)−ηj(x))−2λG

√
2−2λG

> 0.

∥p − gj∥2
2 − ∥p − gk∥2

2
=2Re⟨p∗

x, gk − gj⟩

=2(1 − λRe
j,k)(ηk(x) − ηj(x)) + 2

∑
i ̸=j,k

(λRe
i,k − λRe

i,j )ηi(x)

≥2(1 − λG)(ηk(x) − ηj(x)) − 4λG(1 − ηk(x) − ηj(x))
≥2(1 − λG)(ηk(x) − ηj(x)) − 4λG(1 − (ηk(x) − ηj(x)))
=2(1 + λG)(ηk(x) − ηj(x)) − 4λG > 0

Lemma 12. ∀x ∈ X , ∀r > 2λG

1+λG , and ∀p ∈ Cn, C2,x(p) <
((1+λG)r−2λG)2

4−2λG =⇒ C1,x(p) < r.

Proof. By Lemma 10, C2,x(p) <
((1+λG)r−2λG)2

4−2λG =⇒ ∥p − p∗
x∥2 < (1+λG)r−2λG√

2−λG
. Fix x ∈ X . Recall that

βG(p) = min
{

arg mini∈Y∥p − gi∥2
}

. We claim

∥p − p∗
x∥ <

(1 + λG)r − 2λG

√
2 − λG

=⇒ max
i

ηi(x) − ηβG(p)(x) < r.

Assume ∥p − p∗
x∥ < (1+λG)r−2λG√

2−λG
and maxi ηi(x) − ηβG(p)(x) ≥ r. By Lemma 11,

∥∥p − gβG(p)
∥∥ >∥∥p − gmin{arg maxi ηi(x)}

∥∥, contradicting the definition of βG(p). Hence, C1,x(p) = maxi ηi(x) − ηβG(p)(x) < r.

Now we’re ready to prove Theorem 4.

Proof of Theorem 4.

RLG,P (f) − R∗
LG,P =

∫
X

C1,x(f(x))

=
∫

x:d(x)<r

C1,x(f(x)) +
∫

x:d(x)≥r

C1,x(f(x)).

We bound each integral individually.

By Lemma 12, ∀x ∈ X , ∀r > 2λG

1+λG , and ∀p ∈ Cn,

C1,x(p) ≥ r =⇒ C2,x(p) ≥
(
(1 + λG)r − 2λG

)2

4 − 2λG
. (5)

Hence,

C1,x(p) >
2λG

1 + λG
=⇒ C2,x(p) ≥

(
(1 + λG)C1,x(p) − 2λG

)2

4 − 2λG

=⇒ C1,x(p) ≤ 2λG

1 + λG
+ 1

1 + λG

√
(4 − 2λG)C2,x(p).

Note the last inequality actually holds for all p ∈ Cn, that is, it holds even when C1,x(p) ≤ 2λG

1+λG . Then,
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∫
x:d(x)<r

C1,x(f(x))

≤
∫

x:d(x)<r

2λG

1 + λG
+ 1

1 + λG

√
(4 − 2λG)C2,x(f(x))

= 2λG

1 + λG
PX (d(X) < r) +

√
4 − 2λG

1 + λG

∫
x:d(x)<r

√
C2,x(f(x))

= 2λG

1 + λG
PX (d(X) < r) +

√
4 − 2λG

1 + λG

∥∥∥∥1d(x)<r

√
C2,x(f(x))

∥∥∥∥
PX ,1

≤ 2λG

1 + λG
PX (d(X) < r) +

√
4 − 2λG

1 + λG

∥∥1d(x)<r

∥∥
PX ,2

∥∥∥∥√
C2,x(f(x))

∥∥∥∥
PX ,2

(6)

= 2λG

1 + λG
PX (d(X) < r) +

√
4 − 2λG

1 + λG

√
PX (d(X) < r)

(
RℓG,P (f) − R∗

ℓG,P

)
.

In inequality (6), we apply Holder’s inequality.

When C1,x(p) > 0, C1,x(p) = maxi ηi(x) − ηβG(p)(x) ≥ maxi ηi(x) − maxi/∈arg maxj ηj(x) ηi(x) = d(x). By (5),

if d(x) ≥ r and C1,x(p) > 0, then C2,x(p) ≥ ((1+λG)r−2λG)2

4−2λG . As C1,x(p) ∈ [0, 1], d(x) ≥ r and C1,x(p) > 0

=⇒ C2,x(p) ≥ ((1+λG)r−2λG)2

4−2λG C1,x(p). It is trivial that C2,x(p) ≥ ((1+λG)r−2λG)2

4−2λG C1,x(p) also holds when

C1,x(p) = 0. Thus, ∀x ∈ X and ∀p ∈ Cn, d(x) ≥ r =⇒ C2,x(p) ≥ ((1+λG)r−2λG)2

4−2λG C1,x(p) =⇒ C1,x(p) ≤
4−2λG

((1+λG)r−2λG)2 C2,x(p). Therefore,

∫
x:d(x)≥r

C1,x(f(x)) ≤
∫

x:d(x)≥r

4 − 2λG

((1 + λG)r − 2λG)2 C2,x(f(x))

≤ 4 − 2λG

((1 + λG)r − 2λG)2

∫
X

C2,x(f(x))

= 4 − 2λG

((1 + λG)r − 2λG)2

(
RℓG,P (f) − R∗

ℓG,P

)
.

B Experiment details

In this section, we provide the details of our experiments.

B.1 Neural networks

In this section, we provide details on the architectures and hyperparameter choices for the neural networks
used in our experiments. The architectures and hyperparameters are selected by trial-and-error on a heldout
dataset.

B.1.1 LSHTC1

The proposed embedding strategy adopts a 2-layer neural network architecture, employing a hidden layer of
4096 neurons with ReLU activation. The output of the neural network is normalized to have a Euclidean
norm of 1. An Adamax optimizer with a learning rate of 0.001 is utilized together with a batch size of 128
for training. The model is trained for a total of 5 epochs. In order to effectively manage the learning rate, a
scheduler is deployed, which scales down the learning rate by a factor of 0.1 at the second epoch.
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Our cross-entropy baseline retains a similar network architecture to the embedding strategy, with an adjustment
in the output layer to reflect the number of classes. Here, the learning rate is 0.01 and the batch size is
128 for training. The model undergoes training for a total of 5 epochs, with a scheduler set to decrease the
learning rate after the third epoch.

Finally, the squared loss baseline follows the architecture of our cross-entropy baseline, with the learning
rate and batch size mirroring the parameters of the embedding strategy. As with the embedding strategy,
the output is normalized. The model is trained for a total of 5 epochs, and the learning rate is scheduled to
decrease after the third epoch.

B.1.2 DMOZ

For the DMOZ dataset, our proposed label embedding strategy employed a 2-layer neural network with a
hidden layer of 2500 neurons activated by the ReLU function. The output of the network is normalized to
have a norm of 1. We trained the model using the Adamax optimizer with a learning rate of 0.001 and a
batch size of 256. The model was trained for 5 epochs, and the learning rate was scheduled to decrease at the
second and fourth epochs by a factor of 0.1.

For the cross-entropy loss baseline, we used the same network architecture with an adjustment in the output
layer to match the number of classes. The learning rate was 0.01 and the batch size was 256. The model
underwent training for a total of 5 epochs, with the learning rate decreasing after the third epoch as determined
by the scheduler.

Lastly, the squared loss baseline utilized the same architecture, learning rate, and batch size as the proposed
label embedding strategy. Similarly, the model’s output was normalized. The model was trained for 5 epochs,
with the learning rate scheduled to decrease after the third epoch.

B.1.3 ODP

For the ODP dataset, the experiments utilized a neural network model composed of 4 layers. The size
of the hidden layers progressively increased from 210 to 214, then decreased to 213. Each of these layers
employed the ReLU activation function and was followed by batch normalization to promote faster, more
stable convergence. The final layer output size corresponded with the embedding dimension for the label
embedding strategy and the number of classes for the cross-entropy and squared loss baselines.

In the label embedding framework, the output was normalized to yield a norm of 1. This model was trained
using the Adamax optimizer, a learning rate of 0.001, and a batch size of 2048. The training spanned 20
epochs, with a learning rate decrease scheduled after the 10th epoch by a factor of 0.1.

For the cross-entropy loss baseline, the same network architecture was preserved, with an adjustment to the
penultimate layer, reduced by half, and the final output layer resized to match the number of classes. This
slight modification in the penultimate layer was necessary to accommodate the models within the 48GB
GPU memory. Notably, the neural network output was normalized by dividing each output vector by its
Euclidean norm before applying the softmax function, a non-standard operation that significantly enhanced
performance. This model was trained using a learning rate of 0.01 over 20 epochs, following a similar learning
rate schedule.

Finally, the squared loss baseline used the same architecture as the cross-entropy baseline and the same
learning rate and batch size as the label embedding model. Here, the output was also normalized. The model
underwent training for 20 epochs, with a learning rate decrease scheduled after the 10th epoch.

B.2 Elastic net

We aim to solve
min

W ∈RD×n
∥XW − Y ∥2

fro + λ1∥W∥1,1 + λ2∥W∥2
fro, (7)

where X ∈ RN×D is the data matrix, the rows of Y ∈ RN×n are embedding vectors.
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The problem (7) can be broken down into n independent real-output regression problems of the form

min
Wj∈RD

∥XWj − Yj∥2
fro + λ1∥Wj∥1 + λ2∥Wj∥2

2,

where Wj is the j-th column of W and Yj is the j-th column of Y . Consequently, We can distribute the n
real-output regression problems across multiple cores.

We develop a regression variant of the Fully-Corrective Block-Coordinate Frank-Wolfe (FC-BCFW) algorithm
(Yen et al., 2016) and use it to solve the real-output regression problems. As the solver operates iteratively,
we set it to run for a predefined number of iterations, denoted as Niter. The chosen hyperparameters are
outlined in table 5.

Dataset λ1 λ2 Niter
LSHTC1 0.1 1 20
DMOZ 0.01 0.01 20
ODP 0.01 0.1 40

Table 5: Hyperparameters for elastic net.

B.3 Practical issues

B.3.1 Choice of embedding dimension

In practical settings, the choice of the embedding dimension n depends on available computational resources.
Under a fixed computational budget, our theory recommends opting for an embedding with minimal
coherence. When the type of embedding is fixed but computational resources are flexible, we advise treating
the embedding dimension n as a tunable parameter. Specifically, it is beneficial to incrementally increase n,
perhaps exponentially, and observe the performance. This process should continue until the improvement in
performance plateaus or the additional computational cost becomes prohibitively high.

B.3.2 Types of embedding matrices

In our experiments, we used four types of embeddings. Random embeddings stand out for their simplicity
and flexibility. They can be generated with a single line of code, and the embedding dimension can be
any positive integer. However, their drawbacks include the need for explicit storage and potentially higher
coherence compared to some deterministic matrices. On the other hand, deterministic matrices like those
constructed using Nelson’s method can achieve lower coherence, generally leading to better performance.
They do not require explicit storage, as individual columns can be generated on demand. The trade-off is
that they are more complex to implement, and the options for embedding dimensions are more limited (e.g.,
Nelson’s construction requires prime numbers for the embedding dimension).

B.4 Used assets

We list the existing code used in our experiments.

• PD-Sparse (Yen et al., 2016): https://github.com/a061105/ExtremeMulticlass (BSD-3-Clause
license).

• PPD-Sparse (Yen et al., 2017a): https://github.com/a061105/AsyncPDSparse.

• Parabel (Prabhu et al., 2018): http://manikvarma.org/code/Parabel/download.html.

• AnnexML (Tagami, 2017): https://github.com/yahoojapan/AnnexML?tab=Apache-2.
0-1-ov-file(Apache-2.0 license).

• WLSTS(Evron et al., 2018): https://github.com/ievron/wltls/?tab=MIT-1-ov-file(MIT Li-
cense).
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