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Abstract

Recent supervised fine-tuning (SFT) approaches have significantly improved lan-
guage models’ performance on mathematical reasoning tasks, even when models
are trained at a small scale. However, the specific capabilities enhanced through
such fine-tuning remain poorly understood. In this paper, we conduct a detailed
analysis of model performance on the AIME24 dataset to understand how reason-
ing capabilities evolve. We discover a ladder-like structure in problem difficulty,
categorize questions into four tiers (Easy, Medium, Hard, and Extremely Hard
(Exh)), and identify the specific requirements for advancing between tiers. We
find that progression from Easy to Medium tier requires adopting an R1 reasoning
style with minimal SFT (500-1K instances), while Hard-level questions suffer
from frequent model’s errors at each step of the reasoning chain, with accuracy
plateauing at 65% despite logarithmic scaling. Exh-level questions present a funda-
mentally different challenge, which requires unconventional problem-solving skills.
Additional findings reveal that carefully curated small-scale datasets offer limited
advantage, as scaling dataset size proves far more effective. Our analysis provides
a clearer roadmap for advancing LLMs capabilities in mathematical reasoning.

1 Introduction
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Figure 1: Climbing the Reasoning Ladder on AIME24. Left: A conceptual illustration of what it takes for a
base model to tackle increasingly difficult problems on the AIME24 benchmark. Right: Averaged accuracy
across AIME24 question IDs, sorted by increasing overall difficulty (average across six models: Qwen2.5-32B-
Instruct [18], S1.1-32B [11], LIMO-32B [19], Deepseek-R1 [6], Qwq-32B [16], and STILL3-32B [3]).

For reasoning tasks, even relatively small-scale supervised fine-tuning (SFT) approaches, like
LIMO [19] and s1 [11], can markedly improve a model’s performance on mathematical problems
(see Table 3). However, do these models risk overfitting the test set, or can they truly generalize?
If they do generalize, precisely what capabilities are enhanced through small-scale SFT, and which
limitations persist? Although these models often excel on popular benchmarks, our understandings
of their specific strengths and weaknesses remains incomplete. Prior research [11, 19] has offered
early insights, suggesting that factors like correctness, solution length, and response diversity play
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a non-trivial role in SFT. Yet a more granular investigation is needed to fully determine how these
models evolve through SFT, and to identify remaining gaps that must be addressed.

To address this, we focus on AIME24 [2], chosen for its complexity, diversity, and widespread
adoption [15, 11, 19]. We observe a clear ladder-like structure in which models capable of solving
harder questions generally succeed on easier ones (Figure 1). Motivated by this, we categorize
AIME24 questions into Easy, Medium, Hard, and Exh tiers, and analyze the requirements for
advancing across these tiers.

Our contributions are summarized as follows:
1. Minimal SFT requirement: About 500–1,000 long R1-style CoT trajectories suffice for a base
model to advance from Easy to Medium on AIME24.

2. Scaling law for Medium → Hard: Progress on Hard-level questions follows a logarithmic scaling
trend, with diminishing gains beyond tens of thousands of trajectories.

3. Potential vs. stability: Small-scale SFT can solve as many AIME24 as DeepSeek-R1 given enough
attempts but show >20% lower accuracy due to instability in deep reasoning and computation.

4. Limited gain from curation: Performance varies narrowly (55±4%), with curated datasets
improving over random ones by only ∼1%.

5. Importance and limits of scaling: While scaling beyond ∼1K samples improves results, gains
plateau on Hard-level problems.

6. Barriers to higher-level reasoning: SFT-trained models converge to similar solution strategies,
raising questions about achieving more advanced reasoning via SFT alone.

Overall, by identifying the specific challenges at each difficulty level and the conditions under which
they are mitigated or remain unresolved, we provide a clearer roadmap for advancing LLM-based
mathematics and reasoning capabilities.

2 Climbing the ladder of reasoning

Recent studies [11, 19] show that supervised fine-tuning (SFT) on a relatively small set of rea-
soning trajectories can significantly boost a 32B base model’s math performance, surpassing
o1-preview [12] on MATH500 (89% vs. 81.4%; Table 3) and demonstrating robustness on chal-
lenging datasets such as GSM-Plus [10] and HLE [13]. These gains prompt a key question: what
specific capabilities does SFT confer, and what limitations remain? To explore this, we systematically
analyze the reasoning ladder on the AIME24 benchmark.

2.1 Basic setup

We use AIME2024 as the primary benchmark1, chosen for its hierarchical difficulty, diverse math
domains. We adopt Qwen2.5-32B-Instruct, widely used in prior studies and exhibiting stronger
reasoning behaviors (e.g., verification, backtracking, subgoal setting) than the LLaMA family.
Training uses filtered R1-style CoT trajectories (∼94K) from OpenR1-Math-220k following standard
configurations, and evaluation relies on avg@n and cov@n metrics. Performance on AIME24 exhibits
a clear ladder-like structure, that allowing us to categorize questions into Easy, Medium, Hard, and
Extremely Hard tiers (see Appendix §A.1 for more details). Complete results of model evaluations
across all difficulty levels are provided in Appendix §B.

2.2 The first ladder: from Easy-level to Med-level questions

While the base model Qwen2.5-32B-Instruct [18] achieves over 50% accuracy on Easy-level AIME24,
it performs poorly on Medium-level ones, averaging only ∼10% accuracy and failing on half of them.
Remarkably, after SFT on ∼1K R1-style CoT trajectories (e.g., S1.1, LIMO), the model reaches
∼90% average accuracy on Medium-level questions, with perfect accuracy on half of them.

To identify the minimal SFT conditions for this jump, we conducted an ablation varying: (i) math
categories, (ii) dataset size, (iii) CoT trajectory length, and (iv) trajectory style (R1 vs. Gemini).
Details of the ablation setup are provided in Appendix §A.2.

1We omit MATH500 and GSM8K since most reasoning LLMs have saturated on them.
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Figure 2: Performance comparison of the base model across various SFT trajectory settings. The analysis
includes variations by question categories, training data size, CoT trajectory lengths (short [sh], normal [nm],
large [lg]), and trajectory styles (Gemini-style vs. R1-style). The orange dashed line denotes the soft passline
(∼90% accuracy) for Med-level question accuracy.

Results presented in Figure 2 demonstrates that achieving performance P ≥ 90% on Medium-level
questions minimally requires the configuration:

P = f(C=∗, N>500, L=nm/lg, S=R1)

In other words, the model consistently meets the passline only when trained with at least 500 long,
randomly selected R1-style trajectories, independent of specific math category C. Reducing the
trajectory length, the number of trajectories, or using Gemini-style trajectories leads to lower accuracy.

To assess whether small-scale SFT truly imparts problem-solving skills, we examine how variations
in training data affect the model’s generated CoT trajectories in Appendix §C.

2.3 The second ladder: from Med-level to Hard-level questions

Unlike the sharp leap from Easy to Medium levels, where models move from failing to nearly solving
all problems, the progression from Medium to Hard is gradual. As shown in Figure 1, small-scale
SFT models solve some Hard-level questions but with low accuracy (∼25%), leaving a large gap to
models trained with large-scale post-training. This raises three questions: (a) What capabilities are
missing in small-scale SFT models? (b) Can careful small-scale SFT match large-scale models? (c)
Does a scaling law link SFT data size to Hard-level performance?

2.3.1 Why models fail: instability from exploration and computation of the task

Unlike Med-level questions, which typically require only a few easy hidden steps, Hard-level
questions are considerably more complex for the following reasons:

• Multiple Hidden Steps: Hard questions typically involve long chains of sequential reasoning (e.g.,
multi-step geometric constructions), where each additional step compounds the chance of error. As a
result, overall success decreases roughly as

∏
i si over individual step success rates (see Table 1(a)

and detailed examples in Appendix E and N).
• Computational Complexity: Many Hard questions require demanding computations (e.g., Cayley–
Menger determinants in 3D geometry), which often emerge as the primary bottleneck for models
trained with small-scale SFT (see Table 1(b) and Appendix E for examples).

Given these factors, we further investigate whether "stability" in exploration and computation is
simply a matter of scaling laws.

2.3.2 SFT data scaling shows logarithmic trend in Hard-level question accuracy
To examine whether stability in deep reasoning improves with more SFT data, we varied the number
of diverse CoT trajectories from 50 to 20K and evaluated models on Hard-level AIME24 questions.
For comparison, we included Openthinker-32B and Openthinker2-32B, trained on ∼114K and 1M
trajectories respectively, as well as QwQ-32B (RL-trained) and STILL-3 (tool-augmented).

As shown in Figure 3, accuracy follows a logarithmic scaling trend with dataset size, saturating
near ∼65%. Models using RL or external tools surpass this plateau, suggesting that such methods
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(a) Subquestion accuracy on AIME24 #1
Subquestion ID LIMO S1.1 Qwq

avg@8 on #1-1 100.0 100.0 100.0
avg@8 on #1-2 87.5 100.0 100.0
avg@8 on #1-3 87.5 87.5 100.0
avg@8 on #1-4 25.0 37.5 87.5

Multiplication 19.1 32.8 87.5
avg@8 on #1 12.5 37.5 75.0

(b) Subquestion accuracy on AIME24 #5
Subquestion ID LIMO S1.1 Qwq

avg@8 on #5-1 0.0 25.0 100.0
avg@8 on #5-2 100.0 100.0 100.0
avg@8 on #5-3 100.0 100.0 100.0

Multiplication 0.0 25.0 100.0
avg@8 on #5 12.5 25.0 100.0

Table 1: Comparison between small-scale SFT-ed models (LIMO-32B [19], S1.1-32B [11]) and the model with
large-scale post-training (Qwq-32B [16]) on sub-questions from two hard-level AIME24 problems (IDs 1 and 5).
The “multiplication” row denotes the product of values across all subquestions.

introduce additional stability in reasoning. Since the data scale for QwQ-32B is undisclosed, the
exact advantages of RL over SFT remain an open question.

?

Performance Trend via SFT Dataset Scaling
(Hard-level Questions) With RL With Tool

Figure 3: Performance scaling of models via SFT on Hard-level tasks. We use ∗ symbol to denote the public
models. Specifically, 114K∗ corresponds to Openthinker-32B[15] and 1M∗ corresponds to Openthinker2-32B.

2.3.3 Carefully curated small-scale SFT dataset does not deviate from the scaling trend
We examined whether a carefully curated small-scale SFT dataset could close the gap with large-
scale models. Using OpenAI’s text-embedding-3-small to retrieve the most similar problems from
open-r1/OpenR1-Math-220k, we built a curated set of ∼1K R1-style trajectories aligned with
Hard-level questions. The curated model achieved 33.6% accuracy, only 5% higher than a random
1K-sample baseline (28.4%) and less than the 7% gain obtained by simply scaling the dataset from
1K to 2K. Despite its advantage from test-set knowledge, these results indicate that scaling dataset
size is generally more effective than careful curation, particularly in the small-scale SFT regime.

2.4 The third ladder: from Hard-level to Exh-level questions

While SFT scaling improves performance on Hard-level questions, it provides little benefit on the
most challenging Exh-level problems. These questions often demand unconventional strategies or
geometric intuition that current SFT-trained models do not readily acquire. We summarize the key
observations here and provide detailed case studies, ablation analyses, and examples in Appendix §D.

3 Summary and implications for future study

Small-scale SFT shows strong potential but suffers from instability. While SFT-ed 32B models
can match DeepSeek-R1 in the number of AIME24 questions solved given sufficient attempts
(cov@8), their overall accuracy is >20% lower due to instability in deep exploration and computation.
Increasing SFT data helps but follows a logarithmic scaling trend.

Careful curation yields marginal gains. Performance across math domains varies narrowly
(55±4%), and curated datasets similar to the target questions outperform random diverse datasets by
only ∼1%. This suggests that dataset scale, rather than meticulous curation, drives improvements.

Implications for future research. Future work should explore methods that enhance stability and
diversify reasoning strategies.
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A More experiment details

A.1 Experimental setup

Test Dataset: We primarily use AIME2024 as our test benchmark for various considerations2: a)
Hierarchical difficulty: AIME2024 can challenge state-of-the-art reasoning models (e.g., DeepSeek
R1, o1) due to its complexity. On top of that, questions range from easy to challenging which
provides a hierarchical structure that allows nuanced evaluations of LLMs reasoning capabilities. b)
Diversity: it covers a broad spectrum of mathematical domains, including algebra, number theory,
geometry, and combinatorics, etc. c) Basic knowledge requirement: the mathematical knowledge
required for solving AIME2024 problems mainly cover high school mathematics with occasional
undergraduate-level concepts. We focus on AIME2024 to better isolate and assess pure reasoning
ability without the confounding influence of deep domain-specific knowledge like in HLE3 [13].

Base Model: We use Qwen2.5-32B-Instruct4 as our base model due to its broad adoption in
recent works [11, 19, 15, 8]. The Qwen-series inherently possess cognitive behaviors—verification,
backtracking, subgoal setting, and backward chaining [5] that Llama-series models lack.

SFT CoT trajectory data: Among the various experiment settings in this paper, SFT data comes from
the (question, response) pairs from subsets of the OpenR1-Math-220k dataset [4]. The responses are
CoT trajectories generated by applying DeepSeek R1 to problems from the NuminaMath1.5 dataset
[9]. Specifically, we use trajectories from the default branch (∼94K) and filter out those that result
in incorrect solutions.

SFT Training Configuration: Our training setup closely mirrors prior studies [11], using a learning
rate of 1× 10−5, weight decay of 1× 10−4, batch size of 32, and a total of 5 epochs.

Evaluation Metrics: Our primary evaluation metric is avg@n which is the average pass rate obtained
by generating multiple solutions (with temperature set to 1) and averaging the outcomes. Unless
otherwise specified, we set n = 8 by default. We also report cov@n, which indicates whether the
model succeeds in at least one of the n attempts (scored as 1) and is averaged across all questions.

Difficulty Categorization of AIME24 Problems: We evaluated three kind of public models on
the AIME24 benchmark: the base model Qwen2.5-32B-Instruct fine-tuned on small-scale SFT
datasets (e.g., S1.1 [11] and LIMO [19]), and LLM with large-scale post-training or tool use (e.g.,
R1 [6], QwQ [16], and STILL3 [3]). As depicted in Figure 1 (right), the models’ performance
clearly shows a ladder-like progression from the pre-SFT stage, through small-scale fine-tuning, to
large-scale training. Leveraging this observation, we manually categorized the AIME24 questions
into four distinct difficulty levels: Easy level, Medium (Med) Level, Hard level and Extremely
Hard (Exh-level) based on model performance. More details about this categorization is presented in
Appendix §G.

A.2 SFT ablations setup

We identify the minimal conditions required for the base model to solve Med-level math problems
during SFT. We analyze several variants:

• Foundational math knowledge: We select questions from various categories in
OpenR1-Math-220k including algebra, calculus, combinatorics, inequalities, logic & puzzles, num-
ber theory, and geometry. Specifically, we evenly sample trajectories from each category and combine
them together to form our diverse category.
• Dataset size: Within the diverse category, we experiment by varying the number of training
examples used, specifically we train on sets of 100, 200, 500, 1000 examples per category.
• CoT Trajectory Length: We evaluate trajectory lengths across three distinct tiers—normal (nm)
which includes 1,000 randomly selected trajectories, and short (sh)/long(lg) which consists of the
1,000 shortest/longest trajectories–within the diverse category.

2We omit experiments on MATH500 and GSM8K because most reasoning LLMs with strong chain-of-thought
capabilities have already reached saturation on them (Table 3)

3HLE requires specialized graduate-level knowledge unlike AIME2024.
4We specifically choose the 32B variant, as it represents the model size at which SFT has demonstrated

state-of-the-art performance—comparable to Deepseek-R1—on AIME24, like [16].
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• CoT Trajectory Style: We also compare base models trained on DeepSeek-R1 and Gemini-flash
trajectories, respectively, using 1K questions from [11].

We perform the ablation study by varying each of these four dimensions independently to isolate their
impact on model performance. Formally, let P denote performance and let C, N , L and S denote cate-
gory, number of trajectories, trajectory length, and style, respectively. Our study examines the function
P = f(C,N,L, S), where N ∈ Z+, C ∈ {algebra, calculus, puzzle, ..., number theory, geometry},
L ∈ {sh, nm, lg}, and S ∈ {Gemini, R1}.

B Complete results of models evaluated across all difficulty level

(a) Reproduced performance on public models
Qwen2.5 s1 s1.1 LIMO Openthinker Openthinker2 R1-Distill Qwq STILL3 R1

Easy 71.9 96.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Med 13.8 58.8 91.3 87.5 95.0 97.5 92.5 98.8 97.5 98.8
Hard 1.0 8.3 31.3 28.1 47.9 64.6 50.0 70.8 72.9 78.1
Ex 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 25.0 9.4
cov@8 33.3 63.3 77.6 87.6 83.3 86.7 83.3 87.6 87.0 90.0
avg@8 14.6 35.8 56.3 53.8 64.2 71.7 64.2 75.0 78.3 78.8

(b) Qwen2.5-32B-Instruct with SFT setting (Categories[...], num[1K], length[lg], style[R1])
diverse algebra calc. combi. ineq. logic num. geometry

Easy 98.4 100.0 99.2 96.9 100.0 100.0 100.0 100.0
Med 93.4 91.6 91.6 87.5 89.1 92.9 89.6 90.8
Hard 28.4 25.5 18.0 25.3 26.0 28.1 23.3 37.2
Exh 0.8 0.0 0.8 0.0 0.0 0.0 1.0 1.0

cov@8*4 86.7 83.3 86.7 83.3 83.3 80.0 86.7 90.0
avg@8*4 55.7(1.5) 54.1(2.4) 51.0(1.7) 52.2(0.9) 53.4(0.8) 55.6(0.9) 52.6(3.7) 58.6(2.5)

(c) SFT setting (Categories[diverse], num[...], length[lg], style[R1])
100.0 200.0 500.0 1K 2K 5K 10K 20K

Easy 40.6 78.1 96.9 98.4 100.0 100.0 100.0 96.9
Med 8.8 58.8 82.5 93.4 92.5 91.3 97.5 93.8
Hard 0.0 3.1 11.5 28.4 38.5 47.9 52.1 49.0
Exh 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0

cov@8 23.3 53.3 63.3 86.7 83.0 77.0 83.0 80.0
avg@8 8.3 31.3 45.0 55.7 59.6 62.9 66.7 63.8

(d) SFT setting w.r.t data similarity
dissim diverse sim

Easy 99.2 98.4 100.0
Med 84.7 93.4 89.1
Hard 20.3 28.4 32.6
Exh 0.0 0.8 0.0

cov@8*4 86.7 86.7 83.3
avg@8*4 49.6(2.2) 55.7(1.5) 56.0(3.4)

Table 2: Complete results of models evaluated across all difficulty levels (default with avg@8), along with
overall performance on AIME24. For models trained with 4 different seeds, results are reported as avg@8×4.
The cov@8×4 metric indicates whether the model succeeds in at least one of the 8×4 attempts (scored as 1/0),
averaged across all questions. The number in the subscript is the standard deviation. All models are post-trained
variants of Qwen2.5B–32B–Instruct, except R1 (DeepSeek-R1). In (a), we report performance of public models.
R1-Distill refers to DeepSeek-R1-Distill-Qwen-32B [6]. (b) shows an ablation study of SFT data across all
categories (Section 2.2). (c) presents an ablation study on SFT data size (Section 2.3). (d) compares SFT datasets
similar vs. dissimilar to AIME questions (Section 3).
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C SFT leads models to similar problem-solving strategies

To better understand whether small-scale SFT genuinely imparts problem-solving skills, we investi-
gate how variations in training data influence the model’s generated CoT trajectories. Specifically,
we fine-tune base model on R1-style trajectories across multiple math categories under the consistent
configuration defined earlier as:

P = f(C ∈ {algebra, calculus, combinatorics, ...}, N = 1000, L = lg, S = R1)

We then evaluate each fine-tuned model by comparing its greedily sampled trajectories against the
DeepSeek-R1 trajectories on the meduim-level questions of AIME24.

24 4 4 4 5 5 4 4
11 5 5 4 5 5 5 5
8 4 5 5 5 4 5 4
15 3 4 4 4 4 4 5
26 5 5 5 5 5 5 5
6 4 4 4 4 4 5 5
23 5 5 3 5 5 5 5
18 4 5 4 3 5 2 4
19 5 4 4 5 5 5 5
22 4 5 5 5 4 5 5
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Trajectory Similarity  
W.r.t Deepseek-R1(0-5)

Figure 4: Trajectory sim-
ilarity scores between vari-
ous models (SFT-ed in dif-
ferent math domains) and
Deepseek-R1 when solving
Med-level math problems.
Similarities were assessed on
a scale from 0 (totally differ-
ent) to 5 (almost identical).

Given the complexity and length of the
generated trajectories, we first summa-
rize each trajectory using GPT-4o-mini
prompted with: "Could you summarize
this reasoning trajectory into the ap-
plied strategy and the intermediate re-
sults at each step?" [1]. Subsequently,
we quantitatively assess trajectory simi-
larity by prompting GPT-4o-mini to as-
sign scores on a 6-point scale ([5: almost
identical, 4: mostly similar, 3: somewhat
similar, 2: somewhat different, 1: mostly
different, 0: totally different]). Detailed
prompts and methodology are provided in Appendix K. Results presented in Figure 4 reveal that
the models tend to employ similar problem-solving strategies—around 50% of trajectories rated
as “almost identical” and the remaining 50% as “mostly similar” despite having been trained on
diverse math categories. This suggests that models might overly rely on familiar strategies and limited
flexibility in problem-solving approaches. Examples illustrating these stylistic contrasts between
model-generated and DeepSeek-R1 trajectories are provided in Appendix L.

D Extended analysis for the third ladder: from Hard-level to Exh-level
questions

The scaling behaviour of data size in Section 2.3 for Hard-level questions does not extend to Exh-
level questions. Notably, all of the models fine-tuned with varying SFT dataset sizes, as depicted in
Figure 3, achieve 0% accuracy on Exh-level questions. In order to more precisely identify which
capabilities are missing and understand the model’s limitations, we probe the model with variations
of the problem statement, suggestive prompts and hints, subproblems of the original problem, and
other questions designed to test for specific sub-capabilities. Detailed case studies of three Exh-level
problems (#2, #3, #21) can be found in Appendix M. The target model in analysis is R1, since the
most popular methods with SFT all use R1-trajectories. Therefore, R1’s capability can serve as an
upper-bound for these models. We summarize the key limitations as follows:

• Rigidity in the common strategies: LLMs have formed certain fixed patterns to approach math
problems. For example, when solving geometry problems, LLMs tend to establish coordinate systems,
and for combinatorial problems, they have a strong tendency to apply inclusion-exclusion strategies.
This can lead to failure when such “common” solutions are not feasible. For instance, in problem #2:
“Each vertex of a regular octagon is independently colored either red or blue with equal probability.
Find the probability that the octagon can then be rotated so that all of the blue vertices end up at
positions where there were originally red vertices.” The most straightforward approach is to perform
casework on the number of blue vertices (from 1 to 4). However, R1 persistently attempts to use the
inclusion-exclusion principle with rotation angles {0◦, 45◦, 90◦, ...}, which is unnecessarily complex
for this problem.

• Deficiency in geometric intuition: While LLMs exhibit some ability to solve geometry problems,
their capability is fundamentally limited by their 1-D sequential architecture. Geometric intuition
that is straightforward to humans is not easily learned by LLMs. For example, in problem #21: “Find
the number of rectangles that can be formed inside a fixed regular dodecagon (12-gon) where each
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side of the rectangle lies on either a side or a diagonal of the dodecagon.” Enumerating all possible
rectangles is computationally intensive since there are hundreds of them. The reasonable approach
is to identify typical scenarios and then apply rotational symmetry (multiplying by 3), which is
challenging for models to discover and utilize.

• Limited reasoning context: Though reasoning models can utilize context windows up to 32K
tokens to contemplate difficult questions, they still fall short in cases requiring extensive exploration
of substeps. For example, in problem #2 mentioned above, if we ask R1 to count configurations when
there are exactly 4 blue vertices, it can arrive at the correct answer with sufficient reasoning steps.
However, when tackling the full problem, where |vertices| = 4 is merely one subcase, R1 often
rushes to conclude with an incorrect answer after a lengthy reasoning chain.

The limitations extend far beyond the cases we have listed. We hope our initial analysis can provide
direction and open new avenues for the community to further advance the frontier of reasoning
capabilities in language models.

E Extended analysis of why hard-level questions are more complex

• Multiple Hidden Steps: Solving Hard-level questions usually involves multiple sequential hidden
steps. Consider problem #1 in AIME 2024: “Let ABC be a triangle inscribed in circle ω. Let
the tangents to ω at B and C intersect at point D, and let AD intersect ω at point P . If AB = 5,
BC = 9, and AC = 10, find AP .”

Solving this question with a coordinate system typically requires finding the coordinates of point A,
determining the center and radius of ω, calculating the coordinates of D, finding the intersection point
P , and finally deriving the length AP . We detail these subquestions in Appendix N. Each of these
steps increases models’ chances to pursue wrong paths of reasoning. Modeling the success rate of
each step as independent from the others, the overall success rate becomes the product

∏
i si, where

si represents the success rate of each individual step. Consequently, overall accuracy declines with
an increasing number of reasoning steps, as shown in Table 1(a), which compares the performance of
public models on the provided subquestions.

• Computational Complexity: Certain steps within Hard-level questions involve computationally
intensive tasks. Consider problem #5 in AIME 2024: “Let ABCD be a tetrahedron such that
AB = CD =

√
41, AC = BD =

√
80, and BC = AD =

√
89. There exists a point I inside the

tetrahedron such that the distances from I to each of the faces of the tetrahedron are all equal. Find
this distance.” A critical subquestion (5-1 in Appendix N) requires calculating the volume V of
this tetrahedron using the Cayley-Menger determinant, which demands significant computational
effort. This substep emerges as the primary obstacle for models with limited-scale SFT, as shown in
Table 1(b).

F Small-scale SFT Results in Literature

Model Name SFT Dataset Size AIME24 I/II MATH500 GPQA Diamond

Qwen2.5-32B-Instruct (base) / 26.7 84.0 49.0

LIMO-32B [19] 0.8k 56.7 86.6 58.1
s1-32B [11] 1k 56.7 93.0 59.6
s1.1-32B [11] 1k 64.7 89.0 60.1
OpenThinker-32B [15] 114k 66.0 90.6 61.6
DeepSeek-R1-Distill-32B 800k 76.7 89.4 57.6

o1-preview ? 40.0 81.4 75.2
Table 3: Comparison of math performance across existing reasoning models. Results are cited
from [15] and [11].
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G Difficulty Classification of AIME24 Mathematical Problems

We categorize the 30 AIME24 questions into four difficulty levels based on their sorted question ID
order. The AIME question ID order in this paper follows simplescaling/aime24_nofigures, ranging
from 0 to 29 as illustrated in Figure 1 (left). The categorization is defined as follows:

• Easy level: Consists of 4 questions for which the base model achieves an average accuracy
above 50%.

• Medium (Med) level: Includes 10 questions where the small-scale SFT model attains over
50% accuracy.

• Extremely Hard (Exh-level): Comprises 4 questions that yield less than 10% accuracy
across all models.

• Hard level: Contains the remaining 12 questions that do not fit into the aforementioned
categories.

This multi-level classification enables a more nuanced and fine-grained analysis of model performance
across different difficulty levels, providing insights into the models’ reasoning capabilities and
limitations.

H Examples of carefully-selected small-scale SFT dataset

Example 1: considering AIME24 question #17: “Find the number of triples of nonnegative integers
(a, b, c) satisfying a + b + c = 300 and a2b + a2c + b2a + b2c + c2a + c2b = 6, 000, 000.”, a
similar question in our curated dataset was “Find all positive integer triples (a, b, c) that satisfy
a2 + b2 + c2 = 2005 and a ⩽ b ⩽ c.” (similarity: 0.60). Another similar question is “Determine
the least positive value taken by the expression a3 + b3 + c3 − 3abc as a, b, c vary over all positive
integers. Find also all triples (a, b, c) for which this least value is attained.” (similarity: 0.58)

Example 2: considering AIME24 question #16: “Let △ABC have circumcenter O and incenter
I with IA ⊥ OI , circumradius 13, and inradius 6. Find AB · AC.”, a similar question from in
our curated dataset “Points O and I are the centers of the circumcircle and incircle of triangle
ABC, and M is the midpoint of the arc AC of the circumcircle (not containing B). It is known
that AB = 15, BC = 7, and MI = MO. Find AC.” (similarity: 0.69). Another similar question
is “Let △ABC be a triangle with AB = 7, AC = 8, and BC = 3. Let P1 and P2 be two distinct
points on line AC (A,P1, C, P2 appear in that order on the line) and Q1 and Q2 be two distinct
points on line AB (A,Q1, B,Q2 appear in that order on the line) such that BQ1 = P1Q1 = P1C
and BQ2 = P2Q2 = P2C. Find the distance between the circumcenters of BP1P2 and CQ1Q2..”
(similarity: 0.61)

I Extended Analysis on AIME25

Difficulty Categorization of AIME25 Problems. Recall from Figure 1 that we previously revealed a
ladder-like structure, wherein models capable of solving higher-tier questions generally also succeed
on lower-tier ones. In that analysis, AIME24 questions were categorized into four tiers—Easy,
Medium, Hard, and Extremely Hard (Exh)—and we examined the requirements for progressing
across these levels.

In this section, we extend our investigation to the more recent AIME25 benchmark.We evaluate
three categories of public models on AIME25: (1) the base model Qwen2.5-32B-Instruct, (2) the
same model fine-tuned on small-scale SFT datasets such as S1.1 [11] and LIMO [19], and (3)
models with large-scale post-training or tool-augmented capabilities, including R1 [6], QwQ [16],
and Openthinker2 [15]. As shown in Figure 5, model performance again exhibits a ladder-like
progression—from the base model, through small-scale fine-tuning, to large-scale training and tool
use. Following the categorization scheme introduced in Section G, we group AIME25 questions into
three difficulty levels: Medium (Med), Hard, and Extremely Hard (Exh). Unlike AIME24, the base
model is no longer able to solve all questions (except the first one) with over 50% accuracy. As a
result, we exclude the Easy tier and incorporate the first question into the Medium tier for simplicity.
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Figure 5: The Reasoning Ladder on AIME25. Averaged accuracy across AIME25 question IDs, sorted by in-
creasing overall difficulty (as determined by the average accuracy across six models: Qwen2.5-32B-Instruct [18],
S1.1-32B [11], LIMO-32B [19], Deepseek-R1 [6], Qwq-32B [16], and Openthinker2-32B [15]). Each model
attempts each question 8 times with averaged accuracy. Colored lines represent the mean performance for each
model category.

SFT on 1K R1-style Trajectories across all categories achieves near-perfect accuracy on Med-
Level questions. We conduct an ablation study by varying the categories while maintaining the
experimental setup detailed in Section A.2. As shown in Figure 6, the base model fine-tuned on
1K R1-style trajectories across diverse categories consistently achieves near-perfect accuracy on
Medium-level questions. This result aligns with our findings in Section 2.2, where we demonstrate
that solving Med-level problems primarily requires adopting a longer R1-style chain-of-thought,
regardless of the specific categories covered during SFT.

(Varying Categories)
Performance on SFT w. Trajectories

Ac
cu

ra
cy

 o
n 

M
ed

-l
ev

el
 

Q
ue

st
io

ns

Figure 6: Performance comparison of the base model across various SFT on Med-level questions trajectory
settings. The analysis includes variations by question categories.

SFT data scaling shows logarithmic trend in hard-level question accuracy. Following the
methodology described in Section 2.3, we varied the number of CoT trajectories across diverse
categories using dataset scales of 50, 100, 200, 500, 1K, 2K, 5K, 10K, and 20K. For a thorough
benchmark, we additionally evaluated publicly available models such as Openthinker2-32B (trained
on 1M trajectories), fine-tuned from the same base model as ours (Qwen2.5-32B-Instruct). We also
included comparative evaluations with QwQ-32B [16] and Deepseek-R1 [4]. As illustrated in Figure 7,
performance on hard-level questions exhibits a logarithmic scaling pattern concerning dataset size,
which consistent with our findings in AIME24.

Current curation methodology doesn’t yield much benefits over non-curated dataset. In the
main text, we find out that a meticulous dataset curation for small-scale SFT, as employed in recent
works such as LIMO [19] and S1.1 [11], provide marginal benefit. Specifically, as illustrated in
Figure 8, our experiments on the AIME25 benchmark demonstrate that models trained on broadly
sampled, non-curated datasets across all math categories achieve performance comparable to models
trained on carefully curated datasets like S1.1 and LIMO. This observation reinforces our primary
observation: scaling dataset size has a more substantial impact than careful curation in small-scale
SFT setups.
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Performance Trend via SFT Dataset Scaling
(Hard-level Questions) With RL

Figure 7: Performance scaling of models via SFT on Hard-level reasoning tasks. We use ∗ symbol to denote
the public models. Specifically, 1M∗ corresponds to Openthinker2-32B [15].

(Uncurated Dataset: Varying Categories)(Curated Dataset)

Overall Performance on SFT w. Trajectories

Figure 8: Performance comparison of the base model across different SFT trajectory settings on all AIME25
questions. The comparison includes models trained on carefully curated SFT datasets (s1.1[11], LIMO[19]) as
well as models trained on uncurated datasets grouped by question categories..

J Is small-scale SFT just overfitting to the train/test data or it’s true
generalization?

Recent works [11, 19] showed that when training a 32B base model in an SFT fashion on a rel-
atively small set of reasoning trajectories (≤1K), the model can surpass reasoning performance
of o1-preview [12] on popular math benchmarks like MATH500 [7] (89% s1.1-32B vs 81.4%
o1-preview). This begs the question: Do they “overfit” to the test benchmarks given the small training
data and struggle with generalization?

To test this, we assess generalization in two Out-of-distribution (OOD) settings: (a) robustness to
perturbations in question contexts using the GSM-Plus dataset [10], which introduces variations such
as numerical modifications and additional problem clauses; and (b) performance on more challenging,
diverse problem sets beyond the scope of Olympic-level math problems, evaluated using Humanity’s
Last Exam [13]. In these experiments, we benchmark Sky-T1 [14], S1.1 [11], Open Thinker [15],
Open Reasoner [17] and LIMO [19], using Qwen2.5-32B-instruct [18] as the base model for
reference, with all baselines fine-tuned from it.

According to the results in Figure J, the performance drop for these SFT-ed models on perturbed
questions is at a level similar to that of other popular models. For the second test branch using the
HLE dataset, we present the results in Table 4. We observe that these SFT-ed models do not exhibit
significant performance degradation and, in some cases, even show slight improvements over the
base model. However, these gains are less pronounced compared to the improvements observed on
traditional math benchmarks, as shown in Table 3.

These results suggest that base models fine-tuned with small-scale SFT can, at the similar level with
other public models (in Figure J), generalize well across broader mathematical domains, even in
out-of-distribution settings.
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Models Qwen2.5 (base) LIMO Openreasoner Openthinker s1.1 sky-T1

HLE-math (Exact Match) 5.6 7.6 (2.0↑) 6.0 (0.4↑) 9.6 (4.0↑) 5.2 (0.4↓) 6.0 (0.4↑)
HLE-math (Multi-choice) 10.3 13.4 (3.1↑) 12.2 (1.9↑) 12.4 (2.1↑) 14.4 (4.1↑) 11.3 (1.0↑)

Table 4: Evaluation results on math questions from HLE [7] using two answer measurement types:
exact match and multiple-choice. The green and red numbers indicate the difference compared to the
baseline model, Qwen2.5-32B-Instruct.

Figure 9: The performance on the GSM-Plus dataset [10] and its drop relative to GSM-8K are shown,
with deeper colors indicating larger performance declines.
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K Prompt used in trajectory similarity comparison

1 Compare these two solution trajectories and determine if they follow
similar main approaches. Also point out the key differences in the
solution trajectory.

2 You should also measure the rate of similarity between the two
trajectories **only based on the high -level strategy applied **.

3

4 Target Solution:
5 {data_target[’summary ’]}
6

7 Test Solution:
8 {data_testee[’summary ’]}
9

10 Provide a brief response in this format:
11 Key Similarity: [find the similar strategies. If no , simply say no.]
12 Other Differences: [explain the main differences in the strategy

applied and the discrepancy in the intermediate steps]
13 Rate of similarity in strategy: [almost identical/mostly similar/

somewhat similar/somewhat different/mostly different/totally
different]

L Example of similar trajectories in solve Med-level problems

Considering AIME24 question #6: “Let B be the set of rectangular boxes with surface area 54
and volume 23. Let r be the radius of the smallest sphere that can contain each of the rectangular
boxes that are elements of B. Find the value of r2”. We demonstrate below, with examples, that
Deepseek-R1’s solutions closely resemble those of the base model fine-tuned on trajectories in
geometry and algebra, respectively. For comparison, we also include a human solution that uses a
completely different approach.

Summary of Deepseek-R1’s trajectory

1. **Constraints and Objective**: - Surface area: 2(xy + yz + zx) = 54 - Volume:
xyz = 23 - Objective: Maximize the space diagonal

√
x2 + y2 + z2 to find the radius r

(since r = 1
2

√
x2 + y2 + z2).

2. **Key Relations**: - The space diagonal squared is x2 + y2 + z2. - Using the identity
(x+ y+ z)2 = x2 + y2 + z2 +2(xy+ yz+ zx), we get x2 + y2 + z2 = (x+ y+ z)2 − 54.
3. **Maximizing x + y + z**: - By setting x = y and solving the constraints, we find
x = y = 2 and z = 23

4 . - This gives x+ y + z = 2 + 2 + 23
4 = 39

4 = 9.75.
4. **Calculating x2 + y2 + z2**: - x2 + y2 + z2 = 22 + 22 +

(
23
4

)2
= 4+ 4 + 529

16 = 657
16 .

5. **Finding r2**: - r2 =
(

1
2

√
657
16

)2
= 657

64 .

6. **Verification**: - The fraction 657
64 is in simplest form, with p = 657 and q = 64.
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Human’s Solution

Observe that the "worst" possible box is one of the maximum possible length. By symmetry,
the height and the width are the same in this antioptimal box. (If the height and width weren’t
the same, the extra difference between them could be used to make the length longer.) Thus,
let the width and height be of length a and the length be L.
We’re given that the volume is 23; thus, a2L = 23. We’re also given that the surface area is
54 = 2 · 27; thus, a2 + 2aL = 27.
From the first equation, we can get L = 23

a2 . We do a bunch of algebra:

L =
23

a2

27 = a2 + 2aL

= a2 + 2a

(
23

a2

)
= a2 +

46

a

27a = a3 + 46

a3 − 27a+ 46 = 0.

We can use the Rational Root Theorem and test a few values. It turns out that a = 2 works.
We use synthetic division to divide by a− 2:

2 1 0 −27 46
2 4 −46

1 2 −23 0

As we expect, the remainder is 0, and we are left with the polynomial x2 + 2x− 23. We can
now simply use the quadratic formula and find that the remaining roots are

−2±
√
4− 4(−23)

2
=

−2±
√
96

2
=

−2± 4
√
6

2
= −1± 2

√
6.

We want the smallest a to maximize L, and it turns out that a = 2 is in fact the smallest root.
Thus, we let a = 2. Substituting this into L = 23

a2 , we find that L = 23
4 .

However, this is not our answer! This is simply the length of the box; we want the radius of
the sphere enclosing it. We know that the diameter of the sphere is the diagonal of the box,
and the 3D Pythagorean Theorem can give us the space diagonal. Applying it, we find that
the diagonal has length√

22 + 22 +

(
23

4

)2

=

√
8 +

529

16
=

√
128 + 529

16
=

√
657

16
=

√
657

4
.

This is the diameter; we halve it to find the radius,
√
657

8
.

We then square this and end up with(√
657

8

)2

=
657

64
,

giving us an answer of 657 + 64 = 721 .
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Trajectory summary from base model trained with algebra dataset

1. **Understand Surface Area and Volume Constraints**: - Given the surface area 54 and
volume 23:

Surface area: 2(ab+ bc+ ca) = 54 =⇒ ab+ bc+ ca = 27

Volume: abc = 23

2. **Objective**: - To find r2, we note that the radius r of the enclosing sphere relates to the
space diagonal d of the box:

r2 =
a2 + b2 + c2

4

- Hence, the goal is to maximize a2 + b2 + c2 under the constraints.
3. **Use of Symmetry**: - Assume a symmetric scenario where two sides are equal, let
a = b. Then from the volume equation, we can express the third side as c = 23

a2 . - Substitute
this into the surface area equation to form a cubic equation:

ab+ 2ac = 27 =⇒ a2 + 2a

(
23

a2

)
= 27 =⇒ a3 − 27a+ 46 = 0

4. **Find Roots of the Cubic**: - Solving the cubic yields: - One root: a = 2 - Another root
(approximately): a ≈ 3.899
5. **Calculate a2 + b2 + c2**: - For a = b = 2, substituting to find c:

c =
23

4
= 5.75 ⇒ a2 + b2 + c2 = 4 + 4 +

(
23

4

)2

= 8 +
529

16
=

657

16

- Checking for the case a ≈ 3.899:

c ≈ 23

(3.899)2
⇒ a2 + b2 + c2 ≈ 32.689

6. **Verification of Maximum**: - Additional configurations (other than symmetry) did not
yield a larger a2 + b2 + c2 than 657

16 from the case a = b = 2.
7. **Final Calculation**: - We find that:

r2 =
657

64

- Resulting in p = 657 and q = 64.
8. **Final Output**: - Summing p and q:

p+ q = 721
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Trajectory summary from base model trained with algebra dataset

1. **Set Constraints**: - The rectangular box dimensions a, b, c satisfy the following
conditions:

2(ab+ ac+ bc) = 54 =⇒ ab+ ac+ bc = 27,

abc = 23.

2. **Objective**: - We want to minimize the radius r of the smallest sphere that can contain
the box. The radius relates to the space diagonal:

r =
1

2

√
a2 + b2 + c2 =⇒ r2 =

a2 + b2 + c2

4
.

- This means we need to maximize a2 + b2 + c2 subject to the constraints.
3. **Assume Symmetry**: - Assume a = b to reduce complexity. Find critical points by
setting: - c = 23

a2 .
4. **Substitute into Surface Area**: - Substitute into the surface area constraint:

a2 + 2a · 23
a2

= 27 =⇒ a2 +
46

a
= 27.

- Rearranging leads to the cubic equation:

a3 − 27a+ 46 = 0.

5. **Find Roots**: - By testing rational roots, find a = 2: - This gives c = 23
22 = 23

4 .
6. **Calculate a2 + b2 + c2**: - Substitute a = b = 2 and c = 23

4 :

a2 + b2 + c2 = 22 + 22 +

(
23

4

)2

= 4 + 4 +
529

16
= 8 +

529

16
=

657

16
.

7. **Determine r2**: - Calculate:

r2 =
657/16

4
=

657

64
.

- Since 657 and 64 are relatively prime, we define p = 657 and q = 64.
8. **Final Result**: - Therefore, compute p+ q:

p+ q = 657 + 64 = 721.
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M Detailed Analysis of Exh-level Problems

AIME24 Problem #2

Problem Context: Each vertex of a regular octagon is independently colored either red or
blue with equal probability. The probability that the octagon can then be rotated so that all
of the blue vertices end up at positions where there were originally red vertices is m

n , where
m and n are relatively prime positive integers. What is m+ n?

Answer: 371
Intended Solution: The easiest way to solve the problem is to do casework on the number
of blue vertices. Since the problem asks if in each coloring the octagon can be rotated so
that the blues cover the reds, cases with 0-3 blues are all straightforwardly valid, and since
the reds do not need to cover the blues, cases with 5-8 blues trivially do not need to be
considered. The remaining cases, with 4 blues, can be reduced with symmetries, and cases
are counted with standard combinatorics. The total number of cases which meet the criteria
is 115 out of a possible 256, leading to the answer of 371.

Selected Excerpts from DeepSeek-R1: “We need to compute the probability that there
exists a rotation r (including identity) such that rotating the blue set by r results in a set
disjoint from B[...] Given that my time is limited and this problem is quite involved, I
might need to look for a different resource or recall that the answer is 41/256, leading
to 41 + 256 = 297. But I need to verify this[...] Wait, here’s an idea: For each rotation
r, compute the number of subsets B such that r(B) is disjoint from B, which we already
have as 1 + 4*47 + 2*49 + 81 = 368. However, this counts each subset multiple times
if it is disjoint from multiple rotations. The empty set is counted 8 times, once for each
rotation. The other subsets are counted once for each rotation they are disjoint under.
Therefore, to find the total number of distinct subsets, we can use inclusion-exclusion:
M =

∑
|Ar| −

∑
|Ar ∩ As| +

∑
|Ar ∩ As ∩ At| − ... + (−1)n+1|A0 ∩ ... ∩ A7|. But

calculating this requires knowing all intersections, which is complex.”

”Therefore, in total, the four-element subsets B that can be rotated into R are: - The eight
consecutive subsets.- The two square subsets. Therefore, total 8 + 2 = 10 subsets. Therefore,
out of C(8,4) = 70 four-element subsets, only 10 can be rotated into R. ”

“6. **Final Probability**: - The probability is 41
256 , where m = 41 and n = 256. -

Therefore, m+ n = 41 + 256 = 297." ✗

Error Category: Case Splitting Choice
Among many ways of splitting this problem into cases, the model splits the problem into
cases according to rotation degrees. It is possible to solve the problem this way, but the
calculation load is beyond the model’s ability. Despite the model correctly identifying that
having to resort to inclusion/exclusion for this problem will make it complex, the model
does not consider other methods of breaking down the problem.

Takeaway:
The model is unable to sketch out different solution paths in the right granularity, which
leads to the wrong decision for the optimal case splitting strategy. The model also suppresses
reasoning space for enumeration reflexively even when its necessary. Instead, it chooses to
explore other more computationally demanding strategies beyond its capacity and ultimately
leading to worse outcomes.
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AIME24 Problem #2: Error Analysis: Case Splitting

Error description: Model is unable to choose an efficient way of case splitting to make the
calculation demand manageable.

Different Additions to the Prompt: (added during inference )
• Do casework on a property that seems to result in the least amount of calculation.

✗

• It’s important to find a way of solving the problem that requires a doable amount
of calculations. Note that inclusion exclusion tends to lead to large amounts of
calculations. ✗

• It’s important to find a cway of solving the problem that requires a doable amount
of calculations. If you use inclusion exclusion in this question, the amount of
calculations will be too large to do. If you count the rotation types, you must do
inclusion exclusion, which you want to avoid. You should try counting something
else. ✗

• Do casework on blue indice configurations. ✓

Hypothesis: The model is unable to sketch out different solution paths in the right granular-
ity, which leads to the wrong decision for the optimal path.

Test Cases
Question: Is the model aware of the properties that can be used for case splitting?

Modified Prompt: For the following problem , you should not solve the problem. The only
thing you should do is to identify different properties that can be used to split the problem
into cases. {Original Question}

Selected Model Responses:
...Size of the Blue Set |B|: The number of blue vertices affects possible rotations. Smaller
sets are easier to rotate into red positions, while larger sets impose stricter constraints.
GCD of Shift Value with 8: Shifts with gcd=1, 2, or 4 partition the octagon differently. For
example, shifts with gcd=1 act as a single cycle, gcd=2 splits into two cycles, and gcd=4
pairs opposite vertices. Each requires distinct analysis.
Forbidden Distances: Each shift k implies avoiding pairs of blue vertices k apart. Cases split
by the distance constraints (e.g., adjacent, opposite) to ensure disjointness after rotation.
Inclusion-Exclusion Over Shifts: Overlaps where multiple shifts satisfy the condition must
be accounted for, necessitating case splits based on combinations of shifts and their gcds. . . .

Observations: The model is aware of the option to split cases over the number of blue
vertices, so in some sense, it chooses not to.

Conclusion: Yes
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2024 AIME24 Problem #2: Error Analysis: Case Splitting (continued)

Question: Is the model aware of which of the 4 properties is optimal?

Follow-up Prompt: Which of the properties you mentioned can simplify the problem
calculation the most?
Selected Model Responses:
...Starting with **Size of the Blue Set (|B|):** If we fix the number of blue vertices, say k,
then we can analyze each k separately. For each k, we compute the number of colorings
where there exists a rotation that maps all blue vertices to original red positions. Summing
over all k would give the total favorable cases. However, since each k might have different
constraints, this could lead to handling multiple cases, which might not simplify things but
rather split the problem into more parts. Unless there’s a pattern or symmetry for different
k, this might not be the most efficient... . . . .The property that simplifies the calculation the
most is the gcd of the shift value with 8.

Observations: Following the model’s method, and computing the GCD of the shift value
with 8 will later require complex inclusion/exclusion, which the model does not foresee.
Conversely, the model misjudged that doing casework on the blue vertex configurations
would complicate the problem, because it missed the insight that no cases where the number
of blue vertices greater than 4 need to be considered. As a result, it preemptively chooses not
to pursue this line of thinking, and cannot solve the problem in the only tractable fashion.

Conclusion: No

Question: Is the model able to correct itself through being prompted to think further and
only consider valid cases of each split?

Secondary Follow-up Prompt: Which of the properties you mentioned doesn’t require
inclusion and exclusion later down the line? Is there any simple principle you can apply to
gauge how many valid cases there are split using different properties?

Selected Model Responses:
..maybe the different shifts can be grouped by their gcd with 8...
This suggests that inclusion-exclusion is necessary to account for overlapping cases where
multiple rotations might work or not...
Size of the Blue Set (|B|): Key Insight: If |B| > 4, no rotation can map B into R (since |R|
< |B|). For |B| ≤ 4, it’s possible but depends on B’s structure. Avoids Inclusion-Exclusion?
Partially. For |B| > 4, cases are invalid without overlap analysis. For |B| ≤ 4, structure
matters, but overlaps still require inclusion-exclusion for precise counting.
GCD of Shifts with 8: Key Insight: Rotations split the octagon into cycles based on
gcd(k, 8). Valid shifts depend on cycle alignment with R. Avoids Inclusion-Exclusion? No.
Overlapping cycles and multiple valid rotations necessitate inclusion-exclusion to avoid
overcounting. . . .

Observations: The model correctly deduced that it does not need to think of cases where
there are fewer than 4 blue vertices, but it failed to observe that with exactly 4 blue vertices,
inclusion/exclusion was not needed.
As a result, even actively prompting the model to consider the work required does not work.
However, we cannot yet conclude that it is not "within the model’s capabilities" to make
this observation.
Conclusion: No
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2024 AIME24 Problem #2: Error Analysis: Case Splitting (continued)

Question: Is the model capable of recognizing that case splitting through blue vertices
doesn’t require inclusion exclusion at all?

Tertiary Follow-up Prompt: Is it true that you need inclusion exclusion for k < 4 for the
size of the blue set?
Selected Model Responses:
“...Final Answer: No, inclusion-exclusion is not required for |B| < 4. All such cases are
valid by construction.” . . .

Observations:The model is actually capable of discerning that inclusion/exclusion is not
needed in this case.
Conclusion: Yes
Discussion: The model provided only a cursory outline of several possible approaches
while overlooking two crucial insights about the optimal solution path: 1) values where
k > 4 need not be calculated, and 2) cases where k < 4 don’t require inclusion-exclusion
principles. Consequently, the model consistently selects a more computationally demanding
approach that exceeds its calculation capabilities. Determining the appropriate level of
specificity for exploring potential case-splitting strategies through prompting presents a
significant challenge without providing concrete examples.
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2024 AIME24 Problem #2: Error Analysis: Enumeration

Error description: Model consistently fails at enumerating possible configurations when
the number of blue vertices is equal to 4

Different Additions to the Prompt:
• For each case that you think has valid configurations of vertices, you should be

careful and exhaustive when counting how many configurations exist. ✗

• Enumerate all possible configurations of x number of vertices and then filter to see
how many of them actually fit the problem condition. ✗

• Case with 4 blue vertices is tricky. You should think carefully when enumerating.
✗

• Enumerate all possible configurations of 4 blue vertices, and then filter to see
which ones fit the condition. ✓

Observations: The model requires very precise prompting to enumerate correctly. Evidence
indicates that the second prompt consistently fails across multiple attempts unless the explicit
constraint "x == 4" is incorporated, as demonstrated in the final prompt. This illustrates the
necessary level of specificity required for successful enumeration.

Hypothesis: The model suppresses its reasoning space for enumeration reflexively, even
when exploring other approaches leads to worse outcomes.

Test Cases
Question: Does the model have the capabilities of enumerating all possible configurations
of 4 vertices?
Modified Prompt: Each vertex of a regular octagon is independently colored either red
or blue . Consider the case where 4 of the vertices are colored blue and 4 are colored red.
How many different configurations of the blue and red vertices exist such that all of the blue
vertices can be rotated in some way to end up at positions where there were originally red
vertices?
Selected Model Responses:
...There exist 22 different configurations.

Observations: The model is capable of counting case = 4 in this setting.

Conclusion: Yes.
Discussion: Based on isolated sub-problem testing, the model demonstrates the ability to
accurately count when case = 4. However, when addressing this component within the
broader problem’s reasoning chain, the model consistently produces inaccurate enumerations
for vertices ==4. Analysis of successful prompting strategies reveals that the correct
reasoning process requires significantly more reasoning time for enumeration and case
testing than the model originally employed.
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2024 AIME24 Problem #21

Question: Find the number of rectangles that can be formed inside a fixed regular dodecagon
(12-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon.
The diagram below shows three of those rectangles.

Intended Solution: All human solutions involve constructing these two grids:

We then observe that due to the rotational symmetry of the dodecagon, these two grids are
repeated three times, so we can get the correct answer by counting the number of rectangles
in each, adding them. and multiplying the answer by 3. Different combinatorial methods
are used to count the number of rectangles, which is not the "hard" part of the question.

Answer: 315

24



2024 AIME24 Problem #21 (continued)

Note: Because DeepSeek-R1 is a purely text-input model, we modified the question so that
the problem could be specified without the provided diagram.
Modified Problem Statement: Find the number of rectangles that can be formed inside a
fixed regular dodecagon (12-gon) where each side of the rectangle lies on either a side or
a diagonal of the dodecagon. By "lies on," we mean that each side of the rectangle must
be contained within a line determined by either a side or a diagonal of the dodecagon. The
sides of the rectangle need not be complete sides or diagonals of the dodecagon.
A diagonal of the dodecagon is any line segment connecting two non-adjacent vertices of
the dodecagon. The vertices of the rectangle can be: Vertices of the dodecagon Points where
sides of the dodecagon intersect with diagonals Points where diagonals intersect with other
diagonals
The rectangle must lie completely inside or on the boundary of the dodecagon. The task is
to count all possible rectangles that can be formed by the network of lines created by all
sides and diagonals of the dodecagon.

Selected Excerpts from DeepSeek-R1: Therefore, the difference in step sizes is not the
only factor; the actual angle of the direction of the chord must be considered. Therefore,
my initial approach of using step size differences was flawed. Therefore, perhaps I need to
consider all possible pairs of chords (sides or diagonals) that are perpendicular, and count
the number of rectangles they form. This seems daunting, but perhaps manageable with
combinatorial methods[...]
Therefore, the total number of distinct directions is 12 (for m=1) + 6 (m=2) + 4 (m=3) + 3
(m=4) + 12 (m=5) + 2 (m=6) = 39[...] Wait, no. Let’s calculate the direction angles for each
step size[...]
Therefore, the direction of a chord from vertex k to vertex k + m is not simply the average
of their angles, but the angle of the line connecting them[...] Calculating this for each chord
is complex, but perhaps there’s a pattern[...]

Error Category: Failure To Observe Symmetry The model is not able to recognize that
it can apply symmetries of the dodecagon to reduce the number of lines which need analysis
(like in the human solution). As a result, whenever the model tries to do the casework on
the non-reduced problem, it finds the problem intractable.

Takeaway: While the model demonstrates theoretical understanding of symmetries, it
consistently fails to recognize the implications of symmetry, such as identical components
requiring only a single calculation, and apply them in practice. We designed simpler
problems to test this behavior specifically, and the limitation persisted throughout these tests.
In the end, despite our efforts to provide targeted hints, the model was unable to overcome
this limitation.
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2024 AIME24 Problem #21: Error Analysis: Failure to Utilize Symmetry

Error description: Model is unable to take advantage of rotational symmetries to reduce
the number of cases on the problem, and cannot reduce the problems to the desired solution’s
subproblems.

Different Additions to the Prompt:
• The sets of mutually parallel and perpendicular ones are broken into equivalence

classes. When considering a diagonal of the dodecagon, we only need to consider
diagonals which are parallel or perpendicular to it.
The dodecagon has rotational symmetry. Any diagonal between vertices at a
specific distance from each other can be rotated to occupy a diagonal between
other vertices at the same distance. ✗

• The diagonals and edges of a dodecagon differ in slope by multiples of 15 degrees.
Therefore, sets of mutually parallel and perpendicular ones are broken into 6
equivalence classes that are rotationally offset from each other by 15 degrees.
Picking one of these arbitrarily, the one at 0 degrees is identical in structure to the
one at 30 degrees and the one at 60 degrees, and the one at 15 degrees is identical
in structure to the one at 45 degrees and the one at 75 degrees. Therefore, the
problem can be solved by performing analyses for just the first two classes, and
multiplying the resulting answer by 3. ✗

• {Many, many variations to the prompt, which specify examples of the equivalence
classes, clarify the relationships of the lines with other ones in the same class,
specify the relationships of the equivalence classes to each other, or explicitly state
that the equivalence classes are of two types and that the final answer is 3 times
the sum of the answers gotten by analyzing the two types.} ✗

Observations: No amount of prompting, even very hard and explicit hints, can get the
model to make significant use of the rotational symmetry. Often, the model spends a
large part of its CoT trying to verify the symmetries in question, no matter how they are
specified. There is a significant conceptual leap from knowing that the dodecagon has
rotational symmetry, and using this fact to reduce the problem in a way that is logically
consistent, or "observe" a symmetry when it is described in a more complex context. Even
the posted solutions don’t attempt to justify the fact, since it is clear to see visually. This
is an unusually strong case of spatial reasoning abilities providing a serious advantage to
solving the problem.
Another item of note is that with or without this prompting, the model sometimes constructs
subproblem 1 and solves it, since the model has a strong preference for orienting the
dodecagon so that there is a vertex at (1, 0), so these lines are parallel to the coordinate
axes. This suggests that the model has more than enough "spare compute capacity" to do
the "rectangle finding" part of the problem.
However, the model never comes anywhere close to constructing subproblem 2, because
it cannot keep track of the necessary lines when they are not axis-aligned, and it will not
rotate the dodecagon to make them, even if prompted. This is more evidence to suggest that
it does not occur to the model to do something simple like "rotate the shape" to make the
problem analysis easier.

26



2024 AIME24 Problem #21: Error Analysis: Failure to Utilize Symmetry (continued)

Test Cases
Question: Is the model able to count rectangles correctly as intended by the problem?

Test Question 1.1 (not involving the original question): You have a 4 by 4 grid made of 1
by 1 cells. Then you take away 4 cells on the 4 corners of the grid, forming a cross-like
shape. Now looking at the final grid with the cross-like shape, how many total distinct
rectangles can be formed using only the grid lines in this diagram? Count all possible
rectangles, including individual cells and combinations of cells.
You have a 3 by 3 grid made of 1 by 1 cells. It has 4 vertical lines from left to right, V1, V2,
V3, and V4, and 4 horizontal lines from top to bottom, H1, H2, H3, and H4. Now extend
V2 V3 beyond their intersection with H1 and connect them with a new line A1 parallel
to H1 to form 1 new cell. Do the same thing on the side of H4, forming 1 other new cell.
Then extend H2 and H3 to do the exact same thing, adding 1 cell in relation to V1 and 1
cell in relation to V4. In its final format, we added 4 small 1 by 1 cells in total.How many
total distinct rectangles can be formed using only the grid lines in this diagram? Count all
possible rectangles, including individual cells and combinations of cells.

Selected Model Responses "...the final answer is 51..." "...the final answer for the 3 by 3
grid is 54..."

Conclusion: Yes, the model is able to count rectangles in a grid as the problem demands.

Question: Is the model aware of the symmetries of a dodecagon?

Test Question 1: List the symmetries of a dodecagon.

Selected Model Responses "Combining these, the total number of symmetries is 12
(rotational) + 12 (reflectional) = 24. These symmetries form the dihedral group D12, which
has order 24."
Observation: The model gives a comprehensive, correct textbook answer. This is not
surprising, given that algebraic descriptions of symmetries of regular polygons are likely in
the training corpus.

Conclusion: Yes

Question: Is the model able to reason about angles well enough to find rectangles in a
dodecagon? (#1)

Test Question 2: Consider a dodecagon, with its points labeled 1 through 12 in clockwise
order. In order, its points are colored: 1: B 2: G 3: R 4: B 5: R 6: G 7: B 8: G 9: R 10: B
11: R 12: G , where B stands for blue, G for green, and R for red. How many rectangles can
be drawn between the vertices of the dodecagon, such that the vertices of the rectangle are
all the same color?
Selected Model Responses ".Summing the rectangles for each color, we get: Blue: 1
rectangle Green: 1 rectangle Red: 1 rectangle Thus, the total number of monochromatic
rectangles is 1+1+1=3."

Observation: The model uses a combination of coordinate geometry calculations to reason
about the relationships between points and the angles between constructed lines to answer
this question

Conclusion: Yes
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2024 AIME24 Problem #21: Error Analysis: Failure to Utilize Symmetry (continued)

Test Cases
Question: Is the model able to reason about angles well enough to find rectangles in a
dodecagon? (#2)

Test Question 3: Consider a dodecagon, with its points labeled 1 through 12 in clockwise
order. List the combinations of indices which form rectangles. For example, 1, 4, 7, and 10
form a rectangle.

Selected Model Responses "...Squares (3 in total): 1, 4, 7, 10 / 2, 5, 8, 11 / 3, 6, 9, 12
Non-square Rectangles (12 in total): These are formed by pairs of diameters offset by 1 or
2 steps. Offset by 1 step: 4. 1, 2, 7, 8 / 5. 2, 3, 8, 9 / 6. 3, 4, 9, 10 / 7. 4, 5, 10, 11 / 8. 5, 6,
11, 12 / 9. 6, 7, 12, 1 Offset by 2 steps: 10. 1, 3, 7, 9 / 11. 2, 4, 8, 10 / 12. 3, 5, 9, 11 / 13. 4,
6, 10, 12 / 14. 5, 7, 11, 1 / 15. 6, 8, 12, 2. Each combination ensures the vertices form a
rectangle with right angles and equal opposite sides."

Observation: Like the previous question, the model uses a combination of coordinate
geometry calculations to reason about the relationships between points and the angles
between constructed lines.
Conclusion: Yes

Question: Is the model able to reason about symmetries on a basic level in order to solve a
task?
Test Question 4: Consider a dodecagon, with its points labeled 1 through 12 in clockwise
order. List the combinations of indices which form rectangles, supposing that the dodecagon
can be identified with itself via rotations of 90 degrees. For example, 1, 2, 7, and 8 form a
rectangle, and so do 4, 5, 10, and 11, but the latter is just the former rotated by 90 degrees,
so it should not be counted as a separate rectangle.

Selected Excerpts from DeepSeek R1:
But the square1,4,7,10, when rotated by 30°, becomes2,5,8,11, which is not a rotation
by90°. Therefore,2,5,8,11 is a different square not related by 90° rotation to the first square.
Therefore, these would be in different equivalence classes...
... However, if you rotate it by 30°, you get a different square, which is not in the same
equivalence class. Therefore, there are three squares:1,4,7,10;2,5,8,11;3,6,9,12. Each of
these is invariant under 90° rotation, but they are different squares.
... Final Answer:
Square: 1,4,7,10
Square: 2,5,8,11
Square: 3,6,9,12
Rectangle: 1,2,7,8
Rectangle: 1,3,7,9 ✗

Observation: The model is actually capable of correctly reasoning about what invariance
under 90 degree rotation is, and correctly determines when a rectangle is the same as
another under 90 degree rotation. However, it spends a huge fraction of its chain of thought
second-guessing and re-verifying these statements, and as a result, never mentions certain
rectangles, like {2, 3, 8, 9}, as possible candidates. (This behavior is consistent across
multiple runs and minor variations to the prompt.)

Conclusion: Technically, but not very effectively.

Discussion: One possible conclusion that can be drawn from this result is that while
reasoning models may technically have certain capabilities like "reasoning about rotational
symmetries", constraints and biases on their total amount of thinking time still place practical
limits on their ability to apply these capabilities, so they exist on a spectrum. In other words,
if a capability requires a lot of computational power already, it will be hard to apply it in a
more complex setting.
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2024 AIME24 Problem #3

Question: Define f(x) = ||x| − 1
2 | and g(x) = ||x| − 1

4 |. Find the number of intersections
of the graphs of

y = 4g(f(sin(2πx))) and x = 4g(f(cos(3πy))).

Answer: 384
Intended Solution: Graphing both functions by inspection yields two functions which
oscillate from side to side across the unit square. One crosses the unit square 24 times, and
the other one crosses 16 times, so it appears they cross each other 384 times. Special care
then needs to be taken in the neighborhood of (1, 1), where analytical techniques can show
that the graph of one function curves enough that they intersect one more time, for a final
answer of 385.

Selected Excerpts from DeepSeek-R1: “... Start with sin(2πx), which has 2 peaks/troughs
per unit interval. - Take absolute value: becomes a waveform with peaks at x=1/4, 3/4,
etc. - Apply f(w) = |w - 1/2|: this creates more folds. - Apply g(w) = |w - 1/4|: even more
folds. - Multiply by 4: scales back up. Each transformation potentially doubles the number
of folds, leading to more oscillations. Similarly for x(y)...- The function y(x) is based on
sin(2πx), which has a period of 1[...] Similarly, x(y) is based on cos(3πy), which has a
period of 2/3. Over [0,1], this gives 1.5 periods, which might create 3 lobes. - Each lobe of
y(x) can intersect with each lobe of x(y), leading to 4*3=12 intersections[...] Alternatively,
the number of intersections can be determined by multiplying the number of times each
function crosses the square vertically and horizontally. If y(x) has 4 vertical crossings and
x(y) has 4 horizontal crossings, they might intersect 16 times[...] Given the time I’ve spent
and the lack of a precise analytical method,[...] I will conjecture that the number is 16.

Error Category: Analytical to Geometrical Conversion The model relied predominantly
on approximations based on wave and segment patterns. This approach stemmed from
fundamental confusion regarding the expected number of intersections per lobe following
transformation, resulting in significant under-counting. Additionally, the analysis failed to
incorporate a critical special case essential to the complete solution.

Takeaway:
The problem’s complexity makes algebraic solutions extremely challenging. When at-
tempting to use geometric reasoning about functions interactions, the model confuses key
geometric properties of the function, such as how domain restriction is applied when func-
tions are on different axis. Unlike human experts who rely on visual intuition to analyze
function transitions, the model fails to locate critical edge cases using slope analysis.
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2024 AIME24 Problem #3: Error Analysis: Confusion of concept

Error description: Model is unable to correctly identify how many intersections per wave,
i.e. peak and trough, there are after the transformation described in the problem.

Different Additions to the Prompt:
• Breaking the interval [0,1] into smaller segments where each function behaves

predictably could simplify tracking their interactions. ✗

• Symmetry often replicates solutions. If you find one intersection in a symmetric
sub-region, many more identical copies might exist. ✗

• Consider how many "waves", i.e. peak and trough, there are in each graph. Then
for each wave, consider how many segments there exist. Also, The final answer is
likely bigger than you may think. ✓

Hypothesis: The model is not fluent at bridging geometric intuition and functions transfor-
mations.

Test Cases
Question: Is the model able to track how many waves exist in each function?

Modified Prompt: Define f(x) = ||x| − 1
2 | and g(x) = ||x| − 1

4 |. Then, how many up and
down waves do the following graphs EACH have in the interval of [0,1]? graphs of

y = 4g(f(sin(2πx))) and x = 4g(f(cos(3πy))).

Selected Model Responses: ...The graphs have 8 and 12 up and down waves respec-
tively.

Observations: The model’s answer is correct. The model is able to trace correctly the
number of up and down waves that exist in each graph.

Conclusion: Yes

Question: Is the model able to solve the main problem after solving the sub-problem?

Follow-up Prompt: How many intersections are there between the 2 graphs?

Selected Model Responses: ...Given that, the first function after all transformations has
8 waves (as per previous answer), which corresponds to 16 linear segments. The second
function has 12 waves, corresponding to 24 linear segments. Therefore, if each segment of
the first function intersects each segment of the second function once, the total intersections
would be 16*24=384. But this is impossible within [0,1]x[0,1]...Grid Analogy:If the vertical
and horizontal waves are dense and uniformly distributed, they resemble a grid. Each
vertical wave (8 total) intersects each horizontal wave (12 total) once, leading to 8×12=96.

Observations: The model initially found the correct solution minus the special case but
discarded it, believing the answer was implausibly large. This rejection occurred without
adequate justification, and this behavior was observed consistently across all 5 runs with
the above prompt. The model also incorrectly asserted that each wave of the two functions
intersects only once without proper verification, which is mathematically incorrect.

Conclusion: No

30



2024 AIME24 Problem #3: Error Analysis: Confusion of concept (continued)

Question: Why does the model think the number 384 is impossible?

Secondary Prompt: In your previous chain of thoughts, I saw " Alternatively, consider
that each V-shape in y = f(x) has two linear segments (rising and falling), and each V-shape
in x = g(y) has two linear segments. Each pair of segments (one from each function) can
intersect at most once. Therefore, for each V-shape in y = f(x) (which has 2 segments per
wave), and each V-shape in x = g(y) (which has 2 segments per wave), the total number of
intersections would be 8*2 * 12*2 = 384 segments, leading to up to 384 intersections. But
this is the maximum possible if every segment pair intersects, which is impossible.". Why
did you think it was impossible?

Selected Model Responses: "...well, not every segment will intersect. For two line segments
to intersect, they need to cross each other in the plane. However, given the nature of these
functions—especially since one is a function of x (y = ...) and the other is a function of y (x
= ...)—their orientations might limit intersections. For example, the first graph’s segments
are vertical V-shapes (since y depends on x), and the second graph’s segments are horizontal
V-shapes (since x depends on y). So, a vertical line and a horizontal line would only intersect
once, at their crossing point. But if both are V-shaped, maybe each V from one graph can
intersect each V from the other graph multiple times? Wait, but each V-shape in the first
graph is composed of two linear segments. Similarly for the second. If each of the 16
segments from the first graph intersects each of the 24 segments from the second graph once,
that’s 384. But in reality, many of these segments won’t cross because they are in different
regions of the graph. For instance, a segment from the first graph might be in a part of the
y-axis that doesn’t overlap with a segment from the second graph’s x-axis. Also, due to the
periodicity and symmetry, there might be overlaps where multiple segments cross at the
same point, reducing the total number of unique intersections. Moreover, the functions are
bounded within a certain range. The transformations with absolute values and scaling (like
4g(...)) probably confine the graphs within a specific area, say between 0 and 1 for x and
y. If both graphs are constrained within the same unit square, there’s a limit to how many
times they can cross. Each vertical line from the first graph can intersect each horizontal line
from the second graph only once within the square. . . .The 384-segment intersection count
assumes every linear segment pair crosses independently, which is geometrically impossible
due to domain restrictions and wave coherence."
Observations: The model shows difficulty comprehending the domain constraint resulting
from the different axial orientations of the two function graphs.

Conclusion: See observation
Discussion: The model fails to solve the calculation algebraically due to its complexity,
instead relying on geometric intuition. However, it misunderstands the domain restrictions
of two perpendicular functions, leading to confusion about intersection points. While
acknowledging that each wave creates upper and lower segments, the model incorrectly
claims perpendicular waves intersect only once consecutively—a geometric impossibility.
This suggests the model cannot effectively apply its geometric reasoning ability to analytical
problems.
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2024 AIME24 Problem #3: Error Analysis: Edge case detection

Error description: Model is unable to detect the edge case of this problem.

Different Additions to the Prompt:
• Be careful to look for coordinates at which the 2 functions may intersect more than

1 times. ✗

• There is a special case where 2 graphs intersect more than once at the local
neighbourhood of a coordinate. Consider the slope per period of each function and
how they may interact. ✗

• There is a special case where 2 graphs intersect more than once at the local
neighbourhood of (1,1). Consider the slope per period of each function and how
they may interact. ✗

• There are 2 intersections at (1,1). ✓

Hypothesis: Without fluency in connecting geometric intuition to function transformations,
the model failed to anticipate critical edge cases in this analytical problem.

Test Cases
Question: If the model knows what coordinate to look at, is it able to identify the 2
intersections (edge case) ?

Modified Prompt: Define f(x) = ||x| − 1
2 | and g(x) = ||x| − 1

4 |. Then, Find the number
of intersections of the graphs of

y = 4g(f(sin(2πx))) and x = 4g(f(cos(3πy))).

in the neighbourhood of (1,1)?

Selected Model Responses: “...Thus, the number of intersections near (1,1) is 2”

Observations: The model is able to find 2 intersections using algebraic techniques.

Conclusion: Yes

Question: Is the model able to identify the coordinate of the special case by considering
how function slope changes?

Modified Prompt: Define f(x) = ||x|− 1
2 | and g(x) = ||x|− 1

4 |. There exists a coordinate
at which 2 graphs have more than 1 intersection. Find the coordinate. Here are the graphs:

y = 4g(f(sin(2πx))) and x = 4g(f(cos(3πy))).

. (hint1: consider the slope of functions per period and how they can intersect to create
more than 1 intersections locally)

Selected Model Responses: ...Given the time I’ve spent and the need to conclude, I’ll posit
that the number of intersections in the neighborhood is 2, and the coordinate is at (1/2, 1/2).
However, given the earlier result that this point maps to (1,1), which isn’t a solution, I’m
likely incorrect. . .

Observations: The model did find the right coordinate (1,1), but repeatedly rejected it
without explanation.

Conclusion: No
Discussion: The model could correctly identify the two intersections when specifically
directed to examine certain coordinates with enough reasoning space. However, its main
limitations was its inability to intuitively determine where to look for these intersections.
Human experts solving this problem typically observe visually how the slopes of the two
functions interact at each period to identify the special case. The model failed to generate
enough slope analysis along the functions to make this conceptual leap on its own.
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N Sub-question decomposition for Hard-level questions

ID 1
Source Question Let ABC be a triangle inscribed in circle ω. Let the tangents

to ω at B and C intersect at point D, and let AD intersect ω
at P . If AB = 5, BC = 9, and AC = 10, AP can be written
as the form m

n , where m and n are relatively prime integers.
Find m+ n.

110

Subquestion 1-1 In triangle ABC with side lengths AB=5, BC=9, and AC=10,
inscribed in a circle ω, suppose we place B at (0,0) and C at
(9,0) in the coordinate plane. If A is in the upper half-plane,
find the coordinates of A.

A( 13 ,
4
√
14
3 ).

Subquestion 1-2 Points A( 13 ,
4
√
14
3 ), B(0,0), C(9,0) all lie on a circle ω. Find

the center and radius of ω.
Center =
( 92 ,

33
√
14

56 ).
Radius = 75

√
14

56 .
Subquestion 1-3 In the coordinate plane, let ω be the circle with center

( 92 ,
33

√
14

56 ) and radius 75
√
14

56 , and let B(0,0) and C(9,0) be
points on ω. Derive the equations of the tangents to ω at B
and at C, and let D be their intersection. Find the coordinates
of D.

D( 92 ,
√
14
11 ).

Subquestion 1-4 In the coordinate plane, let ω be the circle with center
( 92 ,

33
√
14

56 ) and radius 75
√
14

56 , and let B(0,0) and C(9,0) be
points on ω. Derive the equations of the tangents to ω at B
and at C, and let D be their intersection. Find the coordinates
of D.

AP = 100
11 .

ID 5
Source Question Let ABCD be a tetrahedron such that AB = CD =

√
40,

AC = BD =
√
80, and BC = AD =

√
89. There exists

a point I inside the tetrahedron such that the distances from
I to each of the faces of the tetrahedron are all equal. This
distance can be written in the form m

√
n

p , where m, n, and p

are positive integers, m and p are relatively prime, and n is
not divisible by the square of any prime. Find m+ n+ p.

104

Subquestion 5-1 Consider a tetrahedron ABCD with edges AB = CD =
√
41,

AC = BD = 60, and BC = AD =
√
89. Using the Cayley-

Menger determinant or another appropriate method, find the
volume V of this tetrahedron. Give the final value of V.

V = 160
3

Subquestion 5-2 Consider a triangle with side lengths
√
41,

√
89, and 60. Find

its area using Heron’s formula. Then, for a tetrahedron with
four such triangular faces, compute the total surface area A.

24
√
21.

Subquestion 5-3 Consider a tetrahedron with volume V = 160
3 and total surface

area A = 24
√
21. Inside this tetrahedron, there is a point

I whose distances to the four faces are all equal. Let the
common distance (the inradius) be r. Find r in simplest radical
form. Suppose r = m

√
n

p , where m, p are relatively prime
positive integers, and n is a positive integer not divisible by
the square of any prime.

r = 20
√
21

63 .
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