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Abstract

Self-supervised learning has been shown to be very effective in learning useful
representations, and yet much of the success is achieved in data types such as
images, audio, and text. The success is mainly enabled by taking advantage of
spatial, temporal, or semantic structure in the data through augmentation. However,
such structure may not exist in tabular datasets commonly used in fields such as
healthcare, making it difficult to design an effective augmentation method, and
hindering a similar progress in tabular data setting. In this paper, we introduce a
new framework, Subsetting features of Tabular data (SubTab), that turns the task
of learning from tabular data into a multi-view representation learning problem by
dividing the input features to multiple subsets. We argue that reconstructing the data
from the subset of its features rather than its corrupted version in an autoencoder
setting can better capture its underlying latent representation. In this framework,
the joint representation can be expressed as the aggregate of latent variables of the
subsets at test time, which we refer to as collaborative inference. Our experiments
show that the SubTab achieves the state of the art (SOTA) performance of 98.31%
on MNIST in tabular setting, on par with CNN-based SOTA models, and surpasses
existing baselines on three other real-world datasets by a significant margin.

1 Introduction

In recent years, the self-supervised learning has successfully been used to learn meaningful represen-
tations of the data in natural language processing [34, 41, 11, 28, 10, 21, 9]. A similar success has
been achieved in image and audio domains [7, 15, 37, 5, 17, 13, 8]. This progress is mainly enabled
by taking advantage of spatial, semantic, or temporal structure in the data through data augmentation
[7], pretext task generation [11] and using inductive biases through architectural choices (e.g. CNN
for images). However, these methods can be less effective in the lack of such structures and biases in
the tabular data commonly used in many fields such as healthcare, advertisement, finance, and law.
And some augmentation methods such as cropping, rotation, color transformation etc. are domain
specific, and not suitable for tabular setting. The difficulty in designing similarly effective methods
tailored for tabular data is one of the reasons why self-supervised learning is under-studied in this
domain [46].

The most common approach in tabular data is to corrupt data through adding noise [43]. An autoen-
coder maps corrupted examples of data to a latent space, from which it maps back to uncorrupted data.
Through this process, it learns a representation robust to the noise in the input. This approach may
not be as effective since it treats all features equally as if features are equally informative. However,
perturbing uninformative features may not result in the intended goal of the corruption. A recent
work takes advantage of self-supervised learning in tabular data setting by introducing a pretext task
[46], in which a de-noising autoencoder with a classifier attached to representation layer is trained on
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Figure 1: SubTab framework: i) Dividing the features into subsets (similar to feature bagging, or
cropping images), ii) Reconstruction of either subsets of features (x̃1,x̃2,x̃3), or complete feature
space (X̃1,X̃2,X̃3), which are used to compute reconstruction loss. iii) Generating projections used
to compute contrastive and distance loss. E ⌘ Encoder,D ⌘ Decoder,G ⌘ Projection.

corrupted data. The classifier’s task is to predict the location of corrupted features. However, this
framework still relies on noisy data in the input. Additionally, training a classifier on an imbalanced
binary mask for a high-dimensional data may not be ideal to learn meaningful representations.

In this work, we turn the problem of learning representation from a single-view of the data into the
one learnt from its multiple views by dividing the features into subsets, akin to cropping in image
domain or feature bagging in ensemble learning, to generate different views of the data. Each subset
can be considered a different view. We show that reconstructing data from the subset of its features
forces the encoder to learn better representation than the ones learned through the existing methods
such as adding noise. We train our model in a self-supervised setting and evaluate it on downstream
tasks such as classification, and clustering. We use five different datasets; MNIST in tabular format,
the cancer genome atlas (TCGA) [42], human gut metagen-omic samples of obesity cohorts (Obesity)
[36, 26], UCI adult income (Income) [24], and UCI BlogFeedback (Blog) [4].

SubTab can: i) construct a better representation by using the aggregate of the representation of the
subsets, a process that we refer as collaborative inference ii) discover the regions of informative
features by measuring predictive power of each subset, which is useful especially in high-dimensional
data iii) do training and inference in the presence of missing features by ignoring corresponding
subsets and iv) use smaller models by reducing input dimension, making it less prone to overfitting.

2 Method

The augmentation methods such as adding noise, rotation, cropping etc. are commonly used in image
domain. Among them, the cropping is shown to be the most effective technique [7]. Inspired from
this insight, we propose subsetting features of tabular data.

Figure 1 presents SubTab framework, in which we have an encoder (E), a decoder (D), and an
optional projection (G). For the purpose of this paper, we will refer h as latent, or representation, z
as projection, x̃, and X̃ as the reconstruction of subset, and whole data respectively. Small letters
are associated with subsets while capital latters are associated the whole set of features. Moreover,
throughout this work, when we say that a representation is "good", we refer to its performance in a
classification task using a linear model.

In SubTab framework, we divide tabular data to multiple subsets. Neighbouring subsets can have
overlapping regions, defined as a percentage of a dimension of the subset. Each of the subsets is
fed to the same encoder (i.e. parameter sharing) to get their corresponding latent representation. A
shared decoder is used to reconstruct either the subset fed to the encoder, or full tabular data (i.e.
reconstructing all features from the subset of features). We chose the latter in our experiments since
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(a) Push-Pull forces (b) Feature selection (c) Representation at test time

Figure 2: a) Push-Pull forces applied by each loss. PS / NS : Positive/Negative sample; CL/RL/DL:
Contrastive, Reconstruction, Distance losses b) Column or feature selection strategies for adding
noise to each subset. Top: Selecting a block of neighbouring columns; Middle: Selecting columns
randomly; Bottom: Selecting random features per row c) Latent variables from each subset is
aggregated at test time. The mean (default), sum, max, or min aggregation can be used.

it is more effective in learning good representations. We should also note that, in the latter case, the
autoencoder cannot learn the identity, eliminating the constraint on the dimension of the bottleneck
(i.e. representation). We compute one reconstruction loss term per subset.

Moreover, we can optionally add contrastive loss to our objective by using all combination of pairs
of projections from all subsets. For example, given three subsets as in Figure 1, there are three
combinations of two:
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�
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�3
2

�
= 3!

2!(1)! = 3 . For four subsets, it would be 6 pairs of combination,
and so on. We can add one more loss term, referred as distance loss, to reduce the distance between
the pairs of projections of the subsets by using a loss function such as mean squared error (MSE). All
three loss terms apply a pulling force on positive samples while contrastive loss also applies a push
force between positive and negative samples as shown in Figure 2a.

Once the dataset is divided into subsets in data preparation step, a process that is similar to feature
bagging in ensemble learning, their location is fixed. Thus, we don’t change the relative order of
features in a subset during training since standard neural network architectures are not permutation
invariant. This is to ensure that same features are fed to the same input units of neural network.
However, our method can be extended to permutation invariant setting as a next step.

2.1 Strategies for adding noise

Our framework is complementary to other augmentation techniques used in tabular data setting. Thus,
we experimented with adding noise to randomly selected entries in each subset by using three types of
noise: i) adding Gaussian noise, N (0,�2), ii) overwriting the value of a selected entry with another
value randomly sampled from the same column, referred as swap-noise, iii) zeroing-out randomly
selected entries, referred as zero-out noise.

Moreover, we use three different strategies when selecting the features to add noise to, as shown in
Figure 2b: i) a random block of neighboring columns (NC), ii) random columns (RC) iii) random
features per each sample (RF). To add noise, we create a binomial mask, m, and a noise matrix, ✏,
with same shape as the subset, in which the entries of the mask is assigned to 1 with probability p,
and to 0 otherwise. The corrupted version, x1c, of subset x1 is generated as following:

x1c = (1�m)� x1 +m� ✏ (1)

2.2 Training

Our objective function is:
Lt = Lr + Lc + Ld, (2)

where Lt, Lr, Lc and Ld are total, reconstruction, contrastive, and distance losses, respectively.

i) Reconstruction loss: Given a subset, denoted by xk, we can reconstruct either the same subset,
x̃k or the entire feature space X̃k. Then, we can compute the reconstruction loss for kth subset by
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computing mean squared error using either (xk, x̃k), or (X, X̃k) pair as shown in Figure 1. We
chose the latter since it was more effective. Overall reconstruction loss:

Lr =
1

K

KX

k=1

sk, where sk =
1

N

NX

i=1

⇣
X(i) � X̃k

(i)
⌘2

(3)

where K is the total number of subsets, N is the size of the batch, sk is the reconstruction loss for
kth subset, and Lr is the average of reconstruction loss over all subsets.

ii) Contrastive loss: If the dataset is rich in the number of classes such that chances of sampling
negative samples are high, we can use a projection network (G) to get projections, z0s, of rep-
resentations, h0s. Samples at the same rows of two subsets, z1 and z2, can be considered as
positive pairs while remaining rows in the subsets can be considered as negative to those sam-
ples.This allows us to compute the contrastive loss for each pair of projections using a loss function
such as the normalized temperature-scaled cross entropy loss (NT-Xent) [7]. For three subsets,
{x1,x2,x3}, we can compute such a loss for every pair {za, zb} of total three pairs from the set
S = {{z1, z2}, {z1, z3}, {z2, z3}}. Overall contrastive loss is:
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1

J

X
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(i)) = � log
exp(sim(za(i), zb(i))/⌧)PN

k=1 1k 6=i exp(sim(za(i), zb(k))/⌧)
(5)

where J is the total number of pairs in set S, p(za, zb) is total contrastive loss for a pair of pro-
jection {za, zb}, l(za(i), zb(i)) is the loss function for a corresponding positive pairs of examples
(za(i), zb(i)) in subsets {za, zb}, and Lc is the average of contrastive loss over all pairs.

iii) Distance loss: We can also add mean-squared error (MSE) loss for pairs of projections of subsets
since the corresponding samples in subsets should be close to each other. Hence, we can compute an
overall MSE loss as:

Ld =
1

J

X

{za,zb}2S

p(za, zb), where p(za, zb) =
1

N

NX

i=1

⇣
z(i)
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b

⌘2
(6)

The pseudocode of algorithm can be found in Algorithm 1 in the Appendix. We should note that both
Lc and Ld in equation (2) are optional, and we used them only in some experiments.

2.3 Test time

At test time, we feed the subsets of test set to the encoder, and get the aggregate of the representations
of all available subsets as shown in Figure 2c. Please note that we can use mean, sum, min, max, or
any other aggregation method to get joint representation, which is analogous to pooling in Computer
Vision, or the aggregation of neighbouring nodes in graph convolutional networks [23]. We used
mean aggregation in all our experiments, but did compare different aggregation methods in Appendix
F.4. Our experiments show that we can use the representations of only one, or few subsets and still
achieve a good performance at test time. For example, we could use only h1, or aggregate of h1 and
h2 rather than aggregating over all subsets (h1, h2, h3) in Figure 2c. This allows the model to infer
from the data even in the presence of missing features, in which case we can ignore the subset with
missing features. We can also design an aggregation function that computes weighted mean of the
representations of subsets since some subsets might be more informative than others:

h =
1

Z

KX

k=1

⌘k ⇤ hk, and Z =
KX

k=1

⌘k, (7)

where K is number of subsets, and ⌘k is the weight for kth subset. ⌘ can be a learnable parameter
in semi-supervised, or supervised setting by using an attention mechanism. We can also use 1D
convolution in equation (7) by treating representations of subsets as separate channels during training.
We left these ideas as future work and used the mean aggregation (i.e. ⌘k = 1) throughout our
experiments, unless explicitly stated. A comparison of different aggregation methods can be found in
Table A3 in the Appendix.
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3 Experiments

We conducted various experiments on diverse set of tabular datasets including MNIST [27] in tabular
format, the cancer genome atlas (TCGA) [42], human gut metagen-omic samples of obesity cohorts
(Obesity) [36, 26], UCI adult income (Income) [24], and UCI BlogFeedback (Blog) [4] to demonstrate
the effectiveness of the SubTab framework. We compare our method to autoencoder baseline with
and without dropout, other self-supervised methods such as VIME-self [46], Denoising Autoencoder
(DAE) [43], and Context Encoder (CAE) [39] as well as fully-supervised models such as logistic
regression, random forest, and XGBoost [6]. For each dataset, once we decided on a particular
autoencoder architecture, we used it for all models compared (i.e. VIME-self, DAE, CAE, and our
model). We tried both ReLU and leakyReLU as activation functions for all, and both performed
equally well. The code for SubTab is provided1. The summary of model architectures and hyper-
parameters are in Table A1 in the Appendix. We should note that we ran more experiments using; i)
Synthetic datasets and ii) OpenML-CC18 datasets [2] in Appendix G and H respectively.

3.1 Data

MNIST: We flattened 28x28 images, and scaled them by dividing all with 255 as it is done in [46]. We
split training set into training and validation sets (90-10% split) when searching for hyper-parameters,
and then used all of training set to train the final model. The test set is used only for final evaluation.

The Cancer Genome Atlas (TCGA): TCGA is a public cancer genomics dataset characterized over
20,000 primary cancer and matched normal samples that holds information over 38 cohorts. The
task is to classify the cancer cohorts from the reverse phase protein array (RPPA) dataset. It includes
6671 samples with 122 features, which we divided to 80-10-10% train-validation-test sets. Once
hyper-parameters is found, we trained the models on combined training and validation set.

Obesity: The dataset consists of publicly available human gut metagen-omic samples of obesity
cohorts [36]. It is derived from whole-genome shotgun metagenomic studies. The dataset consists of
164 obese patients and 89 non-obese controls and has 425 features [26]. We scaled the dataset by
using min-max scaling. Since it is a small dataset, we evaluated the model by using 10 randomly
drawn training-test (90-10%) splits, for each of which we used 10-fold cross-validation.

UCI Adult Income: It is a well-known public dataset extracted from the 1994 Census database [24].
It includes the details such as education level and demographics to predict whether the income of a
person exceeds $50K/yr. The data consists of six continuous and eight categorical features. After
one-hot encoding of categorical features, there are total of 101 features. The pre-processing steps can
be found in Section B.1 of Appendix.

UCI BlogFeedback: The data originates from blog posts, and is originally used for regression task of
predicting the number of comments in the upcoming 24 hours. Similar to Yoon et al. [46], we turned
it into a binary classification task of predicting whether there is a comment for a post or not.There
are 280 integer and real valued features, and separate training and test datasets are provided. Further
information can be found in Section B.2 of Appendix.

3.2 Evaluation

For self-supervised models, once the models are trained, we evaluate them by training a logistic
regression model on the latent representations of training set, and testing it on the latent representation
of the test set. For SubTab, the joint latent representation is obtained by using the mean aggregation of
embeddings of the subsets for both training and test sets. We use the performance on a classification
task as a measure of quality of the representation as it is usually done in the self-supervised learning.
MNIST has 10, TCGA has 38, and the rest (i.e. Obesity, Income, and Blog) has 2 classes each.

3.3 Results

MNIST: We used a simple three-layer encoder architecture with dimensions of [512, 256, 128],
referred as the base model, in which the last layer is a linear layer. During training of the base model,
we used both reconstruction and contrastive losses. Additionally, we trained our model under three

1https://github.com/AstraZeneca/SubTab

5



(a) (b) (c)

Figure 3: a) Test accuracy on MNIST dataset over different number of subsets and varying levels of
overlaps. b-c) t-SNE plots for training (b) and test (c) sets of MNIST for the case of using 4 subsets
with 75% overlap between neighboring subsets.

(a) (b)

Figure 4: a) After training the base model (latent dimension=128) on four subsets with 75% overlap,
we test its performance using different number of subsets. The performance improves as we start
increasing number of subsets involved in prediction. b) Comparing our model to CNN-based SOTA
models trained on 28x28 MNIST in image format (please see Section 3.4 for details).

conditions: i) without any noise in the input data, ii) with noise in the input data and iii) same as (ii),
but we also added distance loss computed for pairs of projections {zi, zj , ...}.

For SubTab, we trained our base model multiple times without noise at the input. For each training,
we used different number of subsets with different levels of overlap between neighbouring subsets
(Figure 3a). For small number of subsets (e.g. 2 or 3), the performance monotonically decreases
when we increase the overlap between subsets. But, for higher number of subsets, the performance
generally improves as we increase the number of shared features between the neighbouring subsets.
In general, our results show that K = 4 with 75% overlap, and K = 7 with 50% overlap perform
the best in MNIST dataset, where K refers to the number of subsets. Figure 3 also shows t-SNE
plots of training and test sets for K= 4 with 75% overlap, which proves the high quality of clustering,
while Table 1 summarizes the classification accuracy of all models on the test set. Our base model
without noise outperforms autoencoder baselines and other self-supervised models with the same
architecture. We experimented with three noise types for all self-supervised models, and observed
that adding swap-noise at the input pushes the performance higher. For SubTab, adding distance loss
and increasing the dimensions of the last layer from 128 to 512 help improve the performance even
further. Moreover, we conducted three additional experiments (details in Section C.3 of Appendix):

In the first experiment, for the optimum case of K = 4 with 75% overlap, we trained and tested
accuracy of a linear model by using the joint representations obtained from the varying number of
subsets. Starting with a single subset of the data, we plot the training and test accuracy of the model
(Figure 4a). The linear model is able to achieve 87.5% test accuracy using the representation of a
single subset. As we start adding latent representations of remaining subsets, both the training and test
accuracy keep increasing, eventually achieving top accuracy when all subsets are used. The evolution
of clusters corresponding to Figure 4a can be seen in Figure A7 in Appendix. This experiment
indicates that we can achieve a good performance using only small subset of features when we don’t
have access to data on other features.
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(a) (b) (c)

Figure 5: a) The test accuracy using the mean aggregation of the latent representations of subsets,
starting with the first subset, and keep adding new subsets sequentially. b) The test accuracy of
individual subsets. c) Comparing the test accuracy by aggregating the representations of different set
of subsets at test time for two versions of the model; untrained and the one trained on all subsets.

In the second experiment, we evaluated SubTab under the condition of missing features dur-
ing training (Figure 5a). To do so, we first sliced the unshuffled features of MNIST to seven
subsets with no overlap (the case corresponding to the legend "7" at zero overlap in Figure 3a).
Each subset corresponds to four rows in a 28x28 image, starting from top four rows (subset 1)
to the bottom ones (subset 7). Then, we trained the base model on five different sets of subsets;
{4}, {4, 5}, {3, 4, 5}, {2, 3, 4, 5, 6}, and {1, 2, 3, 4, 5, 6, 7}, resulting in five different trained SubTab
models. Please note that we selected the sets such that we expand out from the most informative
middle regions of the image (i.e. subset 4) to the least informative top and bottom areas.

In order to compare the performance of five models, we followed the following steps for each trained
model: 1) We first obtained the embeddings of all seven subsets for both training and test sets; 2) We
then trained and evaluated a logistic regression model by using the joint embedding of each of the
following seven sets: {1}, {1, 2}, {1, 2, 3}, ..., {1, 2, 3, 4, 5, 6, 7} i.e. starting from the first subset,
we kept adding new subsets sequentially to increase the information content in the sets. For example,
for the set {1, 2, 3}, we first trained a logistic regression model by using joint embedding of subset 1,
2 and 3 from training set, and evaluated it by using the joint embedding of same subsets from test set.
The joint embedding of a set is obtained by using mean aggregation of embeddings of subsets in the
set. In addition to five models, we initialized a sixth SubTab model, but kept it untrained and followed
the same procedure described before to use it as a baseline. The results are shown in Figure 5a.

In this experiment, we observe that even when the model is trained on a single subset (subset 4, or
the blue line in Figure 5a), aggregating the representations of all seven subsets including the subsets
not used in training does improve the results. This is because the encoder is able to map samples
of different classes to different points in latent space even if it is not trained on them. Since we
use the mean aggregation over different views (i.e. subsets) of the same class, we can still make
each class in the data distinguishable from the rest in the latent space. We also note that when the
model is trained on more and more subsets, its performance keeps improving. As a baseline, we also
conducted the same test using untrained model (red line in the plot), and observed similar behaviour
in which the test accuracy generally improves as we use more subsets when constructing the joint
latent representation. Moreover, we measured the test accuracy of individual subsets to see how
informative each subset is (Figure 5b). The result is as expected since we kept the features unshuffled
in this experiment, and know that the subsets corresponding to the mid-region of the images (i.e.
subsets 3, 4, and 5) should be more informative than the ones corresponding to the top and bottom
regions (i.e. subsets 1, and 7). We repeated the same experiment using 28 subsets to get a higher
resolution and added the result in Figure A8 in Appendix. From this experiment; i) we see that joint
representation improves as we include more subsets (i.e. sub-views) at training and/or test time, ii)
we can identify the informative subsets of features using SubTab framework.

In the third experiment, we evaluated SubTab on handling missing features at test time. Specifically,
we used the model trained on all subsets, and compared it to the untrained model (i.e. our baseline).
For each model, we obtained the joint embedding for training set by using mean aggregation over
embeddings of all seven subsets, and then trained a linear model. The test accuracy of the linear
model is measured by using; i) only subset 4, ii) aggregate of the most informative subsets {3,4,5},
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Table 1: Accuracy scores for all models for various datasets. The abbreviations in the table; NC:
Neighbour columns used, RF: Random features used, G: Gaussian noise used, S: Swap noise used.

Type Models MNIST Income Blog Obesity TCGA
Supervised Logistic Regression 92.60±0.03 84.68±0.05 84.15±0.12 62.35±4.02 36.98± 1.25

baseline Random Forest 96.96±0.06 84.62±0.07 83.61±0.15 67.45±2.23 61.62± 1.02
XGBoost 98.02±0.086 86.11±0.20 84.29±0.23 64.05±4.52 72.61±1.31

Autoencoder AE 92.77±0.32 84.67±0.07 84.06±0.24 61.96±3.28 55.16±0.75
baseline AE w/ Dropout (p=0.2) 94.31±0.28 85.00±0.10 84.18±0.20 62.74±4.38 56.87±2.26

DAE (RF) 96.30±0.14 (S) 84.37±0.36 (G) 84.12±0.29 (G) 56.43±5.79 (G) 54.31±1.39 (G)
CAE (NC) 96.39±0.20 (S) 84.24±0.18 (G) 84.3±0.31 (G) 62.26±5.01 (G) 54.20±1.17 (G)
VIME-self 95.23±0.17 (S) 84.43±0.08 (G) 84.11±0.27 (G) 66.45±4.54 (G) 55.11±1.37 (G)

Self- SubTab with:
supervised Base model (No noise) 97.26±0.2 85.31±0.08 84.29±0.26 68.01±3.07 57.02±1.50

+Noise 97.47±0.18 (S) 85.34±0.07 (G) 84.47±0.15 (G) 71.13±4.08 (G) 58.25±1.36 (G)
+Distance loss 97.52±0.14 (S) 85.35±0.06 (G) 84.64±0.19 (G) 69.25±4.19 (G) 58.15±1.56 (G)
+LatentDim=512 97.86±0.07 (S) - - - -

iii) aggregate of {2,3,4,5,6} excluding the least informative subsets, and iv) all seven subsets of the
test set (Figure 5c).

The results indicate that SubTab can accommodate missing features at test time, and can still perform
well. This might also indicate that working with subsets can give us a way to deal with uncertainty
better when there are missing features at test time. As the model collects more information in the
form of more features, its prediction improves (see Figure 5c). We can also train the model when
there are missing subsets during training, and it still performs well (e.g. see legend "4", corresponding
to the model trained only on subset 4, in Figure 5a). Our experiments simulate a practical scenario.
For example, in healthcare, we might not have access to some features in one hospital while we might
have them in another. So, our method would be beneficial in this type of cases.

Overall, we can make the following observations from our experiments: i) the less informative
subsets can add value to the overall representation, or at least does not harm the performance (see the
aggregate over {3,4,5} versus "All" in Figure 5c), ii) untrained model can be used to analyze which
subsets can be potentially more informative, iii) once a model is trained on a subset, the performance
of the individual subset does not change whether it is trained together with other subsets or not (for
example, compare the performance of subset 3, 4, and 5 across all models in Figure 5b), iv) general
idea behind our framework works even for untrained model, and v) we may not need to impute data in
our framework since we can simply ignore them as missing subsets, which is good since imputation
generally distorts data, and the results.

TCGA: We used an encoder architecture with three layers [1024, 784, 784], where the third layer
is linear. For VIME-self, DAE, CAE, and our model, we experimented with three noise types
(Gaussian, swap, and zero-out noise) at the different % levels of masking ratio p. We observed that
p = [0.15, 0.3] range worked well for all models. For Gaussian noise, we used a distribution with
zero mean, and different levels of standard deviation (�). Among all three noise types, Gaussian
noise with � = 0.1 worked the best for all models. Please note that VIME-self uses swap-noise in its
original implementation, but swap-noise does not work well on this dataset. For SubTab, similar to
MNIST, we used four subsets with 75% overlap. SubTab performs better than other self-supervised
models with a significant margin and almost doubles the performance of logistic regression model
trained on raw data as shown in Table 1.

Obesity: We used a two-layer encoder with [1024, 1024] dimensions. Second layer is a linear layer.
Gaussian noise N (0, 0.3) and masking ratio p = 0.2 works well across all models. Six subsets
(K = 6) with 0% overlap performed the best for the SubTab. We note that this dataset has 164 obese
patients out of 253 total patients. So, the baseline accuracy is 164/253 = 64.82%. Based on this fact,
we can say that all models, except ours, did not perform well on this dataset. Our model with added
Gaussian noise results in accuracy of 71.13 ± 4.08%, which is well above all models, including
supervised ones. It means that our model was able to learn useful representation from the data. We
should also note that the performance of our model is much better than what Oh and Zhang [36]
reported (66± 3.2%) even though they trained a DAE on the same data, and reported their results
using a random forest, a non-linear model, on the learned representations rather than a linear model.

UCI Adult Income & BlogFeedback: For these two datasets, we used the same architecture as in
Obesity. For Income dataset, the best performance is obtained using 5 subsets with 25% overlap
whereas we used 7 subsets with 75% overlap for Blog dataset. For the base model, we only used
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reconstruction loss. Adding Gaussian noise to the input and distance loss to the objective improves
the performance for both datasets. SubTab outperforms other self-supervised models in both datasets.

The choice of hyper-parameters and other details for all experiments can be found in Table A1 in
Section C.1 of Appendix.

3.4 Ablation study

Table 2: Ablation study using MNIST with 4
subsets with 75% overlap. Abbreviations are;
RL: Reconstruction Loss, CL: Contrastive Loss,
DL: Distance Loss, SF: Shuffled Features, LD:
Latent Dim, Agg: Aggregating embeddings.

RL CL Noise DL SF LD Agg Test Accuracy
+ - - - - 128 + 97.13
- + - - - 128 + 97.11
+ + - - - 128 + 97.26
+ + Zero-out - - 128 + 97.25
+ + Gaussian - - 128 + 97.25
+ + Swap - - 128 + 97.47
+ + Swap + - 128 + 97.52
+ + Swap + + 128 + 97.2
+ + Swap + - 512 - 95.92
+ + Swap + - 512 + 97.86

We conducted a comprehensive ablation study us-
ing MNIST. Table 2 summarizes our experiments.
The first thing to note is that the performance of
the our base model is already good with only re-
construction loss. Hence, we can argue that the
reconstruction of original feature space from a sub-
set of features is a very effective way of learning
representation. By adding noise to the input data,
we can improve the performance. In the case of
MNIST, swap-noise is very effective. Also, by
adding additional losses such as contrastive, and
distance losses as well as increasing the dimension
of representation layer from 128 to 512, we can
further improve the results. Moreover, we shuf-
fled the features of MNIST to make sure that we
don’t have any gains from unintentional spatial
correlations between neighboring features. We kept all parameters and random seeds same for the
comparison. As shown in the table, our model’s performance does not change much. We also tried
concatenating latent variables of subsets rather than aggregating them when testing the performance.
Comparing last two rows in the table, the aggregation is shown to work much better. Please note
that we compared different aggregation functions in Appendix F.4, showing that mean aggregation
worked the best.

Finally, we compared the performance of SubTab on shallow and deep architecture choices. We
trained and tested very shallow architectures for SubTab (referred as shallow SubTab), and compared
them to relatively deeper SubTab models used in Table 1 (referred as deep SubTab). We used
one-layer encoder and decoder with 784 dimension each for MNIST while using 1024 dimension
for other datasets. Shallow SubTab is trained and evaluated under the same conditions as the deeper
ones. As shown in Table 3, shallow SubTab significantly improves results in MNIST and TCGA,
placing our model performance on par with CNN-based SOTA models [20, 19, 25, 22, 32] as shown
in Figure 4b. Obesity is the only dataset which exploits the deeper architecture.

4 Related works

We refer the reader to the introduction section that lists some of the recent noticeable works in
self-supervised learning. Since our work focuses on tabular data, we will review some of the recent
work done in tabular data in self-supervised framework. The most recent work is mostly based on
solving a pretext task. For example, Yoon et al. [46] uses a de-noising autoencoder with a classifier
attached to its representation layer. A random binary mask is generated to mask and overwrite a
portion of entries in the tabular data, and the corrupted data is given as input to the encoder. The
classifier is used to predict the mask while decoder is used to re-construct the uncorrupted original
input similar to de-noising autoencoder [43]. Although the proposed method is shown to work well
in the experiments, there are couple drawbacks to this approach. Firstly, this approach might not
work well in very high-dimensional, small and noisy data sets since the model might easily become
over-parameterized and be prone to overfitting to the data. Secondly, training a classifier in this

Table 3: Comparing shallow and deep SubTab architectures.

Model MNIST Income Blog Obesity TCGA
Deep SubTab 97.86±0.07 85.35±0.06 84.64±0.19 71.13±4.08 58.25± 1.36

Shallow SubTab 98.31±0.06 85.34±0.03 84.64±0.09 66.88±5.35 61.41±1.11
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setting can be challenging since it needs to predict very high dimensional, sparse, and imbalanced
binary mask, similar to the problems observed when training a model on imbalanced, binary dataset.
In a similar way, TabNet [1] and TaBERT [45] also tries to recover original data from corrupted one.

5 Conclusion

In this work, we show that a simple MLP-based autoencoder trained on MNIST in tabular format can
perform on par with the CNN-based SOTA models trained on MNIST images in unsupervised/self-
supervised framework. SubTab achieves SOTA in MNIST dataset in tabular setting. We also tested
our approach on other commonly used tabular datasets, and proved its benefits. In SubTab, the main
performance gain comes from two parts of the model: i) reconstruction of all features from the subset
of features, and ii) learning the joint representation by aggregating the embeddings of the subsets.

Using subsets of features may obviate the need for data imputation during training, and allows
inference using subsets of features at test time. It might open the door to distributed training of
high-dimensional data since the models can be trained on different subsets of features at the same
time. We can also potentially take advantage of different datasets with common features by assigning
those features to same subsets (i.e. transfer learning). We should note that the subsets shared the same
autoencoder in our experiments although we could use separate autoencoders for different subsets if
some of the features are drastically different than the rest.

SubTab is computationally scalable when we use only reconstruction loss during training. However,
using contrastive, and/or distance losses requires the combinations of projections, which makes the
computational complexity quadratic during training and limits the number of subsets we can use to
divide the data. In this case, computational complexity is still linear at test time since we need to
compute only the aggregate of the representations of the subsets. Also, when we divide the features
into subsets, we keep the location of features in each subset same throughout training and test time
since neural networks are not permutation invariant. As a possible solution, we can extend our work
to permutation invariant architectures by treating collection of features as a set. We also showed
that SubTab framework can be used to discover most informative subsets of features with limited
resolution. A hierarchical version of SubTab might be used for identifying individual important
features, but we leave it as a future work.

Finally, although the primary focus of this work is tabular data setting, SubTab can be extended to
other domains such as images, audio, text and so on. We leave the extensions and applications of
SubTab as a future work.

6 Broader Impact

Tabular data is a commonly used format in healthcare, finance, law and many other fields. Despite
its broad usage, the most of the research in deep learning, especially with regards to unsupervised
representation learning, has been on other data types such as images, text and audio. Our paper
tries to close this gap by introducing a new framework to learn good representations from tabular
data in unsupervised/self-supervised setting. The progress in this line of research will open doors to
widespread applications of tabular data in other areas such as transfer learning, distributed learning,
and multi-view learning, in which we can combine knowledge such as demographics and genomics
from tabular data with those in images, text and audio. However, we should be aware of the
shortcomings of such data integration in terms of biases and privacy issues that it might introduce.
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