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Abstract

Electronic health records (EHRs) contain richly
structured, longitudinal data essential for pre-
dictive modeling, yet stringent privacy regula-
tions (e.g., HIPAA, GDPR) often restrict ac-
cess to individual-level records. We introduce
Query, Don’t Train (QDT): a structured-data
foundation-model interface enabling tabular
inference via LLM-generated SQL over EHRs.
Instead of training on or accessing individual-
level examples, QDT uses a large language model
(LLM) as a schema-aware query planner to gener-
ate privacy-compliant SQL queries from a natural
language task description and a test-time input.
The model then extracts summary-level popula-
tion statistics through these SQL queries, and the
LLM performs chain-of-thought reasoning over
the results to make predictions. This inference-
time—only approach enables prediction without
supervised model training, ensures interpretabil-
ity through symbolic, auditable queries, natu-
rally handles missing features without imputation
or preprocessing, and effectively manages high-
dimensional numerical data to enhance analytical
capabilities. We validate QDT on the task of 30-
day hospital readmission prediction for Type 2 di-
abetes patients using a MIMIC-style EHR cohort,
achieving F1 = 0.70, which outperforms TabPFN
(F1 = 0.68). To our knowledge, this is the first
demonstration of LLM-driven, privacy-preserving
structured prediction using only schema metadata
and aggregate statistics—offering a scalable, in-
terpretable, and regulation-compliant alternative
to conventional foundation-model pipelines.
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1. Introduction

EHRs store richly structured, longitudinal data spanning
diagnoses, laboratory results, procedures, medications, and
outcomes—resources that are critical for predictive mod-
eling and clinical decision support (Kim et al., 2019; Tsai
et al., 2025). However, regulations such as the U.S. HIPAA
Privacy Rule and the EU GDPR impose strict safeguards for
protected health information, including consent, minimiza-
tion, and access controls, with substantial legal and institu-
tional constraints on data use (Cohen & Mello, 2018; Voigt
& Von dem Bussche, 2017). These policies often prohibit di-
rect access to patient-level records, creating significant barri-
ers for model development, particularly in cross-institutional
settings where data-sharing agreements are difficult to es-
tablish or enforce.

Despite these constraints, public datasets such as MIMIC-III
have enabled research in EHR-driven prediction under care-
fully controlled conditions, supporting tasks such as mor-
tality forecasting, hospital readmission risk, and treatment
efficacy modeling (Johnson et al., 2020; Meng et al., 2022).
Traditional supervised models—especially tree-based meth-
ods like XGBoost—continue to dominate tabular prediction
tasks due to their robustness to heterogeneous features, ir-
regular target functions, and missing data (Grinsztajn et al.,
2022; Yu et al., 2024; McElfresh et al., 2023). Transformer-
based in-context learners, such as TabPEN, offer classifica-
tion via training-set conditioning, though they still require
access to raw examples at inference time (Hollmann et al.,
2022; den Breejen et al., 2024; Qu et al., 2025; Bai et al.,
2023).

LLMs have recently demonstrated strong performance both
in structured reasoning tasks, including text-to-SQL transla-
tion (Gao et al., 2023), and tabular prediction tasks (Hegsel-
mann et al., 2023; Kim et al., 2025). Recent advancements
have introduced privacy-preserving techniques and agent-
based frameworks to address these challenges (Liu et al.,
2025). Deep learning models can be trained across de-
centralized datasets using federated learning, enabling col-
laborative prediction without sharing sensitive data (Abadi
et al., 2016; Chua et al., 2024; Kuang et al., 2024; Wang
et al., 2025). Agent-based frameworks allow models to au-
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tonomously perform multi-step reasoning over structured
data, facilitating complex clinical decision-making (Liu
et al., 2025).

LLMs have recently demonstrated strong performance both
in structured reasoning tasks, including text-to-SQL transla-
tion (Gao et al., 2023), and tabular prediction tasks (Hegsel-
mann et al., 2023; Kim et al., 2025). Recent advancements
have introduced privacy-preserving techniques and agent-
based frameworks to address these challenges (Liu et al.,
2025). Deep learning models can be trained across decen-
tralized datasets using federated learning, enabling collab-
orative prediction without sharing sensitive data (Kuang
et al., 2024; Wang et al., 2025). Additionally, advancements
in neural network-based techniques emphasize algorithmic
strategies for learning while safeguarding sensitive informa-
tion through differential privacy (Abadi et al., 2016; Chua
et al., 2024). Another promising approach is CRYPTEN,
a software framework that enables secure multi-party com-
putation (MPC) for machine learning, allowing parties to
collaboratively train models on private datasets while ensur-
ing data privacy (Knott et al., 2021). Agent-based frame-
works allow models to autonomously perform multi-step
reasoning over structured data, facilitating complex clinical
decision-making (Liu et al., 2025).

These capabilities suggest a new opportunity: using LLMs
not just for text generation, but for schema-aware query
planning that operates under privacy constraints. SQL
serves as a controlled, interpretable interface that enables
LLMs to retrieve relevant aggregate statistics—without ex-
posing individual-level data—thereby preserving compli-
ance with HIPAA and GDPR (Cohen & Mello, 2018; Voigt
& Von dem Bussche, 2017).

In this work, we introduce Query, Don’t Train, a two-
stage, framework for clinical tabular prediction without
direct access to raw EHR data. Our approach is grounded in
three pillars:

e Privacy preservation, by ensuring only policy-
compliant SQL queries are issued and no patient-level
data is revealed.

 Structured reasoning, which derives interpretability
from two key sources: (1) LLM-mediated chain-of-
thought predictions over query results, and (2) the sym-
bolic, auditable queries themselves.

* Robustness to missing data, as the model dynamically
selects and conditions on available features at inference
without imputation.

We validate our approach on 30-day readmission predic-
tion in a MIMIC-style cohort for Type 2 diabetes patients,
showing that it obtains an F1-score of 0.70 while offering
interpretability and compliance out of the box.

2. Methodology

2.1. Problem Formulation

We consider a tabular classification task under strict access
constraints. Let Dyin = { (24, i)}, denote a training set
of patient records x; € R? and associated outcomes y; € ).
Direct access to Dy is prohibited due to regulatory or insti-
tutional privacy restrictions. Given a test-time instance z'**
from the test set and the database schema of D, the goal
is to predict its label ¢ by interacting with Dy, exclu-
sively via a privacy-compliant SQL interface that enforces
data governance policies.

2.2. Framework Overview

Our method adopts a two-stage architecture in which an
LLM serves as both a query-generation agent and a predictor
through structured reasoning. The process, illustrated in
Figure 1, proceeds as follows:

1. Input: The LLM receives (i) a natural language
prompt describing the prediction task (e.g., “Predict
30-day readmission for Type 2 diabetes™), and (ii) the
test-time patient record x'**.

2. Query Generation: Based on the prompt and ',
the agent generates SQL queries targeting the database
containing Dy.in. These queries are designed to retrieve
summary-level statistics (e.g., “average length of stay
for similar patients”).

3. Privacy Filtering: Only queries that comply with pre-
defined privacy constraints (e.g., returning aggregates
over groups of at least 2 individuals) are executed.

4. Query Loop: The agent may iteratively generate
follow-up queries to refine its understanding of rel-
evant cohort-level statistics.

5. Prediction: The outputs of the executed queries are
returned to the LLM, which uses chain-of-thought rea-
soning to produce a prediction for ',

This inference-time-only framework enables structured pre-
diction without accessing raw patient data. The agent implic-
itly performs dynamic feature selection by deciding which
summary statistics to request during the Query Loop.

3. Experiments

3.1. Experimental Setup

In our experimental setup, we utilize OpenAI’s 04-mini
model as the LLM agent, which also serves as the basis
for our LLM-only baseline. To implement the agent, we
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Figure 1. Comparison of TabPFN and our ”Query, Don’t Train” (QDT) approach. TabPFN uses the training set directly during
inference. In contrast, QDT follows: (1) receive test record and task prompt, (2) generate SQL queries, (3) enforce compliance with
privacy policies, (4) execute approved queries to retrieve summary statistics, (5) predict using chain-of-thought reasoning. QDT enables

privacy-preserving, interpretable inference without raw data access.

leverage the LangChain library! . For an example of a run,
please refer to Appendix B, where we provide details on
each SQL command used for interpretability.

To comply with privacy policies, we restricted queries via
the system prompt to provide only summary-level statis-
tics, defined as data aggregated and averaged over two or
more patients. This constraint is enforced using a separate
LLM to validate that only queries requesting summary-level
statistics are allowed to proceed to execution. The LLM is
prompted with a predefined list of rules (e.g. no queries on
cohorts, limited repeated or overlapping queries, monitor
query patterns) and can determine whether a query meets
the specified criteria. In practice, this validation would be
implemented through a firewall to prevent unauthorized data
access (Kruse et al., 2017).

3.2. Datasets

We focus on predicting 30-day hospital readmissions for pa-
tients with Type 2 Diabetes in US hospitals (Clore & Strack,
2014)%. The dataset consists of patient records x;, which
include demographics, laboratory results, procedures, and
prior admissions, with binary outcome labels y; € {0,1}.
We conducted K-fold cross-validation with 5 iterations, uti-
lizing a subset of 2,000 randomly sampled patients in each

'"https://python.langchain.com/api_
reference/community/agent_toolkits/
langchain_community.agent_toolkits.sqgl.
toolkit.SQLDatabaseToolkit.html

https://www.kaggle.com/c/
1056lab-diabetes-readmission-prediction/
data

fold. With approximately 12% of patients readmitted within
30 days in our evaluation subset, this approach effectively
addresses the imbalanced nature of the readmission task.

3.3. Baselines

We compare our method against three baselines:
TabPFN (Hollmann et al., 2022) is a pre-trained
transformer-based predictor trained to perform tabular
classification by conditioning on the training set at inference
time. It is particularly relevant as it accesses Dy, during
inference, similar in spirit to our method, albeit without
privacy constraints. XGBoost (Chen & Guestrin, 2016) is a
widely-used gradient boosting framework for tabular data.
We train XGBoost on the training set Dy, and evaluate it
on the test set, representing the standard supervised learning
baseline with full access to training data. Additionally,
we compare our method with an LLM-only baseline that
receives only z'**' and a prompt containing the problem
formulation.

3.4. Classification Results

We compare our approach against TabPFN (Hollmann et al.,
2022) and XGBoost (Chen & Guestrin, 2016). Despite never
accessing the raw data, our method achieves competitive
performance in predicting 30-day readmissions, as indicated
by the metrics presented in Table 1. Specifically, our Query,
Don’t Train methodology demonstrates strong precision and
recall, underscoring the effectiveness of structured reason-
ing over aggregate statistics. These results highlight the
potential of our approach to provide accurate predictions
while utilizing minimal training resources.
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Table 1. Performance comparison of different models on 30-day
readmission prediction for Type 2 Diabetes patients predicted for
a subset of 2,000 patients. Evaluation metrics include Precision,
Recall, and F1-score. The errors are represented as standard devia-
tions (). Query, Don’t Train (QDT) refers to using SQL queries
to perform predictions without direct access to patient-level data.

Model Precision Recall F1-score
TabPFN 0.63 +0.05 0.76 =0.07 0.69 + 0.06
XGBoost 0.65 = 0.04 0.68 £0.06 0.66 £ 0.05
LLM 0.54 +0.03 0.51 £0.04 0.52=+0.03
QDT 0.68 =005 0.73 £0.06 0.70 £ 0.05
QDT

(30% less features) 0.65 £0.04 0.69 *0.05 0.67 £ 0.04
QDT

(70% less features) 0.62 £0.05 0.65 o004 0.64 £+ 0.04

3.5. Ablation Study on Missing Features

To investigate the impact of feature availability on model
performance, we conducted an ablation study by systemat-
ically removing features from z'**!. The findings illustrate
that our method maintains robust performance even with re-
duced feature sets. When 30% of the features were omitted,
the performance metrics showed only a modest decrease
in the F1-score, dropping to 0.67. This demonstrates that,
despite missing features, the agent effectively utilized the
remaining features in 2" to identify relevant similar exam-
ples, which it uses to reason for accurate predictions. When
a feature like “age’ is missing, the LLM omits age-based
filters and instead generates queries using only available
features, enabling robust predictions without imputation.
However, with a substantial reduction of 70% of features,
the performance was impacted more significantly, resulting
in an Fl-score of 0.64. These results attempt to solve the
challenges posed by incomplete data in real-world EHR
scenarios (Yu et al., 2024).

4. Conclusion

This work introduces QDT, a new framework that reimag-
ines structured prediction through symbolic interaction
rather than model training. Our findings demonstrate that
LLMs can serve as foundation models for structured data
without requiring access to raw examples or parameter tun-
ing. By pairing LLM-generated SQL queries with cohort-
level aggregation and chain-of-thought reasoning, QDT con-
structs implicit, task-conditioned table representations en-
tirely at inference time. This paradigm offers a practical
and conceptually distinct alternative to pretraining: it scales
across tasks with no model updates, provides interpretability
through auditable query outputs, and complies with privacy
regulations by design.

The approach is particularly suited to high-stakes domains

like healthcare, where individual-level data is sensitive and
institutional data-sharing is often infeasible. QDT offers
clear advantages in deployment flexibility, explainability,
and robustness to missing data, as the system dynamically
selects what to query based on feature availability. These
attributes make it a compelling candidate for real-world
clinical decision support under strict data governance. While
demonstrated in healthcare, this abstraction readily extends
to other structured domains such as finance, education, and
public policy.

In sum, QDT represents a step toward a new class of founda-
tion model interfaces for structured data—ones that empha-
size reasoning over memorization, and symbolic querying
over supervised optimization.

5. Limitations and Future Work

Despite these strengths, several limitations must be ad-
dressed. First, the computational efficiency of LLM-driven
query generation remains uncertain, particularly as tasks be-
come more complex. Inference time for QDT increases with
the number of features, schema complexity, and database
size, as each additional element may require extra queries
and reasoning. Second, while our experiments focus on
structured tabular data, extending this framework to multi-
modal EHRs (e.g., imaging or unstructured clinical notes)
may require further innovations in prompt engineering and
query design.

The privacy constraints we implement allow access only
to aggregated results for two or more patients. These con-
straints can be adjusted to enforce stricter censoring policies,
and more fine-grained privacy-preserving mechanisms can
be incorporated as needed. Our k-anonymity constraint of-
fers limited privacy and is vulnerable to inference attacks;
future work will explore combining this method with Dif-
ferential Privacy for stronger guarantees. The privacy agent
also blocks queries on small cohorts, repeated or overlap-
ping queries, and monitors query patterns to prevent differ-
encing attacks and other indirect disclosures.

Another consideration is the potential for adversarial or sub-
optimal queries generated by LLMs, which pose risks to the
reliability of QDT, particularly in healthcare. To enhance
reliability, we are developing automated query validation
and error detection to mitigate these risks. Ensuring the
reliability of the query-generation process in high-stakes
environments is crucial for future work. Additionally, al-
though our method has been tested in US hospitals, broader
validation across diverse healthcare systems is essential
for establishing generalizability. A few-shot LLM base-
line with anonymized in-context examples would provide
a fairer comparison, and we plan to include this in future
evaluations.
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A. Example Agent Run

This section provides an example agent run. The example demonstrates how the LLM produces interpretable outputs. The
interpretability comes from the reasoning being shown step-by-step, which helps users understand how the model arrives at
its conclusion. Moreover, SQL queries are generated and executed as part of this process, allowing users to trace back the
logic and validate intermediate reasoning steps. Finally, the uncertainty of the model’s predictions is visible in the final step,
where the SQL query results reflect the confidence in the outcome. This ensures that the outputs are explainable and not just
black-box results.

Task: Use a given schema and patient record to predict if the patient is likely to be readmitted. This involves
querying the database using SQL for patients with similar feature values and inferring the outcome.

Input Sample:

Patient Record:

time_in_hospital: 8
num_lab_procedures: 71
num_procedures: 6
num_medications: 37
max_glu_serum: 1.0

Database Schema:

Table: diabetes
Columns:
time_in_hospital, num_lab_procedures, num_procedures,
num_medications, max_glu_serum, readmitted

Step 2: Agent Thought

I have the schema of the diabetes table and the patient record features. The key features of the patient
record seem to be time_in_hospital, num_lab_procedures, num_procedures, num_medications,
max-glu_serum. To predict if the patient will likely be readmitted, I can find similar patient records in the database
with similar feature values and check their readmission status. I will query the diabetes table for records with same
values for these key features and infer the likely outcome based on the readmitted column.

Step 3: Action

SELECT time_in_hospital, num_lab_procedures, num_procedures,
num_medications, max_glu_serum, readmitted

FROM diabetes

WHERE time_in_hospital =
AND num_lab_procedures = 71.0
AND num_procedures = 6.0
AND num_medications = 37
AND max_glu_serum = 1.0

LIMIT 10

Step 4: Output

[]

(o¢]
(@]
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Step 2: Agent Thought

Thought: The query to find exact matches for the patient’s key features returned no results. This means there are no
exact matches for all these values in the database. I should relax the query to find patients with similar values. For
example, patients with t ime_in_hospital closeto 8, num_lab_procedures closeto 71, num_procedures
close to 6, num_medications close to 37, and max_glu_serum=1. Then I can check their readmission status
to infer the likely outcome for this patient.

Step 3: Action

SELECT time_in_hospital, num_lab_procedures, num_procedures,
num_medications, max_glu_serum, readmitted
FROM diabetes
WHERE time_in_hospital BETWEEN 6 AND 10
AND num_lab_procedures BETWEEN 60 AND 80
AND num_procedures BETWEEN 4 AND 8
AND num_medications BETWEEN 30 AND 40
AND max_glu_serum = 1.0
LIMIT 10

Step 4: Output

{data_samples}

Step 2: Thought

Now let’s check the readmission status of these patients.

Step 3: Action

SELECT readmitted, COUNT (%) as count

FROM diabetes

WHERE time_in_hospital BETWEEN 6 AND 10
AND num_lab_procedures BETWEEN 60 AND 80
AND num_procedures BETWEEN 4 AND 8
AND num_medications BETWEEN 30 AND 40
AND max_glu_serum = 1.0

GROUP BY readmitted

Step 4: Output

[(0,160), (1,140)]

Step 5: Thought

Among patients with similar features to the given patient (t ime_in_hospital 6-10, num_lab_procedures
60-80, num_procedures 4-8, num_medications 3040, max_glu_serum=1), 160 were not readmitted and
140 were readmitted. The majority were not readmitted, so the patient is more likely not to be readmitted.

Final Answer: No
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B. Hyperparamters XGBoost

In this study, we utilized the XGBoost library (Chen & Guestrin, 2016) in Python to perform 30-day readmission prediction
for Type 2 Diabetes patients. To enhance the model’s performance, we conducted systematic hyperparameter tuning utilizing
the GridSearchCvV class from the Scikit-learn library (Pedregosa et al., 2011).

The following hyperparameters were tuned, along with their respective ranges:

* Learning Rate (eta): Explored in the range of 0.01 to 0.3. The learning rate controls the contribution of each new tree
to the overall prediction, where a smaller value generally requires more boosting rounds and allows the model to learn
more cautiously, reducing the risk of overshooting optimal parameter values.

e Max Depth: Tested values ranged from 3 to 10. This parameter affects the complexity of the individual trees, with
deeper trees capable of capturing intricate patterns at the potential cost of increased overfitting.

e Min Child Weight: Values were varied from 1 to 10. This parameter sets a minimum threshold for the sum of instance
weights required in a child node, thus helping to control overfitting.

e Subsample: Evaluated rates of 0.5, 0.7, and 1.0. This parameter determines the fraction of the training data used to
grow each tree, with lower values potentially diminishing overfitting through randomization.

¢ Colsample_bytree: Investigated values included 0.3, 0.5, and 0.8, indicating the fraction of features that are sampled
for each individual tree.

The hyperparameter tuning process involved performing a grid search combined with 5-fold cross-validation, which ensured
a thorough assessment of model performance across various hyperparameter combinations. The optimal configuration
identified through this process was subsequently used to train the final model, facilitating improved predictive accuracy in
the 30-day readmission outcomes among patients with Type 2 Diabetes.



