
Characterizing Prompt Compression Methods for Long Context Inference

Siddharth Jha 1 Lutfi Eren Erdogan 1 Sehoon Kim 1 Kurt Keutzer 1 Amir Gholami 1

Abstract

Retrieval-augmented generation has become a
popular paradigm to integrate custom data sources
with large language models (LLMs). However,
this often leads to large contexts of tens of thou-
sands of tokens. Long context inference presents
challenges at the system level with increased com-
pute and memory requirements, as well as from
an accuracy perspective in being able to reason
over long contexts. This has led to prompt com-
pression techniques that aim to reduce the size
of provided context, while preserving key infor-
mation. However, despite the wide variety of re-
cently proposed methodologies for compressing
long contexts, little standardized analysis has been
done to analyze the behavior of different methods
across compression rates and tasks. In this paper,
we provide a comprehensive characterization and
evaluation of prompt compression methods, giv-
ing insight into building compression techniques
for long context applications. We analyze extrac-
tive compression, summarization-based abstrac-
tive compression, and token pruning methods. We
find that extractive compression is a strong choice,
often being able to compress over 10× with mini-
mal accuracy loss. Token pruning demonstrates
marginal improvements over extractive compres-
sion on summarization tasks. Furthermore, the
performance of abstractive compression can be
significantly enhanced, by up to 10 points in multi-
document QA tasks at 30× compression, through
the generation of query-aware summaries.

1. Introduction
In recent years, the use of LLMs has experienced expo-
nential growth, leading to a surge in applications that man-
age extensive textual contexts. The ability to perform long

1UC Berkeley. Correspondence to: Siddharth Jha <sid-
jha@berkeley.edu>.

Presented in Efficient Systems for Foundation Models workshop in
the 41 st International Conference on Machine Learning, Vienna,
Austria. PMLR 235, 2024. Copyright 2024 by the author(s).

context inference is crucial in fields like legal or financial
document analysis (Wu et al., 2023; Yang et al., 2023b),
summarization (Xiao & Carenini, 2019), and interactive sys-
tems maintaining ongoing dialogues (Packer et al., 2023).
However, building applications that support long prompts
presents significant system-level challenges, including in-
creased computational demands, memory requirements, and
costs (Hooper et al., 2024; Kim et al., 2023). There is also
the potential for a decline in the model’s reasoning capa-
bilities over extended sequences (Liu et al., 2024). Conse-
quently, numerous prompt compression methods have been
proposed, which aim to condense prompt lengths while pre-
serving essential information. Despite growing interest in
prompt compression techniques, little is known about the
behavior of such techniques due to a lack of standardized
analysis, making it challenging for practitioners to choose
the appropriate method for different applications. For ex-
ample, certain methods evaluate on context sizes of tens of
thousands of tokens, while others on only a few hundred.
Apart from initial context length, the evaluated compression
rates and tasks also greatly vary. This paper addresses these
challenges by presenting a detailed characterization and
evaluation of prompt compression methods, which are vital
for optimizing the efficiency and effectiveness of applica-
tions that rely on long context LLM inference. In particular,
we make the following contributions:

• In Section 2, we characterize methods into extractive
compression, abstractive compression, or token prun-
ing. We further distinguish methods as being query-
agnostic or query-aware.

• In Section 3, we evaluate each paradigm on three
single-document QA, multi-document QA, and sum-
marization datasets. In Section 4, we study the impact
of chunk size and query-aware abstractive summariza-
tion.

• Our findings reveal that extractive compression is a
strong choice, often being able to compress over 10×
with minimal accuracy loss. Token pruning demon-
strates marginal improvements over extractive com-
pression on summarization tasks. Furthermore, the
performance of abstractive compression can be signifi-
cantly enhanced, by up to 10 points in multi-document
QA tasks at 30× compression, through the generation
of query-aware summaries.

1

Characterizing Prompt Compression Methods for Long Context Inference

2. Prompt Compression Background
Prompt compression is the process of taking a long prompt
and distilling only the necessary information to solve the
task. This can be done by either directly manipulating the
text or by manipulating text embeddings. As an example
of the latter, (Tan et al., 2024) uses an encoder model to
produce compressed token embeddings from the original
context, which is inputted to a fine-tuned decoder model.
While embedding-based compression methods show strong
compression performance, such methods require extensive
fine-tuning and significant changes to the inference pipeline.

Therefore, our main focus is on direct text manipulation as it
requires minimal changes to the inference pipeline and can
be used with both open-source models and proprietary LLM
API providers. Text-based prompt compression methods
fall into three categories: token pruning, abstractive com-
pression, and extractive compression. This section provides
an overview of each approach, illustrated in Figure 3.

2.1. Token Pruning Based Compression

Token pruning methods perform compression by discarding
irrelevant tokens. Selective-Context (Li et al., 2023) uses a
small language model to judge self-information of tokens.
Then, tokens with low self-information are pruned from
the original prompt. LLMLingua (Jiang et al., 2023b) is a
similar method to Selective-Context but uses perplexity to
determine the importance of tokens. LLMLingua first per-
forms coarse-grained pruning by removing entire in-context
examples and then performs fine-grained token pruning on
the prompt. LongLLMLingua (Jiang et al., 2023c) is a mod-
ification of LLMLingua designed for long context prompt
compression. Unlike LLMLingua, LongLLMLingua con-
siders the perplexity of the question when conditioned on
supporting documents to determine which documents are
most relevant. After performing coarse-grained compres-
sion by removing irrelevant documents, fine-grained token
pruning is performed by considering the perplexity of to-
kens before and after being conditioned on the question. The
drop in perplexity after conditioning on the question is used
to judge the relevance of a token. Tokens with low relevance
are pruned. There has also been extensive research on token
pruning methods for white-box Transformer models (Goyal
et al., 2020; Kim & Cho, 2020; Kim et al., 2022; Wang
et al., 2021). Such methods utilize the Transformer model’s
attention map at each layer in order to determine which
tokens are least attended to by other tokens. These tokens
are pruned before the sequence proceeds to the next layer
in the Transformer. For the purposes of black-box prompt
compression, a smaller white-box model may be used for
token pruning, with the unpruned tokens from the white-box
model being sent to the black-box LLM.

2.2. Abstractive Compression

Abstractive compression techniques rely on summarization
techniques to reduce the length of the original context. RE-
COMP’s (Xu et al., 2023) abstractive compressor is a fine-
tuned T5-Large (775M) model (Raffel et al., 2020) that
summarizes the initial context into a more compact form.
By prompting the summarizer with the question at inference
time, they generate query-aware summaries. In the fine-
tuning training data, they drive the summarization model to
produce an empty string if a summarized context leads to
performance degradation on the downstream task. To omit
the fine-tuning process in RECOMP, it is also possible to
use a larger LLM that can perform summarization. Prompt-
SAW (Ali et al., 2024) uses a 7B Vicuna model (Chiang
et al., 2023) to create a knowledge graph with the key enti-
ties and their relationships. Then, each entity-relation pair
is encoded with an embedding model and similarity search
is performed with the question embedding to determine the
most relevant information to keep.

2.3. Extractive Compression

Extractive compression selects relevant documents, sen-
tences, or phrases from the original context. RECOMP also
has an extractive compression method that is used to extract
the most relevant sentences given the initial context and
question. RECOMP trains an encoder model so that useful
sentences have higher inner product with the question in the
embedding space. In their evaluation, the encoder is fine-
tuned from a contriever (110M) checkpoint (Izacard et al.,
2021). Document rerankers perform a similar function to
RECOMP’s extractive compressor. Reranker models take
a question and document and output a relevance score for
the document to the query. Rerankers are typically applied
in RAG pipelines after an initial retrieval step to further
refine the document set. Prior work (Nogueira & Cho, 2019)
fine-tunes a BERT model (Devlin et al., 2019) for passage
rereranking. There is also a line of work (Pradeep et al.,
2023a;b) that fine-tunes 7B language models to perform
zero-shot listwise reranking. An illustration of extractive
compression and its comparison to abstrative compression
and token pruning can be found in Figure 3.

2.4. Query-Aware vs Query-Agnostic Compression

Prompt compression methods may further be classified as
query-aware or query-agnostic. Query-aware compression
methods compress contexts differently depending on the
question or task, while query-agnostic compression methods
do not rely on the question or task and thus compression
may be performed offline only once. For an illustrative
comparison, see Figure 4. LLMLingua-2 (Pan et al., 2024)
performs query-agnostic compression by training a classifier
model to identify and remove redundant tokens. Prompt-

2

Characterizing Prompt Compression Methods for Long Context Inference

SAW (Ali et al., 2024) also has a query-agnostic variant
in which similar information elements in the constructed
knowledge graph are de-duplicated.

3. Experiments
To systematically evaluate the various prompt compression
methods, we set up experiments designed to measure their
effectiveness across a range of scenarios, such as single-
document QA, multi-document QA, and summarization.

3.1. Setup

Models: We use Mixtral 8x7B Instruct (Jiang et al.,
2024) as the primary LLM. All experiments are conducted
with temperature zero and greedy decoding. We also
include the results of the same set of experiments with
GPT-3.5-Turbo (0613 release) and DBRX Instruct (Team,
2024) in Appendix C.

Datasets: We evaluate using the LongBench bench-
mark (Bai et al., 2023), which includes tasks requiring
reasoning over large contexts. We use nine datasets in total:
three for single-document QA, three for multi-document
QA, and three for summarization. We follow LongBench’s
evaluation scripts, using F1 for QA tasks and ROUGE (Lin,
2004) for summarization. Additional dataset details can be
found in Appendix B.

Chunking: In this study, chunking refers to the pro-
cess of dividing the large input context into smaller,
manageable segments, referred to as chunks. In our experi-
ments, unless otherwise specified, each chunk consists of
approximately 128 tokens and is carefully constructed to
ensure that sentence boundaries are preserved. Chunking is
crucial for methods like reranking and LongLLMLingua
which operate on coarse-grained units of text by allowing
each chunk to be treated as an independent document and
assessed independently for its relevance to the query. The
terms chunk and document are used interchangeably in our
experiments.

3.2. Evaluated Methods

To evaluate extractive compression, abstractive compression,
and token pruning, we selected the following methodologies
to evaluate.

Original: We send the whole prompt to the LLM and
truncate to the context window if necessary. All compres-
sion rates for other methods are reported relative to the
compression rate of this method.

LongLLMLingua: We use LongLLMLingua with
their suggested hyper-parameters. We vary the rate

hyper-parameter to achieve different compression
rates. We use a 137M GPT-2 (Radford et al., 2019) as
the compressor. LongLLMLingua first prunes irrelevant
chunks and then performs token pruning on the kept chunks.

Reranker: We use mxbai-rerank-large-v1 (Shakir
et al., 2024) as a reranker model. Given a question, we use
the reranker to select the most relevant chunks. We vary the
number of selected chunks to achieve different compression
rates.

Reranker + LongLLMLingua: We replace LongLLM-
Lingua’s coarse-grained document pruning stage with a
reranker model. Then we perform token pruning with
LongLLMLingua’s token pruning methodology. We vary
the rate hyper-parameter to achieve different compression
rates and otherwise use the recommended hyper-parameters.
We use GPT-2 as the compressor for LongLLMLingua’s
token pruning method.

Reranker + Token Pruning: We implement a cus-
tom token pruning method by modifying the reranker
so that it performs token-pruning while determining the
relevance score for the document. As the reranker is
a DeBERTa (He et al., 2020) model, we prune a fixed
percentage of document tokens at each layer using attention
scores. We prune document tokens that have the lowest
attention score with respect to the query tokens. Our custom
token pruning method compresses the initial chunk by 20%
by pruning 2% of tokens in each of the last 10 layers. The
number of chunks selected by the reranker is varied to
achieve different compression rates.

Query-Agnostic Abstractive Compression: We use Mis-
tral 7B Instruct (Jiang et al., 2023a) as an abstractive LLM to
summarize each chunk offline. For a user query, the reranker
first selects relevant chunks and then concatenates the sum-
maries of selected chunks to use as input for the LLM. We
ask the summarizer model to compress each chunk by 50%
and vary the overall compression rate by varying the number
of initially selected chunks in the reranking phase. We show
the summarization prompt in Appendix E.

3.3. Main Results

The main results for Mixtral 8x7B Instruct are shown in Fig-
ure 1. We include results for GPT-3.5-Turbo and DBRX
Instruct in Appendix C and note that they observe similar
trends to Mixtral 8x7B Instruct.

3.3.1. EXTRACTIVE COMPRESSION

Extractive compression methods, represented by the
reranker, show strong performance across all datasets. On
Qasper, the reranker compresses 1.46× and increases accu-

3

Characterizing Prompt Compression Methods for Long Context Inference

2 4 6 8 10 12
Compression Rate

15

20

25

30

F1

Qasper

2 4 6 8 10 12 14 16
Compression Rate

16

18

20

22

24

26

28

F1

2WikiMultihopQA

0 10 20 30 40
Compression Rate

21

22

23

24

25

Ro
ug

e-
L

QMSum

Original Reranker LongLLMLingua Reranker + Token Pruning Reranker + LongLLMLingua Query-Agnostic Abstractive

Figure 1. Performance of various compression methods on Qasper, 2WikiMultihopQA, and QMSum datasets with Mixtral 8x7B Instruct.
For each dataset, the corresponding graphs plot the accuracy metric—either F1 or Rouge-L—against the compression rate. Results on all
nine datasets as well as with GPT-3.5-Turbo and DBRX Instruct can be found in Appendix C.

racy by 0.31 points. On 2WikiMultihopQA it compresses
3.91× while increasing accuracy by 1.14 points. Even at a
15.24× compression rate, it drops just 1.31 points in accu-
racy. On QMSum, it is able to increase accuracy by 0.23
points while compressing 3.82×. A key benefit of extractive
compression is the preservation of grammatical constructs
due to coarse granularity pruning. This is in stark contrast
to unstructured token pruning which can produce incoherent
text. The accuracy gains seen at small compression ratios
is due to less irrelevant information being provided to the
model, mitigating hallucinations and the lost-in-the-middle
effect (Liu et al., 2024). Overall, the ability of extractive
compression to perform well in a variety of settings makes
it a strong candidate for applications.

3.3.2. ABSTRACTIVE COMPRESSION

Abstractive compression methods often lag behind extrac-
tive methods in performance. The primary challenge with
abstractive compression arises from the use of smaller, po-
tentially weaker models, which may omit crucial informa-
tion or introduce hallucinations. This is particularly prob-
lematic in summarization tasks where the large model has
to generate a summary based only on the weaker model’s
summaries, which can potentially discard information that
the large model would have preferred to keep. In our experi-
ments, this problem leads to an accuracy drop of 3.45 points
on QMSum at a 11.27× compression rate. Similarly, on QA
datasets, we observe performance degradations where query-
agnostic abstractive compression performs much worse than
extractive compression with the reranker. Therefore on-
line query-aware abstractive compression, as shown in Sec-
tion 4.2, or fine-tuned summarizers may perform better than
prompting out-of-the-box LMs for offline summarization.

3.3.3. TOKEN PRUNING

There are three token pruning methods: LongLLMLingua,
reranker + LongLLMLingua, reranker + token pruning. We

observe that LongLLMLingua and reranker + LongLLM-
Lingua typically exhibit the worst behavior across datasets.
In Appendix D, we perform a sweep over LongLLMLingua
hyper-parameters but do not see any significant improve-
ment. Reranker + token pruning generally trails slightly
behind the plain reranker method. We hypothesize that the
lackluster performance of token pruning is due to the dis-
ruption of grammar and sentence comprehension caused by
unstructured pruning. However, we notice that the reranker +
token pruning method achieves competitive results with the
reranker on QMSum, achieving even higher accuracy past
30× compression. In contrast, on the question-answering
datasets, reranker + token pruning is noticeably worse than
just the reranker. In general, token pruning methods appear
better suited for aggregation-style tasks that require pieces
of knowledge from all segments of the initial context. Fur-
thermore, rather than using out-of-the-box language models,
practitioners may see better results by training language
models specifically for token pruning (Jung & Kim, 2023;
Pan et al., 2024).

4. Additional Analysis
This section details our evaluations on the effects of varying
chunk sizes and query-aware abstractive compression. We
refer readers to the Appendix for a more comprehensive
suite of additional studies on other models and datasets.

4.1. Impact of Chunk Size

To assess the impact of chunk size, we conduct experiments
varying chunk size from 128 to 512 tokens. As illustrated
in Figure 14, larger chunk sizes perform poorly at high
compression rates compared to smaller chunk sizes. For
instance, the performance on Qasper with a chunk size of
512 is 4 points lower than chunk sizes of 64, 128, and 256 at
approximately 11× compression. When using larger chunk
sizes, fewer chunks are generated from the initial context.
Consequently, the model might miss important details and

4

Characterizing Prompt Compression Methods for Long Context Inference

2 4 6 8 10
Compression Rate

24

26

28

30

32

F1

Qasper

2 4 6 8 10 12 14
Compression Rate

22

24

26

28

F1

2WikiMultihopQA

0 5 10 15 20 25 30
Compression Rate

22.5
23.0
23.5
24.0
24.5
25.0
25.5

Ro
ug

e-
L

QMSum

Original Chunk Size 64 Chunk Size 128 Chunk Size 256 Chunk Size 512

Figure 2. Impact of chunk size on the reranker performance with Mixtral 8x7B Instruct on Qasper, 2WikiMultihopQA, and QMSum
datasets. Chunk size is varied between 64, 128, 256, and 512 tokens, and sentence boundaries are respected. Results with GPT-3.5-Turbo
can be found in Appendix I.

nuances spread across different parts of the context, leading
to a decrease in performance. At smaller compression rates,
the chosen chunk size has lesser impact. However, choosing
too small chunk sizes risks producing incoherent chunks.
Therefore, chunk size should be carefully determined based
on the application’s data source and desired compression
rate.

4.2. Query-Aware Abstractive Compression

The abstractive compression method presented in Sec-
tion 3.3.2 performs query-agnostic abstractive compression.
This is largely beneficial for applications that need low-
latency responses, as summaries are precomputed offline.
However, it is also possible to perform query-aware abstrac-
tive compression, in which summaries are generated by con-
ditioning on the question. Specifically, we use the reranker
model to first select relevant chunks and then use Mistral 7B
Instruct to summarize the concatenation of selected chunks.
We have the reranker select eight chunks, as our experiments
indicate that asking the model to summarize more chunks
degraded performance. We hypothesize that this diminish-
ing performance is likely due to the difficulty in maintaining
coherence and context relevance across larger numbers of
chunks. Additionally, after observing difficulties in prompt-
ing such models to produce summaries of specific lengths,
we used prompting methods similar to RECOMP (Xu et al.,
2023), which allows the Mistral model to freely choose
the summarization length. In general, our experience with
abstractive compression indicates that strong prompt engi-
neering is necessary to achieve desired performance. The
summarization prompts are shown in Appendix E.

As shown in Table 1, query-aware abstractive compression
demonstrates stronger performance than query-agnostic ab-
stractive compression. We notice extremely strong perfor-
mance on multi-document question-answering with query-
aware compression. We achieve an 8.24 point accuracy
increase on 2WikiMultihopQA with a compression rate of

31.32×, significantly outperforming both the reranker and
query-agnostic abstractive summarization methods. Specif-
ically, query-aware does over 10 points better than query-
agnostic compression on 2WikiMultihopQA. On Qasper,
query-aware performs 2 points better than query-agnostic
compression, and performs 1 point better on QMSum.
Therefore, query-aware abstractive compression may be
a promising technique for applications willing to handle the
overhead of performing on-the-fly summarization.

Method
Qasper 2WikiMultihopQA QMSum

Acc ↑ CR ↑ Acc ↑ CR ↑ Acc ↑ CR ↑

Original 31.66 1.00× 26.51 1.00× 24.92 1.00×
Mistral 7B Query-Agnostic 23.63 20.07× 24.48 25.02× 20.92 90.77×
Mistral 7B Query-Aware 25.65 21.25× 34.75 31.32× 21.88 103.89×

Table 1. Query-aware compared to query-agnostic abstractive com-
pression with Mistral 8x7B Instruct. Mistral 7B is used to produce
summaries. Results across four additional datasets and GPT-3.5-
Turbo can be found in Appendix J.

5. Conclusions
This study has comprehensively characterized and evaluated
a broad spectrum of existing prompt compression methods,
which have become critical for long-context inference sys-
tems. Our findings reveal that extractive compression is
a strong choice, often being able to compress over 10×
with minimal accuracy loss. Token pruning demonstrates
marginal improvements over extractive compression on sum-
marization tasks. Furthermore, the performance of abstrac-
tive compression can be significantly enhanced, by up to
10 points in multi-document QA tasks at 30× compression,
through the generation of query-aware summaries. Ulti-
mately, this study not only sheds light on the varied efficacy
of prompt compression strategies but also sets the stage for
innovative advancements in optimizing applications relying
on long context inference.

5

Characterizing Prompt Compression Methods for Long Context Inference

References
Ali, M. A., Li, Z., Yang, S., Cheng, K., Cao, Y., Huang, T.,

Hu, L., Yu, L., and Wang, D. Prompt-saw: Leveraging
relation-aware graphs for textual prompt compression.
arXiv preprint arXiv:2404.00489, 2024.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
Stoica, I., and Xing, E. P. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality,
March 2023. URL https://lmsys.org/blog/
2023-03-30-vicuna/.

Dasigi, P., Lo, K., Beltagy, I., Cohan, A., Smith, N. A., and
Gardner, M. A dataset of information-seeking questions
and answers anchored in research papers, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019.

Fabbri, A. R., Li, I., She, T., Li, S., and Radev, D. R.
Multi-news: a large-scale multi-document summariza-
tion dataset and abstractive hierarchical model, 2019.

Goyal, S., Choudhury, A. R., Raje, S., Chakaravarthy, V.,
Sabharwal, Y., and Verma, A. Power-bert: Accelerating
bert inference via progressive word-vector elimination.
In International Conference on Machine Learning, pp.
3690–3699. PMLR, 2020.

He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-
enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654, 2020.

Ho, X., Nguyen, A.-K. D., Sugawara, S., and Aizawa, A.
Constructing a multi-hop qa dataset for comprehensive
evaluation of reasoning steps, 2020.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Huang, L., Cao, S., Parulian, N., Ji, H., and Wang, L. Effi-
cient attentions for long document summarization, 2021.

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski,
P., Joulin, A., and Grave, E. Unsupervised dense infor-
mation retrieval with contrastive learning. arXiv preprint
arXiv:2112.09118, 2021.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023a.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L. Llmlin-
gua: Compressing prompts for accelerated inference of
large language models. arXiv preprint arXiv:2310.05736,
2023b.

Jiang, H., Wu, Q., Luo, X., Li, D., Lin, C.-Y., Yang, Y., and
Qiu, L. Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression. arXiv
preprint arXiv:2310.06839, 2023c.

Jung, H. and Kim, K.-J. Discrete prompt compression with
reinforcement learning. arXiv preprint arXiv:2308.08758,
2023.

Kim, G. and Cho, K. Length-adaptive transformer: Train
once with length drop, use anytime with search. arXiv
preprint arXiv:2010.07003, 2020.

Kim, S., Shen, S., Thorsley, D., Gholami, A., Kwon, W.,
Hassoun, J., and Keutzer, K. Learned token pruning for
transformers. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 784–794, 2022.

Kim, S., Hooper, C., Wattanawong, T., Kang, M., Yan, R.,
Genc, H., Dinh, G., Huang, Q., Keutzer, K., Mahoney,
M. W., Shao, Y. S., and Gholami, A. Full stack optimiza-
tion of transformer inference: a survey, 2023.

Kočiský, T., Schwarz, J., Blunsom, P., Dyer, C., Hermann,
K. M., Melis, G., and Grefenstette, E. The narrativeqa
reading comprehension challenge, 2017.

Li, Y., Dong, B., Lin, C., and Guerin, F. Compressing
context to enhance inference efficiency of large language
models. arXiv preprint arXiv:2310.06201, 2023.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173,
2024.

6

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Characterizing Prompt Compression Methods for Long Context Inference

Nogueira, R. and Cho, K. Passage re-ranking with bert.
arXiv preprint arXiv:1901.04085, 2019.

Packer, C., Fang, V., Patil, S. G., Lin, K., Wooders, S., and
Gonzalez, J. E. Memgpt: Towards llms as operating
systems. arXiv preprint arXiv:2310.08560, 2023.

Pan, Z., Wu, Q., Jiang, H., Xia, M., Luo, X., Zhang, J., Lin,
Q., Rühle, V., Yang, Y., Lin, C.-Y., Zhao, H. V., Qiu, L.,
and Zhang, D. Llmlingua-2: Data distillation for efficient
and faithful task-agnostic prompt compression, 2024.

Pradeep, R., Sharifymoghaddam, S., and Lin, J. Rankvicuna:
Zero-shot listwise document reranking with open-source
large language models. arXiv preprint arXiv:2309.15088,
2023a.

Pradeep, R., Sharifymoghaddam, S., and Lin, J.
Rankzephyr: Effective and robust zero-shot listwise
reranking is a breeze! arXiv preprint arXiv:2312.02724,
2023b.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Shakir, A., Koenig, D., Lipp, J., and Lee, S. Boost
your search with the crispy mixedbread rerank mod-
els, 2024. URL https://www.mixedbread.ai/
blog/mxbai-rerank-v1.

Tan, S., Li, X., Patil, S., Wu, Z., Zhang, T., Keutzer, K.,
Gonzalez, J. E., and Popa, R. A. Lloco: Learning long
contexts offline. arXiv preprint arXiv:2404.07979, 2024.

Team, T. M. R. Introducing dbrx: A new
state-of-the-art open llm, 2024. URL
https://www.databricks.com/blog/
introducing-dbrx-new-state-art-open-llm.

Trivedi, H., Balasubramanian, N., Khot, T., and Sabharwal,
A. Musique: Multihop questions via single-hop question
composition, 2022.

Wang, H., Zhang, Z., and Han, S. Spatten: Efficient sparse
attention architecture with cascade token and head prun-
ing. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 97–110.
IEEE, 2021.

Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M.,
Gehrmann, S., Kambadur, P., Rosenberg, D., and Mann,

G. Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564, 2023.

Xiao, W. and Carenini, G. Extractive summarization of long
documents by combining global and local context, 2019.

Xu, F., Shi, W., and Choi, E. Recomp: Improving retrieval-
augmented lms with compression and selective augmen-
tation. arXiv preprint arXiv:2310.04408, 2023.

Yang, H., Li, Z., Zhang, Y., Wang, J., Cheng, N., Li, M., and
Xiao, J. Prca: Fitting black-box large language models for
retrieval question answering via pluggable reward-driven
contextual adapter. arXiv preprint arXiv:2310.18347,
2023a.

Yang, H., Liu, X.-Y., and Wang, C. D. Fingpt: Open-
source financial large language models. arXiv preprint
arXiv:2306.06031, 2023b.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W.,
Salakhutdinov, R., and Manning, C. D. Hotpotqa: A
dataset for diverse, explainable multi-hop question an-
swering, 2018.

Zhong, M., Yin, D., Yu, T., Zaidi, A., Mutuma, M., Jha, R.,
Awadallah, A. H., Celikyilmaz, A., Liu, Y., Qiu, X., and
Radev, D. Qmsum: A new benchmark for query-based
multi-domain meeting summarization, 2021.

7

https://www.mixedbread.ai/blog/mxbai-rerank-v1
https://www.mixedbread.ai/blog/mxbai-rerank-v1
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm

Characterizing Prompt Compression Methods for Long Context Inference

A. Prompt Compression Methods

’To Kill a Mockingbird’ is a novel by Harper Lee published in
1960. It was immediately successful, winning the Pulitzer
Prize, and has become a classic of modern American
literature.

’To Kill a Mockingbird’ is a novel by Harper Lee in 1960. It,
Pulitzer, and classic.

Harper Lee published the Pulitzer winning classic ‘To Kill a
Mockingbird’ in 1960.

’To Kill a Mockingbird’ is a novel by Harper Lee published in
1960.

Tok
en P

runi
ng

Extractive

Who wrote ‘To Kill a Mockingbird’?

Abstractive

Figure 3. An illustration of different prompt compression methods. Token pruning methods like LongLLMLingua (Pan et al., 2024),
Selective-Context (Li et al., 2023), and PCRL (Jung & Kim, 2023) perform compression by discarding irrelevant tokens; extractive
compression methods like RECOMP (Xu et al., 2023) and reranker-based compression select documents, sentences, or phrases from the
original context without altering them; abstractive compression methods like Prompt-SAW (Ali et al., 2024), RECOMP, and PRCA (Yang
et al., 2023a) generate summaries by synthesizing information. In this example, each of the methods compresses the original context
while keeping the necessary information to determine the book’s author.

’To Kill a Mockingbird’ is a novel by
Harper Lee published in 1960. It
was immediately successful, winning
the Pulitzer Prize, and has become a
classic of modern American
literature.

’To Kill a Mockingbird’ is a novel by
Harper Lee published in 1960.

’To Kill a Mockingbird’ was
immediately successful, winning the
Pulitzer Prize.

’To Kill a Mockingbird’, a novel by
Harper Lee in 1960, become a
classic of modern American
literature and won a Pulitzer Prize.

’To Kill a Mockingbird’, a novel by
Harper Lee in 1960, become a
classic of modern American
literature and won a Pulitzer Prize.

Query-Agnostic

Query-Aware

Who wrote ‘To Kill a
Mockingbird’?

What was the impact of ‘To
Kill a Mockingbird’?

Figure 4. An illustration of query-aware and query-agnostic compression applied to a document in the prompt context. With query-aware
compression, the compressed context of the document changes based on the user’s specific query, presenting a tailored version each time.
Conversely, query-agnostic compression maintains a consistent compressed context of the document, irrespective of the query presented.

B. LongBench Dataset Details
We give a brief description of each evaluated dataset in LongBench, as well as the average token count measured by
GPT-3.5-Turbo’s tokenizer.

NarrativeQA (Kočiský et al., 2017): Question-answering over stories. Average tokens: 29,780.

Qasper (Dasigi et al., 2021): Question-answering over NLP papers. Average tokens: 4,923.

MultiFieldQA (Bai et al., 2023): Question-answering over a variety of document types such as legal documents, government
reports, and academic papers. Average tokens: 6,938.

HotpotQA (Yang et al., 2018): 2-hop question-answering. Average tokens: 12,793.

2WikiMultihopQA (Ho et al., 2020): Up to 5-hop question-answering. Average tokens: 7,116.

MuSiQue (Trivedi et al., 2022): Up to 4-hop question-answering. Average tokens: 15,577.

GovReport (Huang et al., 2021): Summarization of detailed government reports. Average tokens: 10,242.

QMSum (Zhong et al., 2021): Query-based summarization over meeting notes. Average tokens: 13,855.

MultiNews (Fabbri et al., 2019): Summarization of multiple news articles. Average tokens: 2,609.

8

Characterizing Prompt Compression Methods for Long Context Inference

C. Full Mixtral 8x7B, GPT-3.5-Turbo, and DBRX Instruct Results

0 10 20 30 40 50 60
Compression Rate

10.0

12.5

15.0

17.5

20.0

22.5

F1

NarrativeQA

2 4 6 8 10 12
Compression Rate

15

20

25

30

F1

Qasper

2 4 6 8 10 12 14 16
Compression Rate

35

40

45

50

F1

MultiFieldQA

0 5 10 15 20 25 30
Compression Rate

30

35

40

F1

HotpotQA

2.5 5.0 7.5 10.0 12.5 15.0
Compression Rate

17.5

20.0

22.5

25.0

27.5

F1

2WikiMultihopQA

0 5 10 15 20 25 30 35
Compression Rate

15

20

25

F1

MuSiQue

0 5 10 15 20 25
Compression Rate

26

28

30

32

Ro
ug

e-
L

GovReport

0 10 20 30 40
Compression Rate

21

22

23

24

25

Ro
ug

e-
L

QMSum

1 2 3 4 5 6 7
Compression Rate

23

24

25

26

Ro
ug

e-
L

MultiNews

Original Reranker Reranker + LongLLMLingua Reranker + Token Pruning LongLLMLingua Query-Agnostic Abstractive

Figure 5. Performance of various compression methods on all nine datasets from LongBench with Mixtral 8x7B Instruct model. For each
dataset, the corresponding graphs plot the accuracy metric—either F1 or Rouge-L—against the compression rate.

9

Characterizing Prompt Compression Methods for Long Context Inference

0 10 20 30 40
Compression Rate

10

15

20

25

F1
NarrativeQA

2 4 6 8 10 12
Compression Rate

20

25

30

35

40

45

F1

Qasper

2 4 6 8 10 12 14 16
Compression Rate

40

45

50

55

F1

MultiFieldQA

0 5 10 15 20 25 30
Compression Rate

40

45

50

55

F1

HotpotQA

2 4 6 8 10 12 14 16
Compression Rate

35

40

45

F1

2WikiMultihopQA

0 5 10 15 20 25 30 35
Compression Rate

20

25

30

35

F1

MuSiQue

0 5 10 15 20
Compression Rate

22

24

26

28

Ro
ug

e-
L

GovReport

0 5 10 15 20 25 30 35 40
Compression Rate

20

21

22

23

24

Ro
ug

e-
L

QMSum

1 2 3 4 5 6 7
Compression Rate

22

24

26

Ro
ug

e-
L

MultiNews

Original Reranker Reranker + LongLLMLingua Reranker + Token Pruning LongLLMLingua Query-Agnostic Abstractive

Figure 6. Performance of various compression methods on nine datasets from LongBench with GPT-3.5-Turbo. For each dataset, the
corresponding graphs plot the accuracy metric—either F1 or Rouge-L—against the compression rate.

0 10 20 30 40 50 60 70
Compression Rate

12.5

15.0

17.5

20.0

22.5

F1

NarrativeQA

2 4 6 8 10 12
Compression Rate

15

20

25

30

F1

Qasper

2 4 6 8 10 12 14 16
Compression Rate

35

40

45

F1

MultiFieldQA

0 5 10 15 20 25 30
Compression Rate

20

25

30

F1

HotpotQA

2.5 5.0 7.5 10.0 12.5 15.0
Compression Rate

16

18

20

22

24

F1

2WikiMultihopQA

0 5 10 15 20 25 30 35
Compression Rate

8

10

12

14

16

F1

MuSiQue

0 5 10 15 20 25
Compression Rate

26

28

30

32

34

Ro
ug

e-
L

GovReport

0 10 20 30 40
Compression Rate

22

23

24

25

Ro
ug

e-
L

QMSum

1 2 3 4 5 6 7
Compression Rate

22

23

24

25

26

27

Ro
ug

e-
L

MultiNews

Original Reranker Reranker + LongLLMLingua Reranker + Token Pruning LongLLMLingua Query-Agnostic Abstractive

Figure 7. Performance of various compression methods on nine datasets from LongBench with DBRX Instruct. For each dataset, the
corresponding graphs plot the accuracy metric—either F1 or Rouge-L—against the compression rate.

10

Characterizing Prompt Compression Methods for Long Context Inference

D. LongLLMLingua Hyper-Parameter Sweep
In Section 3.3.3, we used hyper-parameters for LongLLMLingua as recommended by the authors. Here, we perform a
study where we sweep over 8 different hyper-parameter configurations for LongLLMLingua. We conduct the study on both
Mixtral 8x7B Instruct and GPT-3.5-Turbo, showing the results on NarrativeQA, HotpotQA, and MultiNews. Unlike Mixtral
8x7B Instruct and DBRX Instruct, GPT-3.5-Turbo is not deterministic at these settings. Therefore, for all experiments with
GPT-3.5-Turbo, we report averages over three trials. GPT-3.5-Turbo has a context window of 16k tokens, and both Mixtral
8x7B Instruct and DBRX Instruct have context windows of 32k tokens.

For the main results, we use the following hyper-parameters with LongLLMLingua. Sentence-level filtering turned off,
dynamic context compression rate is set to 0.3 context budget is set to +100, condition in question is set to “after condition”,
reorder context is set to “sort”, and condition compare is set to true. All other hyper-parameters are otherwise default. For
the LongLLMLingua hyper-parameter sweep, we toggle the use of sentence-level filtering and we vary the dynamic context
compression rate between 0, 0.2, 0.3, and 0.4. As shown in Figure 8 and Figure 9, our chosen hyper-parameters perform
well and all tested configurations exhibit similar trends.

0 10 20 30 40 50
Compression Rate

10

15

20

F1

NarrativeQA

0 5 10 15 20 25 30
Compression Rate

25

30

35

F1

HotpotQA

1 2 3 4 5 6
Compression Rate

22

23

24

25

26

Ro
ug

e-
L

MultiNews

Original Other Configs Chosen Config

Figure 8. Evaluation of the Mixtral 8x7B Instruct model with varying LongLLMLingua hyper-parameters on NarrativeQA, HotpotQA,
and MultiNews datasets. Performance is analyzed with adjustments to the dynamic context compression rate and sentence-level filtering.

0 5 10 15 20 25 30 35
Compression Rate

10

15

20

25

F1

NarrativeQA

0 5 10 15 20 25 30
Compression Rate

40

45

50

F1

HotpotQA

1 2 3 4 5 6 7
Compression Rate

20

22

24

26

Ro
ug

e-
L

MultiNews

Original Other Configs Chosen Config

Figure 9. Evaluation of the GPT-3.5-Turbo model with varying LongLLMLingua hyper-parameters on NarrativeQA, HotpotQA, and
MultiNews datasets. Performance is analyzed with adjustments to the dynamic context compression rate and sentence-level filtering.

E. Abstractive Compression Prompts
In Table E, we show the prompts used to perform query-aware and query-agnostic abstractive compression.

11

Characterizing Prompt Compression Methods for Long Context Inference

Method Prompt

Query-Agnostic Could you please rephrase the paragraph to make it short, and keep 50% tokens.
Respond with ONLY the compressed paragraph and nothing else. Paragraph: paragraph

Query-Aware (Mistral 7B Instruct) Compress the information in the retrieved documents into a summary that could be
used to answer the question: Question: query Retrieved documents: docs

Query-Aware (LLaMA 3 8B Instruct) Compress the information in the retrieved documents into a summary that could be used to answer the question.
Do NOT try to directly answer the question. Question: query Retrieved documents: docs

Table 2. Prompts used for query-aware and query-agnostic abstractive compression.

F. Effect of Weaker Reranker
In Section 3.3, we used mxbai-rerank-large-v1 (435M) as the reranker. We perform a study when using a weaker reranker
model, namely mxbai-rerank-base-v1 (184M). Since mxbai-rerank-base-v1 only has 12 layers, we modify our custom token
pruning scheme to prune by 4% starting from layer 8. We conduct the study on GPT-3.5-Turbo and Mixtral 8x7B using
MultiFieldQA, MuSiQue, and MultiNews. As shown in Figure 10 and Figure 11, the large reranker generally outperforms
the base reranker across all three datasets. However, there are certain points at which the base reranker outperforms the large
reranker. Thus the base reranker proves to be a suitable alternative in resource constrained settings.

2 4 6 8 10 12 14 16
Compression Rate

40

45

50

55

F1

MultiFieldQA

0 5 10 15 20 25 30 35
Compression Rate

20

25

30

35

F1

MuSiQue

1 2 3 4 5 6
Compression Rate

22

23

24

25

26

Ro
ug

e-
L

MultiNews

Original Base Reranker Large Reranker Base Reranker + LongLLMLingua Large Reranker + LongLLMLingua Base Reranker + Token Pruning Large Reranker + Token Pruning

Figure 10. Performance comparison between using mxbai-rerank-large-v1 (435M) versus mxbai-rerank-base-v1 (184M) with GPT-3.5-
Turbo as the LLM. Results are shown on MultiFieldQA, MuSiQue, and MultiNews.

2 4 6 8 10 12 14 16
Compression Rate

35

40

45

50

F1

MultiFieldQA

0 5 10 15 20 25 30 35
Compression Rate

15

20

25

F1

MuSiQue

1 2 3 4 5 6
Compression Rate

23

24

25

26

Ro
ug

e-
L

MultiNews

Original Base Reranker Large Reranker Base Reranker + LongLLMLingua Large Reranker + LongLLMLingua Base Reranker + Token Pruning Large Reranker + Token Pruning

Figure 11. Performance comparison between using mxbai-rerank-large-v1 (435M) versus mxbai-rerank-base-v1 (184M) with Mixtral
8x7B as the LLM. Results are shown on MultiFieldQA, MuSiQue, and MultiNews.

G. Retriever vs Reranker
Instead of using a reranker for chunk-level compression, it is also possible to prune irrelevant chunks by using similarity
search between the question and chunk embeddings. We conduct the study on GPT-3.5-Turbo, using OpenAI’s text-
embedding-3-small as the embedder, and show the results on MultiFieldQA, 2WikiMultihopQA, and QMSum. As

12

Characterizing Prompt Compression Methods for Long Context Inference

shown Figure 12, the reranker outperforms the retriever model. However, the increased accuracy comes at the cost of
increased compute requirements at run time from running the reranker model over the chunks, compared to the cheap
similarity search performed after embedding the question with the embedding model. In many settings, reranking is applied
after an initial retrieval step to reduce the number of documents that need to be reranked.

2 4 6 8 10 12 14
Compression Rate

50

52

54

56

F1

MultiFieldQA

2 4 6 8 10 12 14 16
Compression Rate

40

42

44

46

48

F1

2WikiMultihopQA

0 5 10 15 20 25
Compression Rate

22.0

22.5

23.0

23.5

24.0

24.5

Ro
ug

e-
L

QMSum

Original Reranker Retriever

Figure 12. Analysis of performing extractive compression using standard retrieval over embedding space compared to reranking. For
retrieval, embeddings are produced using text-embedding-3-small. GPT-3.5-Turbo is used as the LLM and evaluated on MultiFieldQA,
2WikiMultihopQA, and QMSum.

H. Aggressive Token Pruning
For the token pruning methods in Section 3.3, the reranker selects 25% more chunks than originally and then applied a
token pruning rate of 20% to achieve each compression ratio. Here, we perform a study where the reranker selects 2× more
chunks and an aggressive token pruning rate of 50% is applied. We conduct the study on GPT-3.5-Turbo and show the
results on NarrativeQA, MuSiQue, and GovReport. As shown in Figure 13, such aggressive token pruning leads to accuracy
degradation. After observing the pruned context, we hypothesize that this is because aggressive token pruning leads to
unstructured text that does not respect grammatical constructs, making it difficult for the downstream model to correctly
reason over it.

0 5 10 15 20 25 30 35
Compression Rate

20

22

24

26

28

F1

NarrativeQA

0 5 10 15 20 25 30 35
Compression Rate

27

28

29

30

31

F1

MuSiQue

0 5 10 15 20
Compression Rate

25

26

27

28

29

Ro
ug

e-
L

GovReport

Original Reranker + Token Pruning (20%) Reranker + Token Pruning (50%)

Figure 13. Performance analysis of using aggressive token pruning. We compare the original token pruning method which prunes 20% of
the tokens to a token pruning method that prunes 50% of the tokens. GPT-3.5-Turbo is used as the LLM and evaluated on NarrativeQA,
MuSiQue, and GovReport.

I. Impact of Chunk Size on GPT-3.5-Turbo
To determine the impact of chunk size, we run a set of experiments after changing chunk size from 128 to 512 tokens. We
show the results on Qasper, 2WikiMultihopQA, and QMSum using GPT-3.5-Turbo as the LLM. The results are shown
in Figure 14 and Figure 15. We notice that large chunk sizes do not perform well at large compression ratios when compared
to smaller chunk sizes. We hypothesize that this is because there are very few chunks being provided to the model when the
chunk size is large. As a result, the model does not have the ability to see text from varying regions of the initial context. In

13

Characterizing Prompt Compression Methods for Long Context Inference

contrast, using smaller chunk sizes allows more chunks to be used, alleviating this issue. At smaller compression ratios, the
chosen chunk size has lesser impact.

2 4 6 8 10
Compression Rate

32
34
36
38
40
42
44

F1

Qasper

2 4 6 8 10 12 14 16
Compression Rate

37.5

40.0

42.5

45.0

47.5

50.0

F1

2WikiMultihopQA

0 5 10 15 20 25
Compression Rate

22.0

22.5

23.0

23.5

24.0

24.5

Ro
ug

e-
L

QMSum

Original Chunk Size 64 Chunk Size 128 Chunk Size 256 Chunk Size 512

Figure 14. Impact of chunk size on the reranker with GPT-3.5-Turbo. Chunk size is varied between 64, 128, 256, and 512 tokens. Sentence
boundaries are respected. Results are shown on Qasper, 2WikiMultihopQA, and QMSum.

2 4 6 8 10 12
Compression Rate

30.0
32.5
35.0
37.5
40.0
42.5
45.0

F1

Qasper

2.5 5.0 7.5 10.0 12.5 15.0
Compression Rate

35.0

37.5

40.0

42.5

45.0

47.5

F1

2WikiMultihopQA

0 5 10 15 20 25 30
Compression Rate

21.5

22.0

22.5

23.0

23.5

24.0

24.5

Ro
ug

e-
L

QMSum

Original Chunk Size 64 Chunk Size 128 Chunk Size 256 Chunk Size 512

Figure 15. Impact of chunk size on the token pruning reranker with GPT-3.5-Turbo. Chunk size is varied between 64, 128, 256, and 512
tokens. Sentence boundaries are respected. Results are shown on Qasper, 2WikiMultihopQA, and QMSum.

14

Characterizing Prompt Compression Methods for Long Context Inference

J. Full Query-Aware Abstractive Compression Results
In Table 3 and Table 4, we show the results of query-aware compression on seven of the LongBench datasets, with both
GPT-3.5-Turbo and Mixtral 8x7B. We also show the results with Mistral 7B and LLaMA 3 8B as summarizers. Our
experiments indicate that it is difficult to control the length of summaries, making the compression rate for query-aware
abstractive compression difficult to predict.

Table 3. Query-aware abstractive compression results with GPT-3.5-Turbo. We use Mistral 7B Instruct and LLaMA-3 8B Instruct to
generate summaries from chunks selected by the reranker.

Method
NQA QAS MFE HQA WMQA MSQ QMS

Acc CR Acc CR Acc CR Acc CR Acc CR Acc CR Acc CR

Original 24.87 1.00× 44.48 1.00× 54.84 1.00× 53.5 1.00× 40.72 1.00× 26.73 1.00× 23.52 1.00×

Mistral 7B
8 chunks 20.48 104.09× 38.36 21.62× 46.20 31.24× 49.15 46.19× 51.37 30.55× 30.71 65.14× 20.99 87.10×
16 chunks 25.56 86.12× 36.27 19.96× 47.80 28.14× 52.23 44.36× 47.63 25.31× 33.75 58.28× 21.21 76.07×
32 chunks 24.12 74.44× 31.70 19.68× 46.47 27.50× 50.47 44.47× 47.93 22.79× 30.49 52.57× 20.96 62.75×

LLaMA 3 8B
8 chunks 20.14 124.03× 40.86 35.90× 47.25 54.34× 48.10 112.60× 47.10 61.56× 26.56 124.11× 22.06 94.28×
16 chunks 23.07 106.00× 38.36 28.71× 47.35 44.59× 48.81 91.69× 45.38 49.48× 28.83 103.24× 21.33 77.22×
32 chunks 21.97 75.54× 33.88 23.89× 40.30 33.16× 47.18 64.31× 42.64 31.70× 30.45 70.56× 20.68 59.87×

Table 4. Query-aware abstractive compression results with Mixtral 8x7B Instruct. We use Mistral 7B Instruct and LLaMA-3 8B Instruct
to generate summaries from chunks selected by the reranker.

Method
NQA QAS MFE HQA WMQA MSQ QMS

Acc CR Acc CR Acc CR Acc CR Acc CR Acc CR Acc CR

Original 23.26 1.00× 31.66 1.00× 47.36 1.00× 36.86 1.00× 26.51 1.00× 18.11 1.00× 24.92 1.00×

Mistral 7B
8 chunks 15.65 165.39× 25.65 21.25× 42.29 32.26× 38.01 53.95× 34.75 31.32× 19.81 66.88× 21.88 103.89×
16 chunks 15.34 135.35× 23.62 19.68× 44.82 28.25× 38.11 47.34× 29.79 27.27× 21.53 59.21× 21.16 90.03×
32 chunks 18.17 118.15× 19.86 20.21× 40.86 28.00× 39.84 44.85× 30.82 26.75× 19.68 55.93× 21.08 78.37×

LLaMA 3 8B
8 chunks 14.13 197.32× 25.82 35.58× 41.72 53.79× 34.83 116.14× 28.61 63.79× 16.17 135.038× 22.06 112.08×
16 chunks 16.21 167.87× 24.53 28.64× 42.90 45.19× 39.20 96.06× 27.93 50.03× 20.99 106.54× 21.14 91.13×
32 chunks 17.66 118.51× 21.87 24.10× 37.80 33.52× 33.35 67.31× 25.05 33.62× 15.84 75.27× 21.40 70.54×

15

