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Compress and Mix: Advancing Efficient Taxonomy Completion
with Large Language Models

Anonymous Author(s)

Abstract
Taxonomy completion aims to integrate new concepts into exist-
ing taxonomies by determining their appropriate hypernym and
hyponym. While semantic and structural information are crucial
for this task, existing approaches often struggle to balance these
aspects effectively. In this paper, we proposeCOMI, an efficient tax-
onomy completion framework that leverages large language models
(LLMs) to capture both semantic and structural information in a
unified manner. COMI compresses node semantics into token repre-
sentations, enabling LLMs to efficiently process the input structure
composed of these tokens. To enhance the model’s understanding
of the structure, a further fine-tuning process using contrastive
learning withmixup data augmentation is applied, where mixup
generates diverse and challenging negative samples. Through these
innovations, COMI improves the integration of semantic and struc-
tural information, leading to more accurate taxonomy completion.
The experimental results on three real-world datasets demonstrate
that COMI achieves state-of-the-art performance while showing
up to 284× faster inference compared to the previous best method.
Our code and compressed tokens will be available for further study
upon publication.

CCS Concepts
• Computing methodologies→ Information extraction.

Keywords
Taxonomy Completion, LLM, Context Compression, Mixup

1 Introduction
A taxonomy is a tree-like hierarchical structure organized around
hypernym-hyponym (“is-a”) relations between concepts. It has be-
come increasingly popular inmanyweb services because it is widely
regarded as capable of indexing and structuring knowledge. Many
applications could be found in various downstream tasks, such as
product search [61] and recommendation [72], web content tagging
[21, 33] and web searching [62]. For example, web search engines
use taxonomies to improve search quality and content categoriza-
tion [20, 62]. Maintaining taxonomies manually by domain experts
is labour-intensive and time-consuming, especially as new concepts
continuously emerge. To address this, significant research has fo-
cused on the taxonomy completion (TC) task [1, 12, 52, 70], where
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Existing Taxonomy 𝓣𝓣
Computer 
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Data
base

PLM

··· ···

LLaMA

Language 
Model

Graph 
Database

··· ···

LLM
A LLM is a AI system 
to understand and gene
rate human language…

LLaMA is a collection o
f foundational LLMs 
developed by Meta, …

A Language Model is a 
machine learning model 
designed to predict…

Concept Descriptions

····

Relational 
Database

Figure 1: An example of completing the new concept “LLM”
to the existing “Computer Science” taxonomy.

new concepts (queries) are inserted to the most suitable position
in the existing taxonomy, which composes of a pair of hypernym
(parent) and hyponym (child). As illustrated in Figure 1, for the
query concept “LLM”, it is inserted between the parent “Language
Model” and child “LLaMA” based on the semantic hierarchy.

In taxonomy completion, researchers typically approach the task
from two perspectives: semantic and structural. Semantically, hy-
pernyms represent broader concepts, while hyponyms are more
specific, with concepts at the same level sharing similar granular-
ity. Structurally, taxonomies follow a tree-like organization where
nodes along the path from root to leaf follow a strict hypernym-
hyponym order, reflecting increasingly fine-grained abstraction.
Thus, the semantic aspect captures differences in meaning between
nodes, while the structural aspect reflects their topological rela-
tionships. Methods such as CoSTC [31] and TacoPrompt [57] lever-
age pre-trained language models (PLMs) to capture hypernym-
hyponym semantics using concept descriptions, showing strong
performance. In contrast, approaches like TaxoEnrich [12] and
TEMP [24] model structural information by concatenating node
names in path sequences, with the latter achieving better results
benefiting from PLMs. However, these methods lack semantically
rich descriptions, limiting their effectiveness. Graph-based meth-
ods, TaxoExpan [39] model substructures using local Egonet show
promise but struggle to align semantic and structural spaces. The
key challenge in TC, therefore, lies in effectively integrating both
semantic and structural information.

Recently, large language models (LLMs) have demonstrated im-
pressive abilities in semantic understanding and sequence model-
ing [23, 73], showing great potential for extracting richer semantic
and structural information for this task. However, one major chal-
lenge with using LLMs is that their input consists of text sequences,
making it difficult to directly model graph-structured data. While
we can sample path sequences to represent taxonomic structures,
simply concatenating the definitions of nodes is not an optimal ap-
proach. This straightforward string concatenation introduces two
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key problems: the input becomes too long, slowing down inference,
and the loss of structural clarity introduces noise. Therefore, this
paper investigates how to efficiently and elegantly leverage the power
of LLMs to integrate both semantic and structural information.

In this paper, we propose COMI, an efficient taxonomy com-
pletion framework leveraging LLM’s remarkable capabilities. Our
approach first compresses semantic information to enable LLMs to
handle longer sequences with reduced memory and latency costs.
Specifically, we represent each taxonomy node with a single word
token, allowing the LLM to compose path sequences from these
tokens, capturing structural information while preserving node
boundaries and hierarchical relationships. To ensure semantic space
consistency, compressed word tokens are generated directly using
the LLM based on their descriptions. To facilitate the model’s under-
standing of these compressed tokens, we apply task-specific query-
position semantic alignment, which compresses surrounding node
information into each token, further enriching their expressiveness.
After compression, to enhance themodel’s understanding of path se-
quences, we further fine-tune the model using contrastive learning
combined with mixup data augmentation. Contrastive learning, ef-
fective in discriminative tasks, assists the model capture similarities
between instances [53]. To fully leverage this, we introduce a mixup
augmentation strategy to generate diverse and challenging nega-
tive samples for fine-grained path sequence discrimination. This
process includes cut-based input-level mixup, which replaces subse-
quences in input path sequences, and manifold-level linear mixup,
which blends sample representations in the feature space. Through
this, the model can better capture fine-grained relationships in path
sequences and improve taxonomy completion performance.

We highlight our contributions as follows:

• We propose COMI, a novel and efficient framework that
leverages the LLM to jointly capture both semantic and
structural information for taxonomy completion, address-
ing these two aspects in a unified and integrated manner.

• Our framework achieves efficient LLM inference and flex-
ible path sequence composition through semantic com-
pression. To enhance the model’s ability to understand
path sequences, we introduce twomixup data augmenta-
tion strategies that help capture fine-grained relationships
in path sequences during contrastive learning.

• Experimental results on three real-world datasets demon-
strate the superiority of CMOI in both effectiveness and
efficiency. COMI consistently achieves state-of-the-art per-
formance while showing up to 284× faster inference com-
pared to the previous best method.

2 Related Work
Taxonomy Expansion and Completion. To reduce the compu-
tational and expert costs of building taxonomies from scratch, [39]
introduced the taxonomy expansion (TE) task, which focuses on
placing emerging concepts as leaf nodes under the most suitable
parent in existing taxonomies. This task has gained significant at-
tention and progress [5, 13, 24, 25, 27–29, 35, 36, 40, 42, 44, 51, 55, 56,
64, 66, 68, 74]. To address more practical needs, [70] proposed the
taxonomy completion (TC) task, which inserts emerging concepts as
intermediate nodes, linking them between parent and child nodes

in a taxonomy. Further work has explored TC task variants, such as
ATTEMPT [54] first identifies a parent and then locates its children,
and GenTaxo [67] and ICON [41] generate new concepts based on
existing taxonomies.

Taxonomy completion research typically follows two approaches:
Interaction-based and Representation-based. Interaction-based meth-
ods, such as TEMP [24], which integrates paths from the root to the
candidate parent, and TacoPrompt [56], which uses triplet semantic
matching with descriptions of parent, child, and query, are effec-
tive but computationally expensive. Representation-based methods,
which independently encode the query and candidate position, are
more efficient and have become mainstream [1, 31, 70]. For ex-
ample, QEN [52] generates concept descriptions using PLMs, and
TaxoEnrich [12] incorporates ancestral and descendant paths for
contextualized representations. TAXBOX [60] employs geometric
scorers in box embeddings. However, these models often underper-
form compared to interaction-based approaches [57]. In this paper,
we leverage the semantic knowledge and sequence modeling ca-
pabilities of LLMs for representation-based taxonomy completion,
achieving results better than interaction-based methods.

Context Compression in LLMs. Context compression tech-
niques in LLMs aim to condense explicit inputs into implicit vectors,
allowing the model to use these compressed representations effi-
ciently. One line of work focuses on enhancing LLM efficiency by
compressing (i) task instruction prompts [6, 18, 30] and (ii) task-
relevant inputs [8]. The former enables prompt reuse across various
inputs, while the latter retains essential task information for use
across multiple prompts. Both approaches reduce input length, im-
proving latency and GPU memory usage during inference. Another
approach maps non-text inputs into the LLM’s representation space,
leveraging its knowledge, reasoning, and sequence modeling capa-
bilities [23, 34, 37, 45]. For example, GraphToken [34] compresses
graph structures into tokens for graph reasoning, and AutoTimes
[23] converts time series data into token sequences for autoregres-
sive prediction. In this paper, we introduce a task-specific semantic
compression method that efficiently integrates structural and se-
mantic information for LLM-based taxonomy completion, enabling
more effective path sequence modeling.

Mixup Augmentation. Mixup [69] has proven to be an ef-
fective data augmentation technique across various domains and
tasks [11, 15, 32, 59, 63] for robust representation learning. It gener-
ates virtual samples by performing a simple convex combination of
data pairs. Based on the level of feature mixing, existing techniques
can be broadly categorized into two groups [4]: (i) global methods,
such as Mixup [69], which mix entire training examples; and (ii) lo-
cal approaches, such as Cutmix [65], which focus on partial feature-
level combinations. Mixup [69] combines input data and their labels
through convex interpolation, while Manifold Mixup [49] extends
this to hidden representations. Cutmix [65] replaces a region of one
image with a patch from another, adjusting their labels proportion-
ally to the mixed area. Global mixing approaches [17, 32, 48, 71]
encourage the model to learn holistic patterns, whereas local tech-
niques like Cutmix and its variants [22, 50, 63] enhance the model’s
ability to capture fine-grained, localized features. From these obser-
vations, we propose a mixed sample data augmentation method that
naturally combinesMixup and CutMix, so that it can take advantage
of both methods for fine-grained structure discrimination.
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3 Methodology
In this section, we formalize the taxonomy completion task (§3.1)
and present the proposed COMI framework. As illustrated in Fig-
ure 2, the framework comprises two stages: first, we conduct taxo-
nomic semantic compression to enable efficient LLMuse and flexible
path composition (§3.2); second, we fine-tune the model using con-
trastive learning (§3.3), incorporating a mixup data augmentation
strategy (§3.4) to enhance path discrimination.

3.1 Problem Formulation
Definition 3.1 (Taxonomy). A taxonomy T = (N , E) is a di-

rected acyclic graph (DAG), N and E denote its set of nodes and
edges, respectively. Each node 𝑛 ∈ N represents a unique con-
cept, defined based on a supporting corpus D. A directed edge
⟨𝑛𝑝 , 𝑛𝑐 ⟩ ∈ E indicates a hypernym-hyponym relationship, where
the parent node 𝑛𝑝 corresponds to a more general concept, and the
child node 𝑛𝑐 represents a more specific concept.

Definition 3.2 (Taxonomy Completion). Suppose that we have
an existing taxonomy T 0 = (N0, E0) which comprises nodes N0

and edges E0. Given a set of new concepts C and a comprehensive
corpus D that defines both the existing nodes 𝑛 ∈ N0 and the new
concepts in C, the objective is to extend T 0 into a completed tax-
onomy T . This is achieved by revising the structure, i.e., removing
outdated edges and introducing new ones to appropriately integrate
the new concepts, resulting in T = (N0 ∪ C, E1). Specifically, for
each query concept 𝑞 ∈ C, the task is to find suitable positions in
T 0, identified by candidate parent-child pairs ⟨𝑝, 𝑐⟩, into which 𝑞
can be inserted. Following the assumptions of prior works [39, 70],
the problem is decomposed into |C| independent insertion tasks,
where |C| is the number of query concepts.

3.2 Taxonomic Semantic Compression
The goal of taxonomic semantic compression is to convert the long
concept description input to a single token that LLM can understand
and use. To achieve this, we leverage the LLM to generate concept
representations directly within its own semantic space, ensuring
seamless understanding when these representations are reintro-
duced to the LLM (§3.2.1). Then we input these tokens to the LLM
for a task-specific compression objective, preserving taxonomy-
related semantics in the compressed tokens (§3.2.2).

3.2.1 LLM-based Concept Representation Generation. To
compress concept descriptions and generate representations aligned
with the semantic space of an LLM, we adopt a direct approach
using the LLM itself, ensuring natural compatibility. Unlike exist-
ing methods that align external representations with the LLM’s
space [16, 34], we simplify the process by generating concept rep-
resentations directly through the LLM. Specifically, we follow the
approach of PromptEOL [38], whose “one-word limitation” aligns
with our compression objective, to generate representations. Given
a concept description 𝑑𝑛 , we use the prompt function Fcon (𝑑𝑛) to
query the LLM:

Please summarize the meaning of concept description: <𝑑𝑛>
in one word:

After autoregressive decoding, the hidden vector following "in one
word:" is extracted as the concept representation, denoted as ℎ𝑛 .

3.2.2 Taxonomy-Specific Compression Task. To embed task-
relevant semantics into the generated representations, we design
a taxonomy-related compression task where the LLM is used to
complete taxonomy by treating concept representations as input
tokens. Following [31], given a query node 𝑞 and a candidate posi-
tion ⟨𝑝, 𝑐⟩, we extend the candidate position to ⟨𝑝, 𝑐, 𝑠⟩ by randomly
selecting a sibling 𝑠 (a child of 𝑝). The representations ℎ𝑞, ℎ𝑝 , ℎ𝑐 , ℎ𝑠
are generated as outlined in Section 3.2.1. We then apply the prompt
function Fpos (ℎ𝑝 , ℎ𝑐 , ℎ𝑠 ) to provide ℎ𝑝 , ℎ𝑐 , ℎ𝑠 as input tokens:

I’m finding a target concept, whose parent concept is: <ℎ𝑝>,
child concept is: <ℎ𝑐>, and sibling concept is <ℎ𝑠>. Please
predict the meaning of the target concept in one word:

The hidden vector following “in one word:” becomes the repre-
sentation for the candidate position, denoted as ℎpos. We train the
model using BCELoss:

Lcomp = − log𝜎
(
ℎ𝑞 · ℎ+pos

)
−

𝑁𝑆∑︁
𝑖=1

log𝜎
(
1 − ℎ𝑞 · ℎ−,𝑖pos

)
, (1)

where 𝑁𝑆 is the number of negative samples, and ℎ−,𝑖pos denotes the
𝑖-th negative sample. 𝜎 represents the sigmoid function.

As depicted in Figure 2, this task jointly trains the LLM for Con-
cept Representation Generation and Taxonomy Completion. However,
this approach requires significant GPU memory and computation
time, limiting the integration of structural information. To address
this, we adopt a two-stage process: after the first stage, where the
compression task converges, we freeze the concept representa-
tions and store them in a look-up table. In the second stage,
we retrieve these precomputed representations to focus on training
the LLM for structure modeling.

3.3 Contrastive Structure Modeling
After compression, the model processes longer path sequences to
capture structural information. We apply contrastive learning to
differentiate these sequences. Given a candidate position ⟨𝑝, 𝑐, 𝑠⟩,
we construct three path sequences: (i) S(𝑝) traces the longest path
from the root to parent 𝑝 , capturing the “is-a” relationship [24, 57];
(ii) S(𝑐) extends from child 𝑐 to the leaf, also the longest; (iii) S(𝑠)
samples all siblings of 𝑠 , derived from the children of 𝑝 [12] with
a fixed alphabetical order. Each node in the path is represented
by its compressed token, preserving the structural clarity. Using
the prompt function Fstrc (S(𝑝),S(𝑐),S(𝑠)), we query the LLM to
predict the target concept’s meaning, extracting the hidden vector
ℎstrc as the structure representation:

I’m finding a target concept, whose parent concepts from
general to specific are: <S(𝑝)>, child concepts from general to
specific are: <S(𝑐)>, and sibling concepts are: <S(𝑠)>. Please
predict the meaning of target concept in one word:

By using the freezed concept representations, we reduce GPU
memory usage, allowing more negative samples for contrastive

3
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Figure 2: Illustration of our framework.

learning. Our contrastive objective is defined as:

Lstrc = (𝑑 (ℎ𝑞, ℎ+strc))2 +
𝑅𝑆∑︁
𝑖=1

(𝑚𝑎𝑥 (0,𝑚 − 𝑑 (ℎ𝑞, ℎ−,𝑖strc)))
2, (2)

where𝑚 ∈ (0, 1) is a margin hyperparameter, 𝑅𝑆 is the number of
negative samples, and 𝑑 (ℎ𝑞, ℎstrc) is the cosine distance between
query ℎ𝑞 and structure ℎstrc. All representations are 𝐿2-normalized
for stable learning [58]. The choice of contrastive loss for this stage
and its comparison to BCELoss in the previous stage are discussed
in Section 4.2.3. For prompt choice details, see Appendix B.

3.4 Mixup Enhanced Structure Discrimination
To enhance the model’s ability to uncover structural information
within taxonomies, we improve our contrastive learning framework
with a mixup data augmentation strategy. This approach generates
diverse and challenging sequences, promoting robust representa-
tion learning. We apply mixup at two levels: input and manifold.
At the input level, cut-based mixup replaces partial sequences to
better capture local structures. At the manifold level, linear mixup
synthesizes instances with varying difficulty, enabling finer discrim-
ination in the feature space. This dual-level augmentation enhances
the model’s ability to learn sequences from multiple perspectives.

3.4.1 Principles for Effective Mixup. Given a query and its
corresponding positive and negatives, we follow these principles to
ensure the generated mixup samples are diverse and challenging:

• Only hard negatives are selected for mixup. Mixup
involves linear combinations, and only hard samples within
the margin contribute to the loss. By mixing samples within
this margin, we ensure that the new synthesized samples
also contribute to effective training.

• Assign larger mixing weights to similar negatives.
Based on the findings in [71], assigning higher mixing
weights to more similar negatives generates more discrimi-
native negative pairs.

• Mix positives with hard negatives for more challeng-
ing negatives. As suggested in [15], mixing hard negatives
alone does not always yield harder negatives since the cre-
ated hard negatives lie inside the convex hull of the hard
negatives. To address this, we mix positives with negatives
for more challenging instances. By setting the positive’s
mixing weight below 0.5, we ensure the negative sample
remains dominant. We term the negative-negative mix as
neg-neg, producing hard samples, and the positive-negative
mix as pos-neg, which generates harder samples.

3.4.2 I-Mix: Input-level Cut-based Mixup. To help the model
capture sequence patterns and subtle local structures, we apply cut-
based mixup by randomly replacing nodes in one path with nodes
from another, generating a mixed path.We define the path sequence
P consisting of𝐻 nodes as: P = S(𝑝) ◦S(𝑐) ◦S(𝑠),where ◦ denotes
the tensor concatenation of the node embeddings ℎ ∈ R1×𝐷 . Given
two path sequences, P𝑖 and P𝑗 , we define the combining operation
as:

P̂ = M ⊙ P𝑖 + (1 −M) ⊙ P𝑗 , (3)

where M ∈ {0, 1}1×(𝐻 ·𝐷 ) is a binary mask indicating cut-and-
paste areas, and ⊙ is element-wise multiplication. The mask applies
to whole nodes, meaning each node’s embedding is either fully
included or excluded to prevent splitting and noise. For neg-neg
mix, the masking ratio 𝛼 is determined by the overlap ratio between
the sequence P𝑖 and the ground-truth path P+, quantified as:

𝛼𝑖 =
exp(H (P𝑖 , P+))

exp(H (P𝑖 , P+)) + exp(H (P𝑗 , P+))
, (4)

where H is the similarity function defined as the overlap ratio.
For pos-neg mix, the masking ratio 𝛼 is sampled from the uniform
distribution (0, 1) [15, 65]. We enforce that a sequence is only con-
sidered correct if all nodes in the path are accurate, rather than just
directly connected nodes, pushing the model to learn fine-grained
local structural differences.
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3.4.3 M-Mix: Manifold-level Linear Mixup. To enhance global
discrimination of path sequences, we perform manifold-level linear
mixup. Studies [4, 48, 49] have demonstrated that linear interpola-
tion in the embedding space better addresses decision boundary
issues and provides greater sample diversity than input-level mixup,
introducing more structural perturbation in embedding space. For
a pair of path sequence representations ℎ𝑖 and ℎ 𝑗 , we define their
convex combination as:

ℎ̂ = 𝜆ℎ𝑖 + (1 − 𝜆) ℎ 𝑗 , (5)

where 𝜆 ∈ (0, 1) is the mixing weight. To simplify notation, sub-
scripts on ℎstrc are omitted. Since mixing forms a linear combi-
nation of embeddings, the synthesized samples lie along the line
segments connecting the original pairs, ignoring the effects of 𝐿2-
normalization for this analysis.

For neg-neg mix, the mixing weight 𝜆 is determined by:

𝜆 =
exp(H (ℎ𝑖 , ℎ+))

exp(H (ℎ𝑖 , ℎ+)) + exp(H (ℎ 𝑗 , ℎ+))
, (6)

whereH is the cosine similarity function. Following [48, 71], we
extend the mixup process to the entire batch to increase sample
diversity. For each sample, the mixing weight is calculated as:

𝜆𝑖 =
exp(H (ℎ𝑖 , ℎ+))∑
𝑖 exp(H (ℎ𝑖 , ℎ+))

, 𝑠 .𝑡 . 𝑖 ∈ [0, 𝑅𝑆], (7)

where 𝑅𝑆 indicates the random negative size in sampling. The
generated new sample ℎ̂ becomes: ℎ̂ =

∑𝑅𝑆
𝑖 𝜆𝑖ℎ𝑖 .

For pos-neg mix, our primary focus is on the diversity of syn-
thesized samples, as those mixed with positive samples already
provide sufficient information. Given that contrastive learning aims
to separate positive and negative samples in the embedding space,
we prioritize maximizing directional diversity within this space.
Our objective is to refine decision boundaries in multiple direc-
tions using a minimal number of samples. To this end, for each
positive sample ℎ+, we select representative negative samples ℎ𝑘
that span distinct directions relative to ℎ+ with a random mixing
weight 𝜆 ∈ (0.5, 1). We employ a greedy strategy to iteratively
choose negative vectors that maximize angular distance from the
previously selected directions. The angular distance between ℎ𝑖
and ℎ 𝑗 is defined as follows:

𝜃𝑖, 𝑗 = arccos(( ℎ𝑖 − ℎ+

| |ℎ𝑖 − ℎ+ | | ) · (
ℎ 𝑗 − ℎ+

| |ℎ 𝑗 − ℎ+ | | )). (8)

For a visual understanding of the M-Mix strategy, please see Figure
6 in the Appendix A.

Finally, we utilize the mixtures as additional new entrees of
contrastive loss. The number of mixed samples𝑀𝑆 is determined
through experiments. To ensure stable training and optimal per-
formance [9, 43], we set a ratio 𝑟 of hard samples to total samples.
The effects of these hyperparameters are discussed in Section 4.2.3.
Our IM-Mix performs mixup operations in both the input space
and the representation space. Since the input is also a tensor, the
mixup operation is computationally efficient and thus creates query-
specific synthetic points on the fly. The synthesized samples are
informative and able to show improved results at a smaller number
of epochs [15], as shown in Figure 7 in the Appendix B.

Table 1: The dataset statistics. |N | and |E | represent the total
number of nodes and edges, respectively. The terms #depth
and #avg.tokens refer to the taxonomy’s depth and the de-
scription’s average token length.

Dataset |N|/|Ntrain | |E| #depth #avg.tokens #candidates

SemEval-Food 1486/1190 1,533 8 34.6 7313
MeSH 9710/8072 10,498 10 62.6 42970
WordNet-Verb 13936/11936 13,407 12 26.4 51159

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets. Following [52, 57], we evaluate our method on
three taxonomy completion datasets: SemEval-Food, which fea-
tures a food domain taxonomy derived from SemEval-2015 Task 17
[3]. Medical Subject Headings (MeSH), that consists of a widely
used clinical domain taxonomy, serving as a subgraph of theMedical
Subject Headings [19], which is a hierarchy for biomedical index-
ing.WordNet-Verb, which contains a verb taxonomy derived from
SemEval-2016 Task 14 [14], representing a hierarchy of verbs from
WordNet 3.0. For each taxonomy, we partition nodes N into non-
overlapping train nodesNtrain, validation nodesNvalidation and test
nodes Ntest [52, 57]. Specifically, for WordNet-Verb, we randomly
sample 1,000 nodes for validation and test sets. For SemEval-Food
and MeSH, we allocate 10% of the nodes as validation and another
10% as test nodes. The remaining nodes constitute the training set
Ntrain. Table 1 provides statistical information on three datasets.

4.1.2 Evaluation Metrics. Following previous work [52, 57, 70],
we adopt the all-rank evaluation protocol. We utilize several metrics
for performance evaluation, including Macro Mean Rank (MR), the
scaled Mean Reciprocal Rank (MRR) [39], Recall@𝑘 , and Hit@𝑘 .

4.1.3 Baseline Methods and Implementation Details. Our
method falls into representation-based approach for taxonomy
completion.We begin by comparing it to state-of-the-art methods in
this category, including TMN [70], TaxoEnrich [12], QEN [52], Tax-
oComplete [1], and CoSTC [31]. Since no existing baseline utilizes
LLMs, we modify CoSTC, the most competitive representation-
based method, by replacing its backbone with the same LLM we
utilize for comparison, naming it CoSTC-LLaMA. Following prior
work [57, 70], we adapt taxonomy expansion baselines like Taxo-
Expan [39] and Arborist [26] to the taxonomy completion task by
concatenating the parent and child node representations to form the
candidate position’s representation. However, the generation-based
methods, such as TaxoLlama [29], are unsuitable for taxonomy
completion due to their focus on unidirectional parent-query re-
lationships, whereas bidirectional relationships are required. To
further evaluate our method’s performance, we also compare it to
leading interaction-based techniques like TEMP [24] and Taco-
Prompt [57]. Details on baseline and implementation are provided
in the Appendix A.1 and A.2, respectively.

4.2 Experimental Results
4.2.1 Comparison With Baselines. Table 2 presents a compari-
son of COMI’s performance against various baselinemethods across
different scale datasets, SemEval-Food, MeSH, and WordNet-Verb.
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Table 2: Overall results on three datasets. ↓means the lower value is better. †: interaction-based baselines. The best and second
results are in bold and underlined, respectively. “Leaf” and “Non-leaf” indicate whether the query’s correct insertion is as a
leaf node or an intermediate node. For comparison, we replace the backbone from LLM to the PLM, i.e. BERT [7].

Datesets Methods Total Leaf Non-leaf

MR↓ MRR R@1 R@5 R@10 H@1 H@5 H@10 MRR H@5 R@10 MRR H@5 R@10

SemEval-Food

TaxoExpan 371.291 0.286 5.7 13.3 18.0 11.5 26.4 34.5 0.477 30.1 35.6 0.130 8.0 3.6
Arborist 256.491 0.290 13.0 18.0 21.0 26.4 34.5 38.5 0.466 39.0 38.5 0.146 12.0 6.7
TMN 173.516 0.332 10.7 18.7 22.0 21.6 36.5 39.9 0.538 41.5 41.5 0.164 12.0 6.1
TaxoEnrich 230.424 0.408 11.7 26.7 31.7 23.6 49.3 58.1 0.723 58.5 66.7 0.149 4.0 3.0
QEN 336.554 0.439 21.9 30.9 35.0 45.9 58.8 64.9 0.732 64.2 68.9 0.209 32.0 9.1
TaxoComplete 296.072 0.489 14.7 30.0 38.0 29.7 55.4 65.5 0.702 60.2 65.2 0.315 32.0 15.8
CoSTC 61.471 0.658 18.7 43.0 54.3 39.0 73.4 80.4 0.825 74.5 78.0 0.529 68.0 36.0
CoSTC-LLaMA 41.457 0.674 22.2 46.0 55.3 46.6 84.5 87.8 0.934 89.4 90.4 0.475 60.0 28.4
TEMP† 51.374 0.579 20.3 41.2 47.9 42.6 76.4 81.1 0.881 81.3 83.0 0.348 52.0 21.0
TacoPrompt† 47.423 0.708 30.9 51.1 60.1 64.9 85.8 86.5 0.899 87.8 87.4 0.561 76.0 39.2

COMI-LLaMA 25.321 0.724 28.9 52.1 61.7 60.8 87.8 93.2 0.945 89.4 92.5 0.555 80.0 38.1
COMI-BERT 161.094 0.581 21.9 38.9 46.9 45.9 68.2 75.0 0.818 74.0 79.3 0.399 40.0 22.2

MeSH

TaxoExpan 1029.344 0.233 2.7 6.2 12.2 6.0 12.7 23.9 0.381 16.3 24.3 0.137 5.0 4.3
Arborist 843.199 0.337 5.0 13.6 21.8 11.0 25.8 37.4 0.437 26.7 30.6 0.271 23.8 16.0
TMN 567.831 0.372 7.2 17.3 24.6 15.9 33.6 43.8 0.525 38.4 40.7 0.271 23.4 14.1
TaxoEnrich 393.062 0.424 7.4 22.4 31.0 16.2 42.6 52.5 0.619 51.3 54.1 0.296 24.1 15.9
QEN 451.253 0.438 7.5 21.3 30.8 17.1 43.1 55.9 0.611 51.1 51.8 0.332 26.1 17.9
TaxoComplete 357.494 0.540 10.8 29.3 41.1 24.5 54.1 63.9 0.605 53.8 52.5 0.500 54.8 34.1
CoSTC 109.081 0.600 11.0 34.6 47.5 24.9 61.5 72.6 0.741 63.5 66.7 0.512 57.4 35.7
CoSTC-LLaMA 47.617 0.672 12.9 39.9 54.3 29.4 72.3 82.7 0.822 73.7 74.2 0.579 69.3 41.9
TEMP† 80.291 0.612 13.8 35.3 48.0 31.4 66.5 77.5 0.839 75.4 77.6 0.471 47.5 29.8
TacoPrompt† 49.140 0.674 17.9 42.4 55.9 40.7 74.6 84.6 0.868 79.0 81.5 0.554 65.1 40.2

COMI-LLaMA 29.477 0.727 19.9 47.6 61.5 45.3 79.4 88.5 0.855 80.6 88.7 0.648 76.6 50.3
COMI-BERT 140.903 0.600 15.1 35.8 46.9 34.4 64.8 72.9 0.741 69.2 67.2 0.513 55.6 34.4

WordNet-Verb

TaxoExpan 1752.271 0.215 4.1 11.4 15.1 6.1 17.1 22.5 0.354 20.5 26.7 0.057 3.1 1.7
Arborist 1455.251 0.246 3.8 11.0 15.5 5.7 15.5 21.6 0.331 16.2 21.8 0.148 12.8 8.4
TMN 1513.634 0.290 5.4 14.7 20.7 8.1 21.2 29.1 0.425 23.8 32.8 0.136 10.7 6.8
TaxoEnrich 5462.075 0.179 3.9 9.0 12.3 5.8 13.6 18.4 0.313 16.8 22.6 0.025 0.5 0.4
QEN 1730.755 0.404 9.1 23.3 31.0 13.9 34.0 43.9 0.568 38.6 48.4 0.224 15.3 11.8
TaxoComplete 2661.488 0.407 9.0 22.2 30.9 13.6 31.7 40.8 0.487 32.7 41.3 0.315 27.6 19.1
CoSTC 241.089 0.505 9.5 27.8 39.1 14.6 39.2 53.1 0.651 41.0 54.7 0.344 31.6 21.8
CoSTC-LLaMA 176.405 0.545 15.6 34.3 43.1 23.9 51.0 60.5 0.727 55.0 63.6 0.346 34.7 20.5
TEMP† 960.536 0.450 13.3 30.6 37.5 20.3 45.9 55.0 0.692 53.4 62.8 0.182 15.3 9.5
TacoPrompt† 436.799 0.557 18.3 36.9 46.5 28.0 52.3 62.5 0.762 56.5 65.8 0.370 35.2 25.3

COMI-LLaMA 109.454 0.615 19.3 39.9 50.6 29.6 55.5 66.5 0.760 58.5 68.0 0.455 43.4 31.3
COMI-BERT 478.972 0.500 15.3 33.3 41.1 23.4 47.0 55.1 0.652 51.1 58.8 0.333 30.1 21.6

Table 3: Inference time (in minutes) comparison of different
settings. All methods are tested using the maximum infer-
ence batch size on a single A800-80G GPU.

Settings SemEval-Food MeSH WordNet-Verb

TacoPrompt 23.7 940.5 1193.8
Ours (w/o comp) 3.2 36.0 15.7
Ours (w/ comp) 0.4 (59.3×) 3.7 (254.2×) 4.2 (284.2×)

Table 3 compares the inference efficiency of COMI with the current
SOTA method, TacoPrompt. We discuss the question below.
Q1. How effective and efficient is COMI for taxonomy com-
pletion? In terms of effectiveness, COMI achieves significant im-
provements within the representation-based taxonomy completion
task. We replace the backbone model of the previous SOTA method,
CoSTC, with the same LLM used in our approach. With both meth-
ods using LLaMA, COMI achieves absolute improvements in

Hit@1 by 14.2%, 15.9%, and 5.1% on the SemEval-Food, MeSH,
and WordNet-Verb datasets, respectively, demonstrating its abil-
ity to effectively leverage the semantic and structure modeling
capabilities of the LLM. Compared to interaction-based methods
such as TEMP and TacoPrompt, our approach performs compa-
rably on the SemEval-Food dataset and significantly outperforms
them on MeSH andWordNet-Verb. These results highlight the supe-
rior performance of our approach. From an efficiency perspective,
interaction-based methods are constrained by high inference costs,
which limit their use of LLMs. In contrast, COMI achieves up to
284× faster inference than TacoPrompt, providing the optimal
balance between performance and efficiency.

4.2.2 Ablation Studies. We conduct ablation studies on key com-
ponents of the semantic compression and structure modeling stages
to explore the following questions.
Q2. What is the function of the first compression stage? Ta-
ble 4 shows ablation results for the first semantic compression
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Table 4: Ablation studies of the semantic compression stage.
We compare all settings w/o IM-Mix, as it is specifically de-
signed for the compressed inputs. #Neg and #TT represent
the negative sampling size and training time per epoch (in
minutes) on a single A800-80G GPU, respectively. Due to
GPU memory limitations without compression, we compare
different settings where #Neg is set to the maximum pos-
sible for the non-compressed setting and matched to our
approach in the compressed setting. For the “w/o comp task”,
we generate concept representations in a zero-shot manner.
For a detailed discussion on the effects of different compres-
sion tasks, please refer to Appendix B. “w/o comp” means we
utilize descriptions instead of compressed tokens as LLM’s
input and “w/o struct” means we only use position rather
than path sequences.

Settings #Neg #TT MRR H@1 H@5 R@5 R@10

SemEval-Food

Ours 40 8.5 0.716 56.8 85.8 50.2 60.1
w/o comp task 40 8.5 0.531 37.8 69.6 36.3 41.2
w/o comp & struct 40 32.3 0.701 52.0 85.8 47.3 58.8

Ours 20 3.5 0.708 54.5 82.4 48.6 59.2
w/o comp 20 32.4 0.704 53.4 85.1 47.3 57.8
w/o comp & struct 20 14.7 0.689 56.1 85.1 46.9 57.2

MeSH

Ours 40 58.3 0.702 42.6 77.7 45.4 58.8
w/o comp task 40 58.3 0.521 17.9 54.5 27.5 38.8
w/o comp & struct 40 696.5 0.675 32.7 73.9 41.3 55.1

Ours 10 16.3 0.680 41.4 76.7 43.6 56.3
w/o comp 10 237.5 0.675 23.0 73.8 41.2 55.1
w/o comp & struct 10 137.7 0.665 33.7 72.3 39.9 54.3

WordNet-Verb

Ours 40 79.0 0.606 27.1 51.1 37.3 48.6
w/o comp task 40 79.0 0.420 10.8 36.1 23.9 32.3
w/o comp & struct 40 226.0 0.580 17.3 50.3 34.9 46.7

Ours 15 28.2 0.578 25.3 49.6 35.1 45.9
w/o comp 15 149.6 0.558 20.5 50.5 34.2 44.1
w/o comp & struct 15 81.3 0.545 24.5 50.2 33.7 43.6

stage. We observe the following: (1) the taxonomy-related compres-
sion task outperforms zero-shot semantic compression, ensuring
that the compressed representations capture task-relevant semantic
knowledge; (2) omitting compression significantly reduces training
efficiency, with the slowest experiment taking approximately 15
days training on an A800 GPU; (3) without compression, the model
struggles to integrate both semantic and structural information,
as concatenating concept descriptions with “\n” in the “w/o comp”
setting fails to preserve the taxonomic hierarchy, resulting in lower
Hit@1 performance compared to the “w/o comp & struct” setting;
and (4) using compression effectively integrates semantic and struc-
tural information, achieving the best efficiency and performance
across different negative sampling rates.
Q3. How effective are the design choices in stage two of struc-
turemodeling? Table 5 presents the ablation results for the second
stage of structure modeling, evaluating the contributions of IM-Mix
data augmentation, path sequence usage, and contrastive learn-
ing. For IM-Mix data augmentation, we sequentially removed

Table 5: Ablation studies of the structure modeling stage. A
detailed analysis of the effects of different path sequence
components is provided in Appendix B.

Datasets Settings MRR H@1 H@5 R@5 R@10

SemEval-Food

Ours 0.724 60.8 87.8 52.1 61.7
w/o I-Mix 0.718 58.7 85.8 50.8 60.1
w/o IM-Mix 0.716 56.8 85.8 50.2 60.1
w/o IM-Mix & struct 0.693 58.8 83.1 47.6 58.5
w/o stage two 0.699 53.4 84.5 45.0 56.3

MeSH

Ours 0.727 45.3 79.4 47.6 61.5
w/o I-Mix 0.710 43.6 78.9 46.3 58.9
w/o IM-Mix 0.702 42.6 77.7 45.4 58.8
w/o IM-Mix & struct 0.684 40.8 74.0 43.0 56.6
w/o stage two 0.688 20.0 72.8 38.5 55.4

WordNet-Verb

Ours 0.615 29.6 55.5 39.9 50.6
w/o I-Mix 0.609 28.1 53.9 38.2 50.2
w/o IM-Mix 0.606 27.1 51.1 37.3 48.6
w/o IM-Mix & struct 0.567 25.5 48.9 34.2 44.7
w/o stage two 0.570 22.2 49.6 33.6 44.3

Table 6: Comparison of the semantic knowledge in repre-
sentations. We leverage TMN as the backbone model, whose
original version utilized fixed fastText [2] representations.
MRR metric is used for comparison.

Representations SemEval-Food MeSH WordNet-Verb

fastText 0.332 0.372 0.290
LLaMA-Zero-Shot 0.512 0.514 0.416
Ours-BERT 0.595 0.604 0.475
Ours-LLaMA 0.650 0.666 0.555

input Mix (I-Mix) and manifold mix (M-Mix), denoted as w/o I-Mix
and w/o IM-Mix, respectively. The latter indicates the additional re-
moval of M-Mix after I-Mix. To assess the importance of structural
information, we further ablated the path sequence (w/o IM-Mix
& struct), which also necessitated the removal of mixup, as it was
designed for path sequences. Finally, we eliminated the entire stage
two training process, forgoing contrastive learning. This primarily
impacted the@1metric, highlighting the model’s diminished capac-
ity for fine-grained distinctions when trained solely with BCELoss.
This is due to the increased negative sample size after compres-
sion in the first stage, which proved to be essential for contrastive
learning. Each module’s removal resulted in a performance drop,
underscoring their effectiveness in the overall model.

4.2.3 Further Discussions. Our further discussions include: (i)
the motivation demonstration of using LLMs for the taxonomy
completion task (Q4), (ii) the effects of training objectives for two
stages (Q5), (iii) the impact of key hyperparameters: random nega-
tive sample number 𝑅𝑆 , mixup sample number𝑀𝑆 and hard mixup
sampling ratio 𝑟 (Q6, Q7), and (iv) the mixup visualization (Q8).
Q4. Is LLM a good choice for semantic knowledge and struc-
ture modelling for the taxonomy completion task? Table 6
compares the semantic knowledge compressed by LLaMA with
other representations, showing that our approach captures more
taxonomy-relevant information, providing a foundation for future
research. Figure 3 (b) evaluates the ability of various models to lever-
age structural information in the structure modeling stage, with
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Figure 3: (a) Choice of training objectives for two stages
on SemEval-Food. S-1 represents the semantic compression
stage and S-2 refers to the structure modeling stage. (b) Com-
parison of two-stage structure modeling methods.

Figure 4: (a) The performance of our method on the SemEval-
Food dataset with varying total negative sample sizes, defined
as the sum of random negatives size 𝑁𝑆 and mixup samples
size𝑀𝑆 . (b) Sensitivity analysis of the mixup sampling ratio
𝑟 hyperparameter on the SemEval-Food dataset.

LLaMA outperforming others in comprehension. Finally, as shown
in Table 2, when replacing LLaMA with BERT, LLaMA demon-
strates superior integration of semantic and structural knowledge,
justifying its use in the taxonomy completion task.
Q5. What are effects of training objectives for two stages? As
illustrated in Figure 3 (a), using BCELoss in the first stage outper-
forms contrastive loss, primarily due to GPU memory limitations
that hinder the use of an adequate negative sampling rate required
for contrastive learning. In the second stage, freezing the concept
representations from the compression stage alleviates these mem-
ory constraints, allowing for the effective application of contrastive
loss [31]. Furthermore, our proposed mixup method, tailored for
contrastive learning, results in a performance decline when used
with BCELoss in the second stage. Therefore, we opt for BCELoss
in the first stage and contrastive loss in the second stage.
Q6. What is the impact of different combinations of random
negative sample number 𝑅𝑆 and mixup sample number𝑀𝑆?
We investigate different combinations of random negative samples
𝑅𝑆 and mixup samples𝑀𝑆 as shown in Figure 4 (a), leading to three
key observations. First, the number of random samples 𝑅𝑆 should
not exceed 50, as higher values result in performance degradation
across different 𝑀𝑆 values, due to overfitting to simple features,
which hinders fine-grained path sequence distinction. Second, the
ratio between 𝑅𝑆 and𝑀𝑆 requires careful balancing. For instance,
𝑅𝑆 = 10, 𝑀𝑆 = 30 performs worse than not using mixup, i.e., 𝑅𝑆 =

40, 𝑀𝑆 = 0. Lastly, with the same total number of samples, using
mixup improves performance when the 𝑅𝑆-𝑀𝑆 ratio is optimal.
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t-SNE visualization of embeddings for sample 327

Manifold Mixup

Positive
Random Negatives

Input Mixup

Query

Figure 5: t-SNE [47] representations of positive, random neg-
atives, and our mixup negatives for the concept “wild rice”.
Note that IM-Mix generates synthetic diverse and challeng-
ing negatives for each query.

For instance, 𝑅𝑆 = 40, 𝑀𝑆 = 20 outperforms 𝑅𝑆 = 60, 𝑀𝑆 = 0,
highlighting the effectiveness of mixup over merely increasing
random negative samples.
Q7. How sensitive is our framework to the mixup sampling
ratio 𝑟? The mixup sampling ratio 𝑟 controls the balance between
moderately hard (neg-neg) and harder (pos-neg) samples. As shown
in Figure 4 (b), the model remains robust when 𝑟 is between 0.3 and
0.7. A lower 𝑟 increases harder samples, resulting in a lower MRR
but higher Hit@1, while a higher 𝑟 has the opposite effect. Thus, a
mid-range 𝑟 provides a more balanced performance.
Q8.What kind of samples does IM-Mix synthesize to enhance
contrastive learning? Figure 5 presents a t-SNE visualization of
the learned representation space after applying IM-Mix to a mini-
batch. The query concept (red star) is surrounded by random neg-
atives (gray marks), where many are too distant to significantly
impact the contrastive loss. Negatives generated by I-Mix (pink
triangles), which alters the local structure of input paths, exhibit a
slight shift in embedding space. M-Mix-generated negatives (blue
triangles), synthesized using hard negatives based on their similar-
ity to the positive, are more challenging and dispersed in various
directions. This demonstrates the effectiveness of our mixup strat-
egy in producing more diverse and difficult samples.

5 Conclusion
In this paper, we present COMI, an efficient framework for taxon-
omy completion that leverages the strengths of the LLMs. COMI
integrates semantic compression and contrastive learning with
mixup data augmentation to address both semantic and structural
challenges in taxonomy completion. The use of compressed tokens
allows for efficient inference while maintaining semantic richness
and structural clarity. The mixup augmentation enhances structural
complexity, fostering more precise discrimination. Comprehensive
experiments on real-world datasets demonstrate that COMI not only
achieves SOTA performance but also significantly reduces inference
time. This framework offers a promising and efficient direction for
TC using LLMs and can be adapted to other knowledge-structuring
tasks where both semantic and structural information are crucial.
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A Supplementary Details
A.1 Baseline Introduction
The representation-based taxonomy completion methods include:

• TMN [70]: This method employs subtasks, namely attach-
ing query to parent and child to query, as auxiliary super-
vision signals for concept representation learning.

• TaxoEnrich [12]: It utilizes structural information through
taxonomy-contextualized embeddings, enhancing position
representations with a query-aware sibling aggregator.

θ

(a) Neg-Neg Mix (b) Pos-Neg Mix

Random NegativePositive Multi-Mix Negative

Directional 
Diversity

Figure 6: A depiction of the manifold mixup strategy, where
synthesized samples (green ones) are positioned along line
segments connecting original data pairs. The Pos-Neg mix
selects negatives to ensure directional diversity.

• QEN [52]: This technique generates semantic concept rep-
resentations using a pre-trained language model, focusing
on sibling relations to mitigate pseudo-leaf noise.

• TaxoComplete [1]: This framework leverages semantic
similarity through bi-encoders and employs direction-aware
propagation for position-enhanced node representations.

• CoSTC [31]: This is a contrastive representation learning
framework which leverages two contrastive views and a
negative sampling strategy to extract taxonomic relations.

The interaction-based taxonomy completion techniques include:
• TEMP [24]: This technique calculates insertion probabili-

ties based on the taxonomy-path, which integrates paths
from the root to the parent, along with the query.

• TacoPrompt [57]: This method performs triplet seman-
tic matching for taxonomy completion by combining the
descriptions of parent, child, and query concepts.

Note that TEMP was originally designed for taxonomy expansion,
but we use its adapted version for taxonomy completion, which
attaches the child node to the taxonomy path, following [57].

A.2 Implementation Details
We leverage LLaMA-7B 1 [46] as the backbone LLM. We train
LLaMA using LoRA [10] and set its rank to 32. The model is trained
using the AdamW optimizer, with a learning rate of 3e-4. Training
ends if the MRR score on the validation set doesn’t improve within
10 epochs. All the experiments are accelerated by an NVIDIA A800-
80G GPU device. For the first-stage semantic compression, we
sample 15 negative positions per training instance, and the batch
size is set to 1. For the second-stage structure modeling, we load
the concept representations generated by the first stage as a frozen
representation as a look-up table and re-equip LLaMA with a new
LoRA. The hyperparameters random negative size 𝑅𝑆 , mixup sam-
ples number 𝑀𝑆 , and the hard to total samples ratio 𝑟 are set to
40, 20, and 0.4 respectively, with 10 samples each for the two types
of mixup. As for the contrastive loss margin𝑚, calibrated on the
validation set, it is set to 0.7 for SemEval-Food, 0.5 for MeSH, and
0.7 for WordNet-Verb. The batch size is set to 3. For the backbone

1https://huggingface.co/huggyllama/llama-7b
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Figure 7: Effects ofmixup on training convergence. The green
area represents the difference in training epochs, where the
epochs w/o mixup are higher compared to those w/t mixup.

Table 8: Performance of our method with different path se-
quence understanding prompts on SemEval-Food.

Prompts MRR Hit@1 Recall@10

Prefix Tokens (Ours) 0.724 60.8 61.7
Position Embedding 0.701 58.7 58.2
None 0.699 57.4 57.2

Table 9: Performance of our method with different path se-
quence components on SemEval-Food. “L” and “NL” are short
for “Leaf Scenario” and “Non-Leaf Scenario”, respectively.

Settings MRR MRR-L MRR-NL

Ours 0.724 0.945 0.555
w/o parent path 0.712 0.920 0.552
w/o child path 0.711 0.934 0.541
w/o sibling path 0.709 0.917 0.551

Table 7: Performance of our method with different compres-
sion tasks on SemEval-Food.

Compression Tasks MRR Hit@1 Recall@10

Ours 0.724 60.8 61.7
Hypernym-Hyponym 0.590 36.5 47.9
Unsupervised 0.601 46.6 48.6
None 0.531 37.8 41.2

discussion, we replace LLaMA with the PLM, BERT 2 [7] and fine-
tune it with a learning rate of 3e-5. For the ablation studies, in
the “w/o comp & struct” setting, we use “\n” as a separator between
the descriptions of different concepts. The negative sampling size
is determined by the maximum value when each sentence within
the batch is encoded individually. This minimizes memory usage
and fairly highlights the significance of our compression design.

B Supplementary Experiments
• Effects of Different Compression Tasks.We compared two
semantic compression tasks: (1) Hypernym-Hyponym, trained with
unidirectional hypernym and hyponym supervision, and (2) Unsu-
pervised, which uses self-supervised pretraining tasks from CoSTC
[31] after obtaining concept semantic and path sequence repre-
sentations. Results in Table 7 demonstrate that the compression
task we utilize preserves the most relevant semantic knowledge for
taxonomy completion, achieving the best performance.
• Effects of Different Prompts for LLM’s Path Sequence Un-
derstanding.We compare the explicit Prefix Token Prompt utilized
in this paper with two alternatives: (1) Position Embedding, which
compresses the prompt into a single embedding and treats it as a
position embedding [23], which is added to the compressed token
embeddings of the corresponding parent, child, and sibling path
sequences, and (2) None, which requires the LLM to differentiate the
boundaries between different path sequences without prompts. The
results in Table 8 show that although the explicit prompt increases
input length to some extent, it helps the LLM better understand the
distinctions between path sequences.
• Effects of Different Path Sequences. From the results in Table
9, we observe that the parent path improves leaf insertion perfor-
mance, while the child path enhances non-leaf insertion perfor-
mance. Consistent with previous research [12, 31, 52], sibling infor-
mation is crucial for the taxonomy completion task. Our method
effectively leverages all these path sequence components, resulting
in the best overall performance.
• Effects of Mixup On Training Converge. From the results
in Figure 7, we can observe that using Mixup accelerates training
convergence by the informativeness of the synthesized samples,
further enhancing the efficiency of LLM training in our framework.

2https://huggingface.co/bert-base-uncased
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