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ABSTRACT

Few-shot image generation, which trains generative models on limited examples,
is of practical importance. The existing pipeline is first pretraining a source model
(which contains a generator and a discriminator) on a large-scale dataset and fine-
tuning it on a target domain with limited samples. The main challenge is that the
few-shot model easily becomes overfitting. It can be attributed to two aspects: the
lack of sample diversity for the generator and the failure of fidelity discrimination
for the discriminator. In this paper, we treat the diversity and fidelity in the source
model as a kind of knowledge and propose to improve the generation results via
exploring knowledge distillation. The source model trained on the large-scale
dataset is regarded as teacher model and the target model (student) is learned by
introducing momentum relation distillation module to produce diverse samples
and source discrimination distillation to ensure the fidelity discrimination. With
the momentum relation distillation and source discrimination distillation modules,
the proposed method outperforms the state-of-the-art by a large margin, i.e., 10%
for FFHQ to Sketches, while achieving better diversity.

1 INTRODUCTION

Training an image generation model often requires thousands of images in target domain (Brock
et al., 2019; Karras et al., 2019; 2020b; Vahdat & Kautz, 2020). However, in many practical appli-
cations, there are only few images in such domains of interest. Few-shot image generation, which is
able to use a large-scale dataset from source domain and requires limited samples on target domain,
has attracted considerable attention due to its practical importance.

Conventional image generators fail on few-shot scenario, resulting in collapsed generation due to
the limited number of images. To alleviate this issue, recent works introduce a two-stage pipeline
follows the idea of transfer learning (Mo et al., 2020; Noguchi & Harada, 2019; Wang et al., 2020;
2018). Specifically, a source model is first trained on a large dataset to ensure necessary diversity of
the generator. Then the target model inherit the parameters from the source model and is finetuned
on a target domain with few images. However, the target model easily suffers from the overfitting
problem when facing extremely small number of images such as 10 (Li et al., 2020; Ojha et al.,
2021).

We examine the over-fitting problem through two aspects, the diversity and fidelity. On one hand,
when only few images are available in the target domain, the discriminator can easily memorize
these samples and force the generator to reproduce them. Thus, the diversity of the generated images
is undesirable. On the other hand, the optimization of discriminator is difficult due to the limited
number of training images in the fine-tuning process. So the discriminator may loss the ability of
distinguishing realistic images from malformed ones, resulting in inferior fidelity. Ojha et al. (2021)
introduce the regularization of cross-domain correspondence into the finetuning process to alleviate
the overfitting problem. However, the problem of how to ensure the diversity and fidelity of few-shot
image generator still remains.

In this paper, we treat the source model and target model as teacher and student respectively, and
propose to improve both the diversity and fidelity of few-show image generation through knowledge
distillation. Specifically, we introduce two novel distillation modules, named Momentum Relation
Distillation and Source Discrimination Distillation, into the generator and the discriminator respec-
tively. The Momentum Relation Distillation aims at transferring the image-to-image relation into
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Figure 1: The framework of proposed knowledge distillation for few-show image generation. We
treat the source model as teacher and the target model as student. Two novel distillation modules are
introduced into the generator and discriminator respectively.

the target model and improving the generation diversity. In order to capture more informative rela-
tion, we propose an extend version of SSIM (Wang et al., 2003) as the relation metric and introduce
a memory bank in the distillation. As to Source Discrimination Distillation, we force the discrimi-
nator to learn to distinguish real-fake images both in the source domain and target domain. In this
manner, the discrimination of the target model is enhanced by the rich images in the source domain,
leading to better generation fidelity.

Contributions. The main contribution of this paper is the proposed novel distillation framework
to improve the few-shot image generation. By treating the source model and target model as teacher
and student respectively, we introduce Momentum Relation Distillation and Source Discrimination
Distillation to improve both the diversity and fidelity of the generation. Extensive qualitative and
quantitative results demonstrate that our method can generate more realistic and diverse images in
the target domain.

2 RELATED WORK

Few-shot learning. Few-shot learning (Lake et al., 2015) is originally explored in discriminative
works to learn to distinguish between novel visual categories from only few labelled samples. Re-
cently, more and more attention has been paid to few-shot image generation. The most common and
effective method is fine-tuning, where the initial model is pretrained well in the source domain with
sufficient training samples and then adapted to the target domain with limited data. Some works em-
ploy model regularization to prevent model from over fitting to the training set (Mo et al., 2020; Li
et al., 2020) or introduce new parameters to transform the distribution from source domain to target
domain (Noguchi & Harada, 2019; Wang et al., 2020). Zhao et al. (2020) and Karras et al. (2020a)
apply data augmentation to alleviate the lack of data, but it works ineffectively with extremely few
samples (e.g., 10 images). Ojha et al. (2021) propose cross-domain correspondence (CDC) to pre-
serve distance between generated samples. Based on the prior works, we focus on relationships of
generated images between source domain and target domain, with only few samples.

Distance preservation. DistanceGAN (Benaim & Wolf, 2017) introduces distance constraints be-
tween inputs and outputs to improve the distance preserving capability of the model and lessen mode
collapse. The same idea has been applied to unconditional (Tran et al., 2018; Liu et al., 2019) and
conditional (Mao et al., 2019; Yang et al., 2019) generation tasks to improve diversity of generated
samples. In this work, our goal is to preserve the diversity of the model adapted from the source
domain to the target domain.

Memory bank. Memory bank (Wu et al., 2018) has been widely used in contrastive learning to
achieve more negative examples in one epoch. Some works (Munkhdalai & Yu, 2017; Santoro
et al., 2016; Oreshkin et al., 2018; Mishra et al., 2017) have employed memory network methods
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in the field of transfer learning to retain ”experience” in the source domain. He et al. (2020)
propose momentum update to keep the consistency of dictionary keys despite its evolution, where
rapidly changing encoder will reduce the key representations’ continuity. We introduce this idea
to domain translation tasks, which will improve the consistency of the model adaptation from the
source domain to the target domain.

Knowledge distillation. Knowledge distillation is the main non-invasive method used to transfer
knowledge from a teacher network to a student network (Hinton et al., 2015), and has been widely
applied to model compression in computer vision tasks (Chen et al., 2017; Luo et al., 2016; Yim
et al., 2017). A recent survey (Gou et al., 2021) divides knowledge distillation into three categories:
response-based, feature-based and relation-based. We leverage relation-based distillation in few-
shot image generation to preserve diversity from source to target domain by Momentum Relation
Distillation and Source Discrimination Distillation.

3 METHOD

Given a pretrained model GS , which is capable of generating high-quality images in source domain
DS , our goal is fine-tuning it to a small target dataset DT . In our work, we follow the architecture
of StyleGAN2, a state-of-the-art architecture on image generation. Accordingly, the original loss
function of StyleGAN2 is employed, which consists of an adversarial loss Ladv as follows:

Ladv = Ex∼pdata(x)[D(x)]− Ez∼pdata(z)[D(G(z))], (1)

where x, z denote real images and input noises respectively. However, the direct adaptation results
in over-fitting when the number of training data in the target domain is extremely limited. Several
works have been proposed to alleviate this issue by applying extra constraint on the adapted model.
In the rest of this section, we first give an overview on the existing state-of-the-art algorithm, then
we introduce our two novel distillation modules elaborately.

3.1 OVERVIEW

To overcome the issue of overfitting, Ojha et al. (2021) proposed correspondence between source
and target domains for the generator, and relax the constraint of realism by introducing patch-
discriminator. We choose this work as our baseline due to its outstanding generation results.

Formally, given a pretrained source model (GS , DS), we finetune it into the target model (GT , DT )
with k training images. In one finetuning step, we first sample a mini-batch of latent code Z = {zi}.
Then we extract the intermediate feature maps of layer l from the generators, denoted asGl

S(zi) and
Gl

T (zi). Distances between feature maps are estimated through cosine similarity, and transferred
into probability distribution. For latent code zi, the distribution on others is formulated as

P i,l
S = Softmax({cos(Gl

S(zi)
′, Gl

S(zj)
′)|∀j 6= i})

P i,l
T = Softmax({cos(Gl

T (zi)
′, Gl

T (zj)
′)|∀j 6= i}),

(2)

where ′ denotes reshaping into 1-dimensional vector. Then a correspondence loss is estimated
through the KL-divergence between P i,l

S and P i,l
T as

Lcorr = Ezi∼pz(z)

∑
i,l

DKL(P i,l
S ||P

i,l
T ). (3)

We further sample k latent codes at the start of the finetuning and denote them as anchors Z∗. For zi
sampled from Z∗, we use the inherited image discriminator. Otherwise, we append extra classifier
after the middle layer, and force adversarial loss on each patch. So the adversarial loss is computed
as

L∗adv(GT , DT , DP ) = Ex∼DT
[Ez∼Z∗Ladv(GT , DT ) + Ez∼pz(z)Ladv(GT , DP ). (4)

In this paper, we exploit knowledge distillation to improve generation results, by treating the source
model as teacher and the target model as student. Specifically, we handle this problem from two
aspects, the diversity and fidelity, and introduce Momentum Relation Distillation and Source Dis-
crimination Distillation, into the generator and the discriminator respectively.
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Figure 2: An illustration of the proposed Momentum Relation Distillation. Combined with the
SSIM-A metric, the queue of instances generated by momentum model helps to capture more useful
information.

3.2 MOMENTUM RELATION DISTILLATION

The source model pretrained on large scale dataset has the ability to generate various images, and the
relation between generated images directly captures this diversity. Following the baseline method,
we treat the relation between generated images as a kind of knowledge, and introduce an effective
way to distill this knowledge to the target model.

Definition of relation. To quantitatively define the relation, we utilize the similarity between inter-
mediate activations of the generators to model the relation. However, it is hard to effectively measure
the similarity of two high-dimensional feature maps. Inspired by the success of SSIM on estimating
similarity of two images, we extend SSIM to activations, named SSIM-A, to capture semantic and
spatial information simultaneously.

Specifically, given two feature maps A1 ∈ Rc×h×w and A2 ∈ Rc×h×w, we estimate the similarity
as

SSIM-A(A1, A2) =
(2µA1

µA2
+ c1)(2σA1·A2

+ c2)

(µ2
A1

+ µ2
A2

+ c1)(σ2
A1

+ σ2
A2

+ c2)
, (5)

where µA1
, µA2

are the mean of a fixed window centered at each pixel, σA1
, σA2

are standard devi-
ations of A1 and A2 respectively. σA1·A2

indicates the covariance. c1, c2 are constants to maintain
stability.

Momentum relation. In order to transfer the knowledge of pairwise relation into the target model,
we utilize the query-key formulation and converts similarities across instances into probability dis-
tributions as in (Ojha et al., 2021; Chen et al., 2020; Ye et al., 2021). Formally, given a list of
activations as keys K, the probability can be estimated as

P i,l
S = Softmax({SSIM-A(Gl

S(zi),K
i,l
S )})

P i,l
T = Sofrmax({SSIM-A(Gl

T (zi),K
i,l
T )}).

(6)

Naturally, we use other samples in one mini-batch as keys. However, the batch size for image
generation model is often small due to GPU memory limitation. Inspired by recent methods in
contrastive learning, good information can be extracted with a large key list, while the generator for
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Figure 3: An illustration of the proposed Source Discrimination Distillation. The patch-
discriminator of the target model is trained on both the source and target domain to enhance dis-
crimination.

the keys is kept as consistent as possible. Thus, we introduce an extra generatorGM with momentum
update, and extend the key list with a queue of activations generated by GM . Thus, the key list Ki,l

S

and Ki,l
T becomes

Ki,l
S = {Gl

S(zj)|∀j 6= i}
⋃
{Gl

S(Z), Gl
S(Z−1), . . .}

Ki,l
T = {Gl

T (zj)|∀j 6= i}
⋃
{Gl

M (Z), Gl,−1
M (Z−1), . . .},

(7)

where G−nM and Z−n represent the momentum generator and latent code that are n steps before.
Note that the source model GS keeps the same along the finetuning process. In practice, we use the
EMA model in StyleGAN2 as GM for simplicity.

Relation distillation. Finally, KL-divergence is used to transfer the knowledge of relation from
the source model into the target one, and the loss function is formulated as

Ldist(GT , GS) = Ezi∼pz(z)

∑
i,l

DKL(P i,l
S ||P

i,l
T ). (8)

3.3 SOURCE DISCRIMINATION DISTILLATION

As few samples are available in the target domain, the discriminator easily becomes overfitting by
simply memorizing all target images. Introducing patch-discriminator DP helps to alleviate this
issue. However, DP is still difficult to optimize due to the limited number of real patches. The
under-optimized DP may fail to generalise well, leading the generator to create malformed images.
We further treat the discrimination as a kind of knowledge, and propose to transfer the discrimination
from source model to the finetuned one. Specifically, we force the target discriminator to distinguish
source images from the output of source generator along the finetuning process. The discrimination
distillation loss is defined as

Ldist(GS , DP ) = Ez∼pz(z)Ladv(GS , DP ). (9)

3.4 FULL OBJECTIVE

The full objective contains three components:

L = L∗adv(GT , DT , DP ) + αLdist(GT , GS) + βLdist(GS , DP ), (10)

where α and β control the relative weight of different losses.

4 EXPERIMENTS

Datasets: For real faces to other artistic faces, we use Flickr-Faces-HQ(FFHQ) (Karras et al.,
2019) as the source domain, and employ the pre-trained model on FFHQ as GS . Several other
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Figure 4: Visual results of 10-shot image adaptation, compared between CDC and our method. With
the same latent code, our method can preserve more details from source domain with higher quality.

face databases are chosen as the target domain: (1) face sketches (Wang & Tang, 2008), (2) face
paintings by Amedeo Modigliani (Yaniv et al., 2019), (3) FFHQ-babies, (4) FFHQ-sunglasses, (5)
face caricatures (Ojha et al., 2021) and (6) face paintings by Rapheal. We also evaluate our methods
on Church to Hauntedchurch and LSUN Cat (Yu et al., 2015) to AFHQ Dog (Choi et al., 2020). All
the experiments are based on 256×256 resolution images if there is no special statement. It is worth
mentioning that network can only access 10 images of the target domain during training.

Training details: The basic model of our method is StyleGANv2 (Karras et al., 2020b), pre-
trained on a large dataset (e.g. FFHQ) as our source model. The batch size of our experiments is 4.
We find the results are robust to different α and β, and we use α = 104 and β = 0.1 by default.

Competing methods: There are several existing works on few-shot image generation, and
we compare the proposed method with: (1) Transferring GANs (TGAN) (Wang et al., 2018),
(2) Data augmentations (Karras et al., 2020a), (3) Batch Statistics Adaptation (BSA) (Noguchi
& Harada, 2019), (4) Freeze Discriminator (Freeze-D) (Mo et al., 2020), (5) MineGAN
(wang2020minegan) (Wang et al., 2020), (6) Elastic Weight Consolidation (EWC) (Li et al., 2020),
and (7) Cross-domain Correspondence (CDC) (Ojha et al., 2021).

4.1 QUALITATIVE COMPARISONS

Figure 4 shows result comparison between our method and CDC, which is the state-of-the-art in
terms of few-shot image generation with only 10 target images. We observe that our method can
generate more realistic and diverse images. Taking FFHQ→caricatures as an example, we find that:

• CDC prefers to frontalizing faces, while our method keep the face angle compared with
results of GS .

• Images generated by CDC have similar eyes (e.g. eye color, eye size) and hair (e.g. curly
hair) which are close to the training set, while those of our results have more variance and
keep diversity from source domain.
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Table 1: FID scores (↓) for domains with abundant data. Standard deviations are computed across 5
runs.

Babies Sunglasses Sketches
TGAN (Wang et al., 2018) 104.79± 0.03 55.61± 0.04 53.14± 0.02
TGAN+ADA (Karras et al., 2020a) 102.58± 0.12 53.64± 0.08 66.99± 0.01
BSA (Noguchi & Harada, 2019) 140.34± 0.01 76.12± 0.01 69.32± 0.02
FreezeD (Mo et al., 2020) 110.92± 0.02 51.29± 0.05 46.54± 0.01
MineGAN (Wang et al., 2020) 98.23± 0.03 68.91± 0.03 64.34± 0.02
EWC (Li et al., 2020) 87.41± 0.02 59.73± 0.04 71.25± 0.01
CDC (Ojha et al., 2021) 74.39± 0.03 42.13± 0.04 45.67± 0.02
Ours 68.67± 0.02 34.61± 0.03 35.87± 0.02

Table 2: Intra-cluster pairwise LPIPS distance (↑). Standard deviation is computed across the k
clusters, where k is the number of training samples).

Caricatures Amedeo’s paintings Sketches
TGAN (Wang et al., 2018) 0.39± 0.06 0.41± 0.03 0.39± 0.03
TGAN+ADA (Karras et al., 2020a) 0.50± 0.05 0.51± 0.04 0.41± 0.05
BSA (Noguchi & Harada, 2019) 0.35± 0.01 0.39± 0.04 0.35± 0.01
FreezeD (Mo et al., 2020) 0.37± 0.01 0.40± 0.03 0.39± 0.03
MineGAN (Wang et al., 2020) 0.39± 0.07 0.42± 0.03 0.40± 0.05
EWC (Li et al., 2020) 0.47± 0.03 0.52± 0.03 0.42± 0.03
CDC (Ojha et al., 2021) 0.53± 0.01 0.60± 0.01 0.45± 0.02
Ours 0.57± 0.02 0.62± 0.01 0.47± 0.02

• It can be found that the lower part of faces for CDC are generally fatter, which is not a
common feature of the training set.

Similar improvements of our method can also be observed in FFHQ→Sketches. In general, our
method performs better on different target domains both in quality and diversity. More qualitative
results can be found in appendix.

4.2 QUANTITATIVE COMPARISONS

In terms of image generation, there are two widely used evaluation to measure generative model,
Fréchet Inception Distance (FID) (Heusel et al., 2017) for the quality of generated images and LPIPS
metric (Zhang et al., 2018) for the variance of results. In our work, we also evaluate our method
through the fidelity and diversity of GT ’s generating space on the target domain.

Quality evaluation. For the measurement of image quality, adequate real samples in the target
domain are needed. In our experiments, the FFHQ-babies, FFHQ-sunglasses and Sketches datasets
contain enough real data. We evaluate FID score in these experiments the target images except the
10 images randomly selected for training.

Table 1 shows the quality evaluation between different methods with 10-shot adaptation. Our method
achieve the lowest FID score for all target domains compared with other methods, and supasses the
existing state-of-the-art by a large margin.

Diversity evaluation. Besides the quality of generated images, diversity is also of great impor-
tance. For example, if GT only output images that are identical to the k samples of training data, the
FID score will be very low, while the result is not desirable. In order to measure the image diversity
of different models, we generate 1K images and divide them into k clusters according to the LPIPS
distance with k training samples, following CDC (Ojha et al., 2021). Then the LPIPS distances are
calculated inside each cluster and the final score is averaged over k clusters. The higher final score,
the more diverse the output distribution of GT is.
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Table 3: Ablation Study on FFHQ→Sketches, evaluated both from image quality and diversity. X
represents adaptation with the method.

SSIM-A Momentum Discrimination LPIPS FID
Baseline 0.45± 0.02 45.67± 0.02

ours

X 0.46± 0.02 41.19± 0.02
X X 0.46± 0.01 37.64± 0.03
X X X 0.47± 0.02 35.87± 0.02

Table 4: Ablation Study on FFHQ→Sketches, evaluated both from image quality and diversity.

queue size Baseline 4 8 12 16
LPIPS 0.45± 0.02 0.46± 0.03 0.47± 0.02 0.47± 0.02 0.47± 0.02

FID 45.67± 0.02 38.98± 0.01 36.99± 0.01 36.43± 0.03 35.87± 0.02

The distances of different methods are shown in the table 2. Our method always scores the highest
LPIPS distance over the three domains. The FFHQ→Sketches is both evaluated with FID score
and LPIPS distance, and test model is the same model. So the proposed algorithm can improve the
fidelity and diversity simultaneously.

4.3 ABLATION STUDY

Effectiveness of modules. We evaluate the effectiveness of the proposed modules through both
FID and LPIPS trained from FFHQ to Sketches. As shown in Table 3, each part of our method can
improve the distillation performance. By combining the proposed MRD and SDD, we achieve the
best results both in FID and LPIPS.

Influence of queue size. The queue in the proposed Momentum Relation Distillation plays an
important role in capturing informative relation. We conduct ablation study on the choice of queue
size and show the result in Table. 4. It can be seen that both the diversity and fidelity becomes better
as the queue size increases. The improvement is marginal when we increase the queue size from 12
to 16, so we choose k = 16 for other experiments as default.

Figure 5: Patch Discriminator outputs of with and without SDD. The patch discriminator of with
SDD has better discrimination than that of without SDD.

Impact of SDD. We conduct comparative experiments to analyze the role of Source Discrimi-
nation Distillation. We show the averaged value of the patch-discriminator outputs after softplus
operation. Note that the discriminator loss is calculated by Dfake −Dreal, which measures the dis-
crimination. It can be observed from Figure 5 that the gap between Dfake and Dreal of the model
with SDD is greater than that without SDD. In other words, SDD can help the patch-discriminator
to distinguish real/fake images, and lead the generator to create high quality images.
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Figure 6: Results with different sizes of training set.

Training data size. We explore our method on different number of training data. As shown in
Figure 6, the model overfits when only one image is available, but performs well enough with 5
target images. Quantitatively, we achieve 40.87 FID and 0.46 LPIPS under 5-shot setting, which is
even better than CDC under 10-shot. This further demonstrates the superior of our method.

Figure 7: Generalization on different domains.

4.4 GENERALIZATION OF OUR METHOD

In order to verify the generalization and robustness of our method, we also conduct experiments
on different source and target domain pairs: (1) FFHQ→Rapheal painting, (2) Church→Haunted
church and (3) LSUN Cat→AFHQ Dog. The results of our method are shown in Figure 7, where the
source and target results are generated with the same latent codes. It can be found that target images
preserve the structures (e.g. pose, shape) of source images while render the style of target domain.
Given that data are difficult to obtain in some target domains, we can achieve better generation by
knowledge distillation between the relevant source and target domain.

5 CONCLUSION

In this work, we propose to exploit knowledge distillation image generation with few data. It is
based on Momentum Relation Distillation and Source Discrimination Distillation, for generator and
discriminator respectively. Momentum Relation Distillation creates a dictionary of feature tensors
with momentum update for relation distillation, and Source Discrimination Distillation makes use
of source data for discrimination distillation. We demonstrate that our method can work well on
different relevant domains and performs better against other methods.
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A APPENDIX

We conduct abundant experiments on different pairwise source and target domains. Figure 8 shows
our results on FFHQ to other face domains. The results show excellent effects both in structure
preservation and style transformation.

We also leverage our method on animal face domains. Figure 7 (LSUN Cat→ AFHQ Dog) and 9
(LSUN Cat→ AFHQ wild (Choi et al., 2020)) show that animals’ faces can simply transfer to each
other, but it is hard for human faces to animal faces. As shown in Figure 9, although target images
of FFHQ → LSUN Dog present style of dogs, but the structure of human faces still exist. That is
because there is too much difference between human face and animal face, while animals (e.g. cat,
dog, tiger, fox) have similar faces.
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Figure 8: Experiments on FFHQ to other human face domains.
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Figure 9: Experiments on face domains.
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