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Abstract

In our continuously evolving world, entities change over time and new, previously
non-existing or unknown, entities appear. We study how this evolutionary scenario
impacts the performance on a well established entity linking (EL) task. For that
study, we introduce TempEL, an entity linking dataset that consists of time-stratified
English Wikipedia snapshots from 2013 to 2022, from which we collect both anchor
mentions of entities, and these target entities’ descriptions. By capturing such
temporal aspects, our newly introduced TempEL resource contrasts with currently
existing entity linking datasets, which are composed of fixed mentions linked
to a single static version of a target Knowledge Base (e.g., Wikipedia 2010 for
CoNLL-AIDA). Indeed, for each of our collected temporal snapshots, TempEL
contains links to entities that are continual, i.e., occur in all of the years, as well as
completely new entities that appear for the first time at some point. Thus, we enable
to quantify the performance of current state-of-the-art EL models for: (i) entities
that are subject to changes over time in their Knowledge Base descriptions as well
as their mentions’ contexts, and (ii) newly created entities that were previously
non-existing (e.g., at the time the EL model was trained). Our experimental results
show that in terms of temporal performance degradation, (i) continual entities suffer
a decrease of up to 3.1% EL accuracy, while (ii) for new entities this accuracy drop
is up to 17.9%. This highlights the challenge of the introduced TempEL dataset and
opens new research prospects in the area of time-evolving entity disambiguation.1

1 Introduction

Entity linking (EL) is a well-established task that is concerned with mapping anchor mentions in
text to target entities that describe them in a Knowledge Base (KB) (e.g., Wikipedia).2 Existing
benchmark datasets for EL [73, 66, 71, 57] are composed of a fixed set of annotated mentions linked
to a single version of a target KB. This static setup is oblivious to the inherently non-stationary
nature of the entity linking task where both target entities as well as anchor mentions change over
time. The example in Fig. 1 illustrates this time-evolving essence of entity linking with a simple
evolutionary comparison between Wikipedia 2013 and 2022. It showcases two scenarios studied in
the current paper: (i) temporal evolution of existing (continual) entities across temporal snapshots,

1TempEL dataset, code and models are made public at https://github.com/klimzaporojets/TempEL.
2Some of the related work [19, 37, 71, 88, 86] distinguishes between entity disambiguation and entity linking

tasks. This latter including mention detection and disambiguation in an end-to-end setting. In the current work,
we follow a more conservative naming convention [61, 78, 43, 53, 60], and use the term entity linking and entity
disambiguation interchangeably.
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The state power is vested with 
the President, the Mejlis 
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Cabinet of Ministers . . . 

 . . . the 125-seat Mejlis, as the 
lower chamber, the Parliament 
is now called the National 
Council . . .

The company has played a key 
role in distributing the 
Moderna and Johnson & 
Johnson vaccines . . .

2013

2022

. . .

The Assembly (Mejlis) is the legislative 
branch of Turkmenistan. It has 125 
members, elected for a �ve-year term 
single-seat constituencies. [ . . . ]

The Assembly (Turkmen: Mejlis) is 
since March 2021 the lower house of 
the National Council of Turkmenistan. It 
has 125 members, elected for [ . . . ]

The Janssen COVID-19 vaccine, or 
Johnson & Johnson COVID-19 vaccine, 
is a COVID-19 vaccine that was 
developed by Janssen Vaccines in [ . . . ]

Figure 1: Illustration of KB entities changing over time: the “Mejlis” entity changes over time (both
in its KB description and the contexts in which it is referenced to), while the Johnson & Johnson
vaccine is an entirely new one that did not exist before.

and (ii) appearance of new, previously non-existent entities. For instance, the description of the
continual entity The Assembly differs between Wikipedia 2013 and 2022. Furthermore, the context of
a mention “Mejlis” referring to The Assembly also changes over time. Conversely, the new entity
Janssen COVID-19 vaccine is newly introduced in 2021 with the corresponding mentions (e.g.,
“Johnson & Johnson” in Fig. 1) that are linked to it.

In this paper we introduce TempEL, a novel dataset to study this time-evolving aspect of the entity
linking task. We therefore extract 10 equally spread yearly snapshots from English Wikipedia entities
starting from January 1, 2013 until January 1, 2022. We use each of these temporal snapshots of
Wikipedia to also extract anchor mentions with the surrounding text. Thus, TempEL captures the
temporal evolution not only in the target entities as they are defined in the Wikipedia KB, but also in
the contexts of anchor mentions linked to these entities. Each of the 10 temporal snapshots of our
dataset is composed of training, test and validation sets with equal numbers of mentions and entities
across the snapshots. Furthermore, TempEL is designed to comprise mentions pointing to continual
entities across all the temporal snapshots, and to new entities inside a given temporal snapshot.

Finally, as a baseline, we finetune and evaluate the bi-encoder component of the BLINK model
[78] on the various temporal snapshots of our newly introduced TempEL dataset. The bi-encoder is
widely used in state-of-the-art entity linking models [88, 78] to retrieve the top K (in this work we
experiment with K = 64) candidate target entities for a given anchor mention context. Furthermore,
its straightforward finetuning and fast retrieval performance on millions of candidate entities [32],
make it an ideal choice to test on TempEL. Our experiments demonstrate a consistent temporal
model deterioration for mentions linked to both continual (3.1% accuracy@64 points) as well as
new (17.9% accuracy@64 points) entities. A more detailed analysis reveals that the maximum drop
in performance is observed for new entities that require fundamentally different world knowledge
that was not present in the corpus originally used to pre-train BERT. This is e.g. the case for new
entities related to COVID-19 for which the bi-encoder model suffers additional deterioration of 14%
accuracy@64 points compared to the rest of the new entities.

2 Related work

Our work is related to multiple different, yet interconnected research areas described below. First,
we explain how TempEL compares to the currently widely used entity linking datasets. Next, we
relate our work to already existing temporal datasets covering different aspects of the temporal
evolution of the data. Finally, we describe the existing entity-centric research efforts, comparing the
TempEL entity linking dataset to other datasets that heavily depend on the use of entities.
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Entity linking datasets Most current state-of-the-art EL models [81, 55, 10, 88, 9] report on
datasets from predominantly the news domain such as AIDA [25], KORE50 [25], AQUAINT [48],
ACE 2004, MSNBC [62], N3 [65], DWIE[87], VoxEL[68], and TAC-KBP 2010-2015 [28, 29].
Other frequently used datasets include the web-based IITB [38] and OKE 15/16 [51], as well as
the tweet-based Derczynski [13]. Additionally, larger yet automatically annotated datasets such as
WNED-WIKI and WNED-CWEB [20] have been also widely adopted. Finally, a number of resources
such as the domain-specific biomedical MedMentions [49], the zero-shot ZeShEL [43], and the multi
tasking DWIE [87] and AIDA+[86] datasets have been recently introduced. Many of the mentioned
datasets are further covered by entity linking evaluation frameworks such as GERBIL [73, 66] and
KILT [57] that provide a common interface to evaluate the models. Yet, the mentioned resources are
limited to static mention annotations linked to entities from a single version of a Knowledge Base.
This contrasts with our newly introduced TempEL dataset, where the anchor mentions as well as the
target entity descriptions are taken from different time periods. The datasets most closely related to
our work are the recently introduced WikilinksNED [17, 53] and ShadowLink [59]. WikilinksNED
contains only unseen mention-entity pairs in its test subset, thus encouraging the design of models
invariant to overfitting and memorization biases. Furthermore, ShadowLink contains overshadowed
entities: entities referred to by ambiguous mentions whose most likely target entity is different, e.g.,
the anchor mention “Michael Jordan” linked to the scientist instead of to the more widely referred to
target entity describing the former basketball player. We incorporate the challenges presented in both
of these datasets in TempEL (see Section 3.1 for further details).

Temporal datasets Research on temporal drift in data has gained a lot of interest in recent years.
The focus has mostly been on creating datasets to train language models on different temporal
snapshots of corpora derived from scientific [39], newswire [39, 15], Wikipedia [27], and Twitter [44]
domains. More recently, temporal datasets have appeared to address tasks such as sentiment analysis
[45, 50, 2], text classification [26, 22], named entity recognition [12, 64], question answering [39],
and entity typing [46], among others. However, the creation of datasets tackling the temporal aspect
of entity linking has largely been left unexplored. To the best of our knowledge, the dataset most
closely related to TempEL is diaNED, introduced by [3]. There, the authors annotate mentions that
require additional temporal information from the context to be correctly disambiguated. Conversely,
in TempEL both mentions and entities are extracted from evolving temporal snapshots.

Entity-driven datasets Recent research has demonstrated the benefits of incorporating entity
knowledge in various downstream tasks [82, 56, 79, 21, 74, 84, 42]. This progress has been accompa-
nied by the creation of entity-driven datasets for tasks such as language modeling [58, 1, 36], question
answering [85, 33, 31, 41, 70], fact checking [72, 54, 4] and information extraction [83, 87], to name
a few. Yet, recent findings [69, 18, 40, 75, 23, 63] suggest that entity representation and identification
(i.e., identifying the correct entity that match a given text) are among the main challenges that should
be solved to further increase performance on such datasets. We believe that TempEL can contribute to
addressing these challenges by: (i) encouraging research on devising more robust methods to creating
entity representations that are invariant to temporal changes; and (ii) improving entity identification
for non-trivial scenarios involving ambiguous and uncommon mentions (e.g., linked to overshadowed
entities as defined above).

3 The TempEL dataset

In this section we will provide details on how TempEL was constructed (Section 3.1), describing the
main components of the creation pipeline as sketched in Fig. 2. Furthermore, we discuss the aspects
taken into account to guarantee the overall quality of our dataset (Section 3.2). Finally, we present
statistics of TempEL (Section 3.3), illustrating its dynamically evolving nature.

3.1 Dataset construction

Snapshot Data Extraction As Fig. 2 indicates, we start from the history log dumps from February
1, 2022 of Wikipedia itself. We first filter these (see Entity Filter in Fig. 2) to: (i) exclude pages that
are irrelevant for TempEL (i.e., categories, disambiguation pages, redirects and lists); and (ii) select
the most temporally stable version of a Wikipedia page from the last month of the year in order to
avoid introducing more volatile and potentially corrupted content edits (see Section 3.2 for further
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Figure 2: The pipeline to create our TempEL dataset. All the components are explained in Section 3.1.

details). Next, the Wikipedia pages are cleaned (see Entity Cleaner in Fig. 2) by stripping from the
Wikitext markup content.3 We use both regular expressions as well as the MediaWiki API for more
difficult cases, such as the parsing of some of the Wikitext templates. Finally, we detect the mentions
(see Mention Detector in Fig. 2) in each of the Wikipedia entity pages, filtering out the ones that
point to anchors (i.e., subsections in Wikipedia pages), pages in languages other than English, files,
red links (i.e., links pointing to not yet existing Wikipedia pages) and redirects.

The output of the Snapshot Data Extraction step first of all includes a set of Entity and Mention
Attributes (e.g., the last modification date of the target entity), which are detailed in the supplementary
material (see Section A.6). These attributes form part of the final dataset, making it possible to
perform additional analyses of the results. Furthermore, the Inverted Index is generated to quickly
access the Wikipedia pages that include a mention for a given target entity. Finally, the Entity Text
files are extracted containing the (potentially yearly varying) textual content from the Wikipedia
entity definition, as well as anchor mentions therein. These mentions of Wikipedia anchors that link
to an entity will be extracted in the Snapshot Dataset Building step described further.

Snapshot Dataset Building Starting from the Snapshot Elements produced by the Snapshot Data
Extraction process described above, the actual TempEL dataset is now generated. The first step is to
apply an additional Filter to both entities and mentions with the goal of creating a more challenging
dataset. This is done by excluding mentions for which the correct entity it refers to has the highest
prior [80]. More formally, the mention prior is calculated as follows,

P (e|m) = |Ae,m|/|A∗,m|, (1)

where A∗,m is the set of all anchors that have the same mention m, and Ae,m is the subset thereof
that links to entity e. Additionally, we exclude the mentions whose normalized edit distance from the
target entity title is below an established threshold.4 By ignoring the mentions with the highest prior
and exact match with the title, we ensure that TempEL contains non-trivial disambiguation cases
where the naive approaches (e.g., defaulting to the most frequently linked entity for a given mention)
would fail [20, 43, 78, 59].

Furthermore, the entities are organized (see Organizer in Fig. 2) into two categories: (i) new, emerging
and previously non-existent entities that are introduced in a particular snapshot; and (ii) continual
entities across all the temporal snapshots. Next, the mentions are divided in separate subsets (i.e.,
train, validation and test), with the constraint of normalized edit distance between the mentions
in different subsets referring to the same target entity be higher than 0.2. This way, we expect to
discourage potential models from memorizing the mapping between mentions and entities [53].

Finally, the data is distributed equally (see Data Distributor in Fig. 2) across all of the temporal
snapshots. This way, the difference in performance can only be attributed to temporal evolution
and not to inconsistencies related to dataset variability (e.g., different number of training instances
in each of the temporal snapshots). Concretely, we enforce that the number of continual and new
entities as well as the number of mentions stays the same across the temporal snapshots (see Table 1).
We achieve this by performing a random mention subsampling in snapshots with higher number
of mentions, weighted by the difference in the number of mentions-per-entity. This produces a
very similar mention-entity distribution across the temporal snapshots. Finally, the filtered anchor
mentions are located in the cleaned Wikipedia pages (i.e., the Entity Text in Fig. 2) using the Inverted
Index created in the previous Snapshot Data Extraction step. The context of each of the mentions

3https://en.wikipedia.org/wiki/Help:Wikitext
4During the generation of TempEL, we use a threshold of 0.2.
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Table 1: Summary statistics of TempEL. The number of entities and mentions is the same across all
of the temporal snapshots.

Statistic Train Validation Test

Temporal Snapshots 10 10 10
Continual Entities 10,000 10,000 10,000

# Anchor Mentions 136,227 42,096 46,765
New Entities 373 373 373

# Anchor Mentions 1,764 1,231 1,450

is further paired with the respective content of target pages, outputting this way the final TempEL
dataset.

3.2 Quality control

Corrupted content Wikipedia is an open resource that relies on efforts of millions of Wikipedians
to update and extend its contents.5 As such, that content is not always reliable, with errors due
to human mistakes or intentional vandalism. Despite efforts to prevent the introduction of such
erroneous edits [77, 8, 76], we have detected numerous cases of corrupted entity descriptions during
our preliminary tests. As a result, we adopted a simple, yet very effective heuristic: for each of the
entities of a particular yearly snapshot, we select the most stable (i.e., the version of the entity that
lasted the longest before being changed) content of the last month of the year (December). Due
to the fact that most of the corrupted content is rolled back very quickly, and even automatically
by specialized bots [89, 30], this heuristic is very robust. We double checked the correctness of
the extracted content by manually inspecting the evolution of hundred entities with lowest Jaccard
vocabulary similarity between temporal snapshots and observed no obviously erroneous entries.

Entity relevance We filter out entities that have less than 10 in-links (i.e., number of mentions
linking to the entity) or contain less than 10 tokens in its Wikipedia page in order to avoid including
noisy content [17]. Additionally, in order to avoid evaluation bias towards mentions pointing to more
popular entities [55, 7], we limit the number of mentions per entity to 10 for our test and validation
sets. This way, we expect the accuracy scores to not be dominated by links to popular target entities
(i.e., entities with a big number of incoming links).

Content filtering We only consider mentions linked to the main Wikipedia articles describing
entities. The mentions pointing to anchors (subsections in a Wikipedia document), images, files, and
wiki pages in other languages are filtered out in Snapshot Data Extraction step (see Fig. 2). In this
step we also ignore pages that are not Wikipedia articles (e.g., files, information on Wikipedia users,
etc.) as well as redirect pages. This way, the target entities as well as anchor mentions in our dataset
are obtained from a cleaned list of candidate pages referring to entities that contain a meaningful
textual description in Wikipedia.

Dataset distribution During the construction of TempEL, we constrain the subsets to be of equal
size and contain similar mention-per-entity distributions across all the temporal snapshots. This is
implemented in Data Distributor sub-component of the dataset creation pipeline (see Section 3.1).
For example, the number of mentions linked to continual entities in our training subset is 136,227
across all of the snapshots (see Table 1 for further details). We argue that this setting will produce
uniform, structurally unbiased snapshots. This will allow to study exclusively the temporal effect
on the performance of the models for each of the different time periods. Our reasoning is supported
by previous work demonstrating that the size alone of the training set [44] as well as a different
distribution of the number of mentions per entity [55] can significantly affect the performance of the
final model. Furthermore, we do not constrain the total number of entities from the Wikipedia KB to
be equal across the temporal snapshots (see Fig. 4c), since we consider it a part of the evolutionary
nature of the entity linking task (i.e., the temporal evolution of the target KB) we intend to study.

5https://en.wikipedia.org/wiki/Wikipedia:Wikipedians
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Figure 3: Change of textual content of entities and context around mentions across temporal yearly
snapshots (x-axis).

Flexibility and extensibility Finally, we provide a framework that can be used to re-generate the
dataset with different parameters as well as to extend it with newer temporal snapshots. This includes
the option to generate a new dataset with a customized number of temporal snapshots (e.g., quarterly
instead of yearly spaced), different mention attributes (e.g., filtering by mention prior values), entity
popularity (e.g., filtering out entities that have more than a certain number of in-links), among others
(see Section A.4 of the supplementary material for a complete list).

3.3 Dataset statistics

Table 1 summarizes the dataset statistics. We divide each of the temporal snapshots into train,
validation and test subsets containing an equal number of continual and new entities. The number of
mentions differs between the subsets since we limit the number of mentions per entity to 10 in both
validation and test sets (see entity relevance in Section 3.2 for further details).

Additionally, we collect statistics related to temporal drift in content for both the target entities
(Figs. 3a and 3b) as well as the context around the anchor mentions (Fig. 3c). Concretely, Fig. 3a
visualizes Jaccard vocabulary similarity between the textual description of continual entities in 2013
and that of posterior yearly snapshots in TempEL. We observe a continual decrease, indicating that
on average, the content of the entity description in Wikipedia is constantly evolving in terms of
the used vocabulary. This is also supported by the graph in Fig. 3b, which showcases a continuous
temporal increase of the average value of normalized edit distance across continual entities. Finally,
Fig. 3c illustrates the temporal drift in the vocabulary (i.e., Jaccard vocabulary similarity) of the
context around the mentions pointing to the same entity. We find it experiences a more significant
change compared to the Jaccard similarity of entity content illustrated in Fig. 3a. This suggests that
the context around the anchor mentions is subject to a higher degree of temporal transformation
compared to that of target entities, making it an interesting item of future work.

4 Experiments

Our final TempEL comprises 10 different yearly snapshots and we evaluate entity linking (EL)
performance on each of them individually. This evaluation setup allows us to study the effect of
temporal corpus changes and assess the impact of increasing time lapses between the data used for
model training and that on which the EL model is deployed [22, 2, 46]. We train a bi-encoder baseline
EL model (detailed in Section 4.1) on the temporal snapshots from 2014 to 2022 separately and then
evaluate EL performance using the test sets of both past and future snapshots.

More specifically, our experiments aim to answer the following research questions: (Q1) Does a fixed
entity linking (EL) model’s performance degrade when applied to newer content? (Q2) How does
finetuning an EL model on more recent training data affect its performance on both old and newer
content? (Q3) How does EL performance differ for resolving new versus continual entities?
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Figure 4: Statistics related to the analysis of the results (Section 4.2) across the temporal snapshots
(x-axis).

4.1 Baseline

We experiment with the bi-encoder [47, 16] baseline introduced in the BLINK model [78]. This
method independently encodes the mention contexts from the entity descriptions, and then performs
the retrieval in a dense space [35] by matching the context of each mention with the closest candidate
entities. For the entity description, we concatenate the title to the content of the page describing
a particular entity. Both mention context as well as entity descriptions are truncated to 128 BERT
tokens as per BLINK model [78]. Similarly to [2, 44], we start from a pre-trained BERT model,6
which we finetune using our TempEL snapshots’ training data — rather than fully re-training the
BERT language model on the respective year’s full Wikipedia corpus. We leave the latter full-fledged
BERT (re-)training approach for future work.

4.2 Results and analysis

The results for continual and new entities are shown in Table 2. The rows thereof represent the
snapshots whose train set we used to finetune the bi-encoder model, while the columns indicate the
snapshots test data each of the finetuned models was tested on. The used metric is accuracy@64,
which amounts to the fraction of anchor mentions in the test set for which the top-64 candidate entity
list from the EL model includes the correct target. We observe a consistent temporal decrease in
performance for continual entities (Q1). This is also reflected in Fig. 4b, which illustrates the average
temporal degradation across all the finetuned models. We hypothesize that this degradation over time
is because, as time evolves, the relative “semantic distance” between the ever growing number of
entities shrinks: entities become harder to distinguish from one another. In order to demonstrate this,
we calculate the Jaccard Similarity between consecutive descriptions of the top 64 candidate entities
returned by the bi-encoder. We observe a consistent increase in this similarity metric illustrated in
Fig. 4a. This growth in more similar entities is accompanied with a general increase in the number
of entities in the Wikipedia KB (see Fig. 4c). Consequently, the model is given an ever-increasing
number of candidate target entities, which can potentially impact its performance.

Furthermore, we analyze the impact finetuning on different snapshots has on the performance of
the model (Q2). To this end, we distinguish between in-snapshot and out-of-snapshot finetuning
setups. In in-snapshot setup, the bi-encoder model is finetuned and evaluated on the same snapshot.
Conversely, in out-of-snapshot setting, the model is evaluated on a different snapshot than the one
used for its finetuning. Figure 5a illustrates the difference in performance between the in-snapshot
and out-of-snapshot predictions for new and continual entities. We observe a general increase in
performance for in-snapshot finetuning with a marginal gain for continual entities compared to the
new ones.7 This general lower impact of in-snapshot finetuning on continual entities, leads us to
hypothesize that the actual knowledge needed to disambiguate most of these entities in TempEL
changes very little with time. In order to verify this hypothesis, we randomly selected 100 continual

6We use BERT-large, which is trained on a Wikipedia snapshot from 2018 [34].
7We analyze more in detail the difference in performance between new and continual entities in next

paragraphs when addressing (Q3).
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Table 2: Accuracy@64 for continual (top) and new (bottom) entities. The intensity of colors is set on
a row-by-row basis and indicates whether performance is better or worse compared to the year the
model was finetuned on (i.e., the values that form the white diagonal).

Continual Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.785 0.782 0.778 0.772 0.769 0.762 0.758 0.758 0.754 0.750
2014 0.792 0.790 0.785 0.781 0.777 0.771 0.767 0.767 0.763 0.760
2015 0.786 0.784 0.782 0.777 0.773 0.769 0.765 0.764 0.760 0.757
2016 0.789 0.784 0.781 0.777 0.773 0.768 0.763 0.763 0.758 0.755
2017 0.794 0.791 0.788 0.785 0.781 0.775 0.771 0.772 0.768 0.763
2018 0.791 0.788 0.786 0.782 0.778 0.773 0.769 0.769 0.764 0.760
2019 0.795 0.792 0.789 0.784 0.781 0.776 0.772 0.773 0.767 0.765
2020 0.787 0.783 0.782 0.777 0.774 0.768 0.765 0.765 0.761 0.756
2021 0.788 0.785 0.782 0.777 0.773 0.769 0.764 0.764 0.761 0.757
2022 0.790 0.787 0.783 0.779 0.776 0.771 0.768 0.768 0.764 0.760

New Entities

Train
Test 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2013 0.910 0.819 0.853 0.826 0.841 0.812 0.819 0.791 0.688 0.774
2014 0.908 0.848 0.862 0.827 0.843 0.832 0.842 0.814 0.704 0.791
2015 0.898 0.823 0.849 0.822 0.808 0.813 0.832 0.788 0.706 0.781
2016 0.897 0.832 0.862 0.832 0.839 0.823 0.823 0.802 0.718 0.791
2017 0.906 0.832 0.857 0.817 0.840 0.824 0.835 0.791 0.714 0.808
2018 0.908 0.835 0.858 0.830 0.846 0.853 0.835 0.806 0.728 0.803
2019 0.910 0.842 0.853 0.821 0.842 0.843 0.841 0.810 0.734 0.799
2020 0.903 0.828 0.844 0.835 0.843 0.819 0.833 0.817 0.728 0.811
2021 0.910 0.825 0.852 0.825 0.837 0.817 0.830 0.814 0.761 0.812
2022 0.905 0.846 0.852 0.820 0.830 0.830 0.832 0.808 0.732 0.823

entity-mention pairs, and compared the difference in both mention contexts and entity descriptions
between the years 2013 and 2022. We found that in most cases (>95%), while the textual description
of the continual entity is changed (supported by Figs. 3a–3b), its meaning remains the same.

Moreover, we address the second part of Q2 targeting the effect of timespan between the snapshot
used for finetuning and the one used for evaluation. To accomplish this, in Fig. 5b we showcase
the impact of in-snapshot finetuning relative to the temporal offset between the snapshot the model
was tested and the snapshot the model was finetuned on. For negative temporal offset,8 we observe
a decrease in the performance difference between in-snapshot and out-of-snapshot setups as the
offset approaches to zero. This indicates that the model can benefit more from recent snapshots
than from snapshots further in the past. Curiously, we observe a slight increase in performance for
out-of-snapshot continual entities trained on future snapshots (positive temporal offsets in Fig. 5b).
This suggests that the changes in continual entities are accumulative in Wikipedia, with later versions
of entity descriptions also including the information from the past. For instance, we have observed
that for entities describing people, the newly added information on the occupation (e.g., soccer coach)
is appended to the occupation description a person had in the past (e.g., soccer player).

Next, we analyze the EL performance on new entities and whether they are differently affected than
the continual ones (Q3). We plot the in-snapshot and out-of-snapshot average temporal change in
accuracy@64 scores across all finetuned models for both types of entities in Fig. 4b. We observe
that, in general, the performance on new entities is superior to that on continual ones. Furthermore,
as observed above, the performance gain from in-snapshot finetuning on new entities is superior
compared to that on continual ones (supported by Fig. 4b and Figs. 5a–5b). This difference suggests
that new entities require a higher degree of additional snapshot-specific knowledge to be correctly

8Evaluation snapshot comes from later time period than the snapshot the model was finetuned on.
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Figure 5: Impact of finetuning and evaluating on the same snapshot (in-snapshot) compared to
finetuning and evaluating on different snapshots (out-of-snapshot). We observe: (a) a superior impact
of in-snapshot finetuning on new entities compared to continual ones, (b) a decrease in performance
when finetuning on increasingly older spanshots, and (c) dominant effect of in-snapshot finetuning on
entities that require fundamentally new knowledge (e.g., COVID-19 related entities).

disambiguated. Additionally, the graph in Fig. 4b reveals that this delta in performance is larger for
more recent years (starting from 2018). We hypothesize that this behaviour is due to the fact that the
used original BERT model[14] has not been exposed to more recent new entities during pre-training.
It also suggests a complementary effect between task-specific finetuning on TempEL dataset and
language model pre-training on larger corpora.

Furthermore, to better understand the superior performance on new entities, we manually analyze 100
randomly selected new entities from our dataset. We found that a large majority (∼90%) of entities
were either events that are recurrent in nature (e.g., “2018 BNP Paribas Open”) (∼68%) or extracts of
already existing pages (∼22%). We conjecture9 that these entities require little additional knowledge
to be disambiguated, since either they already exist (as part of the content of other entities) or are very
similar to already existing entities in Wikipedia. This contrasts sharply with the performance drop
observed for new entities in the temporal snapshot 2021, as exhibited in both Fig. 4b and Table 2. This
decrease is mostly driven by COVID-19 related entities, which constitute 24% of the new entities,
which are linked to by 30% of the mentions in this spanshot. The disambiguation of these cases
requires completely new and fundamentally different, previously non-existent knowledge. Since this
knowledge is not present in the original corpus used to pre-train the BERT encoder nor in any of the
previous snapshots, our EL model based on it struggles.

Finally, we analyze the impact of new entities finetuning (Q2) on the temporal snapshot 2021, for
which our model exhibits the lowest temporal performance driven by COVID-19 disambiguation
instances (see above). Figure 5c showcases the impact of in- and out-of-snapshot finetuning on the
performance on COVID-19 related entities compared to other new entities for different thresholds K
of the accuracy@K metric. We observe a large difference in performance (up to 14% accuracy@64
points) between COVID-19 related and the rest of the instances for out-of-snapshot finetuning. This
difference is significantly decreased when finetuning on the 2021 snapshot (in-snapshot finetuning),
achieving superior accuracy on COVID-19 related entities for lower values of K compared to other
entities. In contrast, the difference between out- and in-snapshot performance on these non-COVID-
19 related entities (other entities in Fig. 5c) is marginal. This suggests that in-snapshot finetuning has
dominant impact on new entities that require fundamentally new, previously non-existent knowledge
in Wikipedia.

9See Section A.11 of the supplementary material for further details on the performance on these different
new entity types.
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5 Limitations and future work

A number of dataset and model-related aspects were left unexplored in the current work. Our
clarifications thereof below may help the community to understand the limitations and potential
future research directions to extend our efforts.

Effect of pre-training on new corpora Recent work has demonstrated the benefits of pre-training
language models on more recent corpora (e.g., the latest Wikipedia versions) when applied on
downstream tasks [2, 44]. We hypothesize that this pre-training may also improve EL performance
for our TempEL, especially for new entities that require new world knowledge.

Changes in mention context Our work focused mostly on changes in target entities, leaving the
effect of changes in mention context on EL performance unexplored. For example, Fig. 3c shows a
notable temporal drop in Jaccard vocabulary similarity of the context surrounding mentions. This
suggests that mentions, as well as the text surrounding them, are quite volatile and evolve over time,
making them an interesting subject for future research.

Cross-lingual time evolution Our dataset is limited to English Wikipedia. Yet, since recent work
[5, 11] has shown the benefits of training EL models in a cross-lingual setting, studying cross-
lingual temporal evolution of entity linking task may also be an interesting future research direction.
Furthermore, it will complement the recent growing interest in creating entity linking datasets for a
number of low-resourced languages [24, 52, 6, 67].

6 Conclusion

This paper introduced TempEL, a new large-scale temporal entity linking dataset composed of
10 yearly snapshots of Wikipedia target entities linked to by anchor mentions. In our dataset
creation pipeline, we put special focus on the quality assurance and future extensibility of TempEL.
Furthermore, we established baseline entity linking results across different years, which revealed
a noticeable performance deterioration on test data more recent than the training data. We further
examined the most challenging cases, suggesting the need for updating the pre-trained language
model of our EL model, at least to perform well on newly appearing entities that require new world
knowledge (e.g., in case of COVID-19). Finally, we described limitations of our work and discussed
potential future research directions.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See the supplementary materials.

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The link to the
dataset will be shared as part of the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] No additional computational resources for this, yet the
results across multiple temporal snapshots used to finetune are consistent.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See supplementary material
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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