

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONFORMAL LANGUAGE GENERATION WITH COLLABORATIVE RANKING AND DYNAMIC THRESHOLDS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) face significant challenges in providing reliable uncertainty quantification for language generation. We introduce a novel conformal prediction framework specifically designed to enhance this reliability through Collaborative Ranking and Dynamic Thresholds. Our method innovatively departs from traditional metrics by harnessing advanced LLM capabilities for comparative judgment, allowing it to rank candidate responses and form a robust, rank-based nonconformity score. This approach enables the construction of prediction sets with rigorous statistical guarantees that inherently adapt to diverse input difficulties and prompt complexities. Extensive experiments across varied question-answering domains consistently demonstrate significant improvements in conditional coverage, delivering precisely calibrated LLM outputs demanding extended reasoning and factual accuracy. We have provided code with implementation details in the repository below: <https://anonymous.4open.science/r/512499>.

1 INTRODUCTION

Large Language Models (LLMs) generate human-like text across diverse tasks but often lack reliable uncertainty quantification, leading to hallucinations (Ji et al., 2023; Huang et al., 2025a). This issue is critical in high-stakes domains like healthcare or education, where factual accuracy is paramount (Maynez et al., 2020; Tang et al., 2023).

Various approaches have been developed to quantify uncertainty in LLM outputs, including probability-based thresholds for sentence-level calibration (Desai & Durrett, 2020; Huang et al., 2025b), token-level early stopping (Glushkova et al., 2021; Mohri & Hashimoto, 2024), and LLM self-evaluation (Kadavath et al., 2022b; Lin et al., 2022). However, these methods typically lack formal statistical guarantees and struggle with consistency across different input types.

Conformal prediction (CP) (Vovk et al., 2005; Shafer & Vovk, 2008; et al., 2014; Luo & Zhou, 2026; 2025) offers a robust framework for providing statistical guarantees on model outputs without strong modeling assumptions. It transforms predictions from any black-box model into valid prediction sets, guaranteed to contain the true outcome with high probability. Recent work has applied CP to LLMs for multiple-choice question answering (Kumar et al., 2023), token-level predictions (Ravfogel et al., 2023), and confidence sets for open-ended generation (Quach et al., 2024). Mohri and Hashimoto (Mohri & Hashimoto, 2024) notably introduced conformal factuality, using entailment sets to dynamically adjust LLM responses while maintaining trustworthiness.

Despite these advances, existing CP methods for LLMs face significant limitations: they often provide only marginal guarantees, failing to account for varying input difficulty (Cherian et al., 2024; Vovk, 2012); employ inefficient filtering due to weakly correlated scoring functions (Mohri & Hashimoto, 2024); and frequently violate the exchangeability assumption (Wang et al., 2025b).

To address these, we propose a novel collaborative ranking conformal method. This approach uses a lower-version LLM to generate multiple candidate answers, which a higher-version model then ranks by quality and factual accuracy. Conformal prediction is applied to the selected answer, establishing statistical guarantees. This rank-based mechanism provides dynamic, instance-specific thresholds, offering a more nuanced quality assessment than confidence scores and enhancing uncertainty quantification.

Our main contributions are as follows:

- We propose a **ranking-based** scoring function specifically designed for LLMs. This model overcomes the limitations of traditional probabilistic metrics by **collaboratively generating response-evaluation rankings**.
- Our approach adjusts the rank adaptively to the input difficulty, which enables instance-specific ranking thresholds that dynamically respond to query difficulty, significantly **enhancing conditional coverage** across diverse question types.
- We demonstrate through experiments on complex question-answering tasks that our approach achieves superior performance compared to existing methods.

The remainder of this paper presents related work (Section 2), preliminaries and problem setup (Section 3), details our rank-based conformal prediction methodology and explains how we enhance conditional validity through difficulty-adaptive thresholds (Section 4). We then introduce the experimental design (Section 5) and evaluate our method on multiple question-answering benchmark datasets (Section 6). Finally, we supplement the Appendix with ablation studies on individual parameters (Appendix B), prompt design, and a specific implementation case (Appendix C).

2 RELATED WORK

2.1 CONFORMAL PREDICTION FOR LARGE LANGUAGE MODELS

Conformal Prediction (CP) [Vovk et al. \(2005\)](#) offers a distribution-free, model-agnostic framework for statistically guaranteed prediction sets. Split CP (SCP) [Hebiri \(2010\)](#) simplifies this by dividing data into calibration and test sets, suitable for modern machine learning.

Given LLM issues like hallucinations [Ji et al. \(2022\)](#), poor calibration [Desai & Durrett \(2020\)](#); [Kong et al. \(2020\)](#), and biases [Gallegos et al. \(2023\)](#); [Guo et al. \(2022\)](#), reliable uncertainty quantification is vital [Min et al. \(2023b\)](#). CP provides a principled solution with theoretical coverage guarantees [Angelopoulos & Bates \(2022\)](#).

In question answering, [Kumar et al. \(2023\)](#) applied SCP to multiple-choice tasks, extended to open-ended generation (white-box and black-box) by [Quach et al. \(2024\)](#); [Wang et al. \(2025b\)](#). [Mohri & Hashimoto \(2024\)](#) introduced "conformal factuality" to filter invalid LLM claims. For sequence generation, [Deutschmann et al. \(2024\)](#) extended beam search with CP for guaranteed sequence sets, while [Su et al. \(2024\)](#) quantified LM uncertainty without logit access.

The combinatorial complexity of autoregressive text generation poses unique CP challenges. [Ravfogel et al. \(2023\)](#) addressed overconfidence with conformal nucleus sampling and adaptive prediction sets. [Ulmer et al. \(2024\)](#) extended this using non-exchangeable CP [Barber et al. \(2023\)](#) and k-nearest neighbors in hidden state space. [Yu et al. \(2023\)](#) also developed coverage guarantees for beam search despite intractable sequence space.

2.2 ENHANCED CONDITIONAL VALIDITY GUARANTEES

Traditional CP offers only marginal guarantees, often insufficient for specific inputs or groups. [Gibbs et al. \(2025\)](#) introduced conditional CP to approximate guarantees for specified function classes. Other work focused on group conditional guarantees [Vovk \(2012\)](#); [Toccaceli & Gammerman \(2019\)](#); [Gupta et al. \(2020\)](#); [Ding et al. \(2023\)](#); [Dunn et al. \(2023\)](#); [Kiyani et al. \(2024\)](#), including Mondrian CP for disjoint groups [Vovk et al. \(2003\)](#). [Romano et al. \(2020\)](#) achieved equitable coverage for disjoint protected groups, and [Foygel Barber et al. \(2021\)](#) proposed a computationally intensive method for overlapping groups. [Jung et al. \(2023\)](#) enhanced conditional coverage using quantile regression with subgroup indicators, albeit with distributional assumptions.

[Cherian et al. \(2024\)](#) extended conditional guarantees to language models via level-adaptive CP, employing "conditional boosting" and "level-adaptive prediction." [Wang et al. \(2025b\)](#)'s SConU improved cross-domain guarantees by filtering uncertainty outliers, addressing exchangeability. For multimodal LLMs, [Wang et al. \(2025a\)](#) developed TRON, a two-step framework for calibrating response requirements and applying nonconformity scores for risk-controlled, high-quality outputs.

The efficacy of conformal methods depends on scoring functions. [Stutz et al. \(2022\)](#) automated score improvement via differentiation through the split conformal algorithm. [Kiyani et al. \(2024\)](#) reframed

108 score optimization as a min-max task for optimal LM conformal scores. These techniques enhance
 109 practical utility, ensuring valid and informative prediction sets.
 110

111 **3 PRELIMINARIES**

113 **3.1 PROBLEM SETUP**

115 We begin by formalizing the problem of uncertainty quantification in large language models (LLMs).
 116 Let \mathcal{X} denote the space of all possible input prompts and \mathcal{Y} the space of all possible text responses.
 117

118 To assess the factuality of generated content, we adopt the concept of entailment (Mohri & Hashimoto,
 119 2024). We formalize correctness constraints in terms of entailment with respect to some reference
 120 knowledge y^* . We define the *entailment operator* $\mathcal{E} : \mathcal{Y} \mapsto 2^{\mathcal{Y}}$ as:

$$121 \quad \mathcal{E}(y) := \{y' \in \mathcal{Y} : y' \Rightarrow y\}, \quad (1)$$

123 where $y' \Rightarrow y$ indicates that y' entails y , i.e., $\mathcal{E}(y)$ contains all statements that logically imply y .

124 We define a *split function* $S : \mathcal{Y} \rightarrow 2^{\mathcal{Y}}$ that decomposes a response into a set of atomic answers:

$$126 \quad S(y) = \{c_1, c_2, \dots, c_k\}, \quad (2)$$

127 where each c_i is an individual factual answer made in y . Conversely, we define a *merge function*
 128 $M : 2^{\mathcal{Y}} \rightarrow \mathcal{Y}$ that combines a set of answers into a coherent response:

$$130 \quad M(\{c_1, c_2, \dots, c_k\}) = y, \quad (3)$$

131 where y is a natural language text that integrates all answers c_i in a coherent manner.

133 Given a ground truth reference y^* , a response y is considered factually correct if and only if
 134 $y^* \in \mathcal{E}(M(S(y)))$, which is equivalent to $y^* \Rightarrow M(S(y))$. This reflects the notion that a response is
 135 factually correct if its component answers, when merged into a coherent statement, are entailed by
 136 the truth.

137 **Example:** Consider a ground truth y^* : “Paris is the capital of France. It has a population of
 138 approximately 2.2 million people and is home to the Eiffel Tower, which was completed in 1889.”
 139 The response “Paris is the capital of France” is factually correct because $y^* \Rightarrow M(S(y))$, as this
 140 answer is directly supported by the ground truth. Similarly, “Paris is known for the Eiffel Tower,
 141 which was built in the 1880s” is also correct, as the completion year 1889 entails construction in
 142 the 1880s. However, the response “Paris is the capital of France and has a population of exactly 3
 143 million people” is factually incorrect because $y^* \not\Rightarrow M(S(y))$, as the ground truth does not support
 144 the specific population answer.

145 Let $\{(X_i, y_i^*)\}_{i=1}^n$ represent our calibration dataset, where:

- 146 • $X_i \in \mathcal{X}$ denotes the input prompt
- 147 • $y_i^* \in \mathcal{Y}$ is the reference/ground truth answer to prompt X_i

149 Our goal is to develop a method that produces responses with a guaranteed level of factual correctness.
 150 Specifically, given a new input X_{n+1} , we aim to select a response such that the probability of it being
 151 factually correct is at least $1 - \alpha$ for a desired error rate $\alpha \in (0, 1)$.
 152

153 **3.2 CONFORMAL FACTUALITY**

155 Our approach is based on split conformal prediction, which provides valid uncertainty quantifi-
 156 cation without distributional assumptions. In this setting, we split our data into a calibration set
 157 $\{(X_i, y_i^*)\}_{i=1}^n$ and a test set.

158 Given a nonconformity score function $r : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ measuring the unusual nature of input-output
 159 pairs, the standard conformal prediction framework constructs a prediction set $\hat{C}_\alpha(X)$ for a new
 160 input X such that:
 161

$$P(y^* \in \hat{C}_\alpha(X)) \geq 1 - \alpha. \quad (4)$$

162 For a new test point X_{n+1} , we compute the conformal prediction set as:
 163

$$164 \hat{C}_\alpha(X_{n+1}) = \{y \in \mathcal{Y} : r(X_{n+1}, y) \leq \hat{q}_\alpha\}, \quad (5)$$

165 where \hat{q}_α is the $(1 - \alpha)$ -quantile of the nonconformity scores on the calibration set $\{r(X_i, y_i^*)\}_{i=1}^n$.
 166

167 In our LLM factuality setting, the connection to conformal prediction is direct: if y_{n+1} is our
 168 calibrated model output for input X_{n+1} , then we want:

$$169 \quad 170 P(y_{n+1}^* \in \mathcal{E}(M(S(y_{n+1})))) \geq 1 - \alpha. \quad (6)$$

171 This guarantees that our model’s calibrated output y_{n+1} , when processed through our split and merge
 172 functions, is factually correct with respect to the ground truth y_{n+1}^* with probability at least $1 - \alpha$.
 173

174 4 METHODOLOGY

175 4.1 RANK-BASED CONFORMAL PREDICTION FRAMEWORK

176 Our key innovation is a rank-based conformal prediction approach, **RankConf**, that leverages
 177 the LLM’s ability to evaluate the quality of its own responses. Unlike existing approaches that
 178 use log-probability or perplexity, we define a novel nonconformity score based on the ranking of
 179 responses that captures the model’s relative confidence in its generated responses. This method
 180 allows the calibrated LLM output to adapt naturally to input difficulty—providing precise answers
 181 for straightforward questions while appropriately hedging on challenging ones. Our ranking based
 182 approach is similar to the CDF-based conformity scores developed in (Dheur et al., 2025).
 183

184 4.1.1 COLLABORATIVE RESPONSE GENERATION AND RANKING PROCESS

185 For each input X_i in our calibration set, our approach proceeds as follows:
 186

187 1. Generate K candidate responses using a **lower-version LLM** L :
 188 $\{L^{(1)}(X_i), L^{(2)}(X_i), \dots, L^{(K)}(X_i)\}$.
 189

190 2. Construct an extended response set R_i that includes both the generated responses and the ground
 191 truth answer:
 192

$$193 \quad 194 R_i = \{L^{(1)}(X_i), L^{(2)}(X_i), \dots, L^{(K)}(X_i), y_i^*\}. \quad (7)$$

195 3. Have the **high-version LLM** ranks all responses in R_i based on their perceived quality, assigning
 196 a rank $\mathcal{Y} \rightarrow \{1, 2, \dots, K + 1\}$ to each response, where lower rank values indicate higher quality
 197 (rank 1 is best).
 198

199 4. For each response $y \in R_i$, check whether the ground truth y_i^* entails the response by evaluating
 200 whether $y_i^* \in \mathcal{E}(M(S(y)))$.
 201

202 Our collaborative response generation and ranking design draws inspiration from speculative decoding
 203 strategies (Chen et al., 2023), creatively adapting this inference acceleration technique to uncertainty
 204 quantification. Rather than using small models to predict tokens for verification by larger models as
 205 in traditional speculative decoding, we employ lower-parameter LLMs to efficiently generate diverse
 206 candidate responses while leveraging higher-parameter models’ superior evaluation capabilities
 207 to rank these responses based on factual accuracy. This approach aligns with cognitive science’s
 208 dual-process theory, where rapid generation (system 1) is followed by analytical evaluation (system
 209 2), and extends (Kadavath et al., 2022a) that language models possess inherent ability to assess their
 210 knowledge boundaries, but significantly enhances this capability through cross-model collaboration.
 211

212 This design addresses the prohibitive cost of manual verification in specialized domains where human
 213 expertise is required, as expert validation of model outputs demands significant time and resources. It
 214 leverages the natural evolution of LLM platforms, where organizations typically maintain multiple
 215 model versions—newer, more capable models can serve as evaluators for previously deployed systems
 216 without requiring additional infrastructure. The dynamic threshold mechanism automatically adjusts
 217 response selection based on input difficulty, preserving more content for straightforward queries while
 218 applying stricter filtering for complex questions, thus optimizing the balance between information
 219 richness and factual reliability.
 220

216 4.1.2 NON-CONFORMITY SCORE BASED ON RESPONSE RANKING
217218 Given the ranked responses, we define our non-conformity score $r(X_i, y_i^*)$ as:
219

220
$$r(X_i, y_i^*) := \min\{\text{rank}(y) \mid y \in R_i, y_i^* \notin \mathcal{E}(M(S(y)))\} - 1. \quad (8)$$

221

222 This score represents the rank of the first factually incorrect response in the ranking, minus 1.
223 Intuitively, it tells us how far down the ranked list we can go while still maintaining factual correctness.
224 The subtraction of 1 accounts for the convention of returning the previous rank value when finding
225 the first incorrect response.
226227 We determine the conformal threshold based on the calibration set:
228

229
$$\hat{q}_\alpha = \text{Quantile}(\{r(X_i, y_i^*)\}_{i=1}^n, \lceil (n+1)(1-\alpha) \rceil / n). \quad (9)$$

230

231 Using this threshold, for a new input X_{n+1} , we define our calibrated prediction function $L^\alpha : \mathcal{X} \rightarrow \mathcal{Y}$
232 as:
233

234
$$L^\alpha(X_{n+1}) = M \left(\bigcup_{j: \text{rank}(L^{(j)}(X_{n+1})) \leq \hat{q}_\alpha} S(L^{(j)}(X_{n+1})) \right). \quad (10)$$

235

236 That is, $L^\alpha(X_{n+1})$ merges answers from all responses with ranks not exceeding our threshold \hat{q}_α ,
237 creating a comprehensive answer that maintains the coverage guarantee.
238239 **Theorem 4.1** (Factual Correctness Guarantee). *Let $\{(X_i, y_i^*)\}_{i=1}^{n+1}$ be exchangeable, and let \hat{q}_α be
240 the $\lceil (n+1)(1-\alpha) \rceil / n$ -quantile of $\{r(X_i, y_i^*)\}_{i=1}^n$. Then:*

241
$$P(y_{n+1}^* \in \mathcal{E}(M(S(L^\alpha(X_{n+1})))) \geq 1 - \alpha. \quad (11)$$

242

243 *That is, the output of $L^\alpha(X_{n+1})$ is factually correct with probability at least $1 - \alpha$.*
244245 *Proof.* Let $r_{n+1} = r(X_{n+1}, y_{n+1}^*)$. By the properties of conformal prediction and the exchangeability
246 of the data, we have:
247

248
$$P(r_{n+1} \leq \hat{q}_\alpha) \geq 1 - \alpha. \quad (12)$$

249

250 By the definition of our non-conformity score, if $r_{n+1} \leq \hat{q}_\alpha$, then all responses $L^{(j)}(X_{n+1})$
251 with $\text{rank}(L^{(j)}(X_{n+1})) \leq \hat{q}_\alpha$ must be factually correct. For each such response, we have
252 $y_{n+1}^* \in \mathcal{E}(M(S(L^{(j)}(X_{n+1}))))$. Since $L^\alpha(X_{n+1})$ merges answers from these factually correct
253 responses, and the merge of factually correct answers maintains factual correctness, we have
254 $y_{n+1}^* \in \mathcal{E}(M(S(L^\alpha(X_{n+1}))))$. Therefore:
255

256
$$P(y_{n+1}^* \in \mathcal{E}(M(S(L^\alpha(X_{n+1})))) \geq P(r_{n+1} \leq \hat{q}_\alpha) \geq 1 - \alpha. \quad (13)$$

257 \square

258 4.2 COMPLETE ALGORITHM

259 Our algorithm, Algorithm 1 consists of two phases: *Calibration Phase* and *Prediction Phase*.
260261 This algorithm, which we call **RankConf**, uses the language model’s own ranking ability to determine
262 which responses are likely to be factually correct, while providing a mathematical guarantee that the
263 selected response is factually correct with probability at least $1 - \alpha$.
264265 The empirical coverage of our method is defined as the fraction of T test questions where the output
266 is factually correct:
267

268
$$\text{Coverage} = \frac{1}{T} \sum_{t=1}^T \mathbb{1}\{y_{n+t}^* \in \mathcal{E}(M(S(L^\alpha(X_{n+t}))))\}, \quad (14)$$

269

270 where T is the number of test questions and $\mathbb{1}\{\cdot\}$ is the indicator function.
271

270 **Algorithm 1 RankConf:** Rank-Based Conformal Factuality

271 1: **Input:** Calibration data $\{(X_i, y_i^*)\}_{i=1}^n$, language model L , confidence level $1 - \alpha$
272 2: **Output:** A prediction function $L^\alpha : \mathcal{X} \rightarrow \mathcal{Y}$ with factual correctness guarantee
273 3: **Calibration Phase:**
274 4: **for** $i = 1$ to n **do**
275 5: Low-version LLM generates K responses $L^{(1)}(X_i), L^{(2)}(X_i), \dots, L^{(K)}(X_i)$
276 6: $R_i \leftarrow \{L^{(1)}(X_i), L^{(2)}(X_i), \dots, L^{(K)}(X_i), y_i^*\}$
277 7: High-version LLM obtains ranks for each response in R_i
278 8: $r(X_i, y_i^*) \leftarrow \min\{\text{rank}(y) \mid y \in R_i, y \notin \mathcal{E}(M(S(y)))\} - 1$
279 9: $\hat{q}_\alpha \leftarrow \lceil (n+1)(1-\alpha) \rceil / n$ -quantile of $\{r(X_i, y_i^*)\}_{i=1}^n$
280 10: **Prediction Phase:**
281 11: **for** new input X_{n+1} **do**
282 12: Low-version LLM generates $K+1$ responses $L^{(1)}(X_{n+1}), L^{(2)}(X_{n+1}), \dots, L^{(K+1)}(X_{n+1})$
283 13: High-version LLM obtains ranks for each response
284 14: $L^\alpha(X_{n+1}) \leftarrow M\left(\bigcup_{j:\text{rank}(L^{(j)}(X_{n+1})) \leq \hat{q}_\alpha} S(L^{(j)}(X_{n+1}))\right)$
285 15: **return** $L^\alpha(X_{n+1})$

287
288 4.3 OPTIMIZATION FRAMEWORK FOR ENHANCED CONDITIONAL COVERAGE
289

290 While our basic **RankConf** method provides marginal coverage guarantees, we can enhance conditional validity by adapting the threshold based on features of the input prompt. We call this enhanced
291 method **AdaptiveRankConf**. Following (Cherian et al., 2024), we define an adaptive threshold
292 function:

293
$$\hat{q}_\alpha(Z_{n+1}) = \sup\{r : r \leq g_r(Z_{n+1})\}, \quad (15)$$

294 where Z_{n+1} are features computed from the input prompt X_{n+1} , and g_r is obtained by solving:

295
$$g_r = \arg \min_{g \in \mathcal{F}} \frac{1}{n+1} \sum_{i=1}^n \ell_\alpha(Z_i)(r(X_i, y_i^*) - g(Z_i)) + \frac{1}{n+1} \ell_\alpha(Z_{n+1})(r - g(Z_{n+1})). \quad (16)$$

301 Here, \mathcal{F} is a function class (e.g., linear functions of features), and $\ell_\alpha(\cdot)$ is the pinball loss at level α .
302 The feature vector Z_i is constructed through several components. First, we have the LLM categorize
303 each of the n questions into difficulty groups G_i based on the question’s topic, yielding grouping
304 features Z_i^G . We also generate comprehensive answers for each calibration question and extract
305 additional features including the question’s main topic, average response length, average Wikipedia
306 view count for related entities, and other metadata that may correlate with question difficulty. For
307 specific feature selection details, please refer to the dataset introduction in Section 5.

308 This adaptive approach essentially employs a question difficulty estimator to produce an instance-
309 specific threshold for the rank, allowing the threshold to vary based on the characteristics of each
310 prompt. This provides stronger conditional validity guarantees across different domains and question
311 types, as more difficult questions may require more conservative thresholds to maintain factual
312 correctness. Furthermore, by making the error level $\alpha(Z)$ adaptive to input features, we can balance
313 the trade-off between factuality and response quality dynamically.

314
315 5 EXPERIMENTAL SETUP
316

317 5.1 BASELINE METHODS AND OUR APPROACH

318 **SplitConf** (Mohri & Hashimoto, 2024): Employs sub-claim based filtering by decomposing responses
319 into approximately 10 sub-claims per query and filtering them based on confidence scores derived
320 from log-probability ratios of tokens. Implements static thresholds calibrated across the entire dataset.

321 **CondSplitConf** (Cherian et al., 2024): Also uses sub-claim based filtering but extends SplitConf
322 with input-dependent thresholds using question topic metadata.

324 **RankConf (Ours):** Our rank-based conformal framework (Algorithm 1) operates at the whole-
 325 response level, leveraging comparative judgment capabilities of LLMs to rank responses and establish
 326 factuality guarantees.

327 **AdaptiveRankConf (Ours):** As described in Section 4.3, this enhancement incorporates input-
 328 dependent thresholds while maintaining our response-level approach.

330 **5.2 DATASETS**

333 **Datasets Split** Unless otherwise specified, each experiment uses 50% for calibration and 50%
 334 for test, repeated over 50 random splits. For conditional validity assessment, we naturally utilize
 335 pre-grouped datasets such as MedicalQA, employing the difficulty levels already defined within the
 336 dataset. For ungrouped datasets, we defined groups based on question difficulty levels, such as (level
 337 1, 2, 3) determined by LLM assessment of the complexity and specialized knowledge required.

338 **MedicalQA:** (Jeong et al., 2024) focuses on long-form medical question-answering tasks. It combines
 339 several established medical QA benchmark. This dataset comprises the following five categories:
 340 HEALTHSEARCH_QA, KQA_GOLDEN, KQA_SILVER, LIVE_QA, and MEDICATION_QA. We have
 341 naturally processed the dataset into five difficulty levels based on these categories as a feature vector.

342 **Natural Questions (NQ):** (Kwiatkowski et al., 2019) contains factual questions derived from Google
 343 search engine queries, designed for open-ended question answering evaluation. Since the dataset
 344 lacks a natural classification, we followed our previous design and divided it into three difficulty
 345 levels using LLM.

346 **FactScore:** (Min et al., 2023a) evaluates factual accuracy in open-ended generation by assessing
 347 claims against a comprehensive knowledge base. Following (Cherian et al., 2024), we grouped
 348 Wikipedia subjects by page view counts as a feature vector: “Very Frequent” ($\geq 1,000,000$ views),
 349 “Frequent” (100,000-999,999 views), “Medium” (1,000-99,999 views), “Rare” (100-999 views), and
 350 “Very Rare” (< 100 views).

351 **MATH:** (Hendrycks et al., 2021) comprises challenging mathematical problems that test reasoning
 352 capabilities, where answers involve sequential solution steps. The difficulty classification of MATH
 353 dataset is the same as NQ.

354 Following (Su et al., 2024), we generated experimental data using API Query interactions with real-
 355 world question datasets. Our process involved: (1) prompting models to categorize input questions by
 356 topic, difficulty level, and knowledge domain, with these categories serving as the groups for our
 357 conditional coverage analysis, (2) The lower-version model generates long-text responses and splits
 358 them into sub-answers. (3) The higher-version model provides high-quality rankings and entailment
 359 annotation. (4) Our Conformal process provides factual filtering, after which the model merges the
 360 filtered sub-answers to complete the output. The specific prompt design is given in Appendix B.

362 **5.3 EVALUATION METRICS**

364 **Marginal Coverage:** Percentage of test examples where the true response y^* is included in the
 365 prediction set as in Equation (14).

366 **Coverage Gap (CovGap):** Average absolute deviation between group-specific and target coverage
 367 across groups, measuring conditional validity:

$$369 \text{CovGap} = \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} |\text{Coverage}(g) - (1 - \alpha)|. \quad (17)$$

372 **Tail Coverage Rate (TCR):** Mean coverage across hardest and easiest 10% of questions:

$$374 \text{TCR} = \frac{1}{2} \left(\frac{\sum_{s \in S_{\text{lower}}} \mathbb{1}\{y_s^* \in \hat{C}(X_s)\}}{0.1T} + \frac{\sum_{s \in S_{\text{upper}}} \mathbb{1}\{y_s^* \in \hat{C}(X_s)\}}{0.1T} \right), \quad (18)$$

375 where S_{lower} and S_{upper} contain the 10% of questions with highest and lowest nonconformity scores.

378 **Set Size and Retention Rate:** The size of the subanswers that can be returned to users after the test
 379 set samples have been factually verified.

$$381 \quad \hat{\mathcal{C}}_\alpha(X) = |L^{(j)}(X) | \text{ rank}(L^{(j)}(X)) \leq \hat{q}_\alpha|. \quad (19)$$

382 A larger set size means that more subanswer are retained. Furthermore, we define the retention rate
 383 as follow,

$$384 \quad \text{RetRate}(X_{n+1}) = \frac{|\hat{\mathcal{C}}_\alpha(X_{n+1})|}{K}. \quad (20)$$

387 6 EXPERIMENTAL RESULTS

389 In this section, we present the following three main results: (i) marginal and conditional coverage met-
 390 rics at different alpha levels, (ii) results for Set size and Retention rate, and (iii) ablation experiments
 391 examining the impact of different language model combinations on the K (numbers of subanswers)
 392 and T (model temperature) parameters.

393 Here, we use the MedicalQA and NQ dataset as a case study with **RankConf** corresponds to SplitConf,
 394 while **AdaptiveRCf** corresponds to CondSConf. Additional experimental results are reported in
 395 Appendix G. In all figures presenting results, shaded areas indicate the standard deviation of marginal
 396 coverage results in both positive and negative directions. In all tables, bolded data represents the
 397 optimal result, and underlined data indicates the second-best result. To simplify the description , we
 398 use I and II to represent the low-version and high-version models.

399 Our methods aim to (i) keep the same $(1 - \alpha)$ marginal coverage, (ii) improve conditional coverage,
 400 and (iii) under the user setting dynamic threshold, maximize the Set size and Retention rate.

402 Table 1: Experimental results of low-version model generation and high-version model ranking
 403 (I-Model=gemini-2.0-flash, II-Model=gemini-2.5-pro, $K = 50$, $T = 1$, $\alpha = 0.1$)

404 Dataset	405 Method	406 Coverage	407 TCR@0.1 \uparrow	408 CovGap\downarrow	409 Set size \uparrow	410 RetRate(%) \uparrow
411 MedicalQA	SplitConf	0.911 ± 0.027	0.888	0.058	15.10 ± 0.21	30.24
	RankConf	0.909 ± 0.023	0.894	0.037	16.73 ± 0.15	33.48
	CondSConf	0.903 ± 0.013	0.901	<u>0.023</u>	<u>18.55 ± 0.58</u>	<u>37.10</u>
	AdaptiveRCf	0.901 ± 0.008	<u>0.902</u>	0.011	19.28 ± 0.70	38.56
412 NQ	SplitConf	0.912 ± 0.015	0.893	0.105	19.42 ± 0.13	38.84
	RankConf	0.907 ± 0.021	0.899	0.093	20.73 ± 0.24	41.46
	CondSConf	0.902 ± 0.012	0.897	<u>0.057</u>	21.52 ± 0.56	43.04
	AdaptiveRCf	0.900 ± 0.009	<u>0.901</u>	0.051	23.11 ± 0.10	46.22

414 **Core Indicators Performance.** As shown in Table 1, all methods achieve high and comparable
 415 coverage and TCR across both datasets, indicating that the overall ability to generate valid responses
 416 is well preserved regardless of the ranking strategy. Specifically, **RankConf**—our improvement over
 417 the baseline SplitConf—maintains similar coverage and TCR while enabling more informed selection.
 418 Likewise, our adaptive method **AdaptiveRCF** matches or slightly improves upon its counterpart
 419 CondSConf in these metrics. The differences become more pronounced in downstream effectiveness:
 420 **AdaptiveRCF** yields the largest average set size (e.g., 23.11 on NQ), suggesting it retains more
 421 diverse and potentially useful candidates, and consequently achieves the highest RetRate (46.22% on
 422 NQ and 38.56% on MedicalQA). In contrast, SplitConf and CondSConf produce smaller candidate
 423 sets and lower RetRate, discarding valuable outputs. In addition, we provide results on other datasets
 424 in Appendix B Table 3.

425 **Conditional Performance.** Figure 1 shows the marginal and conditional coverage of the four
 426 methods across question difficulty levels in MedicalQA and NQ. While all methods achieve marginal
 427 coverage close to the target $1 - \alpha$, their conditional coverage—especially for hard questions (Level
 428 3)—differs markedly. SplitConf exhibits significant under-coverage on harder at high α , whereas
 429 **RankConf** (our improvement) closes this gap by leveraging ranking information. Similarly, Cond-
 430 SConf improves over SplitConf but still falls short on difficult instances, while our **AdaptiveRCF**
 431 maintains near-ideal conditional coverage across all levels. In addition, we provide results on other
 432 datasets in Appendix B Table 2

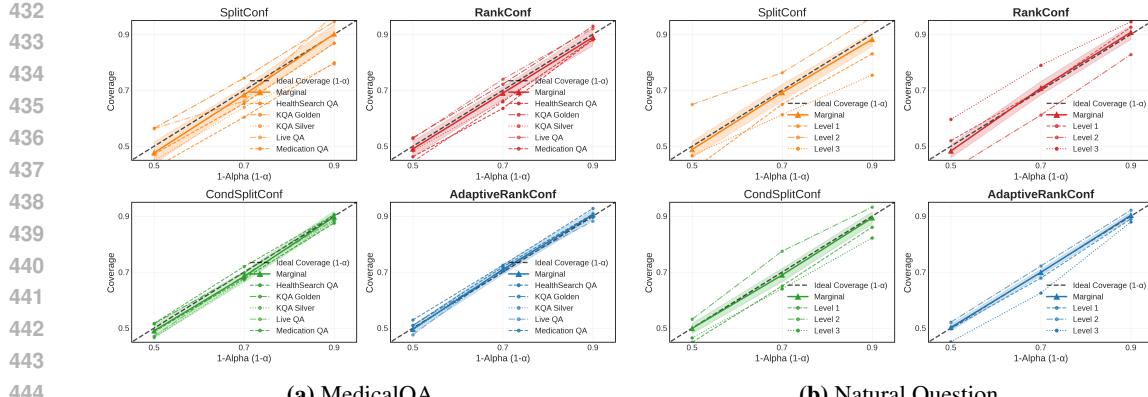


Figure 1: Marginal and Conditional coverage of the four methods across three difficulty level groups in the MedicalQA and NQ dataset, for α values ranging from 0.5 to 0.9.

Ablation Studies. In addition to the default parameter settings used in the main experiments ($K = 50$, $T = 1$), we also evaluate performance across a broader range of configurations: $K \in \{10, 100\}$ and $T \in \{0.7, 1.5\}$. As shown in in Appendix B Table 3, **AdaptiveRCF** and **RankConf** consistently maintain high coverage and low CovGap across all these settings on both NQ and MedicalQA, demonstrating strong robustness to variations in candidate set size and generation temperature. This stability highlights that the adaptive and ranking-aware mechanisms in our methods effectively mitigate the impact of hyperparameter choices, making them more reliable in practical applications. Furthermore, we also evaluated the potential impact of different model combinations in Appendix B Table 4. The results demonstrate that our two proposed methods can produce optimal factual screening results even when applied to cross-platform model combinations.

7 CONCLUSION

In this paper, we propose a novel conformal prediction framework that quantifies uncertainty in language model text generation through collaborative ranking and dynamic thresholds. Our **RankConf** and **AdaptiveRankConf** employ ranking instead of relying on traditional probabilistic metrics. By having lower-tier LLMs generate candidate answers and higher-tier models rank them, we establish a robust factual filtering mechanism that adapts to varying input difficulty levels. This work provides a principled solution for deploying LLMs in high-stakes applications.

Limitations. Although our framework achieves significant progress in quantifying uncertainty in LLM contexts, several limitations warrant consideration.

1. Our approach assumes factual correctness can be reliably assessed through semantic entailment relationships, which may fail to capture all dimensions of truthfulness in complex reasoning tasks.
2. The method’s effectiveness depends on the quality of the ranking model performance may decline when the gap between low- and high-ranking models is insufficient to capture subtle factual differences.
3. Computational overhead of generating and ranking multiple candidate answers may pose deployment challenges in latency-sensitive applications.
4. Our approach relies on the ranking during the LLM inference phase, which inherently limits its ability to address factual errors stemming from insufficient ranking during the LLM training phase or systemic biases.

Future work could explore more sophisticated difficulty estimation techniques and investigate extending our framework to multi-step reasoning scenarios where intermediate steps require separate quantification of uncertainty.

486 REPRODUCIBILITY STATEMENT
487488 Code is available at <https://anonymous.4open.science/r/512499>. The codebase in-
489 cludes implementations of our Algorithms, Model Query by API and Json dataset pre-processing
490 code for our tasks and functions for computing the metrics and producing tables.
491492 REFERENCES
493494 Anastasios N. Angelopoulos and Stephen Bates. Gentle introduction to conformal prediction and
495 distribution-free uncertainty quantification. *arXiv preprint arXiv:2205.03222*, 2022.496 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
497 prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023.
498499 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
500 Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
501 <https://arxiv.org/abs/2302.01318>.502 John J Cherian, Isaac Gibbs, and Emmanuel J Candès. Large language model validity via enhanced
503 conformal prediction methods. *arXiv preprint arXiv:2406.09714*, 2024.
504505 Shrey Desai and Greg Durrett. Calibration of pre-trained transformers. In *Proceedings of the 2020*
506 *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2020.507 Gianluca Detommaso, Martin Bertran Lopez, Riccardo Fogliato, and Aaron Roth. Multicalibration
508 for confidence scoring in LLMs. In *Forty-first International Conference on Machine Learning*,
509 2024. URL <https://openreview.net/forum?id=6Wauue8pWd>.
510511 Nicolas Deutschmann, Marvin Alberts, and María Rodríguez Martínez. Conformal autoregressive
512 generation: Beam search with coverage guarantees. In *Proceedings of the AAAI Conference on*
513 *Artificial Intelligence*, volume 38, pp. 11775–11783, 2024.514 Victor Dheur, Matteo Fontana, Yorick Estienneart, Naomi Desobry, and Souhaib Ben Taieb. A unified
515 comparative study with generalized conformity scores for multi-output conformal regression. *arXiv*
516 *e-prints*, pp. arXiv–2501, 2025.
517518 Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael Jordan, and Ryan J Tibshirani. Class-
519 conditional conformal prediction with many classes. *Advances in neural information processing*
520 *systems*, 36:64555–64576, 2023.521 Robin Dunn, Larry Wasserman, and Aaditya Ramdas. Distribution-free prediction sets for two-layer
522 hierarchical models. *Journal of the American Statistical Association*, 118(544):2491–2502, 2023.
523524 Balasubramanian Vineeth et al. *Conformal prediction for reliable machine learning: theory, adapta-*
525 *tions and applications*. Newnes, 2014.526 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. The limits of
527 distribution-free conditional predictive inference. *Information and Inference: A Journal of the*
528 *IMA*, 10(2):455–482, 2021.
529530 Ismael Gallegos, Luis Espinosa-Anke, Jose Rodríguez-Ferrández, Jorge Carrillo-de Albornoz, and
531 Horacio Saggion. Measuring bias in multilingual natural language inference benchmarks. In
532 *Proceedings of the 2023 Conference of the North American Chapter of the Association for Compu-*
533 *tational Linguistics: Human Language Technologies*, 2023.534 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional
535 guarantees. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, pp. qkaf008,
536 2025.
537538 Taisiya Glushkova, Chrysoula Zerva, Ricardo Rei, and André FT Martins. Uncertainty-aware machine
539 translation evaluation. In *Findings of the Association for Computational Linguistics: EMNLP*
2021, pp. 3920–3938, 2021.

540 Mingfei Guo, Timothy Miller, Yi-Hsuan Tang, and Yue Xiong. Detecting biased samples in datasets
 541 with deep generative models. In *Proceedings of the 60th Annual Meeting of the Association for*
 542 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1688–1698, 2022.

543

544 Chirag Gupta, Aleksandr Podkopaev, and Aaditya Ramdas. Distribution-free binary classification:
 545 prediction sets, confidence intervals and calibration. *Advances in Neural Information Processing*
 546 *Systems*, 33:3711–3723, 2020.

547 Mohamed Hebiri. Sparse conformal predictors: Scp. *Statistics and Computing*, 20:253–266, 2010.

548

549 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 550 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 551 *preprint arXiv:2103.03874*, 2021.

552

553 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 554 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 555 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information*
 556 *Systems*, 43(2):1–55, 2025a.

557

558 Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu, and
 559 Lei Ma. Look before you leap: An exploratory study of uncertainty analysis for large language
 560 models. *IEEE Transactions on Software Engineering*, 2025b.

561

562 Minbyul Jeong, Hyeon Hwang, Chanwoong Yoon, Taewhoo Lee, and Jaewoo Kang. Olaph: Im-
 563 proving factuality in biomedical long-form question answering. *arXiv preprint arXiv:2405.12701*,
 2024.

564

565 Ziwei Ji, Nayeon Guo, Peter West, Weizhe Zhu, Aaditya Rao, Yann Dauphin, and Ed Chi. A survey
 566 of hallucination in natural language generation. *arXiv preprint arXiv:2202.03629*, 2022.

567

568 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 569 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM*
computing surveys, 55(12):1–38, 2023.

570

571 Christopher Jung, Georgy Noarov, Ramya Ramalingam, and Aaron Roth. Batch multivalid conformal
 572 prediction. In *International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Dk7QQp8jHEo>.

573

574 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 575 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk,
 576 Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
 577 Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt,
 578 Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas
 579 Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Kaplan. Language models (mostly)
 580 know what they know, 2022a. URL <https://arxiv.org/abs/2207.05221>.

581

582 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 583 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
 584 know what they know. *arXiv preprint arXiv:2207.05221*, 2022b.

585

586 Shayan Kiyani, George J Pappas, and Hamed Hassani. Length optimization in conformal prediction.
 587 *Advances in Neural Information Processing Systems*, 37:99519–99563, 2024.

588

589 Lingkai Kong, Haoming Huang, Yuchen Hou, Heng Zhu, Lyle Ungar, and Haobo Guo. Calibrated
 590 language model fine-tuning for in-and out-of-distribution data. In *Proceedings of the 2020*
591 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1326–1340,
 2020.

592

593 Bhawesh Kumar, Charlie Lu, Gauri Gupta, Anil Palepu, David Bellamy, Ramesh Raskar, and Andrew
 Beam. Conformal prediction with large language models for multi-choice question answering.
arXiv preprint arXiv:2305.18404, 2023.

594 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 595 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 596 benchmark for question answering research. *Transactions of the Association for Computational
 597 Linguistics*, 7:453–466, 2019.

598

599 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
 600 words. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=8s8K2UZGTZ>.

601

602 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 603 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 604 arXiv:2412.19437*, 2024.

605

606 Rui Luo and Zhixin Zhou. Conformity score averaging for classification. In *Forty-second Interna-
 607 tional Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=Pvfd7NiUS6>.

608

609 Rui Luo and Zhixin Zhou. Reliable classification through rank-based conformal prediction sets.
 610 *Pattern Recognition*, 172:112330, 2026. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2025.112330>. URL <https://www.sciencedirect.com/science/article/pii/S0031320325009914>.

613

614 Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
 615 in abstractive summarization. In *Proceedings of the 58th Annual Meeting of the Association for
 616 Computational Linguistics*, pp. 1906. Association for Computational Linguistics, 2020.

617

618 Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
 619 Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual
 620 precision in long form text generation. *arXiv preprint arXiv:2305.14251*, 2023a.

621

622 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
 623 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? *arXiv
 624 preprint arXiv:2202.12837*, 2023b.

625

626 Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality guarantees.
 627 In *International Conference on Machine Learning*, pp. 36029–36047. PMLR, 2024.

628

629 Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S Jaakkola, and Regina
 630 Barzilay. Conformal language modeling. *arXiv preprint arXiv:2306.10193*, 2023.

631

632 Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S. Jaakkola, and Regina
 633 Barzilay. Conformal language modeling. In *The Twelfth International Conference on Learning
 634 Representations*, 2024. URL <https://openreview.net/forum?id=pzUhfQ74c5>.

635

636 Shauli Ravfogel, Yoav Goldberg, and Jacob Goldberger. Conformal nucleus sampling. In *Findings of
 637 the Association for Computational Linguistics: ACL 2023*, pp. 27–34, 2023.

638

639 Yaniv Romano, Rina Foygel Barber, Chiara Sabatti, and Emmanuel Candès. With malice toward
 640 none: Assessing uncertainty via equalized coverage. *Harvard Data Science Review*, 2(2):4, 2020.

641

642 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning
 643 Research*, 9(3), 2008.

644

645 Julio Silva-Rodríguez, Leo Filliou, Paul-Henry Cournède, Maria Vakalopoulou, Stergios
 646 Christodoulidis, Ismail Ben Ayed, and Jose Dolz. Full conformal adaptation of medical vision-
 647 language models. In *International Conference on Information Processing in Medical Imaging*, pp.
 648 278–293. Springer, 2025.

649

650 David Stutz, Krishnamurthy Dj Dvijotham, Ali Taylan Cemgil, and Arnaud Doucet. Learning optimal
 651 conformal classifiers. In *International Conference on Learning Representations*, 2022. URL
 652 <https://openreview.net/forum?id=t80-4LKFXx>.

648 Jiayuan Su, Jing Luo, Hongwei Wang, and Lu Cheng. Api is enough: Conformal prediction for
 649 large language models without logit-access. In *Findings of the Association for Computational*
 650 *Linguistics: EMNLP 2024*, pp. 979–995, 2024.

651 Liyan Tang, Zhaoyi Sun, Betina Idnay, Jordan G Nestor, Ali Soroush, Pierre A Elias, Ziyang Xu,
 652 Ying Ding, Greg Durrett, Justin F Rousseau, et al. Evaluating large language models on medical
 653 evidence summarization. *NPJ digital medicine*, 6(1):158, 2023.

654 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 655 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 656 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

657 Paolo Tocacceli and Alexander Gammerman. Combination of inductive mondrian conformal predic-
 658 tors. *Machine Learning*, 108:489–510, 2019.

659 Dennis Ulmer, Chrysoula Zerva, and André FT Martins. Non-exchangeable conformal language
 660 generation with nearest neighbors. In *Findings of the Association for Computational Linguistics:*
 661 *EACL 2024*, pp. 1909–1929, 2024.

662 Vladimir Vovk. Conditional validity of inductive conformal predictors. In *Asian conference on*
 663 *machine learning*, pp. 475–490. PMLR, 2012.

664 Vladimir Vovk, David Lindsay, Ilia Nouretdinov, and Alex Gammerman. Mondrian confidence
 665 machine. *Technical Report*, 2003.

666 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*,
 667 volume 29. Springer, 2005.

668 Qingni Wang, Tiantian Geng, Zhiyuan Wang, Teng Wang, Bo Fu, and Feng Zheng. Sample then
 669 identify: A general framework for risk control and assessment in multimodal large language
 670 models. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL
 671 <https://openreview.net/forum?id=9WYMDgxDac>.

672 Zhiyuan Wang, Qingni Wang, Yue Zhang, Tianlong Chen, Xiaofeng Zhu, Xiaoshuang Shi, and
 673 Kaidi Xu. Sconu: Selective conformal uncertainty in large language models. *arXiv preprint*
 674 *arXiv:2504.14154*, 2025b.

675 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 676 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 677 *arXiv:2412.15115*, 2024.

678 Xinyi Yu, Yiqi Zhao, Xiang Yin, and Lars Lindemann. Signal temporal logic control synthesis among
 679 uncontrollable dynamic agents with conformal prediction. *arXiv preprint arXiv:2312.04242*, 2023.

680 Qiangqiang Zhang, Ting Li, Xinwei Feng, Xiaodong Yan, and Jinhan Xie. Online differentially private
 681 conformal prediction for uncertainty quantification. In *Forty-second International Conference on*
 682 *Machine Learning*, 2025. URL <https://openreview.net/forum?id=dmZQrojdVU>.

683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A ADDITIONAL DETAILS FOR EXPERIMENT**
703704 **Default settings.** All experiments use listwise ranking prompts with explicit entailment rubrics;
705 we standardize the merge prompt to enforce non-contradiction and de-duplication. Unless specified,
706 $K=50$, $T=1.0$, $\alpha=0.1$, and top- $\hat{q}_\alpha(Z)$ selection uses features $Z=\{\text{question difficulty level, answer}$
707 $\text{length, question type, log-prob}\}$.
708709 **Diverse Model Combinations.** In our main experiments and ablation studies, we employed the
710 following sets of LLM combinations. First, in Section 6 and the primary experiments, we used model
711 pairs from the same platform: (1) I-Gemini-2.0-flash and II-Gemini-2.5-pro (Team et al., 2023), (2)
712 I-Deepseek-V3 and II-Deepseek-R1 (Liu et al., 2024), (3) I-Qwen2.0-7B and II-Qwen3.0-7B (Yang
713 et al., 2024). Additionally, in Appendix B Table 4, we supplemented our analysis with cross-platform
714 model combinations to investigate potential data distribution shifts: (4) I-Gemini-2.0-flash and
715 II-Qwen3.0-7B, (5) I-Qwen2.0-7B and II-Deepseek-R1, (6) I-Deepseek-V3 and II-Gemini-2.5-
716 pro. This combinations design was guided by model release dates and parameter counts, under
717 the general assumption that more recently released and larger-parameter models tend to exhibit
718 stronger capabilities. We prompt each LLMs to generate a long-text response for each questions and
719 decompose the original response into independent answers.
720721 **B ADDITIONAL EXPERIMENT RESULTS**
722723 Table 2: Experimental results of low-version model generation and high-version model ranking
724 (I-Model=gemini-2.0-flash, II-Model=gemini-2.5-pro, $K = 50$, $T = 1$, $\alpha = 0.1$)
725

726 Dataset	727 Method	728 Coverage	729 TCR@0.1 \uparrow	730 CovGap \downarrow	731 Set size \uparrow	732 RetRate(%) \uparrow
727 Fastscore	SplitConf	0.912 \pm 0.022	0.923	0.105	25.10 \pm 0.23	50.20
	RankConf	0.907 \pm 0.017	0.905	0.093	26.39 \pm 0.15	53.46
	CondSConf	0.902 \pm 0.019	0.908	0.051	27.22 \pm 0.50	57.08
	AdaptiveRCF	0.899 \pm 0.013	0.902	0.051	29.30 \pm 0.70	57.65
731 MATH	SplitConf	0.883 \pm 0.037	0.880	0.93	10.21 \pm 0.020	20.42
	RankConf	0.905 \pm 0.020	0.905	0.059	12.73 \pm 0.47	25.46
	CondSConf	0.898 \pm 0.013	0.901	0.047	12.10 \pm 0.21	24.20
	AdaptiveRCF	0.897 \pm 0.007	0.896	0.031	14.73 \pm 0.15	29.46

736 **B.1 ABLATION ACROSS DIVERSE MODEL PAIRS**
737738 To evaluate the robustness of our methods under varying model capabilities and potential distribution
739 shifts, we conducted ablation studies across diverse model pairings. Table 4 presents results across six
740 different model pairs using the MedicalQA dataset. Across all settings, **AdaptiveRCF** consistently
741 achieves the lowest CovGap while maintaining the highest Set Size and Retention Rate, demonstrating
742 remarkable robustness to differences in model capability and architecture. Notably, even when
743 the II-Model is from a different architecture or training paradigm (cross-platform combinations),
744 **AdaptiveRCF** preserves its superior conditional reliability, as evidenced by near-optimal Coverage
745 and TCR values that consistently rank first or second in proximity to the ideal 0.9 target. Similarly,
746 **RankConf** consistently outperforms the baseline SplitConf across both Coverage and TCR, validating
747 the fundamental benefit of incorporating ranking signals into the confidence calibration process. These
748 results collectively confirm that adaptive thresholding and ranking-aware strategies are essential
749 components for effective uncertainty quantification, particularly in practical deployment scenarios
750 involving heterogeneous or black-box LLM systems.
751752 **B.2 FEATURE ABLATION AND COEFFICIENT ANALYSIS**
753754 To systematically evaluate feature contributions to **AdaptiveRankConf**'s coverage guarantee, we
755 conducted comprehensive ablation studies and coefficient analysis across multiple datasets. As shown
756 in Table 5, our method achieves the smallest coverage gap (CovGap) when using the complete feature
757 set, confirming the synergistic value of our feature combination strategy.
758

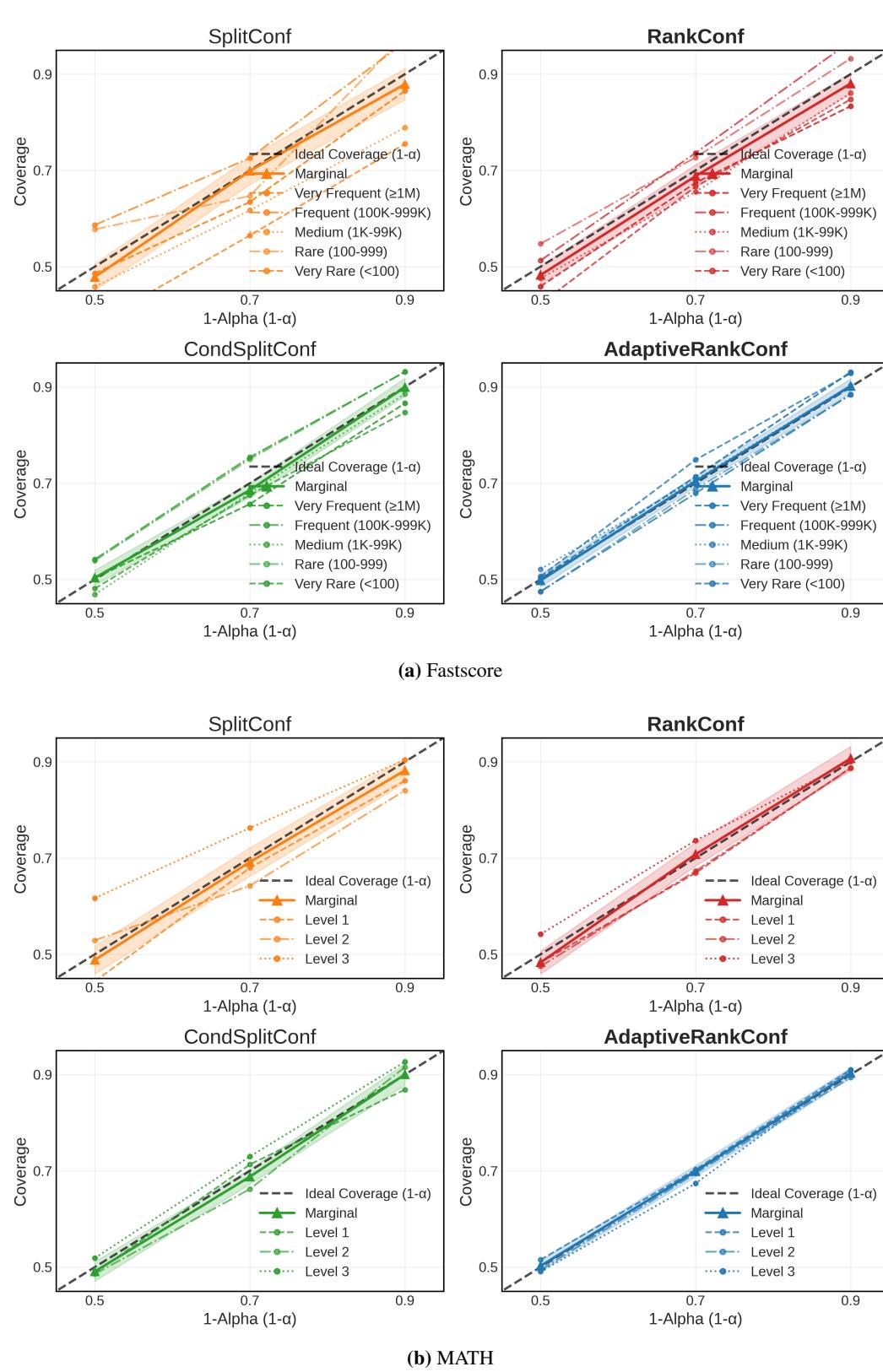


Figure 2: Marginal and Conditional coverage of the four methods in the Fastscore and NQ dataset, for α values ranging from 0.5 to 0.9.

810
 811
 812 Table 3: Ablation Experimental Results on NQ and MedicalQA with Different K and T Settings
 813 (I-Model=gemini-2.0-flash, II-Model=gemini-2.5-pro, $\alpha = 0.1$).

815	Dataset	K	T	Metric	SplitConf	RankConf	CondSConf	AdaptiveRCF
816 817 818 819 820 821 822 823 824 825 826	MedicalQA	10	1.0	Coverage	0.885 ± 0.210	0.908 ± 0.050	0.912 ± 0.042	0.902 ± 0.210
				Set size \uparrow	4.23 ± 0.05	4.67 ± 0.02	6.07 ± 0.72	6.72 ± 0.42
				CovGap \downarrow	0.052	0.045	<u>0.026</u>	0.013
		100	1.0	Coverage	0.906 ± 0.026	0.891 ± 0.035	0.899 ± 0.027	0.900 ± 0.014
				Set size \uparrow	18.27 ± 0.17	18.91 ± 0.12	26.74 ± 0.24	28.12 ± 0.41
				CovGap \downarrow	0.054	0.039	<u>0.031</u>	0.029
		50	0.7	Coverage	0.897 ± 0.040	0.902 ± 0.003	0.896 ± 0.014	0.901 ± 0.090
				Set size \uparrow	15.08 ± 0.05	15.12 ± 0.65	19.32 ± 0.62	19.58 ± 0.25
				CovGap \downarrow	0.039	0.035	<u>0.012</u>	0.011
		50	1.5	Coverage	0.894 ± 0.630	0.902 ± 0.310	0.900 ± 0.217	0.901 ± 0.180
				Set size \uparrow	13.91 ± 0.20	13.11 ± 0.13	15.51 ± 0.33	16.18 ± 0.70
				CovGap \downarrow	0.076	0.052	0.035	<u>0.035</u>
827 828 829 830 831 832 833 834 835 836	NQ	10	1.0	Coverage	0.922 ± 0.007	0.903 ± 0.012	0.918 ± 0.022	0.902 ± 0.008
				Set size \uparrow	5.27 ± 0.17	5.97 ± 0.06	6.07 ± 0.24	6.52 ± 0.08
				CovGap \downarrow	0.079	0.053	<u>0.015</u>	0.014
		100	1.0	Coverage	0.904 ± 0.044	0.900 ± 0.510	0.902 ± 0.620	0.900 ± 0.260
				Set size \uparrow	25.20 ± 0.24	26.91 ± 0.34	32.69 ± 0.72	37.42 ± 0.25
				CovGap \downarrow	0.031	0.029	<u>0.011</u>	0.009
		50	0.7	Coverage	0.906 ± 0.102	0.898 ± 0.052	0.903 ± 0.084	0.900 ± 0.053
				Set size \uparrow	16.53 ± 0.75	17.33 ± 0.61	19.32 ± 0.33	22.36 ± 0.87
				CovGap \downarrow	0.073	0.051	<u>0.015</u>	0.011
		50	1.5	Coverage	0.889 ± 0.021	0.895 ± 0.101	0.895 ± 0.042	0.902 ± 0.016
				Set size \uparrow	14.71 ± 0.37	14.90 ± 0.51	17.30 ± 0.32	18.61 ± 0.47
				CovGap \downarrow	0.086	0.062	<u>0.030</u>	0.028

837
 838
 839
 840
 841 Table 4: Experimental results using the MedicalQA dataset for different LLM pair combinations:
 842 (1),(2),(3), represent combinations of models from the same platform, while (4),(5),(6) represent
 843 combinations of models from different platforms. ($K = 50, T = 1, \alpha = 0.1$).

845	Model Pairs	Method	Coverage	TCR@0.1	CovGap \downarrow	Set Size \uparrow	RetRate(%) \uparrow
(1) I-Gemini-2.0-flash and II-Gemini-2.5-pro		SplitConf	0.911 ± 0.027	0.888	0.058	15.10 ± 0.21	30.24
		RankConf	0.909 ± 0.023	0.894	0.037	16.73 ± 0.15	33.48
		CondSConf	0.903 ± 0.020	<u>0.901</u>	<u>0.023</u>	18.55 ± 0.58	<u>37.10</u>
		AdaptiveRCf	0.901 ± 0.012	0.902	0.011	19.28 ± 0.70	38.56
(2) I-Deepseek-V3 and II-Deepseek-R1		SplitConf	0.908 ± 0.023	0.912	0.065	15.64 ± 0.47	31.28
		RankConf	0.905 ± 0.018	0.903	0.044	17.08 ± 0.07	34.16
		CondSConf	0.902 ± 0.020	0.899	<u>0.031</u>	19.31 ± 0.20	<u>38.62</u>
		AdaptiveRCf	0.900 ± 0.005	0.901	0.020	20.03 ± 0.25	40.06
(3) I-Qwen2.0-7B and II-Qwen3.0-7B		SplitConf	0.915 ± 0.053	0.920	0.138	14.40 ± 0.93	28.80
		RankConf	0.912 ± 0.018	0.913	0.088	14.89 ± 0.55	29.78
		CondSConf	0.904 ± 0.012	<u>0.903</u>	<u>0.064</u>	19.01 ± 0.12	38.02
		AdaptiveRCf	0.905 ± 0.009	0.903	0.047	18.92 ± 0.34	37.84
(4) I-Gemini-2.0-flash and II-Qwen3.0-7B		SplitConf	0.885 ± 0.025	0.878	0.189	13.50 ± 0.30	27.15
		RankConf	0.898 ± 0.022	0.896	0.133	15.23 ± 0.34	30.46
		CondSConf	0.901 ± 0.013	<u>0.902</u>	<u>0.083</u>	17.13 ± 0.32	34.26
		AdaptiveRCf	0.901 ± 0.010	0.901	0.064	17.02 ± 0.53	34.04
(5) I-Qwen2.0-7B and II-Deepseek-R1		SplitConf	0.882 ± 0.033	0.888	0.237	13.46 ± 0.77	26.92
		RankConf	0.893 ± 0.028	0.895	0.151	14.83 ± 0.43	29.66
		CondSConf	0.895 ± 0.029	<u>0.897</u>	<u>0.083</u>	16.73 ± 0.68	33.46
		AdaptiveRCf	0.898 ± 0.022	0.898	0.066	16.92 ± 0.20	33.84
(6) I-Deepseek-V3 and II-Gemini-2.5-pro		SplitConf	0.882 ± 0.023	0.890	0.209	15.48 ± 0.53	30.96
		RankConf	0.893 ± 0.012	0.894	0.142	16.19 ± 0.31	32.38
		CondSConf	0.894 ± 0.022	<u>0.893</u>	<u>0.069</u>	18.51 ± 0.64	37.02
		AdaptiveRCf	0.895 ± 0.009	0.895	0.060	18.83 ± 0.81	37.66

864
865
Table 5: Ablation study of feature contributions to AdaptiveRCf performance

Datasets	Metric	I – Full Feature Set	II – w/o Question difficulty	III – w/o Question type	IV – w/o LLM log-prob	V – w/o Answer length
MedicalQA	Coverage	0.901 ± 0.008	0.897 ± 0.02	0.905 ± 0.61	0.899 ± 0.24	0.904 ± 0.35
	Set Size \uparrow	19.28 ± 0.70	16.43 ± 0.42	18.53 ± 0.09	16.95 ± 0.26	18.84 ± 0.20
	CovGap \downarrow	0.011	0.031	0.019	0.026	0.023
Datasets	Metric	I – Full Feature Set	II – w/o Wikipedia view counts	III – w/o Question type	IV – w/o LLM log-prob	V – w/o Answer length
Factscore	Coverage	0.899 ± 0.013	0.895 ± 0.13	0.903 ± 0.61	0.898 ± 0.46	0.900 ± 0.83
	Set Size \uparrow	29.30 ± 0.70	9.68 ± 0.24	12.52 ± 0.24	10.02 ± 0.57	11.68 ± 0.31
	CovGap \downarrow	0.051	0.084	0.065	0.079	0.081

875
876
Table 6: Coefficient analysis of the experiment using features

Dataset	Feature	Coefficient ± SE	Standardized Beta	t-value	p-value
MedicalQA	Intercept	-0.79 ± 0.05	–	-12.15	< 0.001
	Question difficulty level	0.39 ± 0.04	0.28	8.13	< 0.001
	Question type	0.09 ± 0.06	0.07	1.63	0.105
	LLM log-prob	0.37 ± 0.04	0.32	9.74	< 0.001
	Answer length	0.08 ± 0.02	0.15	2.86	0.005
Factscore	Intercept	-0.83 ± 0.07	–	-11.86	< 0.001
	Wikipedia view count	0.42 ± 0.05	0.31	8.4	< 0.001
	Question type	0.11 ± 0.06	0.08	1.81	0.072
	LLM log-prob	0.35 ± 0.04	0.29	8.75	< 0.001
	Answer length	0.09 ± 0.03	0.17	2.98	0.004

889
890 To quantify feature importance, we performed multivariate regression analysis establishing the
relationship between feature vectors Z_i and nonconformity scores $r(X_i, y_i^*)$:

$$892 \quad r(X_i, y_i^*) = \beta_0 + \sum_{j=1}^p \beta_j Z_{i,j} + \epsilon_i, \quad \beta_j^{\text{std}} = \beta_j \cdot \frac{\sigma_{Z_j}}{\sigma_r}, \quad t_j = \frac{\beta_j}{\text{SE}(\beta_j)} \quad (21)$$

895 Analysis of Table 6 reveals consistent feature importance patterns across domains. Crucially, removing
896 Wikipedia page views (a key external knowledge feature) or LLM self-reported difficulty (a critical
897 internal uncertainty metric) leads to substantial CovGap increases (0.033 and 0.014 on Factscore),
898 demonstrating these features’ essential role in conditional coverage. The coefficient analysis confirms
899 both features exhibit strong positive predictive weights ($p < 0.001$) across datasets.

900 Question difficulty level significantly impacts threshold determination in domain-specific datasets
901 (MedicalQA), while answer length shows moderate but consistent significance across all settings.
902 In contrast, question type exhibits weaker predictive power ($p > 0.05$ in most cases), indicating its
903 secondary importance in threshold adaptation.

904 These complementary analyses validate our dual-source approach that integrates external knowledge
905 accessibility with internal model uncertainty. This integration enables dynamic threshold adjustment
906 that responds to input characteristics, explaining our method’s superior conditional coverage per-
907 formance across diverse question types and domains. Statistical significance ($p < 0.001$) for core
908 features provides strong evidence for the importance of feature-informed threshold adaptation in
909 conformal language generation.

911 C PROMPTS AND QUERY DESIGN PROCESS

912
913
914
915
916
917

918

919

920

921

Table 7: Collaborative Model Prompt Design: Prompts for Subclaim Generation and Annotation

922

923

924

Stage 1: Low-version Model - Subclaim Generation (gemini-2.0-flash-exp)

925

926

927

928

System Prompt: "You are a highly intelligent medical AI assistant. Your task is to provide comprehensive medical information and break it down into structured subclaims."

929

930

931

Task 1: Detailed Response Generation

Provide a detailed English medical response for the medical question. Cover all relevant medical aspects, treatments, symptoms, causes, and recommendations. Ensure the answer is medically accurate and well-structured.

932

933

934

935

936

Task 2: Subclaim DecompositionDecompose your comprehensive answer into K distinct subclaims. Each subclaim should be a complete, standalone medical statement. Subclaims should follow the logical flow of your comprehensive answer. Each subclaim should be 10-30 words long for clarity.

937

938

939

Output Format: JSON object containing: Question, Free_form_answer, Must_have, Nice_to_have, Overall_length, claims[subclaim_seq{N}], Related_context], difficulty, source

940

941

942

Stage 2: High-version Model - Annotation and Ranking (gemini-2.5-flash-lite-preview)

943

944

945

System Prompt: "You are an expert medical evaluator. Your task is to analyze and evaluate medical subclaims for accuracy, relevance, and quality."

946

Task 1: Subclaim Annotation Based on Reference Answer

Evaluate the correctness of each subclaim using the reference answer below. Mark each subclaim as "True" (T) if it contains semantic content aligning with any of the "Must_have" or "Nice_to_have" lists, or "False" (F) if it doesn't contain such information. Add annotation to each subclaim in the JSON, with values "T" or "F".

951

*Reference Information:**Must_have:* Information that is essential and must be included*Nice_to_have:* Information that is beneficial but not mandatory

954

Task 2: Subclaim Ranking Based on Quality and Completeness

955

Rank the input subclaims for quality and information completeness using the following criteria:

957

(1) Subclaims with high generation quality and good information completeness should rank higher.

958

(2) Rankings must be unique positive integers from 1 to the total number of subclaims, where 1 is the best rank, and higher numbers indicate lower quality.

959

(3) Subclaims with annotation "T" should generally rank significantly higher than those with "F", though not absolutely.

960

Add a 'rank' field to each subclaim in the JSON, with the rank value as a string.

961

Task 3: Reconstruct Answer from High-Ranking Subclaims

962

Identify all subclaims with ranks above a specified threshold. Semantically merge these subclaims to form the final correct answer. Return the reconstructed answer as a single continuous text, without adding extra content.

963

964

965

966

967

968

969

970

971

972
 973
 974 Table 8: Illustrative example of the collaborative ranking process on MedicalQA dataset. The table
 975 demonstrates how our **AdaptiveRankConf** method identifies factual Subclaims through this process
 976 design, filters out incorrect information, and reconstructs a coverage-guaranteed answer.
 977

978 Component	979 Content
980 Question	981 What is prednisone used for?
982 Entailment Reference	983 1.Prednisone is a type of corticosteroid medication that is used to suppress 984 the immune system and decrease inflammation in the body. 985 2.It's used to treat a host of different diseases and conditions, largely 986 those associated with inflammation and immune system activity. 987 3.Common uses for prednisone include treating autoimmune diseases. 988 Prednisone can also be used to prevent the body from rejecting an organ 989 after a transplant.
990 Low-version LLM Response	991 Prednisone is a corticosteroid medication used primarily to suppress the 992 immune system and decrease inflammation throughout the body. These 993 properties make it useful in treating various conditions, including au- 994 toimmune diseases, severe allergies, and asthma. Although it does not 995 specifically suppress the immune response to the new organ, it can also be 996 used to manage certain types of cancers and may be prescribed to prevent 997 organ rejection after transplant. It is not typically part of a chemotherapy 998 regimen for specific cancers, nor are its immunosuppressant effects con- 999 sidered key in transplant settings, and it is not commonly used for certain 1000 eye conditions.
1001 High-version LLM Ranked Subclaims	1002 [T] 1. Prednisone is a corticosteroid medication used primarily to suppress 1003 the immune system. 1004 [T] 2. It also serves to decrease inflammation throughout the body. 1005 [T] These properties make it useful in treating various conditions, includ- 1006 ing autoimmune diseases. 1007 [T] 3. Prednisone is also prescribed for severe allergies and asthma. 1008 [T] 4. It can also be used to manage certain types of cancers. 1009 [T] 5. Prednisone may be used to prevent organ rejection after transplant.
1010 AdaptiveRankConf Dynamic Threshold Calibration	1011 {"dataset": "MedicalQA", "difficulty_level": 1012 "Level 3", "dynamic_threshold": "rank_6"} The 1013 dynamic threshold is derived from the calibration set via $\hat{q}(Z)$, ensuring 1014 adaptive selection based on question difficulty and model confidence.
1015 Excluded Subclaims	1016 [F] 6. It suppresses the immune response to the new organ. 1017 [F] 7. It may be part of a chemotherapy regimen for specific cancers. 1018 [F] 8. Prednisone's immunosuppressant effects are key in transplant 1019 settings. 1020 [F] 9. It's also sometimes used for certain eye conditions.
1021 Re-merge Answer	1022 Prednisone is a corticosteroid medication used primarily to suppress 1023 the immune system and decrease inflammation throughout the body. 1024 These properties make it useful in treating various conditions, including 1025 autoimmune diseases, severe allergies, and asthma. Although it does not specifically suppress the immune response to the new organ, It can also be used to manage certain types of cancers and may be prescribed to prevent organ rejection after transplant. It is not typically part of a chemotherapy regimen for specific cancers, nor are its immunosuppres- sant effects considered key in transplant settings, and it is not commonly used for certain eye conditions.

1026 D LARGE MODEL COLLABORATION AND RESOURCE ANALYSIS

1028 In this section, we present a detailed empirical analysis of computational resource consumption across
 1029 different model collaboration strategies. Our evaluation focuses on token usage and wall-clock time
 1030 per query, measured under consistent experimental conditions. All computational resource metrics (to-
 1031 ken consumption and processing time) are reported as averages over 50 random train–calibration–test
 1032 splits, with variability captured by standard deviation. Specifically:

1033

- 1034 1. **Token counting:** We obtain precise token statistics via the usage field returned by each
 1035 API call. For a given input query, we first issue a single batch request (batch size = 1) to
 1036 the low-version LLM to generate K candidate responses, and record the total input and
 1037 output tokens. We then issue a single batch request to the high-version LLM for ranking
 1038 and entailment-based annotation, again recording total tokens. The sum from both calls
 1039 constitutes the total token cost per query. Tokenization is performed using each model
 1040 provider’s native tokenizer to ensure cross-model consistency.
- 1041 2. **Time measurement protocol:** Processing time is measured from the moment the API
 1042 request is sent to the instant the full response is received, inclusive of network transmission
 1043 latency.

1044 **Remark.** Comprehensive token cost comparisons heavily depend on specific deployment environ-
 1045 ments and API providers. In this experiment, we used the default API settings of each model provider
 1046 for testing. The cost analysis here is for reference only, and the actual cost may vary depending on
 1047 the code runtime environment.

1048 Table 9: Resource efficiency and performance across configurations. $L-H$ = Low-gen + High-rank,
 1049 $L-L$ = Low-gen + Low-rank, $H-H$ = High-gen + High-rank. Set size denotes the number of factually
 1050 verified subclaims retained. All results averaged over 50 random splits. (I-Model=gemini-2.0-flash,
 1051 II-Model=gemini-2.5-pro, $\alpha = 0.1$)

1053 Dataset	1054 K	1055 Config	1056 Coverage	1057 Set size \uparrow	1058 CovGap \downarrow	1059 Tokens (total)	1060 Time (s/query)
MedicalQA	10	$L-H$	0.908±0.050	$4.67±0.02$	0.045	3,627	3.48
		$L-L$	$0.872±0.065$	$3.75±0.05$	0.085	1,423	1.32
		$H-H$	$0.915±0.038$	$4.21±0.03$	0.058	5,847	4.65
	50	$L-H$	0.909±0.023	$16.73±0.15$	0.040	12,483	6.78
		$L-L$	$0.865±0.043$	$12.40±0.20$	0.092	5,732	2.53
		$H-H$	$0.921±0.027$	$15.42±0.21$	0.055	34,215	15.87
	100	$L-H$	$0.891±0.035$	$18.91±0.12$	0.042	20,674	13.42
		$L-L$	$0.850±0.040$	$14.60±0.25$	0.105	10,587	4.86
		$H-H$	$0.924±0.019$	$17.86±0.18$	0.058	67,389	17.75
FactScore	10	$L-H$	$0.907±0.017$	$26.39±0.15$	0.093	2,547	2.38
		$L-L$	$0.875±0.032$	$22.15±0.22$	0.125	973	0.87
		$H-H$	$0.913±0.025$	$24.53±0.18$	0.102	4,038	3.15
	50	$L-H$	$0.907±0.017$	$26.39±0.15$	0.093	8,463	4.58
		$L-L$	$0.868±0.029$	$21.48±0.31$	0.142	3,967	1.68
		$H-H$	$0.915±0.021$	$25.17±0.24$	0.108	23,245	10.68
	100	$L-H$	$0.900±0.510$	$26.91±0.34$	0.029	13,872	8.93
		$L-L$	$0.857±0.035$	$21.93±0.28$	0.158	7,263	3.28
		$H-H$	$0.918±0.018$	$26.03±0.32$	0.113	46,128	17.27

1070 Experimental results demonstrate that the $L-L$ configuration (low-capability generation with
 1071 low-capability ranking) achieves the lowest computational cost but suffers from insufficient coverage
 1072 (0.872) and substantial conditional coverage gaps (CovGap 0.085), rendering it inadequate for
 1073 high-stakes domains requiring rigorous factual accuracy. In contrast, the $H-H$ configuration
 1074 (high-capability generation with high-capability ranking) delivers strong coverage but incurs
 1075 excessive computational overhead, resulting in significant resource inefficiency.

1076 The $L-H$ configuration (low-capability generation with high-capability ranking) achieves an optimal
 1077 balance between resource efficiency and factual reliability: it consumes approximately 50% fewer
 1078 tokens than $H-H$ while maintaining near-optimal coverage and yielding the highest retention rate of

1080 factually verified content. These findings validate our method efficiency—that offloading candidate
 1081 generation to lightweight models while reserving critical factual verification and ranking tasks
 1082 for more capable models represents the most effective strategy for building efficient and reliable
 1083 conformal language generation systems.

1085 E DETAILED PROOF OF THEOREM 4.1

1087 *Proof.* To establish the factual correctness guarantee for our conformal prediction framework, we
 1088 must rigorously demonstrate that the output of $L_\alpha(X_{n+1})$ is factually correct with probability at least
 1089 $1 - \alpha$.

1090 Let $r(X_i, y_i^*)$ denote the nonconformity score for the i -th calibration example, defined as:

$$1092 r(X_i, y_i^*) := \min\{\text{rank}(y) \mid y \in R_i, y_i^* \notin \mathcal{E}(M(S(y)))\} - 1$$

1094 Let q_α be the $\lceil (n+1)(1-\alpha) \rceil / n$ -quantile of the nonconformity scores $\{r(X_i, y_i^*)\}_{i=1}^n$, and let \hat{q}_α
 1095 be its empirical estimate computed from the calibration set.

1096 Now, consider a new test example (X_{n+1}, y_{n+1}^*) , where $r_{n+1} = r(X_{n+1}, y_{n+1}^*)$. The fundamental
 1097 property of conformal prediction guarantees that:

$$1098 \mathbb{P}(r_{n+1} \leq \hat{q}_\alpha) \geq 1 - \alpha$$

1100 To prove the claim in Theorem 4.1, it suffices to show that:

$$1101 r_{n+1} \leq \hat{q}_\alpha \iff y_{n+1}^* \in \mathcal{E}(M(S(L_\alpha(X_{n+1}))))$$

1103 For the forward direction, assume $r_{n+1} \leq \hat{q}_\alpha$. By definition of the nonconformity score, this
 1104 means the rank of the first factually incorrect response in the ordered set R_{n+1} is at least $\hat{q}_\alpha + 1$.
 1105 Therefore, all responses $L^{(j)}(X_{n+1})$ with $\text{rank}(L^{(j)}(X_{n+1})) \leq \hat{q}_\alpha$ must be factually correct (i.e.,
 1106 $y_{n+1}^* \in \mathcal{E}(M(S(L^{(j)}(X_{n+1}))))$ for all such j).

1108 Since $L_\alpha(X_{n+1})$ is defined as:

$$1109 L_\alpha(X_{n+1}) = M \left(\bigcup_{j: \text{rank}(L^{(j)}(X_{n+1})) \leq \hat{q}_\alpha} S(L^{(j)}(X_{n+1})) \right)$$

1113 the merged response contains only factually correct subclaims. By the properties of the entailment
 1114 operator \mathcal{E} and merge function M , the combined response must also be factually correct. Therefore,
 1115 $y_{n+1}^* \in \mathcal{E}(M(S(L_\alpha(X_{n+1}))))$.

1116 For the reverse direction, we prove the contrapositive. Assume $y_{n+1}^* \notin \mathcal{E}(M(S(L_\alpha(X_{n+1}))))$. This
 1117 means the merged response contains at least one factually incorrect subclaim. Let j^* be the index of
 1118 the first factually incorrect response in the ranking of R_{n+1} . Then by definition of the nonconformity
 1119 score:

$$1120 r_{n+1} = \text{rank}(L^{(j^*)}(X_{n+1})) - 1$$

1121 Since $y_{n+1}^* \notin \mathcal{E}(M(S(L_\alpha(X_{n+1}))))$, we must have $\text{rank}(L^{(j^*)}(X_{n+1})) \leq \hat{q}_\alpha + 1$, which implies
 1122 $r_{n+1} \leq \hat{q}_\alpha$.

1123 Combining these directions, we have established that:

$$1125 r_{n+1} \leq \hat{q}_\alpha \iff y_{n+1}^* \in \mathcal{E}(M(S(L_\alpha(X_{n+1}))))$$

1127 Therefore, by the properties of conformal prediction:

$$1128 \mathbb{P}(y_{n+1}^* \in \mathcal{E}(M(S(L_\alpha(X_{n+1})))) = \mathbb{P}(r_{n+1} \leq \hat{q}_\alpha) \geq 1 - \alpha$$

1130 This completes the proof that our method provides the desired factual correctness guarantee. \square

1132 The proof leverages the fundamental properties of conformal prediction while carefully accounting
 1133 for our novel ranking-based nonconformity score and the specific definitions of our entailment-based
 factual correctness criterion.

1134 **F EXTENSION TO MULTI-STEP REASONING TASKS**
1135

1136 Following the methods we described earlier, we will extend the collaborative ranking and dynamic
1137 thresholds approach to deep thinking models and tasks that require multi-step reasoning. For multi-
1138 step reasoning tasks, we consider problems that require H sequential inference steps. At each step h ,
1139 the model generates intermediate claims based on the initial prompt and previous reasoning steps.
1140 Formally, we denote:

1141

1142 - X : The initial input prompt
1143 - S_h : The set of intermediate subclaims generated at step h
1144 - y_h^* : The ground truth reference for step h
1145 - $S_{1:h-1}$: The concatenation of all previous reasoning steps

1146 The complete reasoning trajectory is represented as $S = (S_1, S_2, \dots, S_H)$. For calibration example
1147 i , we construct the extended response set:

1148
$$R_i = \left\{ (S_1^{(j_1)}, \dots, S_H^{(j_H)}) \mid 1 \leq j_h \leq K, \forall h \in \{1, \dots, H\} \right\} \cup \{(y_{i,1}^*, \dots, y_{i,H}^*)\}$$

1149 where K is the number of candidate subclaim sets generated by the low-version LLM at each step,
1150 and the high-version LLM evaluates the entire trajectory.

1151 **F.1 COVERAGE GUARANTEES FOR MULTI-STEP REASONING**

1152 We extend our nonconformity scoring function to operate at the trajectory level. The trajectory-level
1153 entailment operator is defined as:

1154
$$\mathcal{E}_H(y^*) = \bigcap_{h=1}^H \mathcal{E}(y_h^*)$$

1155 where $\mathcal{E}(y_h^*)$ is the standard entailment operator from Equation (1).

1156 The trajectory-level nonconformity score becomes:

1157
$$r_H(X_i, y_i^*) := \min \{ \text{rank}(S) \mid S \in R_i, y_i^* \notin \mathcal{E}_H(M(S)) \} - 1$$

1158 where $M(S)$ merges the entire reasoning trajectory S into a coherent response.

1159 For a new input X_{n+1} , our calibrated prediction function is:

1160
$$L_\alpha^H(X_{n+1}) = M \left(\bigcup_{j: \text{rank}(S^{(j)}) \leq \hat{q}_\alpha} S^{(j)} \right)$$

1161 where $S^{(j)}$ denotes the j -th highest ranked reasoning trajectory.

1162 **Theorem F.1** (Multi-step Coverage Guarantee). *Let $\{(X_i, y_i^*)\}_{i=1}^{n+1}$ be exchangeable, and let \hat{q}_α be
1163 the $\lceil (n+1)(1-\alpha) \rceil / n$ -quantile of $\{r_H(X_i, y_i^*)\}_{i=1}^n$. Then:*

1164
$$\mathbb{P}(y_{n+1}^* \in \mathcal{E}_H(M(L_\alpha^H(X_{n+1})))) \geq 1 - \alpha$$

1165 *Proof.* The proof follows Theorem 4.1 by treating the entire reasoning trajectory as a single composite
1166 output. By the properties of conformal prediction:

1167
$$\mathbb{P}(r_H(X_{n+1}, y_{n+1}^*) \leq \hat{q}_\alpha) \geq 1 - \alpha$$

1168 If $r_H(X_{n+1}, y_{n+1}^*) \leq \hat{q}_\alpha$, then all trajectories $S^{(j)}$ with $\text{rank}(S^{(j)}) \leq \hat{q}_\alpha$ are factually correct across
1169 all steps. Therefore:

1170
$$\mathbb{P}(y_{n+1}^* \in \mathcal{E}_H(M(L_\alpha^H(X_{n+1})))) \geq 1 - \alpha$$

□

To enhance conditional validity in multi-step scenarios, we extend AdaptiveRankConf by incorporating step-specific difficulty features $Z_{i,h}$ that capture step complexity, context dependency depth, and domain-specific indicators. The adaptive threshold function becomes trajectory-aware:

$$\hat{q}_\alpha(Z_{n+1}) = \sup\{r : r \leq g_r(Z_{n+1})\}$$

where $Z_{n+1} = (Z_{n+1,1}, \dots, Z_{n+1,H})$ and g_r solves the optimization problem in Equation (16) with trajectory-level features. This extension maintains theoretical guarantees while improving empirical performance on complex reasoning tasks.

G RESULTS OF THE COMPARISON METHOD FOR SUBCLAIMS FACTUAL FILTERING

In this section, we present four specific case studies to illustrate the effectiveness of our approach in fact-checking after decomposing responses to subclaims. Based on the accuracy of factual implications, our method **RankConf** determines the correctness of subclaims more accurately than the comparative method **SplitConf** on problems without Z_i^G group feature conditions. Similarly, our method **AdaptiveRCf** is also more accurate than the comparative method **CondSplitConf** on problems within-group Z_i^G feature conditions.

Table 10: Subclaims filtering comparison for question "Find x such that $\lceil x \rceil + x = \frac{23}{7}$. Express x as a common fraction." from **MATH** dataset with setting (I-Model=gemini-2.0-flash, II-Model=gemini-2.5-pro, $\alpha = 0.1$).

Subclaims $K = 10$	Entailment	SplitConf	RankConf
The solution is $x = \frac{9}{7}$.	✓	✓	✓
Since $\lceil x \rceil$ must be an integer, let $\lceil x \rceil = 2$, then $x = \frac{23}{7} - 2 = \frac{9}{7}$.	✓	✓	✓
x is less than $\lceil x \rceil$ and greater than $\lceil x \rceil - 1$, which is a fundamental property of ceiling functions.	✓	✓	✓
For this equation, $\lceil x \rceil = 2$ and $1 < x < 2$.	✓	✗	✓
The fraction $\frac{9}{7}$ is in simplest form with denominator 7.	✓	✗	✓
When solving $\lceil x \rceil + x = \frac{23}{7}$, we find that $x = 1.2857$, which equals $\frac{9}{7}$.	✓	✓	✓
Since $\frac{23}{7} \approx 3.286$, and $\lceil x \rceil$ must be 2, the solution is $x = \frac{9}{7}$.	✓	✓	✓
The ceiling function $\lceil x \rceil$ equals 3 for this problem, leading to $x = \frac{2}{7}$.	✗	✗	✗
If $x = \frac{16}{7}$, then $\lceil x \rceil + x = 3 + \frac{16}{7} = \frac{37}{7}$, which is not $\frac{23}{7}$.	✗	✓	✗
x must be greater than 1.5 for the equation $\lceil x \rceil + x = \frac{23}{7}$ to hold true.	✗	✗	✗

1242 Table 11: Subclaims filtering comparison for question "A bookstore is deciding what price it should
 1243 charge for a certain book. After research, the store finds that if the book's price is p dollars (where
 1244 $p \leq 32$), then the number of books sold per month is $128 - 4p$. What price should the store
 1245 charge to maximize its revenue?" from **MATH** dataset with setting (I-Model=gemini-2.0-flash, II-
 1246 Model=gemini-2.5-pro, $\alpha = 0.1$).

1247

Subclaims $K = 10$	Entailment	SplitConf	RankConf
The revenue is calculated by price multiplied by quantity sold, which gives $R(p) = p(128 - 4p)$.	✓	✓	✓
The revenue function $R(p) = 128p - 4p^2$ is a quadratic function that opens downward.	✓	✓	✓
To maximize revenue, the store should charge \$16 per book, as this is the vertex of the parabola.	✓	✓	✓
At the optimal price of \$16, the store will sell 64 books per month.	✓	✓	✓
The maximum monthly revenue will be 1,024 when the price is set to 16.	✓	✗	✓
The derivative of the revenue function is $R'(p) = 128 - 8p$, and setting this equal to zero gives the optimal price.	✓	✓	✓
The price elasticity of demand at the revenue-maximizing price is exactly -1.	✓	✓	✓
If the price is set to 20, the store will sell 48 books and generate 960 in revenue.	✓	✓	✓
The optimal price is \$24, which is three-fourths of the maximum allowable price of \$32.	✗	✗	✗
When the price exceeds \$25, the revenue begins to increase again.	✗	✓	✗

1264

1265

1266 Table 12: Subclaims filtering comparison for question "Are genital warts serious?" (Z_i^G Group: level
 1267 1 difficulty) from **MedicalQA** dataset with setting (I-Model=gemini-2.0-flash, II-Model=gemini-2.5-
 1268 pro, $\alpha = 0.1$).

1269

Subclaims $K = 10$	Entailment	CondSConf	AdaptiveRCf
Genital warts are caused by certain strains of the human papillomavirus (HPV).	✓	✓	✓
Genital warts, caused by certain strains of the human papillomavirus (HPV), are a common sexually transmitted infection.	✓	✓	✓
While genital warts can be uncomfortable, they are not considered a serious health threat.	✓	✓	✓
The primary concern with genital warts is physical discomfort rather than serious health consequences.	✓	✓	✓
Genital warts are not life-threatening and can be effectively managed with proper treatment.	✓	✗	✓
Most cases of genital warts resolve on their own without causing significant health issues.	✓	✗	✓
Genital warts are considered highly dangerous and often lead to cancer if untreated.	✗	✗	✗
Genital warts can cause severe internal organ damage if left untreated.	✗	✓	✗
Genital warts often lead to severe immune system failure in real case.	✗	✗	✗
Genital warts are commonly prescribed antibiotics for treatment.	✗	✗	✗

1288

1289

1290

1291

1292

1293

1294

1295

1296
1297
1298
1299
1300
1301

Table 13: Subclaims filtering comparison for question "What ingredient in walnut interferes with Synthroid drug absorption?" (Z_i^G Group: level 2 difficulty) from **MedicalQA** dataset t with setting (I-Model=gemini-2.0-flash, II-Model=gemini-2.5-pro, $\alpha = 0.1$).

Subclaims $K = 10$	Entailment	SplitConf	AdaptiveRCF
The primary component in walnuts that interferes with Synthroid absorption is dietary fiber.	✓	✓	✓
Walnut consumption should be separated from thyroid medication intake by at least 4 hours to avoid absorption interference.	✓	✓	✓
Dietary fiber, particularly from sources like walnuts, can bind to levothyroxine (the active ingredient in Synthroid) and reduce its absorption in the gastrointestinal tract.	✓	✗	✓
The interference occurs due to the formation of insoluble complexes between dietary fiber and thyroid hormones in the digestive system.	✓	✗	✓
Clinical studies have shown that consuming walnuts with Synthroid can reduce drug absorption by approximately 20-30%.	✓	✓	✓
Patients taking thyroid medication should be advised to avoid consuming walnuts within several hours of taking their medication.	✓	✓	✓
Walnuts contain high levels of omega-3 fatty acids which directly inhibit the absorption of levothyroxine.	✗	✗	✗
The phytic acid content in walnuts forms complexes with Synthroid, preventing its intestinal absorption.	✗	✓	✗
Walnuts contain goitrogens that increase TSH production and counteract Synthroid's effects.	✗	✗	✗
The magnesium content in walnuts binds to thyroid medication, creating insoluble compounds that cannot be absorbed.	✗	✗	✗

1322
1323
1324
1325
1326

Table 14: Subclaims filtering comparison for question "What is prednisone used for?" (Z_i^G Group: level 3 difficulty) from **MedicalQA** dataset t with setting (I-Model=gemini-2.0-flash, II-Model=gemini-2.5-pro, $\alpha = 0.1$).

Subclaims $K = 10$	Entailment	CondSConf	AdaptiveRCF
Prednisone is a corticosteroid medication used to suppress the immune system and reduce inflammation.	✓	✓	✓
Prednisone is primarily used as an anti-inflammatory and immunosuppressive agent.	✓	✗	✓
Prednisone is frequently prescribed for severe allergies and asthma.	✓	✓	✓
The primary purpose of prednisone is to reduce inflammation and suppress immune responses.	✓	✗	✓
Prednisone is often prescribed for its anti-inflammatory and immunosuppressant properties.	✓	✗	✗
Prednisone is primarily used as an antibiotic for bacterial infections.	✗	✓	✗
Prednisone can cure viral infections by enhancing immune response.	✗	✗	✗
Prednisone is commonly used as a painkiller for chronic headaches.	✗	✓	✗
Prednisone is used to increase blood pressure in patients with hypotension.	✗	✗	✗
Prednisone is primarily used to treat diabetes by regulating blood sugar levels.	✗	✗	✗

1348
1349

1350 H FURTHER DISCUSSION ON FUTURE WORK AND LIMITATIONS

1351
 1352 While our framework demonstrates strong performance on factual question answering tasks with
 1353 well-defined ground truths, we acknowledge several promising directions for future research that
 1354 address current limitations.

1355 **Extension to creative generation tasks.** A natural extension of our work would involve adapting
 1356 conditional conformal prediction guarantees to creative generation scenarios such as storytelling,
 1357 poetry composition, or multimodal (text-image) interpretation. However, this presents significant
 1358 challenges as these domains typically lack objective factual labels and entailment relationships that
 1359 form the foundation of our current framework. Unlike question answering where correctness can be
 1360 evaluated against reference knowledge y^* via the entailment operator $\mathcal{E}(\cdot)$ as defined in Equation
 1361 (1), creative tasks require alternative evaluation paradigms based on subjective quality, coherence,
 1362 or stylistic alignment (Quach et al., 2023; Silva-Rodríguez et al., 2025). Future work might explore
 1363 hybrid approaches that combine human preference data with conformal guarantees, or develop
 1364 domain-specific nonconformity scores based on stylistic features and coherence metrics rather than
 1365 factual correctness.

1366 **Toward integrated reasoning-time stopping mechanisms.** Another valuable direction involves
 1367 integrating conformal prediction directly into the reasoning process of large language models to enable
 1368 early stopping when reasoning errors are detected. Our method, like other mainstream approaches in
 1369 this field, operates on fully generated responses rather than intermediate reasoning steps, and thus is
 1370 not suitable for real-time intervention during the generation process (Jung et al., 2023; Detommaso
 1371 et al., 2024). The method operates on fully generated responses rather than intermediate reasoning
 1372 steps, making it unsuitable for real-time intervention during generation. To achieve true early stopping
 1373 capabilities, future frameworks would need to develop conformal guarantees at intermediate reasoning
 1374 stages, potentially through step-wise nonconformity scores or hierarchical threshold mechanisms
 1375 that can identify reasoning errors before completion. Alternatively, develop a method for conformal
 1376 prediction that can handle online streaming data (Zhang et al., 2025).

1377 These directions represent important frontiers for conformal language generation. Such advances
 1378 would substantially broaden the applicability of conformal prediction to diverse language generation
 1379 scenarios beyond factual question answering, enabling reliable uncertainty quantification across the
 1380 full spectrum of language model capabilities.

1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403