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ABSTRACT

3D Gaussian Splatting (3DGS) under raindrop conditions suffers from severe oc-
clusions and optical distortions caused by raindrop contamination on the camera
lens, substantially degrading reconstruction quality. Existing benchmarks typi-
cally evaluate 3DGS using synthetic raindrop images with known camera poses
(constrained images), assuming ideal conditions. However, in real-world sce-
narios, raindrops often interfere with accurate camera pose estimation and point
cloud initialization. Moreover, a significant domain gap between synthetic and
real raindrops further impairs generalization. To tackle these issues, we introduce
RaindropGS, a comprehensive benchmark designed to evaluate the full 3DGS
pipeline—from unconstrained, raindrop-corrupted images to clear 3DGS recon-
structions. Specifically, the whole benchmark pipeline consists of three parts:
data preparation, data processing, and raindrop-aware 3DGS evaluation, including
types of raindrop interference, camera pose estimation and point cloud initializa-
tion, single image rain removal comparison, and 3D Gaussian training compari-
son. First, we collect a real-world raindrop reconstruction dataset, in which each
scene contains three aligned image sets: raindrop-focused, background-focused,
and rain-free ground truth, enabling a comprehensive evaluation of reconstruction
quality under different focus conditions. Through comprehensive experiments and
analyses, we reveal critical insights into the performance limitations of existing
3DGS methods on unconstrained raindrop images and the varying impact of dif-
ferent pipeline components: the impact of camera focus position on 3DGS recon-
struction performance, and the interference caused by inaccurate pose and point
cloud initialization on reconstruction. These insights establish clear directions for
developing more robust 3DGS methods under raindrop conditions.

1 INTRODUCTION

3D Gaussian Splatting (3DGS) in raindrop-contaminated scenes presents significant challenges, as
adherent raindrops on camera lenses cause severe occlusions and optical distortions Li et al.| (2024);
Liu et al.|(2025); Qian et al|(2024). These artifacts disrupt image correspondence, degrade the
quality of camera pose estimation and point cloud initialization Zhu et al.| (2023), both of which
are essential for successful 3DGS reconstruction. Moreover, the presence of raindrops varies across
views, blurring images by changing the camera focal plane|You et al.| (2013)), introducing multi-view
inconsistencies that further hinder reconstruction fidelity |Petrovska & Jutzi| (2025)).

Several recent methods|Li et al.| (2024); |Liu et al.| (2025);|Qian et al.|(2024) have explored 3D Gaus-
sian Splatting under raindrop scenarios and demonstrated promising results on synthetic datasets.
However, such evaluation settings are overly idealized and fail to capture the complexity and diver-
sity of real-world conditions. To be specific, these methods typically assume the raindrop inputs are
constrained images, where a clear details of both raindrops shape and background scenes, a good
camera pose and point cloud initialization. However, acquiring such information from real-world
raindrop-affected images is challenging [Huang et al,| (2025)); Zhang et al.| (2024)). Inaccuracies in
pose estimation and point cloud initialization can significantly degrade the quality of subsequent
3DGS reconstruction [Wang et al.|(2024); Fu et al.|(2024)). Furthermore, the substantial domain gap
between synthetic and real raindrops raises concerns about generalization. Methods validated on
synthetic datasets often fail to perform well when applied to real-world scenes. As illustrated in Fig-
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Figure 1: 3DGS Raindrop Reconstruction Benchmark Pipeline. We develop the first benchmark for
comprehensively evaluating 3DGS performance under raindrop conditions. The benchmark begins
with real-world dataset collection, proceeds through data processing, and ends with a raindrop-
aware 3DGS evaluation. In particular, we assess how raindrop-induced image contamination reduces
the number of points available for cloud initialization and degrades camera pose estimation, and how
these factors impact the performance of 3DGS methods.

ure |Z| (a-c), these synthetic datasets are valuable but exhibit limitations, such as the same raindrop
shape and position across different views.

To address these issues, we introduce RaindropGS, a comprehensive benchmark for evaluating the
complete raindrop 3DGS pipeline—from unconstrained, raindrop-corrupted input images to clear
3DGS reconstructions. Specifically, our pipeline consists of three stages: data preparation, data
processing, and raindrop-aware 3DGS evaluation. For data preparation, we compare the effects of
different types of images (raindrop-focused and background-focused) on the subsequent reconstruc-
tion process. During data processing, we evaluate the performance of camera pose estimation and
point cloud initialization, as well as single-image raindrop removal algorithms. In raindrop-aware
3DGS evaluation, we consider methods that may affect the performance of real-world raindrop re-
construction, such as raindrops and point cloud Gaussian optimization.

In addition, we collect a real-world 3D reconstruction dataset captured under raindrop conditions.
For each scene, three aligned image sets are acquired: raindrop-focused, background-focused, and
rain-free ground truth. This design enables evaluation of the full pipeline in real-world scenarios as
well as under different focus conditions. As shown in Figure[2](d), our RaindropGS dataset reflects
real-world conditions, featuring multiple focus settings and a diverse range of raindrop characteris-
tics.

Using the collected dataset, we process the images (both raindrop-focused and background-focused)
to obtain the corresponding rain-free images, estimated camera pose, and initialized point cloud. To
analyze the impact of raindrops on the real-world dataset collection, we use COLMAP Schonberger
& Frahm|(2016b) and VGGT [Wang et al.| (2025) to estimate the camera pose and initialize the point
cloud, enabling us to investigate how sequence-based and feed-forward approaches influence the
performance of 3DGS methods. We include three widely used deraining methods, Uformer Wang
et al.| (2022)), Restormer Zamir et al.| (2022), and IDT [Xiao et al.[ (2022) in the raindrop removal
stage, comparing the impact of different raindrop removal methods on subsequent 3DGS recon-
struction performance. For the raindrop-aware 3DGS evaluation, we integrate multiple 3DGS vari-
ants, including the original 3DGS |Kerbl et al.|(2023), WeatherGS |Qian et al.| (2024), GS-W [Zhang
et al.| (2024)), and 3DGS-MCMC [Kheradmand et al.| (2024), to evaluate the impact of different re-
construction strategies on raindrop-corrupted inputs. These methods are evaluated under varying
pre-processing pipelines and focus conditions to assess their robustness and adaptability.
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Through rigorous quantitative and qualitative analyses, we evaluate the performance of state-of-the-
art 3DGS methods under raindrop conditions, as well as their pre-processing stages. The results
revealing their strengths, limitations, and sensitivity to different pre-processing and focus settings.
These findings not only benchmark the current progress but also highlight key challenges and fu-
ture directions for improving 3DGS performance in real-world adverse environments. Our main
contributions are summarized as follows:

* Full 3DGS Pipeline Benchmark: We introduce the first 3DGS benchmark for raindrop-
contaminated scenes, covering the complete pipeline from unconstrained, raindrop-
corrupted images to the final 3D Gaussian reconstructions.

* First Real-world Dataset: We collect a real-world 3DGS raindrop reconstruction dataset
with aligned raindrop-focused, background-focused, and rain-free ground truth images,
enabling comprehensive evaluation of reconstruction quality across different focus condi-
tions.

¢ Comparative Study and Insights: We validate existing 3DGS methods on our bench-
mark, revealing their strengths and limitations, and providing insights into future research
directions.

2 RELATED WORK

3DGS Reconstruction under Raindrop Conditions In recent years, 3DGS has emerged as a
powerful technique for scene reconstruction. Unlike NeRF |[Mildenhall et al. (2021)), it represents
scenes using a sparse set of 3D Gaussians, enabling real-time rendering. However, standard 3DGS
benchmarks assume clear input views, and performance often degrades when images contain tran-
sient occlusions such as raindrops on the lens Liu et al.[ (2025); |Qian et al.| (2024); Kulhanek et al.
(2024).

To address this issue, several methods |Li et al.| (2024); |Qian et al.| (2024); |Liu et al.| (2025) have
been developed to improve 3D reconstruction in raindrop scenes. WeatherGS |Qian et al.| (2024)
first generates raindrop masks to identify occluded regions and then reconstructs clear scenes by
excluding these areas during 3D Gaussian Splatting. Meanwhile, DerainGS |Liu et al.[ (2025)) incor-
porates a dedicated image enhancement module to remove raindrop artifacts and employs supervised
Gaussian-ellipsoid fitting, achieving 3D deraining in the final output. These methods are trained on
synthetic raindrops and deliver strong results under the assumption of accurate camera pose estima-
tion and reliable point cloud initialization. However, they overlook the initial disruptions that real
raindrops introduce to both pose estimation and point cloud initialization, resulting in poor general-
ization to real-world raindrop scenarios.

Raindrop Removal Methods To mitigate lens occlusion artifacts, single-image derain methods
have been extensively studied. Early works such as Raindrop Removal Network |Qian et al.| (2018])
leverage visual attention to segment and inpaint raindrop regions, while UMAN |Shao et al.| (2021)
extends this idea with multiscale feature fusion. More recently, transformer-based restoration mod-
els (for example, Restormer [Zamir et al.| (2022), Uformer [Wang et al.| (2022) , DiT |[Peebles & Xie
(2023) and IDT Xiao et al.|(2022))) demonstrate superior restoration under heavy rainfall by model-
ing long range dependencies. However, these methods process each image independently and do not
enforce cross-view consistency, leading to reconstruction artifacts when applied as a preprocessing
step for 3D reconstruction.

3D Raindrop Reconstruction Benchmark and Dataset Current 3DGS raindrop reconstruction
methods focus primarily on the Gaussian fitting stage and ignore the influence of earlier steps on
the training process, such as camera pose estimation and point cloud initialization. In addition,
they rely on synthetic training datasets created by Blender on clear images |Liu et al.| (2025)); |L1
et al.[(2024)), which creates a significant domain gap and prevents accurate evaluation in real-world
conditions. A few real-world datasets have tried to simulate rain on camera lenses for stereo or
small scale multi view setups. DerainNeRF |Li et al.| (2024) captures stereo pairs by spraying water
onto a glass plate in front of a calibrated rig and provides binary raindrop masks. WeatherGS |Qian
et al.|(2024) extracts key frames from publicly available rainy videos but does not supply a ground
truth reference. Overall, existing datasets remain mostly synthetic and do not reflect real-world
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Figure 2: Example of existing raindrop 3D datasets (DerainNeRF |Li et al.| (2024), WeatherGS
(2024), DerainGS (2025)) and our RaindropGS Dataset. As indicated by the red

boxes, existing datasets exhibit the same raindrop distribution across different viewpoints; in con-
trast, the green boxes illustrate the diversity of raindrop distributions in our dataset. For each view-
point, we include both raindrop-focused and background-focused images and provide corresponding
clear images for 3DGS performance evaluation.

raindrop interference, and current algorithms overlook the early stages of the pipeline, making their
performance evaluation under real conditions unreliable.

To address this challenge, we revisit the complete 3DGS raindrop reconstruction pipeline and de-
velop a benchmark covering every stage: data preparation, data processing, and raindrop-aware
3DGS evaluation. To evaluate current algorithms and guide future research, we compile a real-world
dataset of eleven scenes.

3 RAINDROPGS BENCHMARK AND DATASET

In this section, we describe in detail the components of the 3DGS raindrop reconstruction bench-
mark, which consists of three parts. The first part describes the specific data collection process. The
second and third parts describe the selection and evaluation of different models.

3.1 DATA PREPARATION

In this section, we first describe our data collection process, including the underlying optical refrac-
tion model and acquisition setup. We also present dataset statistics and comparisons with existing
datasets.

Data Collection To begin with, we consider a pinhole camera model focused on the background
plane. In the absence of optical distortion (e.g., caused by raindrops), all scene elements located on
the focal plane would appear sharp and well-defined. However, raindrops adhering to a thin cover
glass placed directly in front of the lens act as miniature convex lenses, introducing optical distortion
and causing defocus. When background rays intersect a raindrop, they are refracted at the curved
surface of the drop decided by Snell Law [Born & Wolf](2013)). In contrast, rays that do not encounter
any raindrop travel without deviation through the imaging system to the sensor. Consequently,
refracted and non-refracted rays map to spatially distinct locations on the image plane, illustrating
how the presence of raindrops directly affects the imaging distortion. Furthermore, since raindrops
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Table 1: Comparative raindrop 3D Reconstruction datasets. Compared to existing collections,
our dataset spans a greater variety of scenes and distinguishes between raindrop-focused and
background-focused captures.

Scene count  Images GT Camera focus
Dataset — ——————— "Reql) (Real)
Real Synthetic Raindrop Background
DerainNeRF 3 2 20-25 X X v
DerainGS 7 6 22-35 X X v
RaindropGS 11 X 2453 v v v

don’t fully transmit light, the regions under raindrops exhibit localized intensity attenuation. This
attenuation produces visible artifacts.

By contrast, another alternative configuration in which the camera is set to focus on the raindrop
plane rather than the background plane. In this configuration, the image plane captures sharp, in-
focus representations of the raindrop surfaces. Under these circumstances, more distant background
features, seen through each raindrop, appear as miniaturized projections and are blurred in areas
outside the raindrops.

To create the dataset, we use a pan-tilt sphere platform to keep the camera stationary. We then
follow a standardized protocol grounded in optical refraction principles to ensure consistent camera
alignment while allowing raindrops to vary in location, shape and size. The setup consists of two
professional tripods with ball heads, a calibrated pressure sprayer, and a glass plate with over 98
percent light transmittance. The glass plate is tilted at an angle between 0° and 30° from the vertical
with respect to the ground and is placed approximately 3 centimeters in front of the camera lens.

Data Statistics We summarize our dataset in Table [1] The dataset includes 11 real-world scenes,
each containing 24 to 53 images captured under unconstrained raindrop conditions. For every view-
point, three aligned images are provided: a raindrop-focused image, a background-focused image,
and a clean ground-truth image. The raindrops in each viewpoint vary randomly in shape, number,
and size, closely replicating real-world conditions. In contrast, existing synthetic datasets for 3DGS
lack representation of camera focus effects on raindrop images and do not include diverse raindrop
appearances across multiple viewpoints.

Focus Shift During image capture (Figure [2(d)), raindrops adhering to the front glass shift the
camera’s focal plane. When many raindrops lie within the depth of field, the camera focuses on
them and the background becomes blurred. Conversely, if only a few raindrops fall within the
focal region, the camera focuses on the background and the raindrops appear out of focus. Most
synthetic datasets ignore focus variation and render both background and raindrops as sharply in
focus, which may reduce 3DGS reconstruction accuracy on real images. The RaindropGS dataset
explicitly addresses this issue by capturing each scene under both raindrop-focused and background-
focused conditions to support more realistic 3DGS raindrop evaluation.

3.2 DATA PROCESSING

Our data processing pipeline consists of two main components: pose estimation and point cloud
initialization, and single-image raindrop removal pre-processing. Unlike existing raindrop Gaussian
splatting methods that assume known camera poses and accurate point clouds, our benchmark di-
rectly estimates both the camera poses and an initial point cloud from the raindrop-affected images.
This approach enables us to evaluate the robustness of the subsequent 3DGS reconstruction against
potential errors in pose estimation and inaccuracies in the initial point cloud. To obtain a clean 3DGS
reconstruction in the raindrop-aware 3DGS evaluation stage, we apply raindrop removal techniques
to the multi-view raindrop images.
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Figure 3: Qualitative Comparison among 3DGS methods: On the raindrop-focused dataset, the
original 3DGS loses structural integrity, while GS-W and 3DGS-MCMC retains scene completeness.
WeatherGS faithfully reconstructs the scene after raindrop removal but fails to correct background
blur. On the background-focused dataset, all methods show moderate performance with artifacts.

Pose Estimation and Point Cloud Initialization To estimate the camera pose and initialize the
point cloud from multi-view raindrop images, we employ COLMAP [Schonberger & Frahm|(2016b)
and Visual Geometry Grounded Transformer (VGGT)|[Wang et al.| (2025).

COLMAP is a robust tool capable of performing both Structure-from-Motion (SfM)
(2016a) and Multi-View Stereo (MVS) [Furukawa et al.| (2015). We leverage SfM to estimate
intrinsic and extrinsic camera parameters and MVS to generate the initial point cloud. However,
raindrop interference often impedes reliable feature matching across viewpoints. This results in
significant errors in estimated camera parameters and a drastic reduction in initialized point cloud
density. To overcome the limitations of SfM, we employ VGGT as a comparative baseline. VGGT,
a feed-forward unified method for pose estimation and point cloud generation, is more robust to
raindrop interference due to its use of DINO.

In raindrop-focused scenes, the background is often too blurred for reliable scene initialization,
causing both COLMAP [Schonberger & Frahm| (2016b) and VGGT [Wang et al| (2023) to fail. In
certain scenes, COLMAP may suffer a substantial reduction in the number of matchable camera
poses due to degraded Correspondence Search [Schonberger & Frahm| (2016b) performance, which
ultimately leads to reconstruction failure. To address cases where raindrop interference and blur
reduce the initial point cloud produced by COLMAP and VGGT, we employ a random point-cloud
initialization strategy. Specifically, 100,000 points are randomly initialized, matching the order of
magnitude of point counts obtained from ground-truth scenes.

Raindrop Removal Since traditional 3DGS methods do not incorporate raindrop removal ca-
pabilities, we employ three widely used single-image restoration models. Uformer
applies non-overlapping window-based self-attention and a multi-scale restoration modula-
tor, demonstrating superior capability in restoring details from raindrop-affected and blurry images.
Restormer [Zamir et al.| (2022)) leverages multi-Dconv head transposed attention and a gated-Dconv
feed-forward network to restore high-quality images, while IDT 2022) employs a dual
Transformer with window- and spatial-based designs for rain streak and raindrop removal.

All raindrop removal methods are trained on the Raindrop Clarity dataset|Jin et al | to acquire
raindrop removal capabilities. Raindrop Clarity is a dataset containing both daytime and nighttime
image pairs, though we only use the daytime data for training. Furthermore, Raindrop Clarity in-
cludes both background-focused and raindrop-focused image pairs, making it well-suited for our
task.

3.3 RAINDROP-AWARE 3DGS EVALUATION

With the estimated camera poses and initialized point cloud, we proceed to evaluate four represen-

tative 3DGS methods: 3DGS [Kerbl et al| (2023)), WeatherGS [Qian et al.| (2024), GS-W [Zhang et al.

(2024), and 3DGS-MCMC [Kheradmand et al.| (2024).




Under review as a conference paper at ICLR 2026

Training Views GT VGGT-Uformer-MCMC VGGT-Restormer-MCMC

Training Views GT Background-COLMAP-MCMC Background-VGGT-MCMC

Figure 4: Qualitative Comparison across data pre-processing: on the raindrop focused dataset, the
original 3DGS method loses the structural integrity of the reconstruction, whereas GS-w and 3DGS-
MCMC retain scene completeness to some extent. WeatherGS most faithfully reproduces the recon-
struction after raindrop removal but fails to correct background blur. On the background focused
dataset, all methods perform at a moderate level and exhibit residual white haze, consistent with our
quantitative analysis.

Among these, 3DGS serves as a standard baseline for 3D Gaussian splatting.
WeatherGS (2024) incorporates single-image raindrop removal, so we omit the explicit
raindrop removal step in its data processing pipeline. GS-W [Zhang et al. (2024) is specifically
designed for challenging conditions and unconstrained image collections, making it more robust to
inconsistent multi-view inputs. 3DGS-MCMC [Kheradmand et al.| (2024), on the other hand, does
not rely on accurate point cloud initialization. Each of the aforementioned methods has its own
advantages, making their evaluation in our benchmark both meaningful and insightful.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We standardize all scene images to a resolution of 1024 * 576 for uniform comparison. During
VGGT-based camera pose estimation and point cloud initialization, we follow the authors’ pre-
processing protocol, resizing each input image to 518 * 518 before processing. Likewise, for

Uformer [Wang et al| (2022) and Restormer [Zamir et al| (2022), we downscale images to 256 *
256, and then tile the results to restore the original resolution.

For all 3DGS methods, we adhere to their official optimization settings, we run 30,000 iterations for
3DGS, WeatherGS, and 3DGS-MCMC, and 70,000 iterations for GS-W.

For 3DGS-MCMC, we set the initial point cloud size to 100,000, based on the number of points that
VGGT can initialize in our dataset. All models are implemented in PyTorch and trained concurrently
on 8§ NVIDIA RTX 3090 GPUs.
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Table 2: Comparison of camera pose estimation (AUC@30 Wang et al.| (2023)) and the number
of points in the point cloud between VGGT and COLMAP on background- and raindrop-focused
datasets.

VGGT COLMAP

BG-focused RD-focused BG-focused RD-focused

AUC@30 0.91 0.34 0.79 0.17
3D points 69401.11 0 5476.89 302.50

Table 3: Comparison of the performance of different deraining methods. Uformer Wang et al.
(2022) achieves the best performance, Restormer|Zamir et al.|(2022) attains performance that closely
matches Uformer’s.

PSNR 1 SSIM LPIPS |

IDT Uformer Restormer IDT Uformer Restormer IDT Uformer Restormer

22.025  26.731 26.249 0.623 0.808 0.784 0.251 0.162 0.171

4.2 QUANTITATIVE COMPARISON

Table [ compares the impact of background-focused (BG-focused) and raindrop-focused (RD-
focused) captures on 3DGS performance using VGGT [Wang et al.| (2025)). For the original 3DGS
method, raindrop-focused images exhibit a 4 dB drop compared to background-focused images, due
to background blur and light refraction. VGGT processes all scenes but generates a point cloud with
0 points for raindrop-focused images, for which we use a randomly initialized point cloud.

Table 2] and Table [5|compares the performance of VGGT [Wang et al|(2025) and COLMAP [Schon-
berger & Frahm| (2016b). For camera pose estimation, we use VGGT and COLMAP to estimate
poses on the ground-truth images and compare these estimates with the poses obtained from the
corresponding images. VGGT yields more accurate camera pose estimates; both methods accu-
rately recover poses for background-focused images but exhibit substantial performance degradation
on raindrop-focused images. In terms of point cloud initialization, VGGT outperforms COLMAP
for background point clouds, yet it fails to initialize the raindrop-focused dataset. However, when
COLMAP successfully produces camera poses and an initialized point cloud, the original 3DGS
method achieves the best performance with Uformer|Wang et al.[(2022).

Table [3| reports the performance of different deraining/restoration methods on raindrop-affected
scenes. Uformer [Wang et al.| (2022)) and Restormer |[Zamir et al.| (2022) show comparable results,
with Uformer [Wang et al.[ (2022) slightly outperforming Restormer [Zamir et al.[ (2022) in recon-
struction metrics, while IDT Xiao et al.| (2022} lags substantially behind the other two methods.

For 3DGS methods, GS-W [Zhang et al.| (2024) with VGGT [Wang et al.| (2025) and Uformer Wang
et al.| (2022) preprocessing achieves the best performance (PSNR = 19.123), due to its adaptive
optimization strategy for handling occlusions and environmental variations in outdoor scenes. The
second best is 3DGS-MCMC [Kheradmand et al.| (2024) (PSNR = 18.239) on background-focused
scenes with IDT [Xi1ao et al.| (2022)) and VGGT, which shows robustness to initialization.

4.3 QUALITATIVE COMPARISON

Figures E] and E] show the qualitative results of 3DGS [Kerbl et al.| (2023)), WeatherGS |Qian et al.
(2024), GS-W Zhang et al.| (2024), and 3DGS-MCMC [Kheradmand et al.| (2024), along with their
Uformer Wang et al|(2022) and Restormer |[Zamir et al.| (2022)) outputs. Scenes with background-
focused images exhibit generally good performance, while raindrop-focused images pose signif-
icant reconstruction challenges due to the loss of background details and the presence of unde-
tected raindrops. Uformer and Restormer outperform WeatherGS in restoring raindrop-degraded
images. Among 3DGS variants, 3DGS suffers from detail loss, GS-W introduces artifacts, and
3DGS-MCMC offers improved quality over 3DGS. Weather-GS exhibits considerable blurriness
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Table 4: The quantitative evaluation of baseline approaches on the RaindropGS dataset. With VGGT
and Uformer preprocessing, GS-W achieves the best performence. These 3DGS variants excel on
background-focused dataset but show significantly lower performance on raindrop-focused dataset.

3DGS 3DGS-MCMC GS-W WeatherGS

Focus Metrics ~ Uformer  Restormer IDT Uformer  Restormer IDT Uformer  Restormer IDT /
RD PSNR?T 13.894 13.876 13.958 15.109 15.005 14.994 16.099 15.400 15.873 13.070
focus;d SSIM 1 0.346 0.345 0.350 0.383 0.380 0.383 0.512 0.484 0.511 0.307
LPIPS | 0.657 0.653 0.658 0.654 0.649 0.659 0.808 0.828 0.798 0.658
BG PSNR 1 17.906 17.741 18.094  18.219 18.148 18.239  19.123 19.074 17.818 17.124
focus_ed SSIM 1 0.478 0.469 0.480 0.482 0.477 0.483 0.555 0.550 0.507 0.428
LPIPS | 0.459 0.455 0.438 0.486 0.482 0.478 0.483 0.479 0.526 0.436

Table 5: Comparison of COLMAP and VGGT on RaindropGS background-focused datasets with
Uformer. Owing to unsuccessful camera pose estimation by COLMAP, 3DGS methods could not
be applied to the raindrop-focused datasets.

3DGS 3DGS-MCMC GS-W WeatherGS

COLMAP VGGT COLMAP VGGT COLMAP VGGT COLMAP VGGT

PSNR 1 19.512 18.167 17.919 18.248 18.339 20.033 18.094 17.099
SSIM * 0.603 0.473 0.492 0.474 0.588 0.613 0.504 0.428
LPIPS | 0.384 0.467 0.454 0.489 0.562 0.433 0.400 0.447

due to limitations in handling raindrop-degraded images but shows strong multi-view consistency.
In scenes that both COLMAP and VGGT successfully reconstruct, COLMAP recovers finer geo-
metric and photometric detail. However, under raindrop interference, COLMAP fails to reconstruct
any raindrop-focused scenes from its estimated camera poses and point clouds. By contrast, VGGT
demonstrates superior robustness.

4.4 DISCUSSION

Raindrop-focused and background-focused images perform distinctly in synthetic benchmarks.
Raindrop-focused images suffer significant reconstruction quality loss due to the absence of back-
ground detail, highlighting deficiencies in current raindrop feature modeling and background separa-
tion. These results reveal a substantial domain gap between synthetic environments and real-world
raindrop conditions, suggesting the need for future frameworks that integrate raindrop scattering
models and adaptive information completion to improve performance in real precipitation scenar-
ios. In camera pose estimation and point cloud initialization, more robust models will stabilize
reconstruction under raindrop conditions, as current methods struggle with point cloud initialization
when images are focused on raindrops. 3DGS methods that can effectively handle occlusions and il-
lumination variations will have a clear advantage. Additionally, developing better training strategies
for point cloud initialization is a key area for future research.

5 CONCLUSION

In summary, RaindropGS offers a novel benchmark for evaluating 3DGS methods under real-world
raindrop conditions. By addressing the limitations of previous synthetic datasets, we provide a more
accurate representation of 3DGS performance in practical, unconstrained environments. Through
the evaluation of multiple 3DGS variants, we identify the accumulated errors through camera pose
estimation, point cloud initialization, raindrop removal, and 3DGS methods. Our findings highlight
the strengths and weaknesses of existing approaches, offering insights into their performance un-
der raindrop-corrupted conditions. These results underscore the need for more robust techniques to
handle diverse raindrop characteristics and multi-view inconsistencies. RaindropGS not only con-
tributes to the advancement of 3D reconstruction under challenging conditions but also lays the
foundation for future research aimed at improving 3DGS performance in real-world applications.
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REPRODUCIBILITY STATEMENT

We captured a real-world dataset for raindrop-affected 3D Gaussian Splatting (3DGS) reconstruc-
tion. During acquisition, we recorded 2K-resolution video using a Canon R8 paired with an RF
24-50 mm lens. Randomly sprayed water droplets were applied to a 2 mm thick glass plate with
optical transmittance exceeding 98%, which served as the raindrop-bearing surface. The camera
and glass plate were rigidly mounted on commercially available tripods and kept stable throughout
capture. After recording, keyframes were extracted from the videos to construct the dataset. For
the benchmark comparisons, all code and implementations were obtained from publicly accessible
repositories and websites; the entire procedure is reproducible.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

The authors acknowledge the use of large language models (LLMs) for phrasing polishing and
grammar correction during manuscript preparation.

A.2 DATASET OVERVIEW

Table [] presents the statistics of our dataset, detailing the number of images under different condi-
tions (raindrop-focused, background-focused, and ground truth) for each scene. In total, we captured
1,018 images across 11 distinct scenes.

A.3 TECHNICAL DETAILS

Our dataset was collected using the video recording function of a fixed camera setup. The camera
and glass plate were kept stationary, while the water droplet spray was adjusted to vary the density,
position, and shape of the raindrops. Additionally, we modified the angle of the glass plate relative
to the vertical plane to mitigate potential reflective effects.

All images were initially captured at 2K resolution. For evaluation, we uniformly downsampled
the images to 1024 * 576 resolution. For single-frame raindrop removal using Uformer [Wang et al.
(2022) and Restormer [Zamir et al.| (2022), we apply full-resolution stitching to preserve spatial
resolution. Similarly, during 3DGS reconstruction, we maintained the same resolution to ensure
high-fidelity geometric consistency.

3DGS [Kerbl et al.| (2023), WeatherGS [Qian et al.| (2024), and 3DGS-MCMC Kheradmand et al.
(2024) share similar reconstruction and rendering times, each requiring approximately 15-20 min-
utes on our experimental setup, with training conducted over 30,000 iterations. In contrast, GS-
W [Zhang et al.| (2024) is officially recommended to be trained for 70,000 iterations, with total
training and rendering times ranging from 150 to 180 minutes. Although GS-W delivers strong
performance, its main limitation lies in its significantly longer training time.

A.4 FURTHER EXPERIMENTAL RESULTS

We conduct a thorough comparison of the 3DGS pipeline across different scenes. Table [§] sum-
marizes the quantitative performance of 3DGS |Kerbl et al.| (2023), WeatherGS |Qian et al.| (2024),
GS-W |Zhang et al.[(2024), and 3DGS-MCMC |[Kheradmand et al.[(2024). On the raindrop-focused
dataset, 3DGS-MCMC [Kheradmand et al.| (2024) achieves the highest performance on the rusty-
desk scene, with a PSNR of 18.572, followed closely by GS-W [Zhang et al.| (2024) with a PSNR
of 18.463. On the background-focused dataset, GS-W [Zhang et al.| (2024) demonstrates the best
performance on the same scene, reaching a PSNR of 21.688. Qualitative analysis in Figure [6] also
shows this conclusion. These results suggest that different types of raindrop occlusions may require
distinct processing strategies for optimal performance.

In Table O] we compare two of three state-of-the-art single-image raindrop removal algorithms:
Uformer Wang et al.[(2022) and Restormer|Zamir et al.[(2022). Uformer|Wang et al.| (2022) demon-
strates slightly better performance across the evaluated metrics. In the qualitative analysis shown
in Figure E} it can be seen that Uformer Wang et al| (2022) and Restormer Zamir et al. (2022)
have similar raindrop removal capabilities, but neither can completely remove raindrops. On the
raindrop-focused dataset, they also introduce additional artifacts.

In Table [/} we compare the impact of COLMAP |Schonberger & Frahm| (2016b) and VGGT [Wang
et al.| (2025) on the performance of 3DGS reconstruction in the presence of raindrop degradation,
using Uformer Wang et al.| (2022) for single-image restoration. COLMAP |Schonberger & Frahm
(2016b) achieves superior performance when it successfully completes point cloud initialization and
camera pose estimation. However, COLMAP [Schonberger & Frahm|(2016b) fails to perform these
steps across the entire raindrop-focused dataset. Furthermore, several scenes in the background-
focused dataset also encounter initialization failures, resulting in the breakdown of subsequent 3DGS
methods reconstruction. In the qualitative analysis shown in Figure [/, COLMAP |Schonberger &
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Table 6: Summary of image counts in our dataset across different capture conditions (raindrop-
focused, background-focused, and ground truth) for each of the 11 scenes.

Scene Raindrop-focused = Background-focused =~ GT
corner 32 32 32
beartoy 29 29 29
bicycle 31 31 31
dustbin 30 30 30
flover 24 24 24
parkbear 28 28 28
popmart 31 31 31
rustdesk 28 28 28
siyuanstone 53 53 53
train 0 32 32
yingjitongdao 32 32 32
Total 318 350 350

Table 7: Quantitative analysis of the impact of camera pose estimation and point cloud initialization
using COLMAP |Schonberger & Frahm| (2016b) and VGGT [Wang et al.| (2025) on 3DGS raindrop
reconstruction performance. COLMAP failed entirely on the raindrop-focused dataset, and thus
only results on the background-focused dataset are reported in the table. Diagonal entries in the
table indicate reconstruction failures due to unsuccessful camera pose estimation. Notably, in the
cases where COLMAP succeeded, it outperformed VGGT.

VGGT (3DGS) COLMAP (3DGS) VGGT (GS-W) COLMAP (GS-W) VGGT (WeatherGS) COLMAP (WeatherGS)

Scene PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
corner 17.458 0.453 0.453 / / / 19.253 0.561 0.387 / / / 17.282 0.392 0.413 / / /
beartoy 17.249 0.625 0.435 21.452 0.785 0.343 19.474 0.711 0.415 18.623 0.688 0.451 15.611 0.584 0.442 19.993 0.723 0.332
~ bicycle 19.670 0.456 0.353 20.822 0.647 0.253 19.722 0.496 0.361 17.864 0.443 0.559 19.278 0.404 0.328 20.227 0.512 0.280
;‘") dustbin 16.780 0.374 0.568 19.414 0.516 0.431 19.205 0.484 0.691 / / /- 17.069 0.347 0.467 / / /
:é flover 14.272 0.188 0.578 16.649 0.336 0.464 14.814 0.283 0.667 / / /- 9.977 0.098 0.723 10.710 0.118  0.726
g parkbear 17.479 0.435 0.464 / / / 18.953 0.507 0.490 / / / 17.271 0.376 0.441 / / /
popmart 17.404 0.631 0.506 16.376 0.665 0.473 17.632 0.714 0.500 15.776 0.680 0.608 15.995 0.582 0.496 15.202 0.598 0.459

rustydesk 21.255 0.484 0.429 21.741 0.615 0.377 21.498 0.543 0.499 17.813 0.500 0.704 20.721 0.419 0.365 21.726 0.539 0.322
siyuanstone  20.538 0.552 0.402 20.128 0.659 0.349 21.688 0.603 0.439 21.620 0.627 0.489 21.043 0.564 0.307 19.990 0.586 0.334
yingjityongdao 16.957 0.582 0.406 / / / 18.986 0.650 0.431 / / /16997 0.519 0.380  / / /

Frahm| (2016b)) successfully provided initialization information for 3DGS raindrop reconstruction,
resulting in more detailed information.
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Table 8: Quantitative comparison of the four methods: 3DGS [Kerbl et al.| (2023)), WeatherGS |Qian
et al. (2024), GS-W [Zhang et al.| (2024), and 3DGS-MCMC |Kheradmand et al.[ (2024). 3DGS-
MCMC [Kheradmand et al.| (2024) achieves the best performance on the raindrop-focused dataset,
while GS-W [Zhang et al.|(2024) performs best on the background-focused dataset.

3DGS WeatherGS GS-W 3DGS-MCMC
Scene PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
corner 13.420 0.341 0.650 13.642 0.336 0.639 15.594 0.535 0.903 13.839 0.361 0.663
beartoy 11.616 0.415 0.629 10.929 0.365 0.643 14.053 0.607 0.729 13.525 0.499 0.599
— bicycle 13.586 0.259 0.683 13.583 0.252 0.675 15.755 0.429 0.897 14.894 0.287 0.703
qé dustbin 15.770 0.325 0.670 14.744 0.267 0.690 18.032 0.472 0.800 17.818 0.359 0.626
é flover 13.121 0.145 0.706 9.977 0.098 0.723 13.247 0.269 0.847 12.815 0.153 0.715
E parkbear 14301 0.306 0.649 12.987 0.267 0.655 15.838 0.475 0.809 14.843 0.330 0.662
popmart 13.271 0.520 0.593 12.234 0.461 0.609 15.691 0.693 0.648 15.276 0.602 0.562
rustydesk 16.927 0367 0.659 16.209 0.351 0.651 18.463 0.514 0.811 18.572 0.385 0.665
siyuanstone 12.665 0.367 0.702 12.647 0.340 0.675 16.620 0.540 0.891 13.473 0.387 0.722
yingjityongdao 14.261 0.416 0.624 13.748 0.340 0.617 17.701 0.589 0.744 16.039 0.461 0.625
corner 17.458 0.453 0.453 17.282 0.392 0.413 19.253 0.561 0.387 17.928 0.470 0.465
'03 beartoy 17.249 0.625 0.435 15.611 0.584 0.442 19.474 0.711 0.415 18.888 0.662 0.421
§ bicycle 19.670 0.456 0.353 19.278 0.404 0.328 19.722 0.496 0.361 18.777 0.428 0.436
ZB dustbin 16.780 0.374 0.568 17.069 0.347 0.467 19.205 0.484 0.691 19.449 0.431 0.483
A flover 14272 0.188 0.578 9.977 0.098 0.723 14.814 0.283 0.667 12.868 0.153 0.654
parkbear 17.479 0.435 0464 17.271 0.376 0.441 18.953 0.507 0.490 17.609 0.417 0.522
popmart 17.404 0.631 0.506 15995 0.582 0.496 17.632 0.714 0.500 17.894 0.683 0.457
rustydesk 21.255 0.484 0.429 20.721 0.419 0.365 21.498 0.543 0.499 19.695 0.423 0.564

siyuanstone 20.538 0.552 0.402 21.043 0.564 0.307 21.688 0.603 0.439 20.482 0.545 0.429
yingjityongdao 16.957 0.582 0.406 16.997 0.519 0.380 18.986 0.650 0.431 18.598 0.603 0.427

Table 9: Quantitative analysis of the performance of two single-image restoration methods,
Uformer Wang et al.| (2022) and Restormer |Zamir et al.| (2022), applied to 3DGS methods.
Uformer Wang et al.| (2022)) achieved slightly better performance than Restormer|Zamir et al.|(2022)
in enhancing image quality for 3D reconstruction.

Uform. (3DGS) Restorm. (3DGS) Uform. (GS-W) Restorm. (GS-W) Uform. (GS-MCMC) Restorm. (GS-MCMC)

Scene PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
corner 13.420 0.341 0.650 13.170 0.332 0.653 15.594 0.535 0.903 15.673 0.532 0.890 13.839 0.361 0.663 13.709 0.359 0.663
beartoy 11.616 0.415 0.629 11.535 0.428 0.623 14.053 0.607 0.729 14.103 0.597 0.743 13.525 0.499 0.599 12.976 0.484 0.605
— bicycle 13.586 0.259 0.683 13.469 0.248 0.671 15.755 0.429 0.897 15.314 0.428 0.904 14.894 0.287 0.703 14.755 0.283 0.686
E dustbin 15.770 0.325 0.670 15.673 0.319 0.667 18.032 0.472 0.800 18.120 0.472 0.793 17.818 0.359 0.626 17.566 0.357 0.617
é flover 13.121 0.145 0.706 12.972 0.143 0.712 14.814 0.283 0.667 7.013 0.002 1.066 12.815 0.153 0.715 12.708 0.152 0.715
2 parkbear 14.301 0.306 0.649 14.246 0.301 0.648 15.838 0.475 0.809 16.013 0.479 0.813 14.843 0.330 0.662 15.176 0.336 0.653
popmart 13.271 0.520 0.593 13.535 0.536 0.585 15.691 0.693 0.648 16.119 0.695 0.647 15.276 0.602 0.562 15.095 0.605 0.559
rustydesk 16.927 0.367 0.659 17.251 0.367 0.655 18.463 0.514 0.811 18.219 0.515 0.800 18.572 0.385 0.665 18.373 0.382 0.662

siyuanstone 12.665 0.367 0.702 12.707 0.368 0.697 19.620 0.540 0.891 15.997 0.533 0.895 13.473 0.387 0.722 13.732 0.385 0.711
yingjityongdao 14.261 0.416 0.624 17.379 0.588 0.391 17.701 0.589 0.744 17.425 0.585 0.733 16.039 0.461 0.625 15.957 0.456 0.621

corner 17.458 0.453 0.453 17.570 0.450 0.442 19.253 0.561 0.387 19.101 0.558 0.366 17.928 0.470 0.465 17.944 0.477 0.452
beartoy 17.249 0.625 0.435 17.128 0.609 0.449 19.474 0.711 0.415 19.755 0.701 0.426 18.888 0.662 0.421 18.877 0.651 0.430
- bicycle 19.670 0.456 0.353 19.379 0.447 0.373 19.722 0.496 0.361 19.412 0.486 0.402 18.777 0.428 0.436 18.615 0.425 0.451
E dustbin 16.780 0.374 0.568 16.258 0.358 0.548 19.205 0.484 0.691 19.701 0.487 0.651 19.449 0.431 0.483 19.194 0.428 0.459
é flover 14.272 0.188 0.578 14.154 0.175 0.582 14.814 0.283 0.667 14.362 0.275 0.686 12.868 0.153 0.654 12.832 0.151 0.649
g parkbear 17.479 0.435 0.464 17.513 0.431 0.449 18.953 0.507 0.490 18.931 0.504 0.473 17.609 0.417 0.522 17.507 0.407 0.520
popmart 17.404 0.631 0.506 16.351 0.611 0.513 17.632 0.714 0.500 17.451 0.709 0.518 17.894 0.683 0.457 18.645 0.682 0.452

rustydesk 21.255 0.484 0.429 20.854 0.476 0.402 21.498 0.543 0.499 21.345 0.532 0.395 19.695 0.423 0.564 19.316 0.414 0.551
siyuanstone  20.538 0.552 0.402 20.824 0.546 0.397 21.688 0.603 0.439 21.572 0.597 0.442 20.482 0.545 0.429 20.179 0.538 0.438
yingjityongdao 16.957 0.582 0.406 17.379 0.588 0.391 18.986 0.650 0.431 19.115 0.639 0.432 18.598 0.603 0.427 18.377 0.601 0.423
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