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ABSTRACT

Large language models (LLMs) face significant challenges in providing reliable
uncertainty quantification for language generation. We introduce a novel confor-
mal prediction framework specifically designed to enhance this reliability through
Collaborative Ranking and Dynamic Thresholds. Our method innovatively departs
from traditional metrics by harnessing advanced LLM capabilities for comparative
judgment, allowing it to rank candidate responses and form a robust, rank-based
nonconformity score. This approach enables the construction of prediction sets
with rigorous statistical guarantees that inherently adapt to diverse input difficulties
and prompt complexities. Extensive experiments across varied question-answering
domains consistently demonstrate significant improvements in conditional cover-
age, delivering precisely calibrated LLM outputs demanding extended reasoning
and factual accuracy. We have provided code with implementation details in the
repository below: https://anonymous.4open.science/r/512499.

1 INTRODUCTION

Large Language Models (LLMs) generate human-like text across diverse tasks but often lack reliable
uncertainty quantification, leading to hallucinations (Ji et al., 2023; Huang et al., 2025a). This issue
is critical in high-stakes domains like healthcare or education, where factual accuracy is paramount
(Maynez et al., 2020; Tang et al., 2023).

Various approaches have been developed to quantify uncertainty in LLM outputs, including
probability-based thresholds for sentence-level calibration (Desai & Durrett, 2020; Huang et al.,
2025b), token-level early stopping (Glushkova et al., 2021; Mohri & Hashimoto, 2024), and LLM
self-evaluation (Kadavath et al., 2022b; Lin et al., 2022). However, these methods typically lack
formal statistical guarantees and struggle with consistency across different input types.

Conformal prediction (CP) (Vovk et al., 2005; Shafer & Vovk, 2008; et al., 2014; Luo & Zhou, 2026;
2025) offers a robust framework for providing statistical guarantees on model outputs without strong
modeling assumptions. It transforms predictions from any black-box model into valid prediction
sets, guaranteed to contain the true outcome with high probability. Recent work has applied CP to
LLMs for multiple-choice question answering (Kumar et al., 2023), token-level predictions (Ravfogel
et al., 2023), and confidence sets for open-ended generation (Quach et al., 2024). Mohri and
Hashimoto (Mohri & Hashimoto, 2024) notably introduced conformal factuality, using entailment
sets to dynamically adjust LLM responses while maintaining trustworthiness.

Despite these advances, existing CP methods for LLMs face significant limitations: they often provide
only marginal guarantees, failing to account for varying input difficulty (Cherian et al., 2024; Vovk,
2012); employ inefficient filtering due to weakly correlated scoring functions (Mohri & Hashimoto,
2024); and frequently violate the exchangeability assumption (Wang et al., 2025b).

To address these, we propose a novel collaborative ranking conformal method. This approach uses a
lower-version LLM to generate multiple candidate answers, which a higher-version model then ranks
by quality and factual accuracy. Conformal prediction is applied to the selected answer, establishing
statistical guarantees. This rank-based mechanism provides dynamic, instance-specific thresholds,
offering a more nuanced quality assessment than confidence scores and enhancing uncertainty
quantification.

Our main contributions are as follows:
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• We propose a ranking-based scoring function specifically designed for LLMs. This model
overcomes the limitations of traditional probabilistic metrics by collaboratively generating
response-evaluation rankings.

• Our approach adjusts the rank adaptively to the input difficulty, which enables instance-specific
ranking thresholds that dynamically respond to query difficulty, significantly renhancing condi-
tional coverage across diverse question types.

• We demonstrate through experiments on complex question-answering tasks that our approach
achieves superior performance compared to existing methods.

The remainder of this paper presents related work (Section 2), preliminaries and problem setup
(Section 3), details our rank-based conformal prediction methodology and explains how we enhance
conditional validity through difficulty-adaptive thresholds (Section 4). We then introduce the ex-
perimental design (Section 5) and evaluate our method on multiple question-answering benchmark
datasets (Section 6). Finally, we supplement the Appendix with ablation studies on individual
parameters(Appendix B), prompt design, and a specific implementation case(Appendix D).

2 RELATED WORK

2.1 CONFORMAL PREDICTION FOR LARGE LANGUAGE MODELS

Conformal Prediction (CP) Vovk et al. (2005) offers a distribution-free, model-agnostic framework
for statistically guaranteed prediction sets. Split CP (SCP) Hebiri (2010) simplifies this by dividing
data into calibration and test sets, suitable for modern machine learning.

Given LLM issues like hallucinations Ji et al. (2022), poor calibration Desai & Durrett (2020); Kong
et al. (2020), and biases Gallegos et al. (2023); Guo et al. (2022), reliable uncertainty quantification
is vital Min et al. (2023b). CP provides a principled solution with theoretical coverage guarantees
Angelopoulos & Bates (2022).

In question answering, Kumar et al. (2023) applied SCP to multiple-choice tasks, extended to open-
ended generation (white-box and black-box) by Quach et al. (2024); Wang et al. (2025b). Mohri
& Hashimoto (2024) introduced "conformal factuality" to filter invalid LLM claims. For sequence
generation, Deutschmann et al. (2024) extended beam search with CP for guaranteed sequence sets,
while Su et al. (2024) quantified LM uncertainty without logit access.

The combinatorial complexity of autoregressive text generation poses unique CP challenges. Ravfogel
et al. (2023) addressed overconfidence with conformal nucleus sampling and adaptive prediction
sets. Ulmer et al. (2024) extended this using non-exchangeable CP Barber et al. (2023) and k-nearest
neighbors in hidden state space. Yu et al. (2023) also developed coverage guarantees for beam search
despite intractable sequence space.

2.2 ENHANCED CONDITIONAL VALIDITY GUARANTEES

Traditional CP offers only marginal guarantees, often insufficient for specific inputs or groups. Gibbs
et al. (2025) introduced conditional CP to approximate guarantees for specified function classes.
Other work focused on group conditional guarantees Vovk (2012); Toccaceli & Gammerman (2019);
Gupta et al. (2020); Ding et al. (2023); Dunn et al. (2023); Kiyani et al. (2024), including Mondrian
CP for disjoint groups Vovk et al. (2003). Romano et al. (2020) achieved equitable coverage for
disjoint protected groups, and Foygel Barber et al. (2021) proposed a computationally intensive
method for overlapping groups. Jung et al. (2023) enhanced conditional coverage using quantile
regression with subgroup indicators, albeit with distributional assumptions.

Cherian et al. (2024) extended conditional guarantees to language models via level-adaptive CP,
employing "conditional boosting" and "level-adaptive prediction." Wang et al. (2025b)’s SConU
improved cross-domain guarantees by filtering uncertainty outliers, addressing exchangeability. For
multimodal LLMs, Wang et al. (2025a) developed TRON, a two-step framework for calibrating
response requirements and applying nonconformity scores for risk-controlled, high-quality outputs.

The efficacy of conformal methods depends on scoring functions. Stutz et al. (2022) automated score
improvement via differentiation through the split conformal algorithm. Kiyani et al. (2024) reframed
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score optimization as a min-max task for optimal LM conformal scores. These techniques enhance
practical utility, ensuring valid and informative prediction sets.

3 PRELIMINARIES

3.1 PROBLEM SETUP

We begin by formalizing the problem of uncertainty quantification in large language models (LLMs).
Let X denote the space of all possible input prompts and Y the space of all possible text responses.

To assess the factuality of generated content, we adopt the concept of entailment (Mohri & Hashimoto,
2024). We formalize correctness constraints in terms of entailment with respect to some reference
knowledge y∗. We define the entailment operator E : Y 7→ 2Y as:

E(y) := {y′ ∈ Y : y′ ⇒ y}, (1)

where y′ ⇒ y indicates that y′ entails y, i.e., E(y) contains all statements that logically imply y.

We define a split function S : Y → 2Y that decomposes a response into a set of atomic answers:

S(y) = {c1, c2, . . . , ck}, (2)

where each ci is an individual factual answer made in y. Conversely, we define a merge function
M : 2Y → Y that combines a set of answers into a coherent response:

M({c1, c2, . . . , ck}) = y, (3)

where y is a natural language text that integrates all answers ci in a coherent manner.

Given a ground truth reference y∗, a response y is considered factually correct if and only if
y∗ ∈ E(M(S(y))), which is equivalent to y∗ ⇒M(S(y)). This reflects the notion that a response is
factually correct if its component answers, when merged into a coherent statement, are entailed by
the truth.

Example: Consider a ground truth y∗: “Paris is the capital of France. It has a population of
approximately 2.2 million people and is home to the Eiffel Tower, which was completed in 1889.”
The response “Paris is the capital of France” is factually correct because y∗ ⇒ M(S(y)), as this
answer is directly supported by the ground truth. Similarly, “Paris is known for the Eiffel Tower,
which was built in the 1880s” is also correct, as the completion year 1889 entails construction in
the 1880s. However, the response “Paris is the capital of France and has a population of exactly 3
million people” is factually incorrect because y∗ ̸⇒M(S(y)), as the ground truth does not support
the specific population answer.

Let {(Xi, y
∗
i )}ni=1 represent our calibration dataset, where:

• Xi ∈ X denotes the input prompt

• y∗i ∈ Y is the reference/ground truth answer to prompt Xi

Our goal is to develop a method that produces responses with a guaranteed level of factual correctness.
Specifically, given a new input Xn+1, we aim to select a response such that the probability of it being
factually correct is at least 1− α for a desired error rate α ∈ (0, 1).

3.2 CONFORMAL FACTUALITY

Our approach is based on split conformal prediction, which provides valid uncertainty quantifi-
cation without distributional assumptions. In this setting, we split our data into a calibration set
{(Xi, y

∗
i )}ni=1 and a test set.

Given a nonconformity score function r : X × Y → R measuring the unusual nature of input-output
pairs, the standard conformal prediction framework constructs a prediction set Ĉα(X) for a new
input X such that:

P (y∗ ∈ Ĉα(X)) ≥ 1− α. (4)

3
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For a new test point Xn+1, we compute the conformal prediction set as:

Ĉα(Xn+1) = {y ∈ Y : r(Xn+1, y) ≤ q̂α}, (5)

where q̂α is the (1− α)-quantile of the nonconformity scores on the calibration set {r(Xi, y
∗
i )}ni=1.

In our LLM factuality setting, the connection to conformal prediction is direct: if yn+1 is our
calibrated model output for input Xn+1, then we want:

P (y∗n+1 ∈ E(M(S(yn+1)))) ≥ 1− α. (6)

This guarantees that our model’s calibrated output yn+1, when processed through our split and merge
functions, is factually correct with respect to the ground truth y∗n+1 with probability at least 1− α.

4 METHODOLOGY

4.1 RANK-BASED CONFORMAL PREDICTION FRAMEWORK

Our key innovation is a rank-based conformal prediction approach, RankConf, that leverages
the LLM’s ability to evaluate the quality of its own responses. Unlike existing approaches that
use log-probability or perplexity, we define a novel nonconformity score based on the ranking of
responses that captures the model’s relative confidence in its generated responses. This method
allows the calibrated LLM output to adapt naturally to input difficulty–providing precise answers
for straightforward questions while appropriately hedging on challenging ones. Our ranking based
approach is similar to the CDF-based conformity scores developed in (Dheur et al., 2025).

4.1.1 COLLABORATIVE RESPONSE GENERATION AND RANKING PROCESS

For each input Xi in our calibration set, our approach proceeds as follows:

1. Generate K candidate responses using a lower-version LLM L:
{L(1)(Xi), L

(2)(Xi), . . . , L
(K)(Xi)}.

2. Construct an extended response set Ri that includes both the generated responses and the ground
truth answer:

Ri = {L(1)(Xi), L
(2)(Xi), . . . , L

(K)(Xi), y
∗
i }. (7)

3. Have the high-version LLM ranks all responses in Ri based on their perceived quality, assigning
a rank : Y → {1, 2, . . . ,K + 1} to each response, where lower rank values indicate higher quality
(rank 1 is best).

4. For each response y ∈ Ri, check whether the ground truth y∗i entails the response by evaluating
whether y∗i ∈ E(M(S(y))).

Our collaborative response generation and ranking design draws inspiration from speculative decoding
strategies (Chen et al., 2023), creatively adapting this inference acceleration technique to uncertainty
quantification. Rather than using small models to predict tokens for verification by larger models as
in traditional speculative decoding, we employ lower-parameter LLMs to efficiently generate diverse
candidate responses while leveraging higher-parameter models’ superior evaluation capabilities
to rank these responses based on factual accuracy. This approach aligns with cognitive science’s
dual-process theory, where rapid generation (system 1) is followed by analytical evaluation (system
2), and extends (Kadavath et al., 2022a) that language models possess inherent ability to assess their
knowledge boundaries, but significantly enhances this capability through cross-model collaboration.

This design addresses the prohibitive cost of manual verification in specialized domains where human
expertise is required, as expert validation of model outputs demands significant time and resources. It
leverages the natural evolution of LLM platforms, where organizations typically maintain multiple
model versions—newer, more capable models can serve as evaluators for previously deployed systems
without requiring additional infrastructure. The dynamic threshold mechanism automatically adjusts
response selection based on input difficulty, preserving more content for straightforward queries while
applying stricter filtering for complex questions, thus optimizing the balance between information
richness and factual reliability.
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4.1.2 NON-CONFORMITY SCORE BASED ON RESPONSE RANKING

Given the ranked responses, we define our non-conformity score r(Xi, y
∗
i ) as:

r(Xi, y
∗
i ) := min{rank(y) | y ∈ Ri, y

∗
i /∈ E(M(S(y)))} − 1. (8)

This score represents the rank of the first factually incorrect response in the ranking, minus 1.
Intuitively, it tells us how far down the ranked list we can go while still maintaining factual correctness.
The subtraction of 1 accounts for the convention of returning the previous rank value when finding
the first incorrect response.

We determine the conformal threshold based on the calibration set:

q̂α = Quantile({r(Xi, y
∗
i )}ni=1, ⌈(n+ 1)(1− α)⌉/n). (9)

Using this threshold, for a new input Xn+1, we define our calibrated prediction function Lα : X → Y
as:

Lα(Xn+1) = M

 ⋃
j:rank(L(j)(Xn+1))≤q̂α

S(L(j)(Xn+1))

 . (10)

That is, Lα(Xn+1) merges answers from all responses with ranks not exceeding our threshold q̂α,
creating a comprehensive answer that maintains the coverage guarantee.

Theorem 4.1 (Factual Correctness Guarantee). Let {(Xi, y
∗
i )}

n+1
i=1 be exchangeable, and let q̂α be

the ⌈(n+ 1)(1− α)⌉/n-quantile of {r(Xi, y
∗
i )}ni=1. Then:

P (y∗n+1 ∈ E(M(S(Lα(Xn+1))))) ≥ 1− α. (11)

That is, the output of Lα(Xn+1) is factually correct with probability at least 1− α.

Proof. Let rn+1 = r(Xn+1, y
∗
n+1). By the properties of conformal prediction and the exchangeabil-

ity of the data, we have:
P (rn+1 ≤ q̂α) ≥ 1− α. (12)

By the definition of our non-conformity score, if rn+1 ≤ q̂α, then all responses L(j)(Xn+1)
with rank(L(j)(Xn+1)) ≤ q̂α must be factually correct. For each such response, we have
y∗n+1 ∈ E(M(S(L(j)(Xn+1)))). Since Lα(Xn+1) merges answers from these factually correct
responses, and the merge of factually correct answers maintains factual correctness, we have
y∗n+1 ∈ E(M(S(Lα(Xn+1)))). Therefore:

P (y∗n+1 ∈ E(M(S(Lα(Xn+1))))) ≥ P (rn+1 ≤ q̂α) ≥ 1− α. (13)

4.2 COMPLETE ALGORITHM

Our algorithm, Algorithm 1 consists of two phases: Calibration Phase and Prediction Phase.

This algorithm, which we call RankConf, uses the language model’s own ranking ability to determine
which responses are likely to be factually correct, while providing a mathematical guarantee that the
selected response is factually correct with probability at least 1− α.

The empirical coverage of our method is defined as the fraction of T test questions where the output
is factually correct:

Coverage =
1

T

T∑
t=1

1{y∗n+t ∈ E(M(S(Lα(Xn+t))))}, (14)

where T is the number of test questions and 1{·} is the indicator function.

5
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Algorithm 1 RankConf: Rank-Based Conformal Factuality

1: Input: Calibration data {(Xi, y
∗
i )}ni=1, language model L, confidence level 1− α

2: Output: A prediction function Lα : X → Y with factual correctness guarantee
3: Calibration Phase:
4: for i = 1 to n do
5: Low-version LLM generates K responses L(1)(Xi), L

(2)(Xi), . . . , L
(K)(Xi)

6: Ri ← {L(1)(Xi), L
(2)(Xi), . . . , L

(K)(Xi), y
∗
i }

7: High-version LLM obtains ranks for each response in Ri

8: r(Xi, y
∗
i )← min{rank(y) | y ∈ Ri, y

∗
i /∈ E(M(S(y)))} − 1

9: q̂α ← ⌈(n+ 1)(1− α)⌉/n-quantile of {r(Xi, y
∗
i )}ni=1

10: Prediction Phase:
11: for new input Xn+1 do
12: Low-version LLM generates K+1 responses L(1)(Xn+1), L

(2)(Xn+1), . . . , L
(K+1)(Xn+1)

13: High-version LLM obtains ranks for each response
14: Lα(Xn+1)←M

(⋃
j:rank(L(j)(Xn+1))≤q̂α

S(L(j)(Xn+1))
)

15: return Lα(Xn+1)

4.3 OPTIMIZATION FRAMEWORK FOR ENHANCED CONDITIONAL COVERAGE

While our basic RankConf method provides marginal coverage guarantees, we can enhance condi-
tional validity by adapting the threshold based on features of the input prompt. We call this enhanced
method AdaptiveRankConf. Following (Cherian et al., 2024), we define an adaptive threshold
function:

q̂α(Zn+1) = sup{r : r ≤ gr(Zn+1)}, (15)

where Zn+1 are features computed from the input prompt Xn+1, and gr is obtained by solving:

gr = argmin
g∈F

1

n+ 1

n∑
i=1

ℓα(Zi)(r(Xi, y
∗
i )− g(Zi)) +

1

n+ 1
ℓα(Zn+1)(r − g(Zn+1)). (16)

Here, F is a function class (e.g., linear functions of features), and ℓα(·) is the pinball loss at level α.

The feature vector Zi is constructed through several components. First, we have the LLM categorize
each of the n questions into difficulty groups Gi based on the question’s topic, yielding grouping
features ZG

i . We also generate comprehensive answers for each calibration question and extract
additional features including the question’s main topic, average response length, average Wikipedia
view count for related entities, and other metadata that may correlate with question difficulty. For
specific feature selection details, please refer to the dataset introduction in Section 5.

This adaptive approach essentially employs a question difficulty estimator to produce an instance-
specific threshold for the rank, allowing the threshold to vary based on the characteristics of each
prompt. This provides stronger conditional validity guarantees across different domains and question
types, as more difficult questions may require more conservative thresholds to maintain factual
correctness. Furthermore, by making the error level α(Z) adaptive to input features, we can balance
the trade-off between factuality and response quality dynamically.

5 EXPERIMENTAL SETUP

5.1 BASELINE METHODS AND OUR APPROACH

SplitConf (Mohri & Hashimoto, 2024): Employs sub-claim based filtering by decomposing responses
into approximately 10 sub-claims per query and filtering them based on confidence scores derived
from log-probability ratios of tokens. Implements static thresholds calibrated across the entire dataset.

CondSplitConf (Cherian et al., 2024): Also uses sub-claim based filtering but extends SplitConf
with input-dependent thresholds using question topic metadata.

6
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RankConf (Ours): Our rank-based conformal framework (Algorithm 1) operates at the whole-
response level, leveraging comparative judgment capabilities of LLMs to rank responses and establish
factuality guarantees.

AdaptiveRankConf (Ours): As described in Section 4.3, this enhancement incorporates input-
dependent thresholds while maintaining our response-level approach.

5.2 DATASETS

Datasets Split Unless otherwise specified, each experiment uses 50% for calibration and 50%
for test, repeated over 50 random splits. For conditional validity assessment, we naturally utilize
pre-grouped datasets such as MedicalQA, employing the difficulty levels already defined within the
dataset. For ungrouped datasets, we defined groups based on question difficulty levels, such as (level
1, 2, 3) determined by LLM assessment of the complexity and specialized knowledge required.

MedicalQA: (Jeong et al., 2024) focuses on long-form medical question-answering tasks. It combines
several established medical QA benchmark. This dataset comprises the following five categories:
HEALTHSEARCH_QA, KQA_GOLDEN, KQA_SILVER, LIVE_QA, and MEDICATION_QA. We have
naturally processed the dataset into five difficulty levels based on these categories as a feature vector.

Natural Questions (NQ): (Kwiatkowski et al., 2019) contains factual questions derived from Google
search engine queries, designed for open-ended question answering evaluation. Since the dataset
lacks a natural classification, we followed our previous design and divided it into three difficulty
levels using LLM.

FactScore: (Min et al., 2023a) evaluates factual accuracy in open-ended generation by assessing
claims against a comprehensive knowledge base. Following (Cherian et al., 2024), we grouped
Wikipedia subjects by page view counts as a feature vector: “Very Frequent” (≥1,000,000 views),
“Frequent” (100,000-999,999 views), “Medium” (1,000-99,999 views), “Rare” (100-999 views), and
“Very Rare” (<100 views).

MATH: (Hendrycks et al., 2021) comprises challenging mathematical problems that test reasoning
capabilities, where answers involve sequential solution steps. The difficulty classification of MATH
dataset is the same as NQ.

Following (Su et al., 2024), we generated experimental data using API Query interactions with real-
world question datasets. Our process involved: (1) prompting models to categorize input questions by
topic, difficulty level, and knowledge domain, with these categories serving as the groups for our
conditional coverage analysis, (2) The lower-version model generates long-text responses and splits
them into sub-answers. (3) The higher-version model provides high-quality rankings and entailment
annotation. (4) Our Conformal process provides factual filtering, after which the model merges the
filtered sub-answers to complete the output. The specific prompt design is given in Appendix B.

5.3 EVALUATION METRICS

Marginal Coverage: Percentage of test examples where the true response y∗ is included in the
prediction set as in Equation (14).

Coverage Gap (CovGap): Average absolute deviation between group-specific and target coverage
across groups, measuring conditional validity:

CovGap =
1

|G|
∑
g∈G
|Coverage(g)− (1− α)|. (17)

Tail Coverage Rate (TCR): Mean coverage across hardest and easiest 10% of questions:

TCR =
1

2

(∑
s∈Slower

1{y∗s ∈ Ĉ(Xs)}
0.1T

+

∑
s∈Supper

1{y∗s ∈ Ĉ(Xs)}
0.1T

)
, (18)

where Slower and Supper contain the 10% of questions with highest and lowest nonconformity scores.

7
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Set Size and Retention Rate: The size of the subanswers that can be returned to users after the test
set samples have been factually verified.

Ĉα(X) = |L(j)(X) | rank(L(j)(X)) ≤ q̂α|. (19)

A larger set size means that more subanswer are retained. Furthermore, we define the retention rate
as follow,

RetRate(Xn+1) =
|Ĉα(Xn+1)|

K
. (20)

6 EXPERIMENTAL RESULTS

In this section, we present the following three main results: (i) marginal and conditional coverage met-
rics at different alpha levels, (ii) results for Set size and Retention rate, and (iii) ablation experiments
examining the impact of different language model combinations on the K(numbers of subanswers)
and T (model temperature) parameters.

Here, we use the MedicalQA and NQ dataset as a case study with RankConf corresponds to SplitConf,
while AdaptiveRCf corresponds to CondSConf. Additional experimental results are reported in
Appendix G. In all figures presenting results, shaded areas indicate the standard deviation of marginal
coverage results in both positive and negative directions. In all tables, bolded data represents the
optimal result, and underlined data indicates the second-best result. To simplify the description , we
use I and II to represent the low-version and high-version models.

Our methods aim to (i) keep the same (1− α) marginal coverage, (ii) improve conditional coverage,
and (iii) under the user setting dynamic threshold, maximize the Set size and Retention rate.

Table 1: Experimental results of low-version model generation and high-version model ranking
(I-Model=gemini-2.0-flash, II-Model=gemini-2.5-pro, K = 50, T = 1, α = 0.1)

Dataset Method Coverage TCR@0.1 ↑ Covgap↓ Set size ↑ RetRate(%) ↑

MedicalQA

SplitConf 0.911 ± 0.027 0.888 0.058 15.10 ± 0.21 30.24
RankConf 0.909 ± 0.023 0.894 0.037 16.73 ± 0.15 33.48
CondSConf 0.903 ± 0.013 0.901 0.023 18.55 ± 0.58 37.10
AdaptiveRCf 0.901 ± 0.008 0.902 0.011 19.28 ± 0.70 38.56

NQ

SplitConf 0.912 ± 0.015 0.893 0.105 19.42 ± 0.13 38.84
RankConf 0.907 ± 0.021 0.899 0.093 20.73 ± 0.24 41.46
CondSConf 0.902 ± 0.012 0.897 0.057 21.52 ± 0.56 43.04
AdaptiveRCf 0.900 ± 0.009 0.901 0.051 23.11 ± 0.10 46.22

Core Indicators Performance. As shown in Table 1, all methods achieve high and comparable
coverage and TCR across both datasets, indicating that the overall ability to generate valid responses
is well preserved regardless of the ranking strategy. Specifically, RankConf—our improvement over
the baseline SplitConf—maintains similar coverage and TCR while enabling more informed selection.
Likewise, our adaptive method AdaptiveRCF matches or slightly improves upon its counterpart
CondSConf in these metrics. The differences become more pronounced in downstream effectiveness:
AdaptiveRCF yields the largest average set size (e.g., 23.11 on NQ), suggesting it retains more
diverse and potentially useful candidates, and consequently achieves the highest RetRate (46.22% on
NQ and 38.56% on MedicalQA). In contrast, SplitConf and CondSConf produce smaller candidate
sets and lower RetRate, discarding valuable outputs. In addition, we provide results on other datasets
in Appendix BTable 3.

Conditional Performance. Figure 1 shows the marginal and conditional coverage of the four
methods across question difficulty levels in MedicalQA and NQ. While all methods achieve marginal
coverage close to the target 1− α, their conditional coverage—especially for hard questions (Level
3)—differs markedly. SplitConf exhibits significant under-coverage on harder at high α, whereas
RankConf (our improvement) closes this gap by leveraging ranking information. Similarly, Cond-
SConf improves over SplitConf but still falls short on difficult instances, while our AdaptiveRCF
maintains near-ideal conditional coverage across all levels. In addition, we provide results on other
datasets in Appendix BTable 2
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(a) MedicalQA (b) Natural Question

Figure 1: Marginal and Conditional coverage of the four methods across three difficulty level groups
in the MedicalQA and NQ dataset, for α values ranging from 0.5 to 0.9.

Ablation Studies. In addition to the default parameter settings used in the main experiments (K =
50, T = 1), we also evaluate performance across a broader range of configurations: K ∈ {10, 100}
and T ∈ {0.7, 1.5}. As shown in in Appendix BTable 3, AdaptiveRCF and RankConf consistently
maintain high coverage and low CovGap across all these settings on both NQ and MedicalQA,
demonstrating strong robustness to variations in candidate set size and generation temperature. This
stability highlights that the adaptive and ranking-aware mechanisms in our methods effectively
mitigate the impact of hyperparameter choices, making them more reliable in practical applications.
Furthermore, we also evaluated the potential impact of different model combinations in Appendix B
Table 4. The results demonstrate that our two proposed methods can produce optimal factual screening
results even when applied to cross-platform model combinations.

7 CONCLUSION

In this paper, we propose a novel conformal prediction framework that quantifies uncertainty in lan-
guage model text generation through collaborative ranking and dynamic thresholds. Our RankConf
and AdaptiveRankConf employ ranking instead of relying on traditional probabilistic metrics. By
having lower-tier LLMs generate candidate answers and higher-tier models rank them, we establish a
robust factual filtering mechanism that adapts to varying input difficulty levels. This work provides a
principled solution for deploying LLMs in high-stakes applications.

Limitations. Although our framework achieves significant progress in quantifying uncertainty in
LLM contexts, several limitations warrant consideration.

1. Our approach assumes factual correctness can be reliably assessed through semantic en-
tailment relationships, which may fail to capture all dimensions of truthfulness in complex
reasoning tasks.

2. The method’s effectiveness depends on the quality of the ranking model performance may
decline when the gap between low- and high-ranking models is insufficient to capture subtle
factual differences.

3. Computational overhead of generating and ranking multiple candidate answers may pose
deployment challenges in latency-sensitive applications.

Future work could explore more sophisticated difficulty estimation techniques and investigate ex-
tending our framework to multi-step reasoning scenarios where intermediate steps require separate
quantification of uncertainty.
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REPRODUCIBILITY STATEMENT

Code is available at https://anonymous.4open.science/r/512499.The codebase in-
cludes implementations of our Algorithms, Model Query by API and Json dataset pre-processing
code for our tasksand functions for computing the metrics and producing tables.
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A ADDITIONAL DETAILS FOR EXPERIMENT

Default settings. All experiments use listwise ranking prompts with explicit entailment rubrics;
we standardize the merge prompt to enforce non-contradiction and de-duplication. Unless specified,
K=50, T=1.0,α=0.1, and top- q̂α(Z) selection uses features Z={question difficulty level, answer
length, question type, log-prob}.

Diverse Model Combinations. In our main experiments and ablation studies, we employed the
following sets of LLM combinations. First, in Section 6 and the primary experiments, we used model
pairs from the same platform: (1) I–Gemini-2.0-flash and II–Gemini-2.5-pro (Team et al., 2023),
(2) I–Deepseek-V3 and II–Deepseek-R1 (Liu et al., 2024), (3) I–Qwen2.0-7B and II–Qwen3.0-
7B (Yang et al., 2024). Additionally, in Appendix B Table 4, we supplemented our analysis with
cross-platform model combinations to investigate potential data distribution shifts: (4) I–Gemini-
2.0-flash and II–Qwen3.0-7B, (5) I–Qwen2.0-7B and II–Deepseek-R1, (6) I –Deepseek-V3 and
II–Gemini-2.5-pro. This combinations design was guided by model release dates and parameter
counts, under the general assumption that more recently released and larger-parameter models tend
to exhibit stronger capabilities. We prompt each LLMs to generate a long-text response for each
questions and decompose the original response into independent answers.

B ADDITIONAL EXPERIMENT RESULTS

Table 2: Experimental results of low-version model generation and high-version model ranking
(I-Model=gemini-2.0-flash, II-Model=gemini-2.5-pro, K = 50, T = 1, α=0.1)

Dataset Method Coverage TCR@0.1 ↑ Covgap↓ Set size ↑ RetRate(%) ↑

Fastscore

SplitConf 0.912 ± 0.022 0.923 0.105 25.10 ± 0.23 50.20
RankConf 0.907 ± 0.017 0.905 0.093 26.39 ± 0.15 53.46
CondSConf 0.902 ± 0.019 0.908 0.051 27.22 ± 0.50 57.08
AdaptiveRCf 0.899 ± 0.013 0.902 0.051 29.30 ± 0.70 57.65

MATH

SplitConf 0.883 ± 0.037 0.880 0.93 10.21 ± 0.020 20.42
RankConf 0.905 ± 0.020 0.905 0.059 12.73 ± 0.47 25.46
CondSConf 0.898 ± 0.013 0.901 0.047 12.10 ± 0.21 24.20
AdaptiveRCf 0.897 ± 0.007 0.896 0.031 14.73 ± 0.15 29.46

Ablation Across Diverse Model Pairs. Table 4 presents results across six different model pairs
using MedicalQA dataset. Across all settings, AdaptiveRCF consistently achieves low CovGap and
highest Set Size and RetRate, demonstrating its robustness to model capability gaps and distribution
shifts. Notably, even when the II-Model is from a different architecture or training paradigm,
AdaptiveRCF maintains superior conditional reliability, as reflected in its near-optimal Coverage and
TCR values—often ranking first or second in proximity to the ideal 0.9 target. Similarly, RankConf
consistently outperforms the baseline SplitConf in both Coverage/TCR and downstream utilization
metrics, validating the benefit of incorporating ranking signals into confidence calibration.These
results confirm that adaptive and ranking-aware strategies are essential for effective self-ranking,
particularly in realistic scenarios involving heterogeneous or black-box LLMs.

Feature Ablation and Coefficient Analysis. To systematically evaluate the contribution of each
feature to the coverage guarantee of the AdaptiveRCf , we conducted ablation studies and coefficient
analysis using feature metrics across two datasets. As shown in Table 5, AdaptiveRCf achieves
the smallest coverage gap (CovGap) when using the full feature set on both datasets, confirming
the synergistic value of our feature combination. Crucially, removing Wikipedia page views (a
key external feature) or LLM self-reported difficulty (a key internal feature) leads to substantial
increases in CovGap respectively demonstrating these features’ critical importance for conditional
coverage. Coefficient analysis in Table 6 further validates this finding, showing both features exhibit
strong, positive, and highly statistically significant predictive weights across datasets. While answer
length also exhibits consistent significance, the impact of question type is more moderate. These
complementary analyses provide robust evidence of our method’s adaptability, ensuring reliable
performance across diverse question types and domains.
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(a) Fastscore

(b) MATH

Figure 2: Marginal and Conditional coverage of the four methods in the Fastscore and NQ dataset,
for α values ranging from 0.5 to 0.9.
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Table 3: Ablation Experimental Results on NQ and MedicalQA with Different K and T Settings
(I-Model=gemini-2.0-flash, II-Model=gemini-2.5-pro, α = 0.1).

Dataset K T Metric SplitConf RankConf CondSConf AdaptiveRCF
M

ed
ic

al
Q

A

10 1.0
Coverage 0.885 ± 0.210 0.908 ± 0.050 0.912 ± 0.042 0.902 ± 0.210
Set size↑ 4.23 ± 0.05 4.67 ± 0.02 6.07 ± 0.72 6.72 ± 0.42
Covgap↓ 0.052 0.045 0.026 0.013

100 1.0
Coverage 0.906 ± 0.026 0.891 ± 0.035 0.899 ± 0.027 0.900 ± 0.014
Set size↑ 18.27 ± 0.17 18.91 ± 0.12 26.74 ± 0.24 28.12 ± 0.41
Covgap↓ 0.054 0.039 0.031 0.029

50 0.7
Coverage 0.897 ± 0.040 0.902 ± 0.003 0.896 ± 0.014 0.901 ± 0.090
Set size↑ 15.08 ± 0.05 15.12 ± 0.65 19.32 ± 0.62 19.58 ± 0.25
Covgap↓ 0.039 0.035 0.012 0.011

50 1.5
Coverage 0.894 ± 0.630 0.902 ± 0.310 0.900 ± 0.217 0.901 ± 0.180
Set size↑ 13.91 ± 0.20 13.11 ± 0.13 15.51 ± 0.33 16.18 ± 0.70
Covgap↓ 0.076 0.052 0.035 0.035

N
Q

10 1.0
Coverage 0.922 ± 0.007 0.903 ± 0.012 0.918 ± 0.022 0.902 ± 0.008
Set size↑ 5.27 ± 0.17 5.97 ± 0.06 6.07 ± 0.24 6.52 ± 0.08
Covgap↓ 0.079 0.053 0.015 0.014

100 1.0
Coverage 0.904 ± 0.044 0.900 ± 0.510 0.902 ± 0.620 0.900 ± 0.260
Set size↑ 25.20 ± 0.24 26.91 ± 0.34 32.69 ± 0.72 37.42 ± 0.25
Covgap↓ 0.031 0.029 0.011 0.009

50 0.7
Coverage 0.906 ± 0.102 0.898 ± 0.052 0.903 ± 0.084 0.900 ± 0.053
Set size↑ 16.53 ± 0.75 17.33 ± 0.61 19.32 ± 0.33 22.36 ± 0.87
Covgap↓ 0.073 0.051 0.015 0.011

50 1.5
Coverage 0.889 ± 0.021 0.895 ± 0.101 0.895 ± 0.042 0.902 ± 0.016
Set size↑ 14.71 ± 0.37 14.90 ± 0.51 17.30 ± 0.32 18.61 ± 0.47
Covgap↓ 0.086 0.062 0.030 0.028

Table 4: Experimental results using the MedicalQA dataset for different LLM pair combinations:
(1),(2),(3), represent combinations of models from the same platform, while (4),(5),(6) represent
combinations of models from different platforms. (K = 50, T = 1, α = 0.1).

Model Pairs Method Coverage TCR@0.1 CovGap↓ Set Size ↑ RetRate(%) ↑
(1) I–Gemini-2.0-flash and II–Gemini-2.5-pro SplitConf 0.911 ± 0.027 0.888 0.058 15.10 ± 0.21 30.24

RankConf 0.909 ± 0.023 0.894 0.037 16.73 ± 0.15 33.48
CondSConf 0.903 ± 0.020 0.901 0.023 18.55 ± 0.58 37.10
AdaptiveRCf 0.901 ± 0.012 0.902 0.011 19.28 ± 0.70 38.56

(2)I–Deepseek-V3 and II–Deepseek-R1 SplitConf 0.908 ± 0.023 0.912 0.065 15.64 ± 0.47 31.28
RankConf 0.905 ± 0.018 0.903 0.044 17.08 ± 0.07 34.16
CondSConf 0.902 ± 0.020 0.899 0.031 19.31 ± 0.20 38.62
AdaptiveRCf 0.900 ± 0.005 0.901 0.020 20.03 ± 0.25 40.06

(3)I–Qwen2.0-7B and II–Qwen3.0-7B SplitConf 0.915 ± 0.053 0.920 0.138 14.40 ± 0.93 28.80
RankConf 0.912 ± 0.018 0.913 0.088 14.89 ± 0.55 29.78
CondSConf 0.904 ± 0.012 0.903 0.064 19.01 ± 0.12 38.02
AdaptiveRCf 0.905 ± 0.009 0.903 0.047 18.92 ± 0.34 37.84

(4)I–Gemini-2.0-flash and II–Qwen3.0-7B SplitConf 0.885 ± 0.025 0.878 0.189 13.50 ± 0.30 27.15
RankConf 0.898 ± 0.022 0.896 0.133 15.23 ± 0.34 30.46
CondSConf 0.901 ± 0.013 0.902 0.083 17.13 ± 0.32 34.26
AdaptiveRCf 0.901 ± 0.010 0.901 0.064 17.02 ± 0.53 34.04

(5)I–Qwen2.0-7B and II–Deepseek-R1 SplitConf 0.882 ± 0.033 0.888 0.237 13.46 ± 0.77 26.92
RankConf 0.893 ± 0.028 0.895 0.151 14.83 ± 0.43 29.66
CondSConf 0.895 ± 0.029 0.897 0.083 16.73 ± 0.68 33.46
AdaptiveRCf 0.898 ± 0.022 0.898 0.066 16.92 ± 0.20 33.84

(6)I–Deepseek-V3 and II–Gemini-2.5-pro SplitConf 0.882 ± 0.023 0.890 0.209 15.48 ± 0.53 30.96
RankConf 0.893 ± 0.012 0.894 0.142 16.19 ± 0.31 32.38
CondSConf 0.894 ± 0.022 0.893 0.069 18.51 ± 0.64 37.02
AdaptiveRCf 0.895 ± 0.009 0.895 0.060 18.83 ± 0.81 37.66
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Table 5: Ablation study of feature contributions to AdaptiveRCf performance

Datasets Metric I – Full II – w/o III – w/o IV – w/o V – w/o
Feature Set Question difficulty Question type LLM log-prob Answer length

MedicalQA
Coverage 0.901 ± 0.008 0.897 ± 0.02 0.905 ± 0.61 0.899 ± 0.24 0.904 ± 0.35
Set Size ↑ 19.28 ± 0.70 16.43 ± 0.42 18.53 ± 0.09 16.95 ± 0.26 18.84 ± 0.20
CovGap ↓ 0.011 0.031 0.019 0.026 0.023

Datasets Metric I – Full II – w/o III – w/o IV – w/o V – w/o
Feature Set Wikipedia view counts Question type LLM log-prob Answer length

Factscore
Coverage 0.899 ± 0.013 0.895 ± 0.13 0.903 ± 0.61 0.898 ± 0.46 0.900 ± 0.83
Set Size ↑ 29.30 ± 0.70 9.68 ± 0.24 12.52 ± 0.24 10.02 ± 0.57 11.68 ± 0.31
CovGap ↓ 0.051 0.084 0.065 0.079 0.081

Table 6: Coefficient analysis of the experiment using features

Dataset Feature Coefficient ± SE Standardized Beta t-value p-value

MedicalQA

Intercept -0.79 ± 0.05 – -12.15 < 0.001
Question difficulty level 0.39 ± 0.04 0.28 8.13 < 0.001
Question type 0.09 ± 0.06 0.07 1.63 0.105
LLM log-prob 0.37 ± 0.04 0.32 9.74 < 0.001
Answer length 0.08 ± 0.02 0.15 2.86 0.005

Factscore

Intercept -0.83 ± 0.07 – -11.86 < 0.001
Wikipedia view count 0.42 ± 0.05 0.31 8.4 < 0.001
Question type 0.11 ± 0.06 0.08 1.81 0.072
LLM log-prob 0.35 ± 0.04 0.29 8.75 < 0.001
Answer length 0.09 ± 0.03 0.17 2.98 0.004

C THE STATEMENT OF USING LLM

Since this paper studies the uncertainty quantization problem of LLMs, we mention and quote the
LLMs used in the experiment section, as well as in this paper to aid author and polish writing.

D PROMPTS AND API QUERY DESIGN PROCESS
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Table 7: Collaborative Model Prompt Design: Prompts for Subclaim Generation and Annotation

Stage 1: Low-version Model - Subclaim Generation (gemini-2.0-flash-exp)

System Prompt: "You are a highly intelligent medical AI assistant. Your task is to provide
comprehensive medical information and break it down into structured subclaims."

Task 1: Detailed Response Generation
Provide a detailed English medical response for the medical question. Cover all relevant
medical aspects, treatments, symptoms, causes, and recommendations. Ensure the answer is
medically accurate and well-structured.

Task 2: Subclaim Decomposition
Decompose your comprehensive answer into K distinct subclaims. Each subclaim should be
a complete, standalone medical statement. Subclaims should follow the logical flow of your
comprehensive answer. Each subclaim should be 10-30 words long for clarity.

Output Format: JSON object containing: Question, Free_form_answer, Must_have,
Nice_to_have, Overall_length, claims[subclaim_seq{N}, Related_context], difficulty, source

Stage 2: High-version Model - Annotation and Ranking (gemini-2.5-flash-lite-preview)

System Prompt: "You are an expert medical evaluator. Your task is to analyze and evaluate
medical subclaims for accuracy, relevance, and quality."

Task 1: Subclaim Annotation Based on Reference Answer
Evaluate the correctness of each subclaim using the reference answer below. Mark each
subclaim as "True" (T) if it contains semantic content aligning with any of the "Must_have"
or "Nice_to_have" lists, or "False" (F) if it doesn’t contain such information. Add annotation
to each subclaim in the JSON, with values "T" or "F".
Reference Information:
Must_have: Information that is essential and must be included
Nice_to_have: Information that is beneficial but not mandatory

Task 2: Subclaim Ranking Based on Quality and Completeness
Rank the input subclaims for quality and information completeness using the following
criteria:
(1) Subclaims with high generation quality and good information completeness should rank
higher.
(2) Rankings must be unique positive integers from 1 to the total number of subclaims, where
1 is the best rank, and higher numbers indicate lower quality.
(3) Subclaims with annotation "T" should generally rank significantly higher than those with
"F", though not absolutely.
Add a ’rank’ field to each subclaim in the JSON, with the rank value as a string.

Task 3: Reconstruct Answer from High-Ranking Subclaims
Identify all subclaims with ranks above a specified threshold. Semantically merge these
subclaims to form the final correct answer. Return the reconstructed answer as a single
continuous text, without adding extra content.
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Table 8: Illustrative example of the collaborative ranking process on MedicalQA dataset. The table
demonstrates how our AdaptiveRankConf method identifies factual subanswers through this process
desgin, filters out incorrect information, and reconstructs a coverage-guaranteed answer.

Component Content

Question What is prednisone used for?

Entailment Refer-
ence

1.Prednisone is a type of corticosteroid medication that is used to suppress
the immune system and decrease inflammation in the body.
2.It’s used to treat a host of different diseases and conditions, largely
those associated with inflammation and immune system activity.
3.Common uses for prednisone include treating autoimmune diseases.
Prednisone can also be used to prevent the body from rejecting an organ
after a transplant.

Low-version LLM
Response

Prednisone is a corticosteroid medication used primarily to suppress the
immune system and decrease inflammation throughout the body. These
properties make it useful in treating various conditions, including au-
toimmune diseases, severe allergies, and asthma. Although it does not
specifically suppress the immune response to the new organ, it can also be
used to manage certain types of cancers and may be prescribed to prevent
organ rejection after transplant, It is not typically part of a chemotherapy
regimen for specific cancers, nor are its immunosuppressant effects con-
sidered key in transplant settings, and it is not commonly used for certain
eye conditions.

High-version LLM
Ranked Subanswers [T] 1. Prednisone is a corticosteroid medication used primarily to suppress

the immune system.
[T] 2. It also serves to decrease inflammation throughout the body.
[T] These properties make it useful in treating various conditions, includ-

ing autoimmune diseases.
[T] 3. Prednisone is also prescribed for severe allergies and asthma.
[T] 4. It can also be used to manage certain types of cancers.
[T] 5. Prednisone may be used to prevent organ rejection after transplant.

AdaptiveRankConf
Dynamic Threshold
Calibration

{“dataset”: “MedicalQA”, “difficulty_level”:
“Level 2”, “dynamic_threshold”: “rank_6”}The
dynamic threshold is derived from the calibration set via q̂(Z), ensuring
adaptive selection based on question difficulty and model confidence.

Excluded Suban-
swers [F] 6. It suppresses the immune response to the new organ.

[F] 7. It may be part of a chemotherapy regimen for specific cancers.
[F] 8. Prednisone’s immunosuppressant effects are key in transplant

settings.
[F] 9. It’s also sometimes used for certain eye conditions.

Re-merge Answer Prednisone is a corticosteroid medication used primarily to suppress
the immune system and decrease inflammation throughout the body.
These properties make it useful in treating various conditions, including
autoimmune diseases, severe allergies, and asthma. Although it does
not specifically suppress the immune response to the new organ, It can
also be used to manage certain types of cancers and may be prescribed
to prevent organ rejection after transplant. It is not typically part of a
chemotherapy regimen for specific cancers, nor are its immunosuppres-
sant effects considered key in transplant settings, and it is not commonly
used for certain eye conditions.
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