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Abstract

Electronic health records (EHRs) contain richly
structured, longitudinal data essential for pre-
dictive modeling, yet stringent privacy regula-
tions (e.g., HIPAA, GDPR) often restrict ac-
cess to individual-level records. We introduce
Query, Don’t Train (QDT): a structured-data
foundation-model interface enabling tabular
inference via LLM-generated SQL over EHRs.
Instead of training on or accessing individual-
level examples, QDT uses a large language model
(LLM) as a schema-aware query planner to gener-
ate privacy-compliant SQL queries from a natural
language task description and a test-time input.
The model then extracts summary-level popula-
tion statistics through these SQL queries and the
LLM performs, chain-of-thought reasoning over
the results to make predictions. ”This inference-
time–only approach (1) eliminates the need for
supervised model training or direct data access,
(2) ensures interpretability through symbolic, au-
ditable queries, (3) naturally handles missing fea-
tures without imputation or preprocessing, and
(4) effectively manages high-dimensional numer-
ical data to enhance analytical capabilities. We
validate QDT on the task of 30-day hospital read-
mission prediction for Type 2 diabetes patients
using a MIMIC-style EHR cohort, achieving F1
= 0.70, which outperforms TabPFN (F1 = 0.68).
To our knowledge, this is the first demonstration
of LLM-driven, privacy-preserving structured pre-
diction using only schema metadata and aggregate
statistics—offering a scalable, interpretable, and
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regulation-compliant alternative to conventional
foundation-model pipelines.

1. Introduction
EHRs store richly structured, longitudinal data spanning
diagnoses, laboratory results, procedures, medications, and
outcomes—resources that are critical for predictive mod-
eling and clinical decision support (Kim et al., 2019; Tsai
et al., 2025). However, regulations such as the U.S. HIPAA
Privacy Rule and the EU GDPR impose strict safeguards for
protected health information, including consent, minimiza-
tion, and access controls, with substantial legal and institu-
tional constraints on data use (Cohen & Mello, 2018; Voigt
& Von dem Bussche, 2017). These policies often prohibit di-
rect access to patient-level records, creating significant barri-
ers for model development, particularly in cross-institutional
settings where data-sharing agreements are difficult to es-
tablish or enforce.

Despite these constraints, public datasets such as MIMIC-III
have enabled research in EHR-driven prediction under care-
fully controlled conditions, supporting tasks such as mor-
tality forecasting, hospital readmission risk, and treatment
efficacy modeling (Johnson et al., 2020; Meng et al., 2022).
Traditional supervised models—especially tree-based meth-
ods like XGBoost—continue to dominate tabular prediction
tasks due to their robustness to heterogeneous features, ir-
regular target functions, and missing data (Grinsztajn et al.,
2022; Yu et al., 2024). Transformer-based in-context learn-
ers, such as TabPFN, offer classification via training-set
conditioning, though they still require access to raw exam-
ples at inference time (Hollmann et al., 2022).

LLMs have recently demonstrated strong performance in
structured reasoning tasks, including text-to-SQL transla-
tion (Gao et al., 2023), with execution accuracy exceeding
86% on cross-domain benchmarks like Spider. These capa-
bilities suggest a new opportunity: using LLMs not just for
text generation, but for schema-aware query planning that
operates under privacy constraints. SQL serves as a con-
trolled, interpretable interface that enables LLMs to retrieve
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relevant aggregate statistics—without exposing individual-
level data—thereby preserving compliance with HIPAA and
GDPR (Cohen & Mello, 2018; Voigt & Von dem Bussche,
2017).

In this work, we introduce Query, Don’t Train, a two-
stage, framework for clinical tabular prediction without
direct access to raw EHR data. Our approach is grounded in
three pillars:

• Privacy preservation, by ensuring only policy-
compliant SQL queries are issued and no patient-level
data is revealed.

• Structured reasoning, which derives interpretability
from two key sources: (1) LLM-mediated chain-of-
thought predictions over query results, and (2) the sym-
bolic, auditable queries themselves.

• Robustness to missing data, as the model dynamically
selects and conditions on available features at inference
without imputation.

We validate our approach on 30-day readmission predic-
tion in a MIMIC-style cohort for Type 2 diabetes patients,
showing that it obtains an F1-score of 0.70 while offering
interpretability and compliance out of the box.

2. Methodology
2.1. Problem Formulation

We consider a tabular classification task under strict access
constraints. Let Dtrain = {(xi, yi)}Ni=1 denote a training set
of patient records xi ∈ Rd and associated outcomes yi ∈ Y .
Direct access to Dtrain is prohibited due to regulatory or
institutional privacy restrictions. Given a test-time instance
xtest, the goal is to predict its label ytest by interacting with
Dtrain exclusively via a privacy-compliant SQL interface that
enforces data governance policies.

2.2. Framework Overview

Our method adopts a two-stage architecture in which an
LLM serves as both a query-generation agent and a predictor
through structured reasoning. The process, illustrated in
Figure 1, proceeds as follows:

1. Input: The LLM receives (i) a natural language
prompt describing the prediction task (e.g., “Predict
30-day readmission for Type 2 diabetes”), and (ii) the
test-time patient record xtest.

2. Query Generation: Based on the prompt and xtest,
the agent generates SQL queries targeting the database
containing Dtrain. These queries are designed to retrieve

summary-level statistics (e.g., “average length of stay
for similar patients”).

3. Privacy Filtering: Only queries that comply with pre-
defined privacy constraints (e.g., returning aggregates
over groups of at least 2 individuals) are executed.

4. Query Loop: The agent may iteratively generate
follow-up queries to refine its understanding of rel-
evant cohort-level statistics.

5. Prediction: The outputs of the executed queries are
returned to the LLM, which uses chain-of-thought rea-
soning to produce a prediction for ytest.

This inference-time-only framework enables structured pre-
diction without accessing raw patient data. The agent implic-
itly performs dynamic feature selection by deciding which
summary statistics to request during the Query Loop.

3. Experiments
3.1. Experimental Setup

We use OpenAI’s o4-mini model as the LLM agent in our
setup and for the LLM-only baseline. We leverage the
LangChain library1 to implement the agent.

For the privacy policies, we restricted queries via the system
prompt to summary-level statistics, which are defined as
data averaged over two or more patients. To ensure the
queries do not access patient-level information, we have a
seperate agent to ensure that only those queries requesting
summary-level statistics proceed to execution. In practice,
this validation would be enforced by a firewall to prevent
unauthorized data access (Kruse et al., 2017).

3.2. Datasets

We focus on predicting 30-day hospital readmissions for pa-
tients with Type 2 Diabetes in US hospitals (Clore & Strack,
2014)2. The dataset consists of patient records xi, which
include demographics, laboratory results, procedures, and
prior admissions, with binary outcome labels yi ∈ {0, 1}.

3.3. Baselines

We compare our method against three baselines:
TabPFN (Hollmann et al., 2022) is a pre-trained
transformer-based predictor trained to perform tabular

1https://python.langchain.com/api_
reference/community/agent_toolkits/
langchain_community.agent_toolkits.sql.
toolkit.SQLDatabaseToolkit.html

2https://www.kaggle.com/c/
1056lab-diabetes-readmission-prediction/
data
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Figure 1. Comparison of TabPFN and our ”Query, Don’t Train” (QDT) approach. TabPFN uses the training set directly during
inference. In contrast, QDT follows: (1) receive test record and task prompt, (2) generate SQL queries, (3) enforce compliance with
privacy policies, (4) execute approved queries to retrieve summary statistics, (5) predict using chain-of-thought reasoning. QDT enables
privacy-preserving, interpretable inference without raw data access.

classification by conditioning on the training set at inference
time. It is particularly relevant as it accesses Dtrain during
inference, similar in spirit to our method, albeit without
privacy constraints. XGBoost (Chen & Guestrin, 2016)
is a widely-used gradient boosting framework for tabular
data. We train XGBoost on Dtrain and evaluate it on xtest,
representing the standard supervised learning baseline with
full access to training data. Additionally, we compare our
method with an LLM-only baseline that receives only xtest

and a prompt containing the problem formulation.

3.4. Classification Results

We compare our approach against TabPFN (Hollmann et al.,
2022) and XGBoost (Chen & Guestrin, 2016). Despite never
accessing the raw data, our method achieves competitive
performance in predicting 30-day readmissions, as indicated
by the metrics presented in Table 1. Specifically, our Query,
Don’t Train methodology demonstrates strong precision and
recall, underscoring the effectiveness of structured reason-
ing over aggregate statistics. These results highlight the
potential of our approach to provide accurate predictions
while utilizing minimal training resources.

3.5. Ablation Study on Missing Features

To investigate the impact of feature availability on model
performance, we conducted an ablation study by systemat-
ically removing features from xtest. The findings illustrate
that our method maintains robust performance even with re-
duced feature sets. When 30% of the features were omitted,
the performance metrics showed only a modest decrease
in the F1-score, dropping to 0.67. This demonstrates that,

Table 1. Performance comparison of different models on 30-day
readmission prediction for Type 2 Diabetes patients predicted for
a subset of 2,000 patients. Evaluation metrics include Precision,
Recall, and F1-score. Query, Don’t Train (QDT) refers to using
SQL queries to perform predictions without direct access to patient-
level data.

Model Precision Recall F1-score

TabPFN 0.63 0.76 0.69
XGBoost 0.65 0.68 0.66
LLM 0.54 0.51 0.52

QDT 0.68 0.73 0.70
QDT
(30% less features) 0.65 0.69 0.67
QDT
(70% less features) 0.62 0.65 0.64

despite missing features, the agent effectively utilized the
remaining features in xtest to identify relevant similar ex-
amples, which it uses to reason for accurate predictions.
However, with a substantial reduction of 70% of features,
the performance was impacted more significantly, resulting
in an F1-score of 0.64. These results attempt to solve the
challenges posed by incomplete data in real-world EHR
scenarios (Yu et al., 2024).

4. Conclusion
This work introduces QDT, a new framework that reimag-
ines structured prediction through symbolic interaction
rather than model training. Our findings demonstrate that
LLMs can serve as foundation models for structured data
without requiring access to raw examples or parameter tun-
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ing. By pairing LLM-generated SQL queries with cohort-
level aggregation and chain-of-thought reasoning, QDT con-
structs implicit, task-conditioned table representations en-
tirely at inference time. This paradigm offers a practical
and conceptually distinct alternative to pretraining: it scales
across tasks with no model updates, provides interpretability
through auditable query outputs, and complies with privacy
regulations by design.

The approach is particularly suited to high-stakes domains
like healthcare, where individual-level data is sensitive and
institutional data-sharing is often infeasible. QDT offers
clear advantages in deployment flexibility, explainability,
and robustness to missing data, as the system dynamically
selects what to query based on feature availability. These
attributes make it a compelling candidate for real-world
clinical decision support under strict data governance. While
demonstrated in healthcare, this abstraction readily extends
to other structured domains such as finance, education, and
public policy.

In sum, QDT represents a step toward a new class of founda-
tion model interfaces for structured data—ones that empha-
size reasoning over memorization, and symbolic querying
over supervised optimization.

5. Limitations and Future Work
Despite these strengths, several limitations warrant discus-
sion. First, the computational efficiency of LLM-driven
query generation and execution remains an open question,
especially as prediction tasks grow in complexity or require
more sophisticated querying strategies. Second, while our
experiments focus on structured tabular data, extending this
framework to multi-modal EHRs (e.g., incorporating imag-
ing or unstructured clinical notes) may require additional
innovations in prompt engineering and query design.

The privacy constraints we implement allow access only
to aggregated results for two or more patients. These con-
straints can be adjusted to enforce stricter censoring policies,
and more fine-grained privacy-preserving mechanisms can
be incorporated as needed.

Another consideration is the potential for adversarial or sub-
optimal queries generated by LLMs. Ensuring the reliability
and safety of the query-generation process, particularly in
high-stakes clinical settings, is an important direction for
future work. Additionally, while our method is evaluated
on cohorts in US hospitals, broader validation across di-
verse institutions and healthcare systems is necessary to
fully establish generalizability.

References
Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting

system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Clore, John, C. K. D. J. and Strack, B. Diabetes 130-US
Hospitals for Years 1999-2008. UCI Machine Learning
Repository, 2014. DOI: https://doi.org/10.24432/C5230J.

Cohen, I. G. and Mello, M. M. Hipaa and protecting health
information in the 21st century. Jama, 320(3):231–232,
2018.

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding,
B., and Zhou, J. Text-to-sql empowered by large lan-
guage models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-
based models still outperform deep learning on typical
tabular data? Advances in neural information processing
systems, 35:507–520, 2022.

Hollmann, N., Müller, S., Eggensperger, K., and Hut-
ter, F. Tabpfn: A transformer that solves small tabu-
lar classification problems in a second. arXiv preprint
arXiv:2207.01848, 2022.

Johnson, A., Bulgarelli, L., Pollard, T., Horng, S.,
Celi, L. A., and Mark, R. Mimic-iv. Phy-
sioNet. Available online at: https://physionet.
org/content/mimiciv/1.0/(accessed August 23, 2021), pp.
49–55, 2020.

Kim, E., Rubinstein, S. M., Nead, K. T., Wojcieszynski,
A. P., Gabriel, P. E., and Warner, J. L. The evolving
use of electronic health records (ehr) for research. In
Seminars in radiation oncology, volume 29, pp. 354–361.
Elsevier, 2019.

Kruse, C. S., Smith, B., Vanderlinden, H., and Nealand,
A. Security techniques for the electronic health records.
Journal of medical systems, 41:1–9, 2017.

Meng, C., Trinh, L., Xu, N., Enouen, J., and Liu, Y. In-
terpretability and fairness evaluation of deep learning
models on mimic-iv dataset. Scientific Reports, 12(1):
7166, 2022.

Tsai, M.-L., Chen, K.-F., and Chen, P.-C. Harnessing elec-
tronic health records and artificial intelligence for en-
hanced cardiovascular risk prediction: A comprehensive
review. Journal of the American Heart Association, 14
(6):e036946, 2025.

4



Query, Don’t Train: Privacy-Preserving Tabular Prediction from EHR Data via SQL Queries

Voigt, P. and Von dem Bussche, A. The eu general data
protection regulation (gdpr). A practical guide, 1st ed.,
Cham: Springer International Publishing, 10(3152676):
10–5555, 2017.

Yu, Z., Chu, X., Jin, Y., Wang, Y., and Zhao, J. Smart: To-
wards pre-trained missing-aware model for patient health
status prediction. In Globerson, A., Mackey, L., Belgrave,
D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C. (eds.),
Advances in Neural Information Processing Systems,
volume 37, pp. 63986–64009. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.
cc/paper_files/paper/2024/file/
751ef1e7f557a8a88f0837b61bf5070f-Paper-Conference.
pdf.

5

https://proceedings.neurips.cc/paper_files/paper/2024/file/751ef1e7f557a8a88f0837b61bf5070f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/751ef1e7f557a8a88f0837b61bf5070f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/751ef1e7f557a8a88f0837b61bf5070f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/751ef1e7f557a8a88f0837b61bf5070f-Paper-Conference.pdf

