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Abstract
Diffusion models accomplish remarkable success
in data generation tasks across various domains.
However, the iterative sampling process is com-
putationally expensive. Consistency models are
proposed to learn consistency functions to map
from noise to data directly, which allows one-step
fast data generation and multistep sampling to im-
prove sample quality. In this paper, we study the
convergence of consistency models when the self-
consistency property holds approximately under
the training distribution. Our analysis requires
only mild data assumption and applies to a family
of forward processes. When the target data distri-
bution has bounded support or has tails that decay
sufficiently fast, we show that the samples gen-
erated by the consistency model are close to the
target distribution in Wasserstein distance; when
the target distribution satisfies some smoothness
assumption, we show that with an additional per-
turbation step for smoothing, the generated sam-
ples are close to the target distribution in total
variation distance. We provide two case stud-
ies with commonly chosen forward processes to
demonstrate the benefit of multistep sampling.

1. Introduction
Diffusion models have been widely acknowledged for their
high performance across various domains, such as material
and drug design (Xu et al., 2022; Yang et al., 2023; Xu et al.,
2023), control (Janner et al., 2022), and text-to-image gener-
ation (Black et al., 2023; Oertell et al., 2024). The key idea
of diffusion models is to transform noise into approximate
samples from the target data distribution by iterative de-
noising. This iterative sampling process typically involves
numerical solutions of SDE or ODE, which is computation-
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ally expensive especially when generating high-resolution
images (Ho et al., 2020; Song et al., 2021; Lu et al., 2022;
Zhang & Chen, 2023; Song & Dhariwal, 2024).

Consistency model (CM) (Song et al., 2023) is proposed
to accelerate sample generation by learning a consistency
function that maps from noise to data directly. It allows
both one-step fast data generation and multistep sampling
to trade computation for sample quality. Consistency model
can be trained with consistency distillation or consistency
training (Song et al., 2023), which enforce that any points on
the same trajectory specified by the probability-flow ODE
are mapped to the same origin, i.e. the self-consistency prop-
erty. Despite the empirical success of consistency models,
their theoretical foundations remain inadequately under-
stood. In particular, recent studies (Luo et al., 2023; Song
& Dhariwal, 2024; Kim et al., 2024) observe diminishing
improvements in sample quality when increasing the num-
ber of steps in multistep sampling. They find that two-step
generation enhances the sample quality considerably while
additional sampling steps provide minimal improvements.
Such phenomenon motivates the theoretical understanding
on consistency models, especially on multistep sampling.

The analysis of consistency models can be challenging for
the following reasons:

Mismatch on the initial starting distributions: Consis-
tency models generate samples from Gaussian noise (Song
et al., 2023) while the ground truth reverse processes (i.e.,
the denoising process) start from the marginal distribution
of the forward process, which is unknown in practice. As
a consequence, we need to analyze the error caused by the
mismatch in starting distributions. This difficulty shows
up even if we have access to the ground truth consistency
function: the consistency function is not Lipschitz even
for distributions as simple as Bernoulli, which makes it
challenging to analyze this error pointwise. Because the
consistency function is the solution to the probability flow
ODE, it is natural to consider the stability of the initial value
problem. However, without a strong assumption on the con-
sistency function, this approach results in an upper bound
with exponential dependency in problem parameters (see
Appendix A).
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Approximate self-consistency: While the training pro-
cess enforces the self-consistency property, it is impractical
to obtain a consistency function estimate with the point-wise
exact self-consistency due to various error sources during
training (e.g., optimization errors, statistical errors from fi-
nite training examples). It is thus natural to focus on the case
where the consistency estimator only has approximate self-
consistency under the training distribution. The key chal-
lenge is how to transfer the approximate self-consistency
measured under the training distribution to the quality of the
generated samples (e.g., Wasserstein distance between the
learned distribution and the ground truth distribution).

Complexity of multistep sampling: We still have limited
understanding of the theoretical advantages of performing
multistep sampling during inference steps of CM. When
performing multistep inference, we need to apply the consis-
tency estimator repeatly to the distributions that are different
from its original training distribution. Since we can only
guarantee approximate self-consistency under the training
distribution, analyzing the benefit of multistep sampling
requires us to carefully bound the divergence between the
training distributions and the test distributions where consis-
tency estimator will be applied during inference time.

1.1. Our Contributions

In this paper, we analyze the convergence of consistency
models under minimal assumptions and provide guarantees
in both Wasserstein distance and Total Variation distance.

Guarantees in Wasserstein distance. Given an arbitrary
distribution with bounded support, our main theorem es-
tablishes guarantees in Wasserstein distance for multistep
sampling with a general set of forward processes and an
approximate self-consistent consistency function estimator.
The assumption in our result is much weaker than those in
previous works. Previous works make an implicit assump-
tion on both the target distribution and the forward process.
They assume the ground truth consistency function to be
Lipschitz. In contrast, our result only assumes that the target
distribution has bounded support. In addition, our analysis
applies to a broad class of forward processes that captures
both Variance Preserving and Variance Exploding SDEs as
forward processes, whereas previous work has focused only
on the former.

For illustration purposes, we summarize the instantiation
of our main result applied to the Ornstein-Uhlenbeck (OU)
process:

Theorem 1 (informal, see Theorem 2 and Corollary 1).
Suppose the consistency function estimate is ϵ2 accurate
and the support of the target distribution Pdata is bounded
by R, then one-step sampling returns a distribution that

is
(
ϵ log R3

ϵ2

)
-close to Pdata in W2 distance; two-step sam-

pling returns a distribution that is
(
ϵ log R2

ϵ

)
-close to Pdata

in W2 distance.

Our error guarantee scales peacefully in problem parame-
ters and is dimension-free. It shows that two-step sampling
reduces the error by half in the ideal case (ϵ ≪ 1). Our
analysis also suggests that further improvements with mul-
tistep sampling is unclear even with an increased number
of sampling steps. This observation is consistent with the
findings from empirical studies. Additionally, the bounded
support assumption can be further relaxed to a light-tail
condition.

Guarantees in Total Variation distance. Standard con-
sistency model cannot guarantee closeness in Total Variation
(TV) distance, as the consistency loss enforces pointwise
distance, which differs fundamentally from the structure of
TV distance. However, we show that incorporating an addi-
tional smoothing step provides a guarantee in TV when the
target distribution meets certain smoothness assumptions.

1.2. Related Work

The theory of diffusion models has been widely studied.
Chen et al. (2023b), Lee et al. (2023), and Chen et al.
(2023a) study the convergence of score-based generative
model and provide polynomial guarantees without assuming
log-concavity or a functional inequality on the data. Our
data assumption is similar to that of Lee et al. (2023), which
is quite minimal. Recently, deterministic samplers with
probability-flow ODE have been explored from the theoreti-
cal perspective (Li et al., 2023; Chen et al., 2024; Li et al.,
2024a).

Consistency model, which learns a direct mapping from
noise to data via trajectory of probability-flow ODE, is pro-
posed to accelerate the sampling step (Song et al., 2023).
Song et al. (2023) provides asymptotic theoretical results
on consistency models. At a high level, they show that
if the consistency distillation objective is minimized, then
the consistency function estimate is close to the ground
truth. However, they assume the consistency function esti-
mator achieves exact self-consistency in a point-wise man-
ner. Such a point-wise accurate assumption is not realistic
and cannot even be achieved in a standard supervised learn-
ing setting.

Lyu et al. (2023), Li et al. (2024b), and Dou et al. (2024) pro-
vide the first set of theoretical results towards understanding
consistency models. Lyu et al. (2023) shows that with small
consistency loss, consistency model generates samples that
are close to the target data distribution in Wasserstein dis-
tance or in total variation distance after modification. Li et al.
(2024b) focuses on consistency training. Dou et al. (2024)
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provides the first set of statistical theory for consistency
models. However, we notice that all of these works require
a strong assumption on the data distribution. Specifically,
they assume that the ground truth consistency function is
Lipschitz. While the Lipschitz condition allows a direct ap-
proach to control the error of mismatch on the initial starting
distribution, it’s unclear how large the Lipschitz coefficient
is. Intuitively, when the target distribution has two modes,
the derivative of the ground truth consistency function can
become large near the intersection of the pre-images of
the two modes. This occurs because a small perturbation
in the input can cause the output of the consistency func-
tion to shift from one mode to the other. This intuition
is formalized in Appendix A. To overcome this, we use
the data-processing inequality, which only requires approxi-
mate self-consistency and minor assumptions on target data
distribution. Moreover, our upper bound is polynomial in
problem parameters. Additionally, all of these works focus
only on variance preserving SDEs while our results apply
to a general family of forward processes.

2. Preliminaries
Score-based generative models (Song et al., 2021) and con-
sistency models (Song et al., 2023) aim to sample from an
unknown data distribution Pdata in Rd. We review some ba-
sic concepts and introduce relevant notations in this section.

Score-based generative model: A score-based generative
model, or diffusion model (Ho et al., 2020; Song et al., 2021)
defines a forward process {xt}t∈[0,T ] by injecting Gaussian
noise into the data distribution Pdata in d-dimensional space
Rd, where x0 ∼ Pdata and T > 0. In this paper, we focus
on a general family of forward processes characterized by
stochastic differential equations (SDEs) with the following
form:

dxt = h(t)xtdt+ g(t)dwt, x0 ∼ Pdata, (1)

where wt is the standard Wiener process. It is known that
the marginal distribution of xt in (1) is Gaussian condition-
ing on x0 (Kingma et al., 2021; Lu et al., 2022):

xt|x0 ∼ N
(
αtx0, σ

2
t I

)
, ∀t ∈ [0, T ],

where αt, σt ∈ R+ is specified by h(t) =
d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t with proper initial

conditions. αt and σ2
t specifiy the noise schedule of the

forward process. The noise schedule
{
(αt, σ

2
t )
}
t∈[0,T ]

and
initial data distribution determine the marginal distribution
of the forward process {Pt} ∈ [0, T ], where xt ∼ Pt and
P0 = Pdata. We use {pt}t∈[0,T ] to denote the probability
density functions (PDFs) of {Pt}t∈[0,T ].

The forward process specified by (1) converges to Gaussian
distribution N (0, σ2

t I) for some properly chosen h(·) and

g(·) (Bakry et al., 2014; Song et al., 2021) (interested read-
ers may refer to Lemma 3 for an explicit dependency on the
noise schedule). The convergence of the forward process
facilitates a procedure to generate samples from Pdata, ap-
proximately: generate a sample fromN (0, σ2

T I) and feed it
to an approximate reversal of (1). However, the reverse-time
SDE of (1) is usually computationally expensive.

It is known that the following probability flow ordinary
differential equation (PF-ODE) generates the same distribu-
tions as the marginal distribution of (1) (Song et al., 2021):

dxt

dt
= h(t)xt −

1

2
g2(t)∇ log pt(xt), x0 ∼ Pdata. (2)

The time-reversal of (2) defines a deterministic map-
ping from noise to data, which facilitates consistency
model (Song et al., 2023) as a computationally efficient
one-step sample generation.

Consistency models: A consistency model (Song et al.,
2023) is an alternative approach to generate samples from
Pdata: instead of solving the reversal of the SDE in (1), one
could directly learn a consistency function that maps a point
on a trajectory of (2) to its origin. For any x and t0 ≥ 0,
let {φ(t;x, t0)}t∈[0,T ] be the trajectory specified by (2) and
initial condition xt0 = x.1 The (ground truth) consistency
function of (2) is defined as:2

f⋆(x, t) := φ(0;x, t), ∀x ∈ Rd, t ≥ 0. (3)

A consistency function enjoys the self-consistency property:
if (x, t) and (x′, t′) are on the same trajectory of (2), they
are mapped to the same origin, i.e. f⋆(x, t) = f⋆(x′, t′).3

The self-consistency property of the ground truth consis-
tency function f⋆(·, ·) enlightens the training for consis-
tency function via enforcing the self-consistency property
instead of learning the mapping from noise to data directly.
At a high level, in the training stage, we first discretize the
interval [0, T ] with the following partition:

T : 0 = τ0 < τ1 < τ2 < · · · < τM = T.

1Specifically, φ(·;x, t0) is the solution to the ODE initial value
problem specified by (2) and xt0 = x

2(Song et al., 2023) stops at time t = δ for some small δ > 0

and accepts f̂(x, t) = φ̂(δ;x, t), an estimate for φ(δ;x, t) as
the approximate samples to avoid numerical instability. In this
paper, we ignore this numerical issue to obtain a cleaner theoretical
analysis.

3At a high level, this can be shown by contradiction: suppose
(x′, t′) lies on the trajectory of (x, t), meaning φ(·;x, t), the tra-
jectory of (x, t) and φ(·;x′, t′), the trajectory of (x′, t′) intersect
at (x′, t′). Then both trajectories satisfy the initial condition that
takes value x′ at time t′. By Picard’s existence and uniqueness
theorem, the trajectories of φ(·;x, t) and φ(·;x′, t′) are identical
and have the same origin.
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For simplicity, we assume the partition is equal, i.e. there
exists ∆τ > 0, s.t. τi = ∆τ ·i, for i = 1, . . . ,M . (We defer
the adaption to non-uniform distization to Appendix G) We
then enforce the self-consistency property on each partition
point by finding some f̂(·, ·), s.t.

Exτi
∼Pτi

[∥∥∥f̂(xτi , τi)− f̂(φ(τi+1;xτi , τi), τi+1)
∥∥∥2
2

]
(4)

is small for all i = 0, 1, . . . ,M − 1. This strategy is jus-
tified by our theoretical results in Section 3: even if the
self-consistency property is violated slightly, the consistency
function estimation will produce high-quality samples. In
practice, the trajectories of the PF-ODE (2) are unknown, so
the self-consistency objective cannot be optimized directly.
With this regard, consistency distillation, which utilizes a
pre-trained score function estimate, and consistency train-
ing, which builds an unbiased estimate for the score function,
are proposed to approximate the transition on the trajecto-
ries of the PF-ODE. Interested readers can find the details
in (Song et al., 2023).

Multistep sampling: Given a consistency model estimate
f̂(·, ·), we could generate approximate samples by feeding
Gaussian noise into f̂(·, ·) using single-step or multistep
sampling. Given x̂T ∼ N (0, σ2

T I), one can generate sam-
ple in a single step by calculating f̂(x̂T , T ). Furthermore,
one can also design a sequence of time steps by selecting
N ≥ 1 steps in the training partition T :

T = t1 > t2 > · · · > tN > 0, (5)

We refer to the sequence {ti}i=1:N ⊆ T \ {0} as sampling
time schedule. Given this sampling time schedule, one can
alternatingly denoise by calculating x̂

(i)
0 = f̂(x̂

(i)
ti , ti) and

inject noise by drawing x̂
(i+1)
ti+1

∼ N (αti+1 x̂
(i)
0 , σ2

ti+1
I),

where x̂
(1)
t1 = x̂T ∼ N (0, σ2

T I) and i = 1, . . . , N . The
x̂
(N)
0 in the last step is the output of the sampling pro-

cess. When N = 1, this degenerates to single-step sam-
pling. For completeness, we summarize this process in
Algorithm 1 in Section B. For a concise presentation, we
defines

{
P̂ti

}
i=1:N

to be the sequence of marginal distri-

butions of {x̂(i)
ti }i=1:N and define

{
P̂

(i)
0

}
i=1:N

to be the

sequence of marginal distributions of
{
x̂
(i)
0

}
i=1:N

. In the

following, we may reuse f̂(·, ·) for operation on distribu-
tions. Specifically, for any distribution P and t ≥ 0,we use
f̂(P, t) to denote the distribution of f̂(x, t) when x ∼ P .
In Section 3, we study how multistep sampling influences
the sample quality from the theoretical perspective.

Performance metric: In this paper, we study the sample
quality generated by a consistency function estimate f̂(·, ·)

and the multistep sampling procedure introduced above. To
quantify the sample quality, we establish upper bounds on
2-Wasserstein distance (W2) in Euclidean norm, and upper
bounds on Total Variation (TV) distance. The 2-Wasserstein
distance between two distributions P and Q is defined as:

W2(P,Q) := inf
γ∈Γ(P,Q)

√
E(x,y)∼γ

[
∥x− y∥22

]
,

where Γ(P,Q) is the set of all joint distributions such that
the marginal distribution over the first random variable is
P and the marginal distribution over the second random
variable is Q.

Total Variation distance between two distributions P and Q
is defined as:

TV(P,Q) :=
1

2
∥p(x)− q(x)∥1 ,

where p(·) is the PDF of P and q(·) is the PDF of Q.

3. Main Results
In this section, we present theoretical guarantees on sample
quality for consistency models with multistep sampling.
We first present two sets of results for the general forward
process in (1) with arbitrary sampling time schedule: in
Section 3.1, we demonstrate that the generated samples are
close to the target data distribution Pdata in W2 when Pdata
has bounded support or satisfies some tail condition; with
an additional smoothing step, we show guarantee in TV
distance for Pdata with smoothness condition in Section 3.2.
To illustrate the general results and gain better understanding
on the multistep sampling, we choose two special SDEs as
forward processes and design sampling time schedules in
Section 3.3.

The natural central assumption in our theoretical results is a
good consistency function estimate:
Assumption 1 (A proper consistency model). Suppose
f̂(x, 0) = x for all x ∈ Rd and there exists ϵcm > 0,
s.t. (4) ≤ ϵ2cm for all i = 0, 1, . . . ,M − 1.

The condition related to the accuracy of the consistency
function estimate is necessary: we cannot generate good
samples with an arbitrary function. Instead of assuming
the output of f̂(·, ·) and f⋆(·, ·) to be close directly, we
only require the self-consistency property to hold approx-
imately under its training distribution, which aligns with
the objective function when training for f̂(·, ·). Note that
our assumption does not imply f̂ will be self-consistent in a
point-wise manner.

The self-consistency objective (4) can be approximated via
consistency distillation or consistency training (Song et al.,
2023). Consistency distillation uses a pre-trained score func-
tion (an estimation for ∇ log pt(·)) to approximate φ(·; ·, ·)
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and train for f̂(·, ·) with target network and online network.
In Section F, we incorporate consistency distillation with
minor modifications into our framework without additional
data assumptions. On the other hand, consistency train-
ing constructs an unbiased estimator for ∇ log pt(xt) to
approximate (4). Theorem 2 of Song et al. (2023) shows
that the self-consistency loss (4) can be approximated by
consistency training under proper conditions when ∆τ is
small.

In (4), we use ∥·∥22 as an error metric, which agrees with
the choice in practice (Luo et al., 2023; Song et al., 2023).
The metric ∥·∥22 aligns better with the theoretical analysis:
on the one hand, Lemma 2 demonstrates that this metric
translates naturally to the 2-Wasserstein metric W2; on the
other hand, ∥·∥22 is more suitable for the multi-step sampling
because the squared error contracts nicely in the forward
process with Gaussian noise as shown by Lemma 1 and 3.

3.1. Guarantees in Wasserstein Metric

We now provide upper bounds on the sampling error in W2

distance.

Theorem 2 (W2 error for distributions with bounded sup-
port). Suppose Assumption 1 holds. Suppose there exists
R > 0, s.t. supx∈supp(Pdata) ∥x∥2 ≤ R and

∥∥∥f̂(x, t)∥∥∥
2
≤ R

for all (x, t) ∈ Rd×[0, T ], Let P̂ (N)
0 be the output of N -

step sampling. Then W2(P̂
(N)
0 , Pdata), the error in W2 is

upper bounded by:

2R

(
α2
t1

4σ2
t1

R2

︸ ︷︷ ︸
(i)

+

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2︸ ︷︷ ︸

(ii)

)1/4

+ tN
ϵcm
∆τ︸ ︷︷ ︸

(iii)

, (6)

where ϵcm is the consistency loss. R is the diameter of distri-
bution. αt,σt are the drift and variance factor in the forward
diffusion process. ∆τ is the time step size according to the
partition.

Compared to Pdata = f⋆(PtN , tN ), the sampling error of
P̂

(N)
0 = f̂(P̂tN , tN ) comes from: (i). the error of starting

from Gaussian distribution N (0, σ2
T I) instead of PT ; (ii)

the error accumulated in the previous sampling steps; (iii).
using an inaccurate consistency function estimate f̂(·, ·) in-
stead of f⋆(·, ·). The term α2

t

σ2
t

characterizes the convergence
of the forward process as demonstrated by Lemma 3. It con-
verges to 0 quickly for reasonable forward SDE (1). Asymp-
totically, the right hand side of (6) goes to 0 as t1 →∞ and
ϵcm → 0.

One implication from (6) is: increasing the number of sam-
pling steps does not necessarily improve the sample quality.

When using more sampling steps: on one hand,
α2

t1

4σ2
t1

R2 +

∑N
j=2

α2
ti

4σ2
ti

t2i−1
ϵ2cm
∆τ2 , an upper bound on KL(PtN ∥ P̂tN ),4

accumulates; on the other hand, tN ϵcm
∆τ , the error from an in-

accurate consistency function decreases due to a shorter tN .
The design of sampling time schedule {ti}i=1:N , which
depends on the noise schedule

{
(αt, σ

2
t )
}
t
, is crucial in

achieving good sample quality. We defer design choices
for some specific forward processes and simplified upper
bounds to Section 3.3. Indeed, both our simulation in Ap-
pendix I and the results in Luo et al. (2023) provide empiri-
cal evidence that increasing the number of sampling steps
can harm the sample equality.

When ∆τ decreases, on the one hand, there would be more
intermediate steps in the error decomposition of the consis-
tency function estimate given a fix t (see Lemma 2); on the
other hand, using a smaller ∆τ allows a smaller tN and may
potentially decrease ϵcm as well.

The technique in Theorem 2 can be extended to distributions
without finite support but with proper tail conditions. The
detailed discussion is presented in Appendix D.

3.2. Guarantee in Total Variation Distance

In the sampling process of consistency models, it is non-
trivial to control the error in TV distance. This diffi-
culty arises even when we sample with a single step and
have access to the exact marginal distribution PT . As-
sumption 1 ensures that f̂(PT , T ) is close to f⋆(PT , T )
in W2. However, W2 and TV have very different structures:
W2 controls the pointwise distance between distributions
while TV only focuses on the density of the distribution.
Even if W2(P̂

(N)
0 , Pdata) is small, the densities of f̂(PT , T )

and f⋆(PT , T ) may not overlap well (see Figure 1a) and
TV(f̂(PT , T ), f

⋆(PT , T )) can be as large as 1 if f̂(PT , T )
is nearly deterministic while f⋆(PT , T ) has large variance.
As a result, it’s not possible to control TV distance only
with conditions on W2 distance in general.

One solution is to perturb P̂
(N)
0 slightly with Gaussian noise

N (0, σ2
ϵ ). With this perturbation, P̂ (N)

0 ∗ N (0, σ2
ϵ ) and

Pdata ∗ N (0, σ2
ϵ ) could have better overlap and be closer

in TV (see Figure 1b), where we use P ∗Q to denote the
convolution of distribution P and Q. When Pdata satisfies
smoothness assumption, the perturbation will not change
Pdata too much so TV(Pdata ∗ N (0, σ2

ϵ ), Pdata) is small (See
Figure 1c).

Theorem 3 (TV error for distributions under smoothness
assumption). Suppose Assumption 1 holds. Let pdata(·) be
the PDF of Pdata. If log pdata(·) is L-smooth, then for all
σϵ > 0, the error in TV distance of the smoothed output, i.e.

4We use KL(P ∥ Q) to denote the Kullback–Leibler (KL)
divergence of distribution P from distribution Q, which is defined
as: KL(P ∥ Q) :=

∫
x∈Rd p(x) log

p(x)
q(x)

dx.

5
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P̂
(N)
0

Pdata

x0

(a) TV distance between P̂
(N)
0 and Pdata.

P̂
(N)
0 ∗ N (0, σ2

ϵ )

Pdata ∗ N (0, σ2
ϵ )

x0

(b) TV distance between P̂
(N)
0 ∗ N (0, σ2

ϵ I)
and Pdata ∗ N (0, σ2

ϵ I)).

P̂
(N)
0 ∗ N (0, σ2

ϵ )

Pdata ∗ N (0, σ2
ϵ )

x0

(c) TV distance between Pdata ∗ N (0, σ2
ϵ I)

and Pdata.

Figure 1: Smoothing by additional perturbation

TV(P̂
(N)
0 ∗ N (0, σ2

ϵ I), Pdata), is bounded by:

√√√√ α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2

+
1

2σϵ
tN

ϵcm
∆τ

+ 2dLσϵ.

Compared to Theorem 2, the upper bound in Theorem 3
has an additional term 2dLσϵ. This is the “bias” induced
by the additional perturbation N (0, σ2

ϵ I). To get a tighter

bound, we may choose σϵ =
√

tN ϵcm
4dL∆τ , and the upper bound

becomes:
√

α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+
∑N

j=2

α2
tj

4σ2
tj

t2j−1
ϵ2cm
∆τ2 +

2
√
tNdL ϵcm

∆τ .

3.3. Case Studies on Multistep Sampling

To illustrate the theoretical guarantee and understand the
benefits of multistep sampling, we conduct case studies with
two common forward processes. For simplicity, we assume
Pdata to have bounded support and ignore the rounding issues
when selecting sampling time schedule {ti}i=1:N from the
training time partition T .

Case study 1: we consider the Variance Preserving SDE
in Song et al. (2021) with β(t) = 2 as the forward process:

dxt = −xtdt+
√
2dwt, x0 ∼ Pdata. (7)

This is also known as the Ornstein-Uhlenbeck (OU) pro-
cess and is studied by Chen et al. (2023b) in the con-
text of score-based generative models. The forward pro-
cess defined by (7) has noise schedule αt = e−t and
σ2
t = 1 − e−2t and its marginal distribution is xt ∼
N (e−tx0, (1 − e−2t)I) conditioning on x0. Theorem 2

guarantees that W2(P̂tN , Pdata) is bounded by

2R

(
e−2t1R2

4(1− e−2t1)
+

N∑
j=2

e−2tj t2j−1

4(1− e−2tj )

ϵ2cm
∆τ2

)1/4

+tN
ϵcm
∆τ

.

(8)
In this case study, we focus on the design of the sampling
time schedule based on upper bound (8). To develop a
reasonable multistep sampling procedure, we make the fol-
lowing two practical assumptions: ∆τ ≪ 1 and ϵcm

∆τ < R.
The condition ∆τ ≪ 1 allows for selecting a small final
sampling step tN . However, as we demonstrate below, an
ultra-small tN is not beneficial. The assumption ϵcm

∆τ < R
ensures that the consistency model yields a meaningful self-
consistency loss. 5 These assumptions are used solely for
deriving the sampling time schedule; our theoretical results
do not depend on them.

One strategy for designing {ti}i=1:N is to minimize the
upper bound (8). We first establish a lower bound on (8) as
a baseline. Without loss of generality, we assume t1 ≥ 2. (8)
can be lower bounded as:

(8) ≥R
√

ϵcm
∆τ

 N∑
j=2

tj
e2tj − 1

(tj−1 − tj)

1/4

+ tN
ϵcm
∆τ

≥R
√

ϵcm
∆τ

(∫ 2

tN

xdx

e2x − 1

)1/4

+ tN
ϵcm
∆τ

,

where the first step is because 0 < tj ≤ tj−1 and the sec-
ond step is because x

e2x−1 monotonically decreases. Let

c1, c2 > 0 be absolute constants, s.t.
(∫ 2

c1
xdx

e2x−1

)1/4

= c2.

Then if tN ≥ c1, (8) ≥ c1
ϵcm
∆τ = Ω

(
ϵcm
∆τ

)
; if tN < c1,

(8) ≥ c2R
√

ϵcm
∆τ = Ω

(
R
√

ϵcm
∆τ

)
. In either case, (8) =

5When ϵcm
∆τ

≥ R, (8) = Ω(R), which is uninformative be-
cause the support of Pdata is already bounded by R. This trivial
scenario is not the focus of this case study.
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Ω
(
min

{
ϵcm
∆τ , R

√
ϵcm
∆τ

})
. The condition ϵcm

∆τ < R further
implies (8) = Ω

(
ϵcm
∆τ

)
. Given this lower bound, one heuris-

tic is to set every term in (8) to Θ̃
(
ϵcm
∆τ

)
) to match this

baseline approximately, which requires:

ti ≥ log
R3∆τ2

ϵ2cm
, if i = 1; ti ≥ log

R2∆τ

ϵcm
, o.w.. (9)

With this heuristic, a two-step sampling procedure shows an
improvement in sample quality:

Corollary 1 (Two-step sampling with OU process). Sup-
pose the conditions in Theorem 2 are satisfied. Suppose
αt = e−t, σ2

t = 1 − e−2t. Then for t1 = log R3∆τ2

ϵ2cm
,

t2 = log R2∆τ
ϵcm

, we have:W2(P̂
(1)
0 , Pdata) ≤ ϵcm

∆τ

(
log R3∆τ2

ϵ2cm
+O(1)

)
,

W2(P̂
(2)
0 , Pdata) ≤ ϵcm

∆τ

(
log R2∆τ

ϵcm
+O

(√
log R2∆τ

ϵcm

))
.

(10)

Because ϵcm
∆τ < R, the leading term is strictly reduced

in the second sampling step. Furthermore, if ϵcm ≈
∆τ , W2(P̂

(2)
0 , Pdata) ≈ 2

3W2(P̂
(1)
0 , Pdata); if ϵcm ≪ ∆τ ,

W2(P̂
(2)
0 , Pdata) ≈ 1

2W2(P̂
(1)
0 , Pdata). Due to the constraint

in (9), further improvement with this heuristic is challeng-
ing. This intuition aligns with the empirical result in Luo
et al. (2023). Our simulation in Section I demonstrates that
the sampling strategy in Corollary 1 achieves accuracy com-
parable to baseline strategies while requiring significantly
fewer sampling steps.

Case study 2: In the second case study, we consider the
following Variance Exploding SDE (Song et al., 2021; Kar-
ras et al., 2022) as the forward process:

dxt =
√
2tdwt, (11)

which is used in Song et al. (2023) and Song & Dhariwal
(2024) as the forward process for consistency models. The
noise schedule is (αt, σ

2
t ) = (1, t2) and the marginal distri-

bution of xt conditioning on x0 is: xt ∼ N (x0, t
2I).The

upper bound in (6) is simplified to:

2R

(
1

4t21
R2 +

N∑
j=2

1

4t2j
t2j−1

ϵ2cm
∆τ2

)1/4

︸ ︷︷ ︸
(i)

+ tN
ϵcm
∆τ︸ ︷︷ ︸

(ii)

. (12)

This implies a trade-off in multi-step sampling with this
particular forward process (11) when increasing the number
of steps. Roughly speaking, (i) in (12) increases due to
more terms with more steps while tN becomes smaller and
(ii) will decrease. To design the sampling time schedule
strategically, similar to Case study 1, we first estimate the

lower bound of equation (12). For an arbitrary sampling
strategy t1 ≥ t2 ≥ . . . ≥ tN , the summation inside term (i)
can be lower bounded by:

N∑
j=2

t2j−1

t2j
≥

N∑
j=2

tj(tj−1 − tj)

t2j
=

N∑
j=2

tj−1 − tj
tj

≥
∫ t1

tN

dt

t
= log

t1
tN

.

A schedule defined by a geometric series approximates this
lower bound well. Letting tj = tNρN−j with ρ > 1, we

have
∑N

j=2

t2j−1

t2j
= ρ2 logρ

t1
tN

= ρ2

log ρ log
t1
tN
≥ 2e log t1

tN
,

where equality holds when ρ =
√
e. Substituting this into

equation (12), we obtain:

2R

(
R2

4t21
+

2eϵ2cm

4∆τ2

(
log t1 + log

1

tN

))1/4

+ tN
ϵcm

∆τ
.

To minimize this expression, we choose t1 =
√

1
e
R∆τ
ϵcm

. As
tN → 0, the second term decreases linearly, while the first
term increases slowly. Therefore, a reasonable choice is
tN = ∆τ , a small constant. To summarize, the ti’s are
specified by: (ignore the rounding issue)

ti = t1e
1−i
2 , i = 1, 2, . . . , N, (13)

where t1 =
√

1
e
R∆τ
ϵcm

and N = 1 + 2 log t1
∆τ . With this

choice, we obtain the following error guarantee:
Corollary 2 (Multistep sampling with the variance explod-
ing SDE). Suppose the conditions in Theorem 2 are satisfied.
Suppose αt = 1, σ2

t = t2. For {ti}i=1:N defined in (13),
we have: W2(P̂

(N)
0 , Pdata) ≤ Õ

(
R
√

ϵcm
∆τ

)
.

For comparison, the best error rate of (12) is
O
(
R
(
ϵcm
∆τ

)1/3)
when using a single sampling step

(N = 1). By choosing the sampling schedule strategically,
we see a clear improvement on the error rate when using
multiple sampling steps.

To summarize, the convergence of a forward process in (1)
is characterized by α2

tσ
−2
t (according to Lemma 3). The

forward process (11) has a polynomial convergence rate
α2
tσ

2
t
−2

= t−2 while (7) enjoys a much faster exponential
rate α2

tσ
−2
t ≈ e−2t. The exponential convergence results

in a shorter training step T , fewer sampling steps N , and
better sample quality, provided that Assumption 1 holds
with the same ϵcm in both cases.

4. Technical Overview
In this section, we present the high-level ideas in the proof
for our main result Theorem 2 since proof for Theorem 3
shares the same main building blocks. The proof for Theo-
rem 2 consists of three main components:

7



Convergence of Consistency Model with Multistep Sampling under General Data Assumptions

Error decomposition: intuitively, the error comes from:
(i) inaccurate consistency function f̂(·, ·) and (ii) sampling
from Gaussian distribution N (0, σ2

t1) instead of perturbed
data distribution Pt1 . (i) is controlled by the consistency
loss Assumption 1 and (ii) is controlled by the convergence
of the forward process Lemma 3. However, the error (i)
and (ii) interact with each other in the multi-step sampling.
We handle this complication progressively, starting with the
error decomposition in the final sampling step:

W2(P̂
(N)
0 , Pdata) ≤W2(f̂(P̂tN , tN ), f̂(PtN , tN ))

+W2(f̂(PtN , tN ), f⋆(PtN , tN )).

Since the output of f̂(·, ·) is bounded, we could simplify
the first term with the TV distance, which is further up-
per bounded by KL(PtN ∥ P̂tN ) by Pinsker’s inequality
and data processing inequality. The second term is solely
controlled by the consistency loss ϵcm.

Recursion on KL(Pti ∥ P̂ti): we analyze
KL(PtN ∥ P̂tN ) via induction. First of all, the base
case KL(Pt1 ∥ P̂t1) is upper bounded using the conver-
gence of the forward process; the induction step connects
KL(Pti ∥ P̂ti) and KL(Pti+1

∥ P̂ti+1
). According to the

multi-step sampling, P̂ti and P̂ti+1
is connected by f̂(·, ti)

and the forward SDE as

P̂ti

f̂(·,ti)−−−−→ P̂
(i)
0

SDE−−→ P̂ti+1
.

In this process, f̂(·, ·) induced additional error while the
forward SDE reduces it with convergence α2

ti+1
σ−2
ti+1

. This
intuition is formalized by the error decomposition via chain
rule of KL divergence:

KL(Pti+1
∥ P̂ti+1

)

≤KL(Pti ∥ P̂ti) +
α2
ti+1

2σ2
ti+1

E
x∼Pti

[∥∥∥f⋆(x, ti)− f̂(x, ti)
∥∥∥2
2

]
.

Another possibility is to construct the recursive formula
for W2(P̂

(i)
0 , P0). However, recursion on W2 requires the

translation from KL to W2 that induces an R factor in each
induction step. When {ti}i is not carefully designed, the R
in each induction step results in an exploding upper bound
easily. Meanwhile, this translation requires the data distri-
bution to be bounded and hampers the application to more
general data distributions.

Error of consistency function evaluation: another im-
portant building block in our proof is the evaluation error
of consistency function, i.e.

∥∥∥f̂(x, τk)− f⋆(x, τk)
∥∥∥
2

for

τk ∈ T . Assumption 1 controls the difference in f̂(·, ·)
and f⋆(·, ·) indirectly by enforcing the consistency property.
We connect the evaluation error and consistency loss via a

stepwise decomposition. Conditioning on xτk ∼ Pτk , the
PF-ODE (2) defines a deterministic trajectory:

xτk

φ(τk−1;·,τk)−−−−−−−−→ xτk−1
· · · φ(τ1;·,τ2)−−−−−−→ xτ1

φ(τ0;·,τ1)−−−−−−→ xτ0 .

Assumption 1 guarantees that∥∥∥f̂(xτj , τj)− f̂(xτj−1 , τj−1)
∥∥∥
2

is small in the sense
of L2 error for each intermediate step j. We could make the
following decomposition:∥∥∥f̂(xτk , τk)− f⋆(xτk , τk)

∥∥∥
2
=

∥∥∥f̂(xτk , τk)− x0

∥∥∥
2

≤
k∑

j=1

∥∥∥f̂(xτj , τj)− f̂(xτj−1
, τj−1)

∥∥∥
2
.

The right-hand side is, roughly speaking ≤ τk
ϵcm
∆τ , We for-

malize this idea with Minkowski inequality in Lemma 2.

5. Conclusion
In this paper, we study the convergence of the consistency
model multistep sampling procedure. We establish guaran-
tees on the distance between the sample distribution and
data distribution in terms of both Wasserstein distance and
total variation distance. Our upper bound requires only mild
assumptions on the data distribution.

Future research directions include providing lower bounds
on multistep sampling and establishing end-to-end results
on consistency models.
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A. The Lipschitz Condition of Consistency Function
In this section, we consider a simple example, showing that the Lipschitz coefficeint of the ground truth consistency function
can be exponential in problem parameters. As a result, the Lipschitz-based assumptions can be limited.

We consider a 1-D example where the target distribution Pdata = P0 is Gaussian mixture distribution 0.5N(−1, σ2) +
0.5N(1, σ2), where 0 < σ ≪ 1. Let f(·) be the consistency function that maps samples from PT to samples from P0,
where T is sufficiently large. We consider OU-process as the forward process so PT ≈ N(0, 1). We will show that L, the
Lipschitz constant of f is at least exponential in 1

σ2 .

We first list a few supporting claims with brief explanations:

• C1: f(·) is continuous. This is because f is the solution to the PF-ODE, which is continuous under proper conditions;

• C2: f(0) = 0. This is by symmetry;

• C3: PrX∼N(0,σ2)[X ≥ t] ≤ exp
(
− t2

2σ2

)
;

• C4: for 0 < x≪ 1, PrX∼PT
[X ∈ [0, x]] ≥ 0.1x for T properly large. This is becuse PT is close to Gaussian for large

T .

Here is the proof: Let x ∈ (0, 1) be small enough s.t. f(x) ∈ (0, 1). Then, by C1-4:

0.1x ≤PrX∼PT
[X ∈ [0, x]] = PrX∼PT

[f(X) ∈ [f(0), f(x)]] = PrY∼P0 [Y ∈ [0, f(x)]]

≤0.5PrZ∼N(−1,σ2) [Z ∈ [0, f(x)]] + 0.5PrZ∼N(1,σ2) [Z ∈ [0, f(x)]]

≤PrZ∼N(0,σ2) [Z ≥ 1− f(x)] ≤ exp

(
− (1− f(x))2

2σ2

)
.

In particular, choose x = 10 exp
(
− 1

8σ2

)
, we have:

f

(
10 exp

(
− 1

8σ2

))
≥ 1

2
.

By definition,

L = sup
x,y

|f(x)− f(y)|
|x− y|

≥
f
(
10 exp

(
− 1

8σ2

))
− f(0)

10 exp
(
− 1

8σ2

)
− 0

≥ 1

20
exp

(
1

8σ2

)
.

This confirms that the Lipschitz constant L must grow at least exponentially in 1/σ2 in this example.

B. Multistep Sampling
We present the multistep sampling procedure in Algorithm 1. Compared to Algorithm 1 of (Song et al., 2023), we allow
different choices of noise schedule in Algorithm 1.

Algorithm 1 Multistep Consistency Sampling

1: Input: a trained consistency model f̂(·, ·), noise schedule
{
(αt, σ

2
t )
}
t∈[0,T ]

, sampling time schedule {ti}i=1:N , where
tN = T .

2: x̂
(1)
t1 ∼ N (0, σ2

t1I)
3: for i = 1 to N − 1 do
4: x̂

(i)
0 ← f̂(x̂

(i)
ti , ti)

5: x̂
(i+1)
ti+1

∼ N (αti+1
x̂
(i)
0 , σ2

ti+1
I)

6: end for
7: Output: x̂(N)

0 .

11
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C. Proof of Theorem 2
At a high level, we could decompose the W2 error W2(P̂

(N)
0 , Pdata) into:

W2(P̂
(N)
0 , Pdata) ≤W2(P̂

(N)
0 , f̂(PtN , tN )) +W2(f̂(PtN , tN ), Pdata)

=W2(f̂(P̂tN , tN ), f̂(PtN , tN ))︸ ︷︷ ︸
=:A1

+W2(f̂(PtN , tN ), f⋆(PtN , tN ))︸ ︷︷ ︸
=:A2

. (14)

In the error decomposition (14): the first term A1 is caused by an inaccurate noise distribution P̂tN and is controlled by the
KL divergence of PtN from P̂tN . We use the chain rule of KL divergence to derive a recursive formula for KL(Pti ∥ P̂ti),
where the initial term KL(Pt1 ∥ P̂t1) is bounded by the convergence of the forward diffusion process:

Lemma 1 (Decomposition of KL). Suppose f̂(·, ·) satisfies Assumption 1, then for all i = 1, . . . , N , we have:

KL(Pti ∥ P̂ti) ≤
α2
t1

2σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

i∑
j=2

α2
tj

2σ2
tj

t2j−1

ϵ2cm
∆τ2

.

We defer the proof of Lemma 1 to Section C.1. Given this result, we can bound A1 as:

A1 ≤2R
√
TV(f̂(P̂tN , tN ), f̂(PtN , tN ))

(
By Section 2.2.4 of (Rolland, 2022) and

∥∥∥f̂(x, t)∥∥∥
2
≤ R

)
≤2R

(
1

2
KL(f̂(PtN , tN ) ∥ f̂(P̂tN , tN ))

)1/4

(By Pinsker’s inequality)

≤2R
(
1

2
KL(PtN ∥ P̂tN )

)1/4

(By data processing inequality)

≤2R

 α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2

1/4

(By Lemma 1 with i = N)

≤2R

 α2
t1

4σ2
t1

R2 +

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2

1/4 (
Because supx∈supp(Pdata) ∥x∥2 ≤ R

)
. (15)

The second term A2 is caused by the difference between the pre-trained consistency function f̂(·, ·) and the ground truth
f⋆(·, ·), which is controlled by the consistency loss ϵcm.

Lemma 2. Suppose f̂(·, ·) satisfies Assumption 1 holds, then for all i = 0, 1, . . . ,M , we have:

(i) Ex∼Pτi

[∥∥∥f̂(x, τi)− f⋆(x, τi)
∥∥∥2
2

]
≤ τ2i

ϵ2cm
∆τ2 ;

(ii) W2(f̂(Pτi , τi), f
⋆(Pτi , τi)) ≤ τi

ϵcm
∆τ .

We defer the proof of Lemma 2 to Section C.1. Part (ii) of Lemma 2 shows that:

A2 ≤ tN
ϵcm
∆τ

. (16)

We finish the proof of Theorem 2 by combining (15) and (16).

C.1. Proof of Auxiliary lemmas

Proof of Lemma 1. We prove this statement via induction. At a high level, the base is proved by the convergence of the
forward process Lemma 3. We show the induction step by the chain rule of KL.

12
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We use D
(
·;αt, σ

2
t

)
to denote the operator on distributions defined by a noise schedule (αt, σ

2
t ). Specifically, given any

distribution P , D
(
P ;αt, σ

2
t

)
is the marginal distribution of x′, where x′|x ∼ N (αtx, σ

2
t ) and x ∼ P . When it is clear

from the context, we use D (·, t) as a shorthand. When i = 1, we can write P̂t1 = N (0, σ2
t1) with the diffusion operator and

a the dirac distribution:
P̂t1 = D

(
δ0;αt1 , σ

2
t1

)
,

where δ0 is the delta distribution at 0. By definition, Pt1 = D
(
P0;αt1 , σ

2
t1

)
. By Lemma 3,

KL(Pt1 ∥ P̂t1) =KL(D
(
P0;αt1 , σ

2
t1

)
∥ D

(
δ0;αt1 , σ

2
t1

)
)

≤
α2
t1

2σ2
t1

W 2
2 (P0, δ0) =

α2
t1

2σ2
t1

Ex∈Pdata

[
∥x∥22

]
.

Thus the statement holds for i = 1. Suppose the statement holds for i = k, i.e.

KL(Ptk ∥ P̂tk) ≤
α2
t1

2σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

k∑
j=2

α2
tj

2σ2
tj

t2j−1

ϵ2cm
∆τ2

. (17)

We first explicitly write the sequence of random variables in the multistep inference:

x̂
(1)
t1 → x̂

(1)
0 → x̂

(2)
t2 → x̂

(2)
0 → · · · → x̂

(N)
tN → x̂

(N)
0 ,

where x̂
(1)
t1 ∼ N (0, σ2

t1I), x̂
(i)
0 = f̂(x̂

(i)
0 , ti), x̂

(i+1)
ti+1

∼ N (αti+1
x̂
(i+1)
0 , σ2

ti+1
I). Similarly, we also define the following

process that starts at the ground truth noise distribution Pt1 and evolves using the ground truth consistency function f⋆(·, ·) :

x
(1)
t1 → x

(1)
0 → x

(2)
t2 → x

(2)
0 → · · · → x

(N)
tN → x

(N)
0 ,

where x
(1)
t1 ∼ Pt1 , x(i)

0 = f⋆(x
(i)
0 , ti), x

(i+1)
ti+1

∼ N (αti+1
x
(i)
0 , σ2

ti+1
I).

By the chain rule of KL divergence, we have:

KL(P
(
x
(k+1)
tk+1

)
∥ P

(
x̂
(k+1)
tk+1

)
)

+ E
x∼P

(
x
(k+1)
tk+1

)[KL(P
(
x
(k)
tk
|x(k+1)

tk+1
= x

)
∥ P

(
x̂
(k)
tk
|x̂(k+1)

tk+1
= x

)
)
]

︸ ︷︷ ︸
≥0

=KL(P
(
x
(k)
tk

,x
(k+1)
tk+1

)
∥ P

(
x̂
(k)
tk

, x̂
(k+1)
tk+1

)
)

=KL(P
(
x
(k)
tk

)
∥ P

(
x̂
(k)
tk

)
) + E

x∼P
(
x
(k)
tk

)[KL(P
(
x
(k+1)
tk+1

|x(k)
tk

= x
)
∥ P

(
x̂
(k+1)
tk+1

|x̂(k)
tk

= x
)
)
]

where we use P(x) to denote the distribution of random variable x. Because KL is non-negative, we have:

KL(P
(
x
(k+1)
tk+1

)
∥ P

(
x̂
(k+1)
tk+1

)
)

≤KL(P
(
x
(k)
tk

)
∥ P

(
x̂
(k)
tk

)
) + E

x∼P
(
x
(k)
tk

)[KL(P
(
x
(k+1)
tk+1

|x(k)
tk

= x
)
∥ P

(
x̂
(k+1)
tk+1

|x̂(k)
tk

= x
)
)
]

By definition, this means:

KL(Ptk+1
∥ P̂tk+1

)

≤KL(Ptk ∥ P̂tk) + Ex∼Ptk

[
KL(N (αtk+1

f⋆(x, tk), σ
2
tk+1

I) ∥ N (αtk+1
f̂(x, tk), σ

2
tk+1

I))
]

=KL(Ptk ∥ P̂tk) +
α2
tk+1

2σ2
tk+1

Ex∼Ptk

[∥∥∥f⋆(x, tk)− f̂(x, tk)
∥∥∥2
2

]
≤KL(Ptk ∥ P̂tk) +

α2
tk+1

2σ2
tk+1

t2k
ϵ2cm
∆τ2

(By part (i) of Lemma 2)

≤
α2
t1

2σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

k+1∑
j=2

α2
tj

2σ2
tj

t2j−1

ϵ2cm
∆τ2

. (By (17))

13



Convergence of Consistency Model with Multistep Sampling under General Data Assumptions

Proof of Lemma 2. We first prove part (i) with induction on t. By the definition of f⋆(·, ·) in (3),

f⋆(x, 0) = φ(0;x, 0) = x, ∀x ∈ Rd.

By Assumption 1, f̂(x, 0) = x for all x. Thus

Ex∼P0

[∥∥∥f̂(x, 0)− f⋆(x, 0)
∥∥∥2
2

]
= Ex∼P0

[
∥x− x∥22

]
= 0,

which means (i) holds for i = 0.

Suppose (i) holds for i = s, i.e. √
Ex∼Pτs

[∥∥∥f̂(x, τs)− f⋆(x, τs)
∥∥∥2
2

]
≤ τsϵcm/∆τ. (18)

By the property of the PF-ODE (2),

φ(τs+1;x, τs) ∼ Pτs+1
, if x ∼ Pτs . (19)

When i = s+ 1, we have:√
Ex′∼Pτs+1

[∥∥∥f̂(x′, τs+1)− f⋆(x′, τs+1)
∥∥∥2
2

]

=

√
Ex∼Pτs

[∥∥∥f̂(φ(τs+1;x, τs), τs+1)− f⋆(φ(τs+1;x, τs), τs+1)
∥∥∥2
2

]
(By (19))

=

√
Ex∼Pτs

[∥∥∥f̂(φ(τs+1;x, τs), τs+1)− f⋆(x, τs)
∥∥∥2
2

]
(By the definition of f⋆(·, ·))

≤

√
Ex∼Pτs

[∥∥∥f̂(φ(τs+1;x, τs), τs+1)− f̂(x, τs)
∥∥∥2
2

]
+

√
Ex∼Pτs

[∥∥∥f̂(x, τs)− f⋆(x, τs)
∥∥∥2
2

]
(By Lemma 5)
≤ϵcm + τsϵcm/∆τ (By Assumption 1 and (18))
=ϵcm(1 + τs/∆τ) = τs+1ϵcm/∆τ.

We complete the proof for part (i).

f̂(·, t) and f⋆(·, t) induce a joint distribution Γx′
0,x0

:

Pr(x′
0,x0)∼Γx′

0,x0
[(x′

0,x0) ∈ A] := Prxt∼Pt

[
xt ∈

{
x : (f̂(x, t), f⋆(x, t)) ∈ A

}]
,

for any event A. With this joint distribution Γx′
0,x0

, the marginal distribution of x′
0 is f̂(Pt, t) and the marginal distribution

of x0 is f⋆(Pt, t). This means:√
Ext∼Pt

[∥∥∥f̂(xt, t)− f⋆(xt, t)
∥∥∥2
2

]
=

√
E(x′

0,x0)∼Γx′
0,x0

[
∥x′

0 − x0∥22
]
≥W2(f̂(Pt, t), f

⋆(Pt, t)).

By applying part (i), we have

W2(f̂(Pτi , τi), f
⋆(Pτi , τi)) ≤ τiϵcm/∆τ.

We complete the proof for part (ii).
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D. Generalization to Distributions with Tail Conditions
When Pdata satisfies some tail condition, it is sufficient to sample only from a bounded region:

Theorem 4 (W2 error for distributions with tail condition). Suppose there exists c, C > 0 and R ≥ C, s.t.
Prx∼Pdata(∥x∥2 ≥ t) ≤ ce−t/C for all t ≥ R. Let Pdata∩B(0,R) be the distribution truncated from Pdata, i.e. the con-
ditional distribution of x given ∥x∥2 ≤ R where x ∼ Pdata. Let φR(·; ·, ·) be the solution to the corresponding PF-ODE
and f⋆

R(·, ·) be the corresponding consistency function. Let
{
PR
t

}
t∈[0,T ]

be the marginal distribution of the forward process

starting from Pdata∩B(0,R). If f̂(·, ·) satisfies: (a)
∥∥∥f̂(x, t)∥∥∥

2
≤ R, for all (x, t) ∈ Rd×[0, T ]; (b) f̂(x, 0) = x, for all

x; (c) Ext∼PR
τi

[∥∥∥f̂(xt, τi)− f̂(φR(τi+1;xt, τi), τi+1)
∥∥∥2
2

]
≤ ϵ2cm, for all i = 0, . . . ,M − 1 for some ϵcm > 0. Then

W2(P̂
(N)
0 , Pdata) ≤ 2R

(
α2

t1

4σ2
t1

R2 +
∑N

j=2

α2
tj

4σ2
tj

t2j−1
ϵ2cm
∆τ2

)1/4

+ tN
ϵcm
∆τ +O(Re−

R
2C ).

By restricting the output of f̂(·, ·) to be B(0, R), the Euclidean ball with radius R, we focus on learning the portion of Pdata
inside the Euclidean ball. This truncation step reduces the problem of sampling from unbounded distribution to sampling
from a distribution with finite support, at the cost of introducing the additional term O(Re−

R
2C ).

Proof. The error term can be decomposed as:

W2(P̂
(tN )
0 , Pdata) ≤W2(P̂

(tN )
0 , Pdata∩B(0,R)) +W2(Pdata∩B(0,R), Pdata) (20)

By Theorem 2,

W2(P̂
(tN )
0 , Pdata∩B(0,R)) ≤ 2R

(
α2
t1

4σ2
t1

R2 +

N∑
j=2

α2
tj

4σ2
tj

t2j−1ϵ
2
cm

)1/4

+ tN ϵcm.

For the second term, we first note that

TV(Pdata∩B(0,R), Pdata) = Prx∼Pdata [∥x∥2 > R] ≤ O(e−
R
C ).

By Lemma 9 of (Rolland, 2022),

W2(Pdata∩B(0,R), Pdata) ≤ O(Re−
R
2C ).

We finish the proof by combining these two bounds.

E. Proof of Theorem 3
At a high level, we can decompose the TV distance as follows:

TV(P̂
(N)
0 ∗ N (0, σ2

ϵ I), Pdata)

≤TV(P̂
(N)
0 ∗ N (0, σ2

ϵ I), Pdata ∗ N (0, σ2
ϵ I)) + TV(Pdata ∗ N (0, σ2

ϵ I), Pdata) (21)

The first term can be bounded by Lemma 1 and Pinsker’s inequality, which shows that the TV distance between P̂
(N)
0 and

Pdata is controlled after the Gaussian perturbation. While the second term is bounded when Pdata satisfies the smoothness
assumption, which shows that the perturbation will change Pdata only slightly. We now illustrate these ideas in detail. We
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first define αtN+1
:= 1, σtN+1

:= σϵ, then by Pinsker’s inequality and Lemma 1:

TV(P̂
(N)
0 ∗ N (0, σ2

ϵ I), Pdata ∗ N (0, σ2
ϵ I))

≤
√

1

2
KL(Pdata ∗ N (0, σ2

ϵ I) ∥ P̂
(N)
0 ∗ N (0, σ2

ϵ I))

=

√
1

2
KL(PtN+1

∥ P̂tN+1
)

≤

√√√√ α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N+1∑
j=2

α2
tj

4σ2
tj

t2j−1ϵ
2
cm

=

√√√√ α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1ϵ
2
cm +

1

4σ2
ϵ

t2N ϵ2cm

≤

√√√√ α2
t1

4σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1ϵ
2
cm +

1

2σϵ
tN ϵcm.

On the other hand, by Lemma 4,

TV(Pdata ∗ N (0, σ2
ϵ I), Pdata) ≤ 2dLσϵ.

We complete the proof by combining these two bounds into the decomposition in (21).

F. Connection to Consistency Distillation
Our Assumption1 assumes that the self-consistency property is satisfied approximately, which aligns with both consistency
distillation (Song et al., 2023). For simplicity, we consider an OU process to be the forward process:

dxt = −xtdt+
√
2dwt, x0 ∼ Pdata.

Given the pre-trained score function s(x, t), we train a consistency model from the following ODE:

dxt

dt
= −xt − s(xt, t), xT ∼ N (0, (1− e−2T )I). (22)

We assume access to an ODE solver, which can calculate φs, the solution to (22), exactly. Even though this solver can be
computationally expensive during the training procedure, the consistency model will still be computationally efficient during
the inference time.

To avoid distribution shift, we optimize the consistency loss objective (4) using the data generated from (22), instead of that
from Pt, the marginal distribution of the forward process. When optimized properly, we can find a f̂ , s.t.

Exτi
∼φs(τi;N (0,(1−e−2T )I),T )

[∥∥∥f̂(xτi , τi)− f̂(φ(τi+1;xτi , τi), τi+1)
∥∥∥2
2

]
(23)

is small for all i. Using the same argument in Lemma 4, we can show that f̂(N (0, (1− e−2T )I), T ) and φs(0;N (0, (1−
e−2T )I), T ) are close in W2, this can be translated into a bound in TV using the argument in Section 3.2.

When the pre-trained score function s(x, t) has small L2 error, (Huang et al., 2024) show that φs(0;N (0, (1− e−2T )I), T )

is close to Pdata in TV. To conclude, f̂(N (0, (1− e−2T )I), T ) is close to Pdata in TV.

G. Adaptation to Non-uniform Discretization
In this paper, we adopt a uniform discretization for clarity and ease of presentation. However, our results can be extended
to the non-uniform discretization setting as well. Suppose τ0:M is an arbitrary discretization of the interval [0, T ]. In this
scenario, it is reasonable to assume that the consistency loss scales with the length of the discretization interval:

Exτi
∼Pτi

[∥∥∥f̂(xτi , τi)− f̂(φ(τi+1;xτi , τi), τi+1)
∥∥∥2
2

]
≤ (τi+1 − τi)

2ϵ2.
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Using the same argument as in the proof of Lemma 2, we can derive:√
Exτi

∼Pτi

[∥∥∥f̂(xτi , τi)− f⋆(xτi , τi)
∥∥∥2
2

]
≤

i−1∑
s=0

√
Exτs∼Pτs

[∥∥∥f̂(xτs , τs)− f̂(φ(τs+1;xτs , τs), τs+1)
∥∥∥2
2

]
,

which is upper bounded by:
∑i−1

s=0(τs+1 − τs)ϵ = τiϵ. The rest of the proof remains unchanged.

H. Technical Lemmas
We first present the result on the convergence of SDE, which also connects KL-divergence and W2:

Lemma 3. Let P and Q be two distributions in Rd, then

KL(D
(
P ;α, σ2

)
∥ D

(
Q;α, σ2

)
) ≤ α2

2σ2
W 2

2 (P,Q),

where we use D
(
P ;α, σ2

)
to denote the marginal distribution of x′, with x′|x ∼ N (αtx, σ

2
t ) and x ∼ P .

This result is comparable to Lemma C.4 of (Chen et al., 2023a). However, our results is self-contained and tighter.

Proof of Lemma 3. Let U and V be two random variables with joint distribution Γ, s.t. the marginal distributions of U and
V are P and Q respectively. Let X ∼ D

(
P ;α, σ2

)
and Y ∼ D

(
Q;α, σ2

)
. We use P(·) to denote the distribution of a

random variable. By the chain rule of KL-divergence, we have:

KL(P(X) ∥ P(Y )) ≤KL(P(X) ∥ P(Y )) + Ex∼P(X)[KL(P((U, V )|X = x) ∥ (U, V )|Y = x)]

(By the non-negativity of KL)
=KL(P(U, V ) ∥ P(U, V ))

+ E(u,x)∼P(U,V )[KL(P(X|(U, V ) = (u,v))) ∥ P(Y |(U, V ) = (u, vb)))]

(By the chain rule of KL)
=E(u,x)∼P(U,V )[KL(P(X|U = u)) ∥ P(Y |V = v))] (24)
(X is independent of V given U and similar holds for Y )

By the definition of D (·; ·, ·), X|U = u ∼ N (αu, σ2I) and Y |V = v ∼ N (αv, σ2I). Thus,

KL(P(X|U = u)) ∥ P(Y |V = v)) =
1

2σ2
α2 ∥u− v∥22

By (24), we further have:

KL(D
(
P ;α, σ2

)
∥ D

(
Q;α, σ2

)
) ≤ α2

2σ2
E(u,v)∼Γ

[
∥u− v∥22

]
(25)

By taking inf over Γ on both sides of (25), we get:

KL(D
(
P ;α, σ2

)
∥ D

(
Q;α, σ2

)
) ≤ α2

2σ2
W 2

2 (P,Q).

Lemma 4 (Gaussian perturbation on a smooth distribution, a variant of Lemma 6.4 of (Lee et al., 2023)). Let P be a
distribution in Rd with PDF p(x), if log p(x) is L-smooth, then

TV(P, P ∗ N (0, σ2I)) ≤ 2dLσ,

where we use P ∗Q to denote the convolution of distribution P and Q.

Proof. The results follows directly from Lemma 6.4 of (Lee et al., 2023) with αt = 1 and σt = σ.
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Lemma 5 (Triangle inequality with both Lp norm and L2 norm). Let x be a random variable in Rd, and f, g be mappings
from Rd to Rd, then

Ex[∥f(x) + g(x)∥p2]
1/p ≤ Ex[∥f(x)∥p2]

1/p
+ Ex[∥g(x)∥p2]

1/p
.

Proof.

Ex[∥f(x) + g(x)∥p2]
1/p ≤Ex[(∥f(x)∥2 + ∥g(x)∥2)

p
]
1/p

(Triangle inequality for L2 norm)

≤Ex[∥f(x)∥p2]
1/p

+ Ex[∥g(x)∥p2]
1/p

(Minkowski inequality).

I. Simulation
Motivations: Consistency model has already demonstrated its power on large-scale image generation tasks (Luo et al.,
2023; Song et al., 2023; Song & Dhariwal, 2024). To verify our theoretical findings, we focus on a toy example that is easier
to interpret.

We first refine our upper bound in Theorem 2, where we relax our result for a cleaner presentation. We make adjustment
to (15) and get:

sup
x,y∈supp(Pdata)

∥x− y∥2

(
α2
t1

2σ2
t1

Ex∼Pdata

[
∥x∥22

]
+

N∑
j=2

α2
tj

4σ2
tj

t2j−1

ϵ2cm
∆τ2

)1/4

+ tN
ϵcm
∆τ

. (26)

Simulation setting: We consider OU process as the forward process, which is our setup in Case study 1. For simplicity,
we consider a Bernoulli data distribution: Prx∼Pdata [x = 0] = Prx∼Pdata [x = 100] = 0.5. This data distribution ensures a
close-form for the ground truth consistency function:

f⋆(x, t) :=

{
0 if x < 50 exp(−t)
100 o.w.

.

We construct a perturbed f̂(·, ·) accordingly:

f̂(x, t) :=

{
0 if x < at

100 o.w.
,

where the sequence at satisfies: Prx∼Pt
[x < at] = 0.5 + 0.0001t2, ∀t. This choice of f̂(·, ·) makes sure:

Ex∼Pt

[∥∥∥f̂(x, t)− f⋆(x, t)
∥∥∥2
2

]
= t2.

This means f̂(·, ·) satisfies the first statement of Lemma 2 with ϵ2cm
∆τ2 = 1.

We simulate three instantiations of {ti}Ni=1 defined in (5), i.e. the sequence of time steps for our multi-step sampling defined
in (5):

• our schedule: the two-step schedule suggested by Case study 1. We also calculate the upper bound in (26) for
comparison;

• baseline 1: design the sequence of sampling time steps by evenly dividing an interval;

• baseline 2: start with some T and reduce it by half every step until reaching a small value.

In Figure 2, we plot the W2 error in multi-step sampling. We present the revolution of W2 error in a sampling time schedule
on a single curve. Specifically, we plot each curve by:(

ti,W2(P̂
(i)
0 , Pdata)

)
i = 1, . . . , N.

Because the sampling time step ti decreases in the multi-step sampling by definition. We reverse the x-axis of the plot for
presentation purposes.
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Figure 2: W2 error in multi-step sampling.

Observations: This simulation result demonstrates that:

• Our upper bound is a reasonable characterization of the performance for the designed sampling time schedule.

• The two-step sampling time schedule suggested by Case study 1 achieves comparable performance to the best result in
the baseline methods but with a much smaller number of function evaluations;

• Running too many sampling time steps may degrade the sampling quality. The error increases for both baseline methods
in the last few sampling steps.
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