WHEN TO USE WHICH? AN INVESTIGATION OF SEARCH METHODS ON EXPENSIVE BLACK-BOX OPTIMISATION PROBLEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Many real-world optimisation problems are black-box in the sense that the structure of their objective function is not accessible or exploitable. Some of such Black-Box Optimisation (BBO) problems are also expensive, thanks to the use of simulations, experiments or costly computations to evaluate a solution (i.e., calculate its objective function value). Despite the prevalence of expensive BBO, different practical scenarios may require different computational resources and search budgets. In some scenarios, evaluating a solution may take hours or days (e.g., in drug design), allowing generating only a few hundred solutions at most, while in some other scenarios, the budget is more generous in which evaluating a solution takes a couple of minutes (e.g., in software configuration tuning), hence allowing a few thousand solutions to be generated. Consequently, a relevant question is that among various popular search methods for BBO (e.g., Bayesian optimisation and evolutionary algorithms), which one is the first choice for practitioners to use under different levels of tightness of their budget, and also what if some domain knowledge of the problem (e.g., ruggedness level of the search space) is available.

In this paper, we aim to answer these questions. Through an extensive experimental study on a suite of test functions with various features, we observe that some methods which were believed unsuitable for expensive BBO are actually competitive under certain circumstances; for example, Nelder Mead on small-size problems with simple landscapes under fairly tight budgets (e.g., 200-800 evaluations) and CMA-ES on medium-sized problems under fairly generous budgets (e.g., ≥ 800). On the other hand, Bayesian optimisation methods perform consistently well under very tight budgets (e.g., ≤ 200) regardless of problem attributes and characteristics.

1 Introduction

The Black-Box Optimisation (BBO) problem refers to a class of problems where the structure of the objective function and/or the constraints defining the feasible space is unknown, inaccessible, or unexploitable. In many practical cases, the evaluation process of BBO (i.e., calculating the objective function of a given solution) is expensive or resource-intensive due to the use of simulations, experiments or costly computations, allowing a search algorithm only to generate/draw a limited number of solutions/samples (Jones et al., 1998; Shahriari et al., 2015; Garnett, 2023).

Despite falling into the same category of expensive BBO, different optimisation scenarios may require different amounts of time. There exist some practical scenarios having very tight budget constraints, taking hours (e.g., engine design (Ahrari et al., 2021)) or even days (e.g., molecular design (Li et al., 2024)) to evaluate a solution, hence only a few hundred solutions can be generated at most. On the other hand, there may be many scenarios with relatively more generous budgets, in which the evaluation process for a solution takes one or several minutes (e.g., software configuration tuning (Chen & Li, 2021)), thereby allowing a few thousand solutions to be generated.

It is known that Bayesian Optimisation (BO) (Kushner, 1964) is often regarded as the first choice to tackle expensive BBO problems. BO has been used in various application scenarios (Wang & Dowling, 2022; Binois & Wycoff, 2022; Huang et al., 2024; Wang et al., 2016), but one may want to know what its exact comfort zone is; for example, is it still the best choice when a relatively

generous budget is accessible (e.g., around 1,000 evaluations)? Some advanced variants of BO (e.g., TuRBO (Eriksson et al., 2019)) may work better under a larger number of evaluations (Ament et al., 2023). But, how do they perform compared to some evolutionary search methods such as Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen & Ostermeier, 2001), which has recently been found to be effective in dealing with expensive BBO problems (Hutter et al., 2013; Andersson et al., 2015; Ozaki et al., 2022). In addition, in contrast to CMA-ES that considers an explicit probability model, what about other evolutionary computation (EC) techniques based on an implicit probability model like Genetic Algorithm (GA) (Holland, 1992) and Differential Evolution (DE) (Storn & Price, 1997), particularly when the computational resource is more relaxed (e.g., a couple of thousands of evaluations)? Besides, there also exist some other classical optimisation techniques which have been frequently used on expensive BBO problems such as Nelder Mead (NM) (Nelder & Mead, 1965). Are they competitive with BO and EC-based optimisers? If so, under what circumstances?

In addition, despite the fact that in BBO the objective function is not accessible, one may have some knowledge of the problem in practical optimisation scenarios. For example, in software configuration tuning, the fitness landscape is usually very rugged and the problem has a lot of local optima (due to the discretisation of decision variables) (Chen & Li, 2021). As such, a useful question is that when some domain knowledge of an expensive BBO problem (e.g., separability, multimodality) is available, what kind of search method is recommended to use.

Given the above, in this paper we aim to answer two questions: 1) under different levels of tightness of search budget in expensive BBO, what is the first optimisation algorithm to try in general? And 2) when some domain knowledge of the problem is available, what kind of algorithm is recommended to use then? We hope that answering these two questions would provide some guidance for practitioners to select suitable optimisation algorithms when encountering an expensive BBO problem in their field.

It is worth noting that empirical comparisons of search algorithms on BBO are not uncommon in the literature. A variety of studies have been conducted, each with a specific focus. These include: 1) investigation into the effect of algorithm configurations within particular classes of methods (Wang et al., 2019; Pošík & Klemš, 2012; Qin & Li, 2013; Varelas et al., 2018; Takenaga et al., 2023), such as the influence of acquisition functions in BO (Rehbach et al., 2020; Leite Richardson et al., 2024), or population size in evolutionary algorithms (Roeva et al., 2015; Piotrowski, 2017); 2) performance comparisons of search algorithms under specific optimisation scenarios (Vesterstrom & Thomsen, 2004; Panduro et al., 2009; Hansen et al., 2010; Pošík et al., 2012; Pošík & Kubalík, 2012; Lilla et al., 2013; Lim & Haron, 2013; Deb et al., 2014; Turner et al., 2021; Alibrahim & Ludwig, 2021; Ozaki et al., 2022; Raponi et al., 2023), such as in low-dimensional (Stripinis et al., 2025) and high-dimensional search spaces (Varelas et al., 2020; Santoni et al., 2024); 3) algorithm comparisons aimed at supporting automated algorithm selection (Muñoz et al., 2015; Kerschke et al., 2019; Yuen et al., 2019; Kerschke et al., 2019; Kerschke & Trautmann, 2019; Meunier et al., 2022). Among these, some studies do consider different budgets (Hutter et al., 2013; Loshchilov & Hutter, 2016; Raponi et al., 2023; Stripinis et al., 2025; Meunier et al., 2022). However, to the best of our knowledge, no existing work systematically compares algorithm performance across varying budgets, offers detailed recommendations to different budget levels, or accounts for the presence or absence of domain knowledge in the optimisation process.

2 Preliminaries

It is not uncommon for derivative information on real-world problems to be either inaccessible, unreliable, or impractical (Golovin et al., 2017; Alarie et al., 2021; Meunier et al., 2022). Black-Box Optimisation (BBO), without using derivative information, aims at finding high-quality solutions for a given optimisation problem. Without loss of generality, let us consider a minimisation problem:

$$\min_{x \in \mathcal{X}} f(x) \tag{1}$$

where $x \in \mathcal{X}$ denotes variables in decision space, $\mathcal{X} \subseteq \mathbb{R}^d$ denotes a compact set, and f is a black-box function.

To deal with BBO problems, a variety of methods have been developed, such as evolutionary algorithms, local search and Bayesian Optimisation (BO). Evolutionary algorithms are a large class of

nature-inspired global search methods, including GA (Holland, 1992), DE (Storn & Price, 1997) and CMA-ES (Hansen & Ostermeier, 2001). They have been demonstrated to be effective on many hard BBO problems like those having multiple local optima and rugged, deceptive landscapes (Muñoz et al., 2015; Marín, 2012). There also exist several local search algorithms, such as Nelder Mead (NM) (Nelder & Mead, 1965) which has been used for decades to solve numerous real-world problems due to its effective performance (Ozaki et al., 2017). Evolutionary and local search methods typically require large computational resources. When it comes to solving an expensive BBO problem, BO (Kushner, 1964) is usually believed to be among the first choices (Wang et al., 2018; Nayebi et al., 2019; Wang et al., 2023; Raponi et al., 2023; Jiang & Li, 2025a). It has been widely used in tackling expensive BBO problems in various domains such as automated machine learning (Galuzzi et al., 2020; Turner et al., 2021), chemical product design (Wang & Dowling, 2022), and robotics (Lizotte et al., 2007).

However, in some practical scenarios, the computational resources for expensive BBO problems may not be strictly tight; for example, it only takes around one minute to evaluate a solution in many configurable software systems (Chen & Li, 2021) or there are some high-performance facilities, enabling parallel computing (Garland et al., 2008). This allows a relatively large number of solutions to be considered during the search process (e.g., a few thousand) (Nishihara & Nakata, 2024; Nabae & Fukagata, 2021). Consequently, one may ask under such a more generous search budget, is BO still competitive compared with evolutionary and local search methods.

On the other side, in the literature there have been empirical, yet seemingly inconsistent, observations reported regarding the performance of search methods for expensive BBO problems. For example, Loshchilov & Hutter (2016); Santoni et al. (2024); Raponi et al. (2023) show that BO outperforms CMA-ES when the evaluation budget is limited, whereas Ozaki et al. (2022) claim that CMA-ES and NM outperform BO, especially in scenarios involving parallel evaluations. In Wang et al. (2019), their results show that BO can capture a high-quality solution with a smaller budget and GA can determine global best solutions with a larger budget, while Alibrahim & Ludwig (2021) show that the GA performs better than BO for hyper-parameter optimisation. Moreover, it has been found in some studies that evolutionary and local search methods are also suited to dealing with expensive BBO problems, e.g., GAs (Yuen et al., 2019) and NM (Takenaga et al., 2023).

These mixed findings indicate that different algorithms excel under varying conditions, but the circumstances under which one algorithm surpasses another remain unclear. Therefore, one may be curious about if evolutionary or local search algorithms can compete with Bayesian optimisation algorithms on some expensive BBO problems; if so, under what circumstances? And more practically, under different tightness levels of computational resources, what is the first optimisation algorithm for a practitioner to try in general?

To answer these questions, we consider six representative algorithms from the three classes of optimisation methods: BO, evolutionary and local search. They are vanilla BO (Kushner, 1964), TuRBO (Eriksson et al., 2019), GA (Holland, 1992), DE (Storn & Price, 1997), CMA-ES (Hansen & Ostermeier, 2001), and NM (Nelder & Mead, 1965). We consider vanilla BO as it is the most canonical BO algorithm, widely used in various expensive problems (Garnett, 2023; Wang et al., 2023). We also include TuRBO, a popular BO variant (Cowen-Rivers et al., 2022; Ament et al., 2023), particularly suitable for high-dimensional problems (Santoni et al., 2024; Xu et al., 2025). We consider three classical evolutionary algorithms, i.e., GA, DE, and CMA-ES, and one classical local search heuristic, i.e., NM. These algorithms have also been found to perform well in expensive BBO scenarios (Alibrahim & Ludwig, 2021; Ozaki et al., 2022; Takenaga et al., 2023). In addition, we also include Random Search (RS) (Karnopp, 1963) as a baseline. Detailed descriptions of these algorithms can be found in Appendix A.1.

It is worth noting that in this work we only consider classical methods representing different classes of optimisation techniques, which practitioners typically consider to employ when facing an expensive BBO problem in their applied fields. Hence, we do not include complicated, composite algorithms developed recently (Kumar et al., 2017; Jiang & Li, 2025b), such as those combining classical algorithms with surrogates (Mallipeddi & Lee, 2015; Bajer et al., 2019) or integrating multiple classical algorithms (Rapin & Teytaud, 2018). We also exclude algorithms designed to address specific issues in optimisation (Papenmeier et al., 2025; Xu et al., 2025), such as BBO problems with mixed search spaces (Daulton et al., 2022; Papenmeier et al., 2023) or cost-aware optimisation (Foumani et al., 2023; Xie et al., 2024).

3 EXPERIMENTAL DESIGN

3.1 Test Problems

 We consider the problem suite BBOB (Hansen et al., 2009) to test the algorithms. BBOB is a set of well-established functions with rich features, such as separability/non-separability, uni-modality/multi-modality, weak/moderate/high conditioning, and weak/adequate global structure. Compared to other benchmark functions, they have been found to well represent the variety of real-world scenarios (Long et al., 2022; Brockhoff et al., 2022; Santoni et al., 2023; 2024; Liang et al., 2024).

3.2 GENERAL EXPERIMENTAL SETTINGS

Since we would like to see the performance of the algorithms under different budgets, we consider the entire search process up to 10,000 evaluations. In particular, we mainly discuss four tightness levels of search budgets: very tight (200 evaluations and below), fairly tight (200–800), fairly generous (800-2,000), and very generous (above 2,000). Note that for vanilla BO, the $O(n^3)$ time complexity of Gaussian processes, where n is the number of samples, makes computations increasingly time-consuming (Williams & Rasmussen, 2006). For instance, one run of the vanilla BO on a 10-dimensional problem under a budget of 1,000 evaluations takes approximately four hours. Given that each instance requires 30 independent runs and the computational complexity increases rapidly, we cap the budget of vanilla BO at 1,000 evaluations to maintain computational efficiency. When the search budget exceeds 1,000, the best solutions identified by vanilla BO under 1,000 evaluations are compared with those obtained by the other methods under 1,000–10,000 evaluations. In addition, CMA-ES and NM may terminate before reaching 10,000 evaluations; for such a case, we restart the algorithm, following the common practice (Loshchilov, 2013; Hansen, 2009). For vanilla BO and TuRBO, we set the number of initial solutions to 2D for training an initial Gaussian process model according to (De Ath et al., 2021); Note that there is no observed drawback to starting with a small number of initial solutions (Forrester et al., 2008). All the algorithms use their commonly used/recommended settings; details are provided in Appendix A.1 due to space constraints.

In the experiments, we conduct 30 independent runs of each algorithm for the same instance of all the 24 BBOB functions, with the bounds normalised to the range [0,1]. We use the Wilcoxon rank-sum test (Wilcoxon, 1992) with Holm-Bonferroni correction (Holm, 1979) to determine if two methods are statistically different. The code and data are available at an anonymous repository¹.

4 EXPERIMENTAL RESULTS

In this section, we first show general comparative results of the considered algorithms on all BBOB functions with a moderate number of dimensions (10) under varying budgets in Section 4.1. We then investigate the effect of different problem dimensionalities on the algorithms in Section 4.2. Afterwards, in Section 4.3, we show how the algorithms perform when some domain knowledge of optimisation problems is accessible, where the 24 functions are categorised into five groups according to their characteristics, following the classification by (Hansen et al., 2009). Finally, we summarise the results observed in Section 4.5.

4.1 Performance Analysis of the Algorithms under Varying Evaluation Budgets at Moderate Dimensionality

Table 1 shows the number of functions where each algorithm is statistically the best out of the 24 BBOB functions under the four budget levels (i.e., with 200, 800, 2,000 and 8,000 evaluations). Detailed results are provided in Tables 3–6 in Appendix B.1. As can be seen from the table, TuRBO and vanilla BO have a clear advantage under the very tight budget (200 evaluations). CMA-ES is in general the best for the other three situations, though the two BO algorithms are competitive on some problems when the budget is fairly tight (800 evaluations) and GA is competitive on a small fraction of problems when the budget is very generous (8,000 evaluations).

https://anonymous.4open.science/r/W2W-E811

Table 1: The number of functions where each of the seven algorithms, Random Search (RS), Nelder Mead (NM), Genetic Algorithm (GA), Differential Evolution (DE), CMA-ES, vanilla BO and TuRBO, performs statistically the best out of the 24 BBOB functions over 30 independent runs, under the four budget tightness levels.

Search budget	RS	NM	GA	DE	CMA-ES	Vanilla BO	TuRBO
200 evaluations	0	1	0	0	1	10	14
800 evaluations	0	3	1	0	18	7	5
2,000 evaluations	0	3	3	1	20	3	1
8,000 evaluations	0	3	5	2	18	1	1

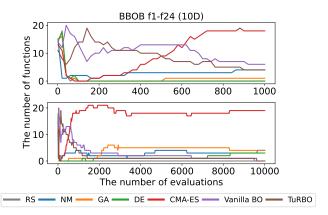


Figure 1: Trajectories of the number of functions where each algorithm is statistically the best out of the 24 BBOB functions over 30 independent runs, along the varying budget of up to 1,000 evaluations (top panel) and 10,000 evaluations (bottom panel).

To understand the performance of the comparative algorithms during the entire search process (i.e., under constantly varying search budget), Figure 1 shows the trajectories of the number of functions where each algorithm is statistically the best out of the 24 BBOB functions over 30 independent runs, along the varying budget of up to 1,000 evaluations (top panel) and 10,000 evaluations (bottom panel). Comparing vanilla BO and TuRBO, it is clear that when under around 100 evaluations, vanilla BO is better, while it is overtaken by TuRBO when a slightly relaxed budget is available (i.e., 100–200 evaluations). When the search budget reaches around 600 evaluations, CMA-ES catches up and outperforms the two BO algorithms, and after that, CMA-ES shows a clear advantage over the other algorithms until the maximum budget (10,000 evaluations) is reached. Considering the remaining algorithms, GA takes the second place when a more generous budget is available (above 2,000 evaluations). NM mostly ranks third along the entire search process, i.e., after vanilla BO and TuRBO when the budget is tight and after CMA-ES and GA when the budget is generous. In contrast, random search unsurprisingly performs worst, with its trajectory of zero throughout the whole process.

To help further understand the search behaviour of these algorithms, we consider their convergence trajectories on a representative test function, BBOB f9, shown in Figure 2. Convergence trajectories on the other BBOB functions can be found in Appendix B.2. The convergence trend of each algorithm on the function is generally consistent with the overall performance illustrated in Figure 1. As seen, vanilla BO performs best with very tight budgets (e.g., ≤ 100 evaluations) but is then overtaken by TuRBO. When the budget reaches around 500 evaluations, CMA-ES surpasses both BO algorithms and maintains the first place until it reaches 10,000 evaluations, despite having a considerably higher standard deviation compared with the other algorithms.

4.2 EFFECT OF PROBLEM DIMENSIONALITY

In the last section, we have seen the comparative results on the BBOB functions with a moderate number of dimensions (i.e., 10D). Here, we want to see whether and how the problem dimensionality

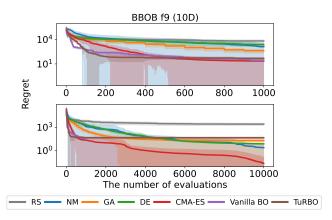


Figure 2: Convergence trajectories of the seven algorithms throughout the search process on a representative test function, BBOB f9. Here, each coloured line represents the mean regret (the difference between the true optimum and the best function value) obtained over 30 independent runs.

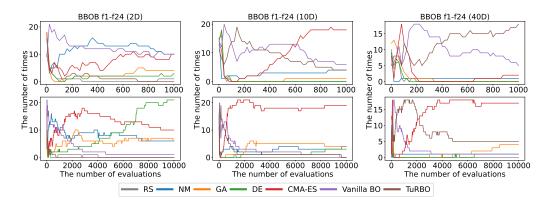


Figure 3: Trajectories of the number of functions each algorithm is statistically the best out of the 24 BBOB functions along the varying budget of up to 1,000 evaluations (top panel) and 10,000 evaluations (bottom panel), under 2, 10 and 40 problem dimensions.

affects the algorithm performance. Specifically, we consider two rather edge cases, where the problem dimensionality is 2D and 40D, respectively.

Figure 3 shows the trajectories of the number of functions on which each of the seven algorithms is statistically the best along the varying budget of up to 1,000 evaluations (top panel) and 10,000 evaluations (bottom panel), under 2, 10 and 40 dimensions. Firstly, considering the low-dimensional problems (i.e., 2D), interestingly, the picture (left of Figure 3) is pretty different from what we have seen on the 10D problems (centre of Figure 3). Apart from vanilla BO which still performs best under a very tight budget (200 evaluations), the algorithm NM is the best one under a fairly tight budget (200–1,000). One possible reason is that the simplex (a triangle in 2D here) used in NM can adapt its size and shape more effectively to fit the landscape of the objective function in low dimensions (Lagarias et al., 1998; Conn et al., 2009). When a more generous budget is available, CMA-ES performs best (1,000–7,500 evaluations), whereas DE becomes the best performer from around 7,500 evaluations. This is interesting, since DE constantly performs very poorly on the 10D problems (centre of Figure 3). This is consistent with the observations in the literature (Cai et al., 2019; Deng et al., 2021; Liu et al., 2023) that when applying classical DE to high-dimensional problems, the performance tends to worsen. In addition, it is unsurprising to see that TuRBO is among the very worst algorithms since it is designed for high-dimensional problems, hence not a good competitor under low-dimensional search spaces.

Consider the high-dimensional problems (40D) on the right-hand side of Figure 3. TuRBO shows a clear advantage between 400 and 2,000 evaluations. CMA-ES again is the best performer from

2,000 evaluations. Interestingly, vanilla BO, which was believed not suitable for high-dimensional search space (Frazier, 2018; Song et al., 2022; Chen et al., 2024), is very competitive under 1,000 evaluations, which is echoed by the results in Hvarfner et al. (2024); Papenmeier et al. (2025); Xu et al. (2025). And it even performs best between around 100 and 400 evaluations. Additionally, compared with BO algorithms, the other optimisers do not perform well on high-dimensional problems when the budget is tight.

4.3 What if Some Problem Characteristics Are Accessible

In dealing with a practical black-box optimisation problem, sometimes, some domain knowledge (e.g., landscape smoothness and multi-modality) may be known. For example, in software configuration tuning, it is known that the fitness landscape is usually very rugged and the problem has a lot of local optima (Chen & Li, 2021). In this section, we investigate the performance of the algorithms under different problem characteristics. Following the suggestion in Hansen et al. (2009), we categorise the 24 BBOB functions into 5 groups based on their characteristics. They are

- Functions with separate variables (f1-f5);
- Functions with low or moderate conditioning (mild slope) and few or no local optima (f6-f9);
- Functions with high conditioning (steep slope) and few or no local optima (f10-f14);
- Multi-modal functions with adequate global structure (f15-f19);
- Multi-modal functions with weak global structure (f20-f24).

Figure 4 shows the trajectories of the number of functions where each of the seven algorithms is statistically the best on problem categories with different characteristics. For functions with separate variables (f1–f5, Figure 4(a)), vanilla BO performs best with limited evaluation budgets across all the dimensionalities. TuRBO excels when the budget is between 400 and 2,000 evaluations, but only in the high-dimensional case. CMA-ES consistently performs best under a moderate search budget, regardless of problem dimensionality. It is worth mentioning that GA can effectively handle such variable-separate functions and works well across the three problem dimensionalities when the budget is sufficient.

For functions with low or moderate conditioning and few or no local optima (f6–f9, Figure 4(b)), NM performs best on the low-dimensional cases when the search budget is between 200 and 800 evaluations. CMA-ES shows overwhelmingly better performance when the budget exceeds 2,000, making it the best choice for all 9 functions with low and medium dimensionalities. Interestingly, vanilla BO outperforms TuRBO on the high-dimensional cases when the budget is between 200 and 400 evaluations. This suggests that vanilla BO remains effective on high-dimensional problems with simple landscapes.

Similar observations have been obtained on the functions with high conditioning and few or no local optima (f10–f14, Figure 4(c)). As can be seen in the figure, NM works well on the low-dimensional cases between around 150 and 2,000 evaluations, and CMA-ES shows a clear advantage when the budget exceeds 2,000. A slight difference from the last group (f6–f9) is on the 2D case, where DE becomes the best performer when sufficient computational resources are available.

For multi-modal functions with adequate global structure (f15–f19, Figure 4(d)), vanilla BO shows very good performance across all three dimensionalities with tight evaluation budgets. This again demonstrates that vanilla BO is competitive on high-dimensional problems, which is echoed by Papenmeier et al. (2025). Interestingly, CMA-ES's performance is not as good as on functions f1–f14 under low dimensionality. This may be due to the algorithm's focus on local search (Loshchilov, 2013), which was confirmed in Omidvar & Li (2010).

For the multi-modal functions with weak global structure (f20–f24, Figure 4(e)), CMA-ES is also not competitive on the 2D case. Vanilla BO does not perform very well on the medium-/high-dimensional cases, compared to its results on f1–f19. In contrast, TuRBO demonstrates excellent performance on the medium-/high-dimensional cases.

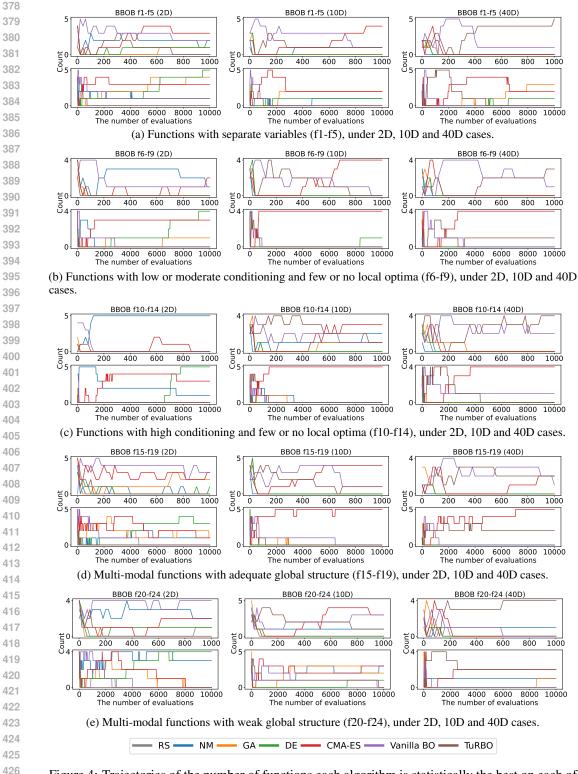


Figure 4: Trajectories of the number of functions each algorithm is statistically the best on each of the five problem groups along the varying budget of up to 1,000 evaluations (top panel) and 10,000 evaluations (bottom panel) for different problem dimensionalities.

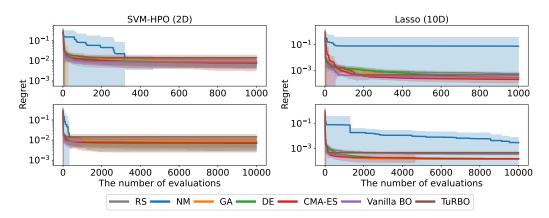


Figure 5: Convergence trajectories of the seven algorithms throughout the search process on the SVM-HPO problem (2D) (Eggensperger et al., 2021) and Lasso problem (10D) (Šehić et al., 2022). Here, each coloured line represents the mean regret (the difference between the true optimum and the best function value) obtained over 30 independent runs.

4.4 ON REAL-WORLD PROBLEMS

Although the BBOB function benchmark is widely regarded as representatives of the typical difficulties that arise in real-world applications (Pál et al., 2012), it is useful to validate whether the performance trends observed on them also hold on practical optimisation scenarios. Here, we consider two real-world continuous black-box problems in hyperparameter optimisation, the SVM-HPO problem from HPOBench (Eggensperger et al., 2021) and the Lasso problem from LassoBench (Šehić et al., 2022). The former one has two variables, aiming to minimise the validation loss, defined as (1-accuracy). The latter has 10 variables and is to minimise the mean squared error (MSE).

Figure 5 shows convergence trajectories of the seven algorithms throughout the search process on the two real-world problems. As can be seen from the figure, the performance of the optimisation methods on these real-world problems is in general consistent with their performance on the BBOB benchmark. When the budget is very tight (≤ 200), vanilla BO (purple line) performs best. As the budget increases, CMA-ES (red line) catches up, overtakes vanilla BO, and remain the top-performing method thereafter. It is worth noting that, interestingly, on the 10D Lasso problem, GA becomes slightly better than CMA-ES once the budget exceeds 2,000. A possible explanation is that, in the Lasso task, only 3 of the 10 variables substantially interact and contribute to the objective value, making the problem largely variable-separable (Šehić et al., 2022).

4.5 SUMMARY

Table 2: The algorithm(s) to try when facing an expensive BBO problem, under the different budget levels and problem dimensionalities. When more than one algorithm is recommended, they are listed in order of priority from left to right.

Budget (evaluations)	Low-dimensional	Medium-dimensional	High-dimensional
Very tight (e.g., \leq 200)	Vanilla BO	Vanilla BO/TuRBO	Vanilla BO
Fairly tight (e.g., 200–800)	NM/vanilla BO	Vanilla BO/TuRBO/CMA-ES*	TuRBO/vanilla BO
Fairly generous (e.g., 800–2,000)	CMA-ES	CMA-ES	TuRBO
Very generous (e.g., $\geq 2,000$)	CMA-ES/DE**	CMA-ES	CMA-ES

^{*} CMA-ES becomes the best when the budget exceeds 600.

Table 2 sums up the results observed. As can be seen from the table, when the search budget is very tight (only \leq 200 evaluations allowed), vanilla BO is always the first choice. When a fairly tight budget is available (200–800), vanilla BO can be a good choice, but in low-dimensional cases (e.g., 2D), the local search algorithm NM may be better, and in high-dimensional cases (e.g., 40D), TuRBO

^{**} DE becomes the best when the budget exceeds 8,000.

can be the first one to try. When there is a fairly generous budget (800–2,000), CMA-ES is the one recommended in low and medium-dimensional cases, while TuRBO is the one in high-dimensional cases. Under the situation that the budget is very generous (≥2,000), CMA-ES is always the one to trust, except in the low-dimensional case where DE is recommended when more budget is available

490 (from around 8,000 evaluations).

Under the circumstances that some problem characteristics are accessible, the recommendation of the algorithms can be further summarised to the following.

• Random search is never recommended to use under any circumstances.

- NM is a good choice on low-dimensional problems with simple fitness landscapes, e.g., uni-modal structure.
- GA can be used on problems with separate variables, regardless of the dimensionalities, when a sufficient budget is available (e.g., 6,000 evaluations or more).
- DE is the one to recommend on low-dimensional problems, regardless of the problem characteristics, under a sufficient budget (e.g., 7,000 evaluations or more).
- CMA-ES is always the best provided that the budget is not too tight, but its advantage becomes less apparent when the problem's fitness landscape is complex (e.g., multi-modal and/or with weak global structure).
- Vanilla BO is the best choice under a tight budget, particularly for problems with simple fitness landscape (e.g., low or moderate conditioning or adequate global structure), even in a high-dimensional space (e.g., 40D).
- TuRBO can be a better choice than vanilla BO on complex problems (e.g., with weak global structure), when a medium number of variables are involved (e.g., >10).

5 CONCLUSION

In this work, we have conducted an extensive experimental study to compare the performance of several popular optimisation methods (including BO, CMA-ES, and other evolutionary and local search algorithms) for expensive BBO problems, under different levels of tightness of search budget. We make some recommendations for the use of those algorithms under different conditions of budget, problem dimensionality, and problem characteristics; the last one is particularly for the case that some domain knowledge is accessible. Note that in this study we mainly consider "classical" BBO algorithms, serving the purpose that people who are not in the area of optimisation may tend to pick off-the-shelf algorithms to use for their applied problems. This thus does not include some recently-developed advanced/composite algorithms.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. No human subjects, personal data, or sensitive information are involved, and no risks of harm are anticipated.

REPRODUCIBILITY STATEMENT

Implementation details and experimental settings are provided in Appendix A.1. The data and code are available at an anonymised repository for reproducibility: https://anonymous.4open.science/r/W2W-E811.

REFERENCES

Ali Ahrari, Julian Blank, Kalyanmoy Deb, and Xianren Li. A proximity-based surrogate-assisted method for simulation-based design optimization of a cylinder head water jacket. *Engineering Optimization*, 53(9):1574–1592, 2021.

- Stéphane Alarie, Charles Audet, Aïmen E Gheribi, Michael Kokkolaras, and Sébastien Le Digabel. Two decades of blackbox optimization applications. *EURO Journal on Computational Optimization*, 9:100011, 2021.
- Hussain Alibrahim and Simone A Ludwig. Hyperparameter optimization: comparing genetic algorithm against grid search and Bayesian optimization. In 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 1551–1559. IEEE, 2021.
- Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Unexpected improvements to expected improvement for Bayesian optimization. In *Advances in Neural Information Processing Systems*, volume 36, pp. 20577–20612, 2023.
- Martin Andersson, Sunith Bandaru, Amos H.C. Ng, and Anna Syberfeldt. Parameter tuned CMA-ES on the CEC'15 expensive problems. In 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1950–1957, 2015.
- Lukáš Bajer, Zbyněk Pitra, Jakub Repický, and Martin Holeňa. Gaussian process surrogate models for the CMA evolution strategy. *Evolutionary computation*, 27(4):665–697, 2019.
- Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization. In *Advances in Neural Information Processing Systems*, volume 33, pp. 21524–21538, 2020.
- James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. *Journal of machine learning research*, 13(2), 2012.
- Mickael Binois and Nathan Wycoff. A survey on high-dimensional Gaussian process modeling with application to bayesian optimization. *ACM Transactions on Evolutionary Learning and Optimization*, 2(2):1–26, 2022.
- J. Blank and K. Deb. Pymoo: multi-objective optimization in python. *IEEE Access*, 8:89497–89509, 2020.
- Dimo Brockhoff, Anne Auger, Nikolaus Hansen, and Tea Tušar. Using well-understood single-objective functions in multiobjective black-box optimization test suites. *Evolutionary Computation*, 30(2):165–193, 2022. doi: 10.1162/evco_a_00298.
- Xiwen Cai, Liang Gao, Xinyu Li, and Haobo Qiu. Surrogate-guided differential evolution algorithm for high dimensional expensive problems. *Swarm and Evolutionary Computation*, 48:288–311, 2019. ISSN 2210-6502.
- Taicai Chen, Yue Duan, Dong Li, Lei Qi, Yinghuan Shi, and Yang Gao. Pg-lbo: enhancing high-dimensional Bayesian optimization with pseudo-label and Gaussian process guidance. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(10):11381–11389, 2024.
- Tao Chen and Miqing Li. Multi-objectivizing software configuration tuning. In *Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering*, pp. 453–465, 2021.
- Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. 8. Simplicial Direct-Search Methods, pp. 141–162. MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, 2009. ISBN 978-0-89871-668-9.
- Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan Rhys Griffiths, Alexandre Max Maraval, Hao Jianye, Jun Wang, Jan Peters, et al. HEBO: Pushing the limits of sample-efficient hyper-parameter optimisation. *Journal of Artificial Intelligence Research*, 74:1269–1349, 2022.
- Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A Osborne, and Eytan Bakshy. Bayesian optimization over discrete and mixed spaces via probabilistic reparameterization. *Advances in Neural Information Processing Systems*, 35:12760–12774, 2022.

- George De Ath, Richard M Everson, Alma AM Rahat, and Jonathan E Fieldsend. Greed is good: exploration and exploitation trade-offs in bayesian optimisation. *ACM Transactions on Evolutionary Learning and Optimization*, 1(1):1–22, 2021.
 - Arindam Deb, Jibendu Sekhar Roy, and Bhaskar Gupta. Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas. *IEEE transactions on antennas and propagation*, 62(8):3920–3928, 2014.
 - Kalyanmoy Deb and Debayan Deb. Analysing mutation schemes for real-parameter genetic algorithms. *International Journal of Artificial Intelligence and Soft Computing*, 4(1):1–28, 2014.
 - Kalyanmoy Deb, Mayank Goyal, et al. A combined genetic adaptive search (geneas) for engineering design. *Computer Science and informatics*, 26:30–45, 1996.
 - Wu Deng, Shifan Shang, Xing Cai, Huimin Zhao, Yingjie Song, and Junjie Xu. An improved differential evolution algorithm and its application in optimization problem. *Soft Computing*, 25 (7):5277–5298, 2021. ISSN 1432-7643, 1433-7479.
 - Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, Rene Sass, Aaron Klein, Noor Awad, Marius Lindauer, and Frank Hutter. HPOBench: A collection of reproducible multi-fidelity benchmark problems for HPO. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021.
 - David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable global optimization via local bayesian optimization. In *Advances in Neural Information Processing Systems*, volume 32, pp. 5496–5507. Curran Associates, Inc., 2019.
 - Alexander Forrester, Andras Sobester, and Andy Keane. *Engineering design via surrogate modelling:* a practical guide. John Wiley & Sons, 2008.
 - Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. *Journal of Machine Learning Research*, 13:2171–2175, jul 2012.
 - Zahra Zanjani Foumani, Mehdi Shishehbor, Amin Yousefpour, and Ramin Bostanabad. Multi-fidelity cost-aware Bayesian optimization. *Computer Methods in Applied Mechanics and Engineering*, 407:115937, 2023.
 - Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.
 - Bruno G Galuzzi, Ilaria Giordani, Antonio Candelieri, Riccardo Perego, and Francesco Archetti. Hyperparameter optimization for recommender systems through bayesian optimization. *Computational Management Science*, 17:495–515, 2020.
 - Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hardwick, Scott Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel computing experiences with cuda. *IEEE Micro*, 28(4):13–27, 2008.
 - Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.
 - Behzad Ghahremani, Maryam Bitaraf, and Hossein Rahami. A fast-convergent approach for damage assessment using CMA-ES optimization algorithm and modal parameters. *Journal of Civil Structural Health Monitoring*, 10:497–511, 2020. ISSN 2190-5479.
- Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D. Sculley.
 Google vizier: a service for black-box optimization. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '17, pp. 1487–1495, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450348874.
 - Sotirios K Goudos, Katherine Siakavara, Theodoros Samaras, Elias E Vafiadis, and John N Sahalos. Self-adaptive differential evolution applied to real-valued antenna and microwave design problems. *IEEE Transactions on Antennas and Propagation*, 59(4):1286–1298, 2011.

- Nikolaus Hansen. Benchmarking the nelder-mead downhill simplex algorithm with many local restarts. In *Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers*, pp. 2403–2408, 2009.
 - Nikolaus Hansen. A global surrogate assisted cma-es. In *Proceedings of the Genetic and Evolutionary Computation Conference*, pp. 664–672, 2019.
 - Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. *Evolutionary Computation*, 9(2):159–195, 2001.
 - Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Research Report RR-6829, INRIA, 2009.
 - Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Pošík. Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In *Proceedings of the 12th annual conference companion on Genetic and evolutionary computation*, pp. 1689–1696, 2010.
 - Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. Zenodo, DOI:10.5281/zenodo.2559634, February 2019. URL https://doi.org/10.5281/zenodo.2559634.
 - John H Holland. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
 - Sture Holm. A simple sequentially rejective multiple test procedure. *Scandinavian journal of statistics*, pp. 65–70, 1979.
 - Xiaobin Huang, Lei Song, Ke Xue, and Chao Qian. Stochastic Bayesian optimization with unknown continuous context distribution via kernel density estimation. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(11):12635–12643, 2024.
 - Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An evaluation of sequential model-based optimization for expensive blackbox functions. In *Proceedings of the 15th annual conference companion on Genetic and evolutionary computation*, pp. 1209–1216, 2013.
 - Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla Bayesian optimization performs great in high dimensions. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235, pp. 20793–20817. PMLR, 21–27 Jul 2024.
 - Chao Jiang and Miqing Li. Multi-objectivising acquisition functions in bayesian optimisation. *ACM Transactions on Evolutionary Learning and Optimization*, 5(2), 2025a.
 - Chao Jiang and Miqing Li. Trading off quality and uncertainty through multi-objective optimisation in batch Bayesian optimisation. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39 (25):27027–27035, 2025b.
 - Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive black-box functions. *Journal of Global Optimization*, 13(4):455–492, 1998.
 - Dean C Karnopp. Random search techniques for optimization problems. *Automatica*, 1(2-3):111–121, 1963.
 - Pascal Kerschke and Heike Trautmann. Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning. *Evolutionary Computation*, 27(1):99–127, 2019.
 - Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm selection: Survey and perspectives. *Evolutionary Computation*, 27(1):3–45, 2019.
 - Abhishek Kumar, Rakesh Kumar Misra, and Devender Singh. Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In *2017 IEEE Congress on Evolutionary Computation (CEC)*, pp. 1835–1842. IEEE, 2017.

- Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. *Journal Basic Engineering*, 86(1):97–106, 1964.
 - Jeffrey C Lagarias, James A Reeds, Margaret H Wright, and Paul E Wright. Convergence properties of the nelder–mead simplex method in low dimensions. *SIAM Journal on optimization*, 9(1): 112–147, 1998.
 - Frederico Leite Richardson, George De Ath, and Tinkle Chugh. Is greed still good in multi-objective bayesian optimisation? In *Proceedings of the Genetic and Evolutionary Computation Conference Companion*, pp. 2103–2106, 2024.
 - Xiaobo Li, Yu Che, Linjiang Chen, Tao Liu, Kewei Wang, Lunjie Liu, Haofan Yang, Edward O Pyzer-Knapp, and Andrew I Cooper. Sequential closed-loop bayesian optimization as a guide for organic molecular metallophotocatalyst formulation discovery. *Nature Chemistry*, 16:1286–1294, 2024.
 - Zimin Liang, Zhiji Cui, and Miqing Li. Pareto landscape: Visualising the landscape of multi-objective optimisation problems. In 18th International Conference on Parallel Problem Solving From Nature PPSN 2024, pp. 299–315. Springer, 2024.
 - AD Lilla, MA Khan, and P Barendse. Comparison of differential evolution and genetic algorithm in the design of permanent magnet generators. In 2013 IEEE International conference on industrial technology (ICIT), pp. 266–271. IEEE, 2013.
 - Seng Poh Lim and Habibollah Haron. Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions. In *2013 IEEE Conference on Open Systems (ICOS)*, pp. 41–46. IEEE, 2013.
 - Yuanhao Liu, Zan Yang, Danyang Xu, Haobo Qiu, and Liang Gao. A surrogate-assisted differential evolution for expensive constrained optimization problems involving mixed-integer variables. *Information Sciences*, 622:282–302, 2023. ISSN 0020-0255.
 - Daniel J Lizotte, Tao Wang, Michael H Bowling, Dale Schuurmans, et al. Automatic gait optimization with Gaussian process regression. In *Proceedings of the 20th International Joint Conference on Artifical Intelligence*, volume 7, pp. 944–949, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.
 - Fu Xing Long, Bas van Stein, Moritz Frenzel, Peter Krause, Markus Gitterle, and Thomas Bäck. Learning the characteristics of engineering optimization problems with applications in automotive crash. In *Proceedings of the Genetic and Evolutionary Computation Conference*, pp. 1227–1236, 2022.
 - Ilya Loshchilov. Cma-es with restarts for solving cec 2013 benchmark problems. In 2013 IEEE Congress on Evolutionary Computation, pp. 369–376. IEEE, 2013.
 - Ilya Loshchilov and Frank Hutter. CMA-ES for hyperparameter optimization of deep neural networks. *arXiv preprint arXiv:1604.07269*, 2016.
 - Atsuo Maki, Naoki Sakamoto, Youhei Akimoto, Hiroyuki Nishikawa, and Naoya Umeda. Application of optimal control theory based on the evolution strategy (CMA-ES) to automatic berthing. *Journal of Marine Science and Technology*, 25:221–233, 2020. ISSN 1437-8213.
 - Rammohan Mallipeddi and Minho Lee. An evolving surrogate model-based differential evolution algorithm. *Applied Soft Computing*, 34:770–787, 2015.
 - Jesús Marín. How landscape ruggedness influences the performance of real-coded algorithms: a comparative study. *Soft Computing*, 16(4):683–698, 2012.
 - Laurent Meunier, Herilalaina Rakotoarison, Pak Kan Wong, Baptiste Roziere, Jeremy Rapin, Olivier Teytaud, Antoine Moreau, and Carola Doerr. Black-box optimization revisited: improving algorithm selection wizards through massive benchmarking. *IEEE Transactions on Evolutionary Computation*, 26(3):490–500, 2022.

- Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian methods for seeking the extremum. *Towards Global Optimization*, 2(2):117–129, 1978.
 - Mario A Muñoz, Yuan Sun, Michael Kirley, and Saman K Halgamuge. Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges. *Information Sciences*, 317:224–245, 2015.
 - Yusuke Nabae and Koji Fukagata. Bayesian optimization of traveling wave-like wall deformation for friction drag reduction in turbulent channel flow. *Journal of Fluid Science and Technology*, 16(4): JFST0024–JFST0024, 2021.
 - Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian optimization in embedded subspaces. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97, pp. 4752–4761. PMLR, 2019.
 - John A Nelder and Roger Mead. A simplex method for function minimization. *The computer journal*, 7(4):308–313, 1965.
 - Kei Nishihara and Masaya Nakata. Emulation-based adaptive differential evolution: fast and auto-tunable approach for moderately expensive optimization problems. *Complex & Intelligent Systems*, pp. 1–24, 2024.
 - Mohammad Nabi Omidvar and Xiaodong Li. A comparative study of CMA-ES on large scale global optimisation. In *Australasian Joint Conference on Artificial Intelligence*, pp. 303–312. Springer, 2010.
 - Yoshihiko Ozaki, Masaki Yano, and Masaki Onishi. Effective hyperparameter optimization using nelder-mead method in deep learning. *IPSJ Transactions on Computer Vision and Applications*, 9: 1–12, 2017.
 - Yoshihiko Ozaki, Shintaro Takenaga, and Masaki Onishi. Global search versus local search in hyperparameter optimization. In 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 01–09. IEEE, 2022.
 - László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. Black box optimization benchmarking of the global method. *Evolutionary Computation*, 20(4):609–639, 2012.
 - Marco A Panduro, Carlos A Brizuela, Luz I Balderas, and Diana A Acosta. A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. *Progress In Electromagnetics Research B*, 13:171–186, 2009.
 - Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Bounce: Reliable high-dimensional Bayesian optimization for combinatorial and mixed spaces. In *Advances in Neural Information Processing Systems*, volume 36, pp. 1764–1793. Curran Associates, Inc., 2023.
 - Leonard Papenmeier, Matthias Poloczek, and Luigi Nardi. Understanding high-dimensional Bayesian optimization. *arXiv preprint arXiv:2502.09198*, 2025.
 - Adam P Piotrowski. Review of differential evolution population size. *Swarm and Evolutionary Computation*, 32:1–24, 2017.
 - Petr Pošík and Václav Klemš. Jade, an adaptive differential evolution algorithm, benchmarked on the bbob noiseless testbed. In *Proceedings of the 14th annual conference companion on Genetic and evolutionary computation*, pp. 197–204, 2012.
 - Petr Pošík and Jiří Kubalík. Experimental comparison of six population-based algorithms for continuous black box optimization. *Evolutionary Computation*, 20(4):483–508, 2012.
 - Petr Pošík, Waltraud Huyer, and László Pál. A comparison of global search algorithms for continuous black box optimization. *Evolutionary Computation*, 20(4):509–541, 2012.
 - A Kai Qin and Xiaodong Li. Differential evolution on the cec-2013 single-objective continuous optimization testbed. In *2013 IEEE Congress on Evolutionary Computation*, pp. 1099–1106. IEEE, 2013.

J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform. https://GitHub.com/FacebookResearch/Nevergrad, 2018.

- Elena Raponi, Nathanaël Carraz Rakotonirina, Jérémy Rapin, Carola Doerr, and Olivier Teytaud. Optimizing with low budgets: a comparison on the black-box optimization benchmarking suite and openai gym. *IEEE Transactions on Evolutionary Computation*, 2023.
- Bahador Rashidi, Kerrick Johnstonbaugh, and Chao Gao. Cylindrical Thompson sampling for high-dimensional Bayesian optimization. In *Proceedings of The 27th International Conference on Artificial Intelligence and Statistics*, volume 238 of *Proceedings of Machine Learning Research*, pp. 3502–3510. PMLR, 2024.
- Frederik Rehbach, Martin Zaefferer, Boris Naujoks, and Thomas Bartz-Beielstein. Expected improvement versus predicted value in surrogate-based optimization. In *Proceedings of the 2020 Genetic and Evolutionary Computation Conference*, pp. 868–876, 2020.
- Olympia Roeva, Stefka Fidanova, and Marcin Paprzycki. Population size influence on the genetic and ant algorithms performance in case of cultivation process modeling. In *Recent Advances in Computational Optimization: Results of the Workshop on Computational Optimization WCO 2013*, pp. 107–120. Springer, 2015.
- Maria Laura Santoni, Elena Raponi, Renato De Leone, and Carola Doerr. Comparison of bayesian optimization algorithms for bbob problems in dimensions 10 and 60. In *Proceedings of the Companion Conference on Genetic and Evolutionary Computation*, pp. 2390–2393, 2023.
- Maria Laura Santoni, Elena Raponi, Renato De Leone, and Carola Doerr. Comparison of high-dimensional Bayesian optimization algorithms on bbob. *ACM Transactions on Evolutionary Learning and Optimisation*, 4(3):1–33, 2024.
- Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-dimensional hyperparameter optimization benchmark suite for Lasso. In *International Conference on Automated Machine Learning*, pp. 2–1. PMLR, 2022.
- Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1): 148–175, 2015.
- Lei Song, Ke Xue, Xiaobin Huang, and Chao Qian. Monte carlo tree search based variable selection for high dimensional Bayesian optimization. In *Advances in Neural Information Processing Systems*, volume 35, pp. 28488–28501. Curran Associates, Inc., 2022.
- Rainer Storn and Kenneth Price. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. *Journal of Global Optimization*, 11:341–359, 1997.
- Linas Stripinis, Jakub Kůdela, and Remigijus Paulavičius. Benchmarking derivative-free global optimization algorithms under limited dimensions and large evaluation budgets. *IEEE Transactions on Evolutionary Computation*, 29(1):187–204, 2025.
- Shintaro Takenaga, Yoshihiko Ozaki, and Masaki Onishi. Practical initialization of the nelder—mead method for computationally expensive optimization problems. *Optimization Letters*, 17(2): 283–297, 2023.
- Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and Isabelle Guyon. Bayesian optimization is superior to random search for machine learning hyperparameter tuning: analysis of the black-box optimization challenge 2020. In *Proceedings of the NeurIPS 2020 Competition and Demonstration Track*, volume 133 of *Proceedings of Machine Learning Research*, pp. 3–26. PMLR, 06–12 Dec 2021.
- Kento Uchida, Ryoki Hamano, Masahiro Nomura, Shota Saito, and Shinichi Shirakawa. CMA-ES for safe optimization. In *Proceedings of the Genetic and Evolutionary Computation Conference*, GECCO '24, pp. 722–730. Association for Computing Machinery, 2024. ISBN 9798400704949.

- Konstantinos Varelas, Anne Auger, Dimo Brockhoff, Nikolaus Hansen, Ouassim Ait ElHara, Yann Semet, Rami Kassab, and Frédéric Barbaresco. A comparative study of large-scale variants of cma-es. In *Parallel Problem Solving from Nature PPSN XV*, pp. 3–15. Springer, 2018.
- Konstantinos Varelas, Ouassim Ait El Hara, Dimo Brockhoff, Nikolaus Hansen, Duc Manh Nguyen, Tea Tušar, and Anne Auger. Benchmarking large-scale continuous optimizers: The bbob-largescale testbed, a coco software guide and beyond. *Applied Soft Computing*, 97:106737, 2020.
- Diederick Vermetten, Fabio Caraffini, Bas van Stein, and Anna V Kononova. Using structural bias to analyse the behaviour of modular cma-es. In *Proceedings of the Genetic and Evolutionary Computation Conference Companion*, pp. 1674–1682, 2022.
- Jakob Vesterstrom and Rene Thomsen. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In *Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753)*, volume 2, pp. 1980–1987. IEEE, 2004.
- Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental algorithms for scientific computing in python. *Nature Methods*, 17(3):261–272, 2020.
- Ke Wang and Alexander W Dowling. Bayesian optimization for chemical products and functional materials. *Current Opinion in Chemical Engineering*, 36:100728, 2022.
- Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian optimization. *ACM Computing Surveys*, 55(13s):1–36, 2023.
- Zhi-Lei Wang, Toshio Ogawa, and Yoshitaka Adachi. Influence of algorithm parameters of bayesian optimization, genetic algorithm, and particle swarm optimization on their optimization performance. *Advanced Theory and Simulations*, 2(10):1900110, 2019.
- Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian optimization in high-dimensional spaces. In *Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics*, volume 84, pp. 745–754. PMLR, 2018.
- Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian optimization in a billion dimensions via random embeddings. *Journal of Artificial Intelligence Research*, 55:361–387, 2016.
- Frank Wilcoxon. Individual comparisons by ranking methods, pp. 196–202. Springer, 1992.
- Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes for machine learning*. MIT press Cambridge, MA, 2006.
- Qian Xie, Raul Astudillo, Peter I. Frazier, Ziv Scully, and Alexander Terenin. Cost-aware bayesian optimization via the pandora's box gittins index. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 115523–115562. Curran Associates, Inc., 2024.
- Zhitong Xu, Haitao Wang, Jeff M Phillips, and Shandian Zhe. Standard Gaussian process is all you need for high-dimensional Bayesian optimization. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Shiu Yin Yuen, Yang Lou, and Xin Zhang. Selecting evolutionary algorithms for black box design optimization problems. *Soft Computing*, 23(15):6511–6531, 2019.

Appendix to:

When to Use Which? An Investigation of Search Methods on Expensive Black-box Optimisation Problems

A EXPERIMENTAL SETTINGS

A.1 METHOD DETAILS

- Vanilla Bayesian Optimisation (vanilla BO) (Kushner, 1964) is a classical algorithm for expensive BBO problems. Vanilla BO consists of two key components: a probabilistic surrogate model and an acquisition function. In each iteration, a surrogate model is fitted to all observations of the target function made so far. Then, an acquisition function is optimised to determine the most promising solution.
- Trust Region Bayesian Optimisation (TuRBO) (Eriksson et al., 2019) is an advanced variant of BO that addresses the limitations of classical BO in high-dimensional spaces. It maintains multiple local models within "trust regions" around the best solutions, dynamically adjusting these regions based on optimisation performance. TuRBO has been deemed as one of the most promising high-dimensional BO algorithms (Santoni et al., 2024; Rashidi et al., 2024).
- Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen & Ostermeier, 2001) is a representative of evolutionary algorithms for BBO. It adapts the covariance matrix of a multivariate normal distribution for sampling candidate solutions based on previously evaluated samples. CMA-ES is widely applied in a variety of fields (Uchida et al., 2024; Ghahremani et al., 2020; Maki et al., 2020) and has been found to be effective in expensive BBO (Loshchilov, 2013; Andersson et al., 2015).
- Genetic Algorithm (GA) (Holland, 1992) is one of the most canonical evolutionary algorithms. It uses selection, crossover, and mutation to simulate the process of natural evolution, aiming to find an optimal or near-optimal solution.
- Differential Evolution (DE) (Storn & Price, 1997) is another important type of evolutionary
 algorithms. It optimises a problem by maintaining a population of candidate solutions and
 creating new solutions by using unit vectors to move across the domain space. DE has been
 found to be particularly suitable for some real-valued BBO problems (Goudos et al., 2011).
- Nelder Mead (NM) (Nelder & Mead, 1965) is a widely used local search heuristic for solving BBO problems. It involves constructing a simplex, e.g., a triangle in two dimensions or a tetrahedron in three dimensions, and iteratively adjusting its vertices to approach the optimum.
- Random Search (RS) (Karnopp, 1963) is arguably the simplest search method. RS has been found to perform well in some applied fields (e.g., automated machine learning (Bergstra & Bengio, 2012)). Here, we use RS as a baseline.

All the algorithms use their commonly used/recommended settings. In GA, Simulated Binary Crossover (SBX) and Polynomial Mutation (PM) are used. We set the crossover and mutation rates to 1.0 and 1/D, respectively, and the distribution indexes for crossover and mutation are set to 2 and 20, respectively (Deb et al., 1996; Deb & Deb, 2014). For DE, a well-known classical DE variant (DE/rand/1/bin) is used (Qin & Li, 2013). Following the common practice (Storn & Price, 1997), we set the crossover rate and mutation scale factor to 0.9 and 0.5, respectively. Regarding CMA-ES, we set the initial step size to 0.2 (20% of the search domain) (Hansen, 2019; Vermetten et al., 2022)). Regarding the population size for the population-based algorithms, we set it to 100 for GA and

DE (Roeva et al., 2015; Piotrowski, 2017) and $4 + \lfloor 3\log(D) \rfloor$ for CMA-ES (Varelas et al., 2018). In vanilla BO, we use the commonly used expected improvement acquisition function (Mockus et al., 1978; Jones et al., 1998) together with the RBF from BoTorch's default implementation. For TuRBO, we follow the authors' recommendations and employ Thompson Sampling and a Matérn 5/2 kernel (Eriksson et al., 2019), and we adopt a batch size of 5 (suggested by Santoni et al. (2024)). In both BO methods, kernel lengthscales are learned by maximising the marginal log-likelihood.

The code of RS, NM, GA, DE, and CMA-ES is taken from the Python modules numpy, scipy (Virtanen et al., 2020), pymoo (Blank & Deb, 2020), DEAP (Fortin et al., 2012), and pycma (Hansen et al., 2019). The code of vanilla BO and TuRBO is from the Python module BoTorch (Balandat et al., 2020). The computational studies were performed on a Red Hat Enterprise Linux 8.8 system, operating on a 64-bit x86 CPU architecture. The computing cluster utilised Intel Xeon Platinum 8360Y processors running at 2.40 GHz.

A.2 PROBLEM DETAILS

972

973

974

975

976

977 978

979

980

981

982

983 984 985

986

987

988 989

990

991

992 993

994

995

996

997

998

999

1002

1004

1008 1009

1010

1011

1012

1013

1014

1015

1016

1017

1020

1021

1023

1024

1025

Following the suggestion in Hansen et al. (2009), we categorise the 24 BBOB functions into 5 groups based on their characteristics. They are

- Functions with separate variables (f1-f5);
 - f1 Sphere: A simple convex quadratic, unimodal and perfectly symmetric.
 - f2 Ellipsoidal: A separable quadratic with high conditioning and smooth irregularities.
 - f3 Rastrigin: A highly multimodal separable function with about 10^D regularly spaced local optima.
 - f4 Büche-Rastrigin: A deceptive, asymmetric variant of Rastrigin with skewed optima placement.
 - f5 Linear Slope: A linear, boundary-optimal function testing search beyond the initial convex hull.
- Functions with low or moderate conditioning (mild slope) and few or no local optima (f6-f9);
 - f6 Attractive Sector: An asymmetric cone-shaped unimodal landscape with optimum at the tip.
 - f7 Step Ellipsoidal: A plateau-rich ellipsoidal function where gradients vanish almost everywhere.
 - f8 Rosenbrock (original): The classic banana-shaped valley requiring long curved path following.
 - f9 Rosenbrock (rotated): A non-separable rotated version of Rosenbrock, eliminating coordinate structure.
- Functions with high conditioning (steep slope) and few or no local optima (f10-f14);
 - f10 Ellipsoidal (rotated): A non-separable quadratic with strong ill-conditioning (10⁶).
 - f11 Discus: A quadratic where one direction is far more sensitive than all others.
 - f12 Bent Cigar: A narrow ridge with strong conditioning and asymmetric deformation.
 - f13 Sharp Ridge: A ridge function with non-differentiable shape requiring axis-aligned search.
 - f14 Different Powers: A unimodal function with variables of increasing sensitivity near the optimum.
- Multi-modal functions with adequate global structure (f15-f19);
 - f15 Rastrigin (rotated): A non-separable variant of Rastrigin with alleviated symmetry.
 - f16 Weierstrass: A rugged, fractal-like function with non-unique global optima.
 - f17 Schaffers F7: A multimodal function with varying frequency and amplitude in modulation.
 - f18 Schaffers F7 (ill-conditioned): A moderately ill-conditioned version of f17.
 - f19 Composite Griewank–Rosenbrock (F8F2): A Rosenbrock-like valley embedded in a highly multimodal landscape.

- Multi-modal functions with weak global structure (f20-f24).
 - f20 Schwefel: A deceptive function with prominent local minima near the search-space corners.
 - f21 Gallagher 101-me Peaks: A random landscape of 101 Gaussian peaks without global structure.
 - f22 Gallagher 21-hi Peaks: A harder variant of f21 with 21 peaks and stronger conditioning.
 - f23 Katsuura: A highly rugged and repetitive function with infinitely many optima.
 - f24 Lunacek bi-Rastrigin: A deceptive double-funnel function superimposed with Rastrigin structure.

Their mathematical formulations are provided in Hansen et al. (2009).

B DETAILED EXPERIMENTAL RESULTS

B.1 TABULATED RESULTS

In this section, we detail the statistical results (mean and standard deviation) regarding the regret value for the seven algorithms on 24 BBOB functions with a moderate number of dimensions (10D) under the four budgets (i.e., 200, 800, 2,000, 8,000), shown in Tables 3-6.

Table 3: The statistical results (mean and standard deviation) of the regret (i.e., the difference between the true optimum and the best function value obtained) were computed for the seven methods across the 24 BBOB functions, under a budget of 200 evaluations over 30 independent runs. Methods that are statistically the best are highlighted in **bold**.

Method	f1 (1	0D)	f2 (1	0D)	f3 (1	0D)	f4 (1	0D)	f5 (1	0D)	f6 (1	.0D)
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
RS	2.76e+1	8.4e+0	3.89e+5	1.6e+5	1.96e+2	3.6e+1	2.65e+2	5.0e+1	8.92e+1	1.5e+1	1.78e+4	1.5e+4
NM	2.39e+1	2.1e+1	5.99e+5	8.4e+5	4.40e+2	1.7e+2	4.50e+2	1.4e+2	5.00e+1	3.1e+1	2.18e+4	7.0e+4
GA	1.84e+1	4.7e+0	1.86e+5	1.0e+5	1.56e+2	3.1e+1	2.21e+2	3.5e+1	7.37e+1	1.0e+1	2.64e+3	3.8e + 3
DE	2.80e+1	7.2e+0	3.22e+5	1.4e+5	2.04e+2	3.2e+1	2.65e+2	4.4e+1	7.65e+1	2.0e+1	2.12e+4	2.3e+4
CMA-ES	5.98e+0	3.5e+0	9.32e+4	6.0e+4	1.11e+2	2.7e+1	1.59e+2	3.5e+1	2.26e+1	7.7e+0	1.14e+2	3.7e+1
Vanilla BO	1.74e-3	3.4e-4	1.04e+3	2.8e+2	8.47e+1	8.9e+0	1.39e+2	9.4e+0	1.33e-1	5.9e-2	6.90e+1	$4.1e{-1}$
TuRBO	2.86e-2	5.9e - 3	3.04e+3	1.4e+3	5.11e+1	1.3e+1	1.33e+2	1.2e+1	1.17e+0	3.7e - 1	2.23e+1	1.7e+1
Method	f7 (10D)		f8 (10D)		f9 (10D)		f10 (10D)		f11 (10D)		f12 (10D)	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
RS	1.62e+2	5.0e+1	1.51e+4	7.6e+3	1.23e+4	5.0e+3	4.34e+5	2.8e+5	7.18e+2	8.0e+2	3.12e+7	8.7e+6
NM	1.26e+3	8.7e+2	1.22e+4	2.0e+4	1.27e+4	1.8e+4	4.71e+5	8.7e+5	1.10e+2	5.0e+1	6.77e+7	6.0e+7
GA	1.06e+2	3.3e+1	8.13e+3	3.4e+3	5.78e+3	3.0e+3	2.06e+5	1.2e+5	2.08e+2	1.7e+2	2.45e+7	7.7e+6
DE	1.48e+2	5.3e+1	1.81e+4	7.3e+3	1.07e+4	5.2e+3	3.87e+5	2.0e+5	8.84e+2	1.2e+3	3.28e+7	8.3e+6
CMA-ES	4.84e+1	2.2e+1	1.81e+3	2.4e+3	1.44e+3	1.3e+3	1.33e+5	1.0e+5	2.99e+2	3.3e+2	6.39e+6	5.3e+6
Vanilla BO	1.04e+1	1.4e+0	8.60e+1	4.1e+1	2.36e+2	9.7e+1	2.95e+4	6.9e+3	8.76e+1	2.7e+1	1.83e+7	6.3e+6
TuRBO	1.37e+1	1.4e+1	1.12e+2	6.0e+1	7.76e+1	6.0e+1	9.22e+3	2.7e+3	1.21e+2	3.3e+0	2.54e+5	4.2e+5
TuRBO Method	1.37e+1 f13 (1		1.12e+2		7.76e+1 f15 (1		9.22e+3 f16 (1		1.21e+2		12.54e+5 f18 (
	f13 (1	10D)	f14 (1	10D)	f15 (1	10D) Std	f16 (1	10D) Std	f17 (10D)	f18 (10D) Std
Method	f13 (1	10D) Std	f14 (1	10D) Std	f15 (1	10D) Std 3.8e+1	f16 (1	10D) Std	f17 (10D) Std	f18 (10D) Std 9.5e+0
Method RS	f13 (1 Mean 1.00e+3	10D) Std 1.5e+2	f14 (1 Mean 1.25e+1	10D) Std 3.9e+0	f15 (1 Mean 2.25e+2	3.8e+1 2.0e+2	f16 (1 Mean 2.08e+1	10D) Std 5.3e+0	f17 (1 Mean 8.89e+0	10D) Std 2.2e+0	f18 (Mean 3.39e+1	10D) Std 9.5e+0 3.9e+2
Method RS NM	f13 (1 Mean 1.00e+3 7.12e+2	10D) Std 1.5e+2 3.3e+2	f14 (1 Mean 1.25e+1 2.36e+1	Std 3.9e+0 2.0e+1	f15 (1 Mean 2.25e+2 5.07e+2	3.8e+1 2.0e+2 2.5e+1	f16 (1 Mean 2.08e+1 3.13e+1	5.3e+0 1.8e+1	f17 (1 Mean 8.89e+0 5.06e+1	10D) Std 2.2e+0 5.3e+1	f18 (Mean 3.39e+1 3.46e+2	9.5e+0 3.9e+2 6.5e+0
RS NM GA	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2	10D) Std 1.5e+2 3.3e+2 1.4e+2	f14 (1 Mean 1.25e+1 2.36e+1 9.46e+0	3.9e+0 2.0e+1 2.5e+0	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2	3.8e+1 2.0e+2 2.5e+1 3.8e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1	5.3e+0 1.8e+1 5.1e+0	f17 (1 Mean 8.89e+0 5.06e+1 7.21e+0	10D) Std 2.2e+0 5.3e+1 1.4e+0	f18 (Mean 3.39e+1 3.46e+2 2.72e+1	9.5e+0 3.9e+2 6.5e+0 8.6e+0
RS NM GA DE CMA-ES Vanilla BO	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2 4.94e+1	10D) Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2 4.8e+0	1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0 3.89e-1	3.9e+0 2.0e+1 2.5e+0 3.5e+0 2.8e+0 1.7e-1	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2 1.16e+2	3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1 5.37e+0	5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0	8.89e+0 5.06e+1 7.21e+0 1.00e+1 4.67e+0 2.44e+0	10D) Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0 7.8e-1	f18 (Mean 3.39e+1 3.46e+2 2.72e+1 3.96e+1 1.76e+1 1.18e+1	9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0
RS NM GA DE CMA-ES	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2	10D) Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2	f14 (1 Mean 1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0	3.9e+0 2.0e+1 2.5e+0 3.5e+0 2.8e+0 1.7e-1	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2	3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1	5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0	f17 (Mean 8.89e+0 5.06e+1 7.21e+0 1.00e+1 4.67e+0	Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0	f18 (Mean 3.39e+1 3.46e+2 2.72e+1 3.96e+1 1.76e+1	9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0
RS NM GA DE CMA-ES Vanilla BO	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2 4.94e+1	10D) Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2 4.8e+0 7.1e+0	1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0 3.89e-1	3.9e+0 2.0e+1 2.5e+0 3.5e+0 2.8e+0 1.7e-1 2.7e-1	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2 1.16e+2	Std 3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1 1.9e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1 5.37e+0	5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0 2.9e+0	8.89e+0 5.06e+1 7.21e+0 1.00e+1 4.67e+0 2.44e+0	Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0 7.8e-1 1.0e+0	f18 (Mean 3.39e+1 3.46e+2 2.72e+1 3.96e+1 1.76e+1 1.18e+1	9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0 1.4e+0
RS NM GA DE CMA-ES Vanilla BO TuRBO	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2 4.94e+1 3.21e+1	10D) Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2 4.8e+0 7.1e+0	f14 (1 Mean 1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0 3.89e-1 3.05e-1	3.9e+0 2.0e+1 2.5e+0 3.5e+0 2.8e+0 1.7e-1 2.7e-1	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2 1.16e+2 8.05e+1	Std 3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1 1.9e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1 5.37e+0 7.73e+0	5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0 2.9e+0	f17 (1 Mean 8.89e+0 5.06e+1 7.21e+0 1.00e+1 4.67e+0 2.44e+0 2.20e+0	Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0 7.8e-1 1.0e+0	f18 (Mean 3.39e+1 3.46e+2 2.72e+1 3.96e+1 1.76e+1 1.18e+1 1.03e+1	9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0 1.4e+0
RS NM GA DE CMA-ES Vanilla BO TuRBO	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2 4.94e+1 3.21e+1	10D) Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2 4.8e+0 7.1e+0	f14 (1 Mean 1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0 3.89e-1 3.05e-1 f20 (1 1.25e+1 1.25e	3.9e+0 2.0e+1 2.5e+0 3.5e+0 2.8e+0 1.7e-1 2.7e-1	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2 1.16e+2 8.05e+1	3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1 1.9e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1 5.37e+0 7.73e+0	5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0 2.9e+0	Section Sect	10D) Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0 7.8e-1 1.0e+0	f18 (Mean 3.39e+1 3.46e+2 2.72e+1 3.96e+1 1.76e+1 1.18e+1 1.03e+1	Std 9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0 1.4e+0 Std
RS NM GA DE CMA-ES Vanilla BO TuRBO Method	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2 4.94e+1 3.21e+1 f19 (1 Mean	Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2 4.8e+0 7.1e+0 Std	f14 (1 Mean 1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0 3.89e-1 3.05e-1 f20 (1 Mean 1.25e+1 1.25e+1 f20 (1 Mean 1.25e+1	Std 3.9e+0 2.0e+1 2.5e+0 3.5e+0 2.8e+0 1.7e-1 2.7e-1	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2 1.16e+2 8.05e+1 f21 (1 Mean 1.15e+2 1.16e+2 1.16e+2	3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1 1.9e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1 5.37e+0 7.73e+0 f22 (1 Mean	5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0 2.9e+0 Std	f17 (Mean 8.89e+0 5.06e+1 7.21e+0 1.00e+1 4.67e+0 2.44e+0 2.20e+0	Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0 7.8e-1 1.0e+0 Std	f18 (Mean 3.39e+1 3.46e+2 2.72e+1 3.96e+1 1.76e+1 1.18e+1 1.03e+1 f24 (Mean	Std 9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0 1.4e+0 10D) Std 2.1e+1
RS NM GA DE CMA-ES Vanilla BO Turbo Method	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2 4.94e+1 3.21e+1 f19 (1 Mean 1.24e+1	10D) Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2 4.8e+0 7.1e+0 10D) Std 2.3e+0	f14 (1 Mean 1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0 3.89e-1 3.05e-1 f20 (1 Mean 5.40e+3	Std 3.9e+0 2.0e+1 2.5e+0 3.5e+0 2.8e+0 1.7e-1 2.7e-1 10D) Std 2.2e+3	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2 1.16e+2 8.05e+1 f21 (1 Mean 4.83e+1	Std 3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1 1.9e+1 10D) Std 1.1e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1 5.37e+0 7.73e+0 f22 (1 Mean 5.81e+1	Std 5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0 2.9e+0 10D) Std 1.4e+1	f17 (Mean 8.89e+0 5.06e+1 7.21e+0 1.00e+1 4.67e+0 2.44e+0 2.20e+0 Mean 3.64e+0	Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0 7.8e-1 1.0e+0 10D) Std 7.9e-1	13.39e+1 3.46e+2 2.72e+1 3.96e+1 1.76e+1 1.18e+1 1.03e+1 1.59e+2	10D) Std 9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0 1.4e+0 10D) Std 2.1e+1 6.3e+1
RS NM GA DE CMA-ES Vanilla BO TuRBO Method RS NM	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2 4.94e+1 3.21e+1 f19 (1 Mean 1.24e+1 2.84e+1	10D) Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2 4.8e+0 7.1e+0 10D) Std 2.3e+0 1.7e+1	f14 (1 Mean 1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0 3.89e-1 3.05e-1 f20 (1 Mean 5.40e+3 1.95e+4	Std 3.9e+0 2.0e+1 2.5e+0 3.5e+0 1.7e-1 2.7e-1 10D) Std 2.2e+3 2.9e+4	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2 1.16e+2 8.05e+1 f21 (1 Mean 4.83e+1 3.46e+1	Std 3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1 1.9e+1 10D) Std 1.1e+1 2.1e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1 5.37e+0 7.73e+0 f22 (1 Mean 5.81e+1 4.99e+1	10D) Std 5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0 2.9e+0 10D) Std 1.4e+1 2.8e+1	f17 (Mean 8.89e+0 5.06e+1 7.21e+0 1.00e+1 4.67e+0 2.44e+0 2.20e+0 Mean 3.64e+0 1.44e+0	Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0 7.8e-1 1.0e+0 10D) Std 7.9e-1 7.4e-1	1.59e+2 2.59e+2	10D) Std 9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0 1.4e+0 10D) Std 2.1e+1 6.3e+1 1.6e+1
RS NM GA DE CMA-ES Vanilla BO TuRBO Method RS NM GA	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2 4.94e+1 3.21e+1 f19 (1 Mean 1.24e+1 2.84e+1 9.01e+0	10D) Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2 4.8e+0 7.1e+0 10D) Std 2.3e+0 1.7e+1 2.1e+0	f14 (1 Mean 1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0 3.89e-1 3.05e-1 f20 (1 Mean 5.40e+3 1.95e+4 2.84e+3	Std 3.9e+0 2.0e+1 2.5e+0 3.5e+0 2.8e+0 1.7e-1 2.7e-1 10D) Std 2.2e+3 2.9e+4 2.1e+3	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2 1.16e+2 8.05e+1 f21 (1 Mean 4.83e+1 3.46e+1 4.01e+1	Std 3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1 1.9e+1 10D) Std 1.1e+1 2.1e+1 1.1e+1	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1 5.37e+0 7.73e+0 f22 (1 Mean 5.81e+1 4.99e+1 4.90e+1 5.80e+1 2.64e+1	5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0 2.9e+0 10D) Std 1.4e+1 1.2e+1 1.2e+1 1.6e+1	f17 (CMean 8.89e+0 5.06e+1 7.21e+0 1.00e+1 4.67e+0 2.44e+0 2.20e+0 f23 (CMean 3.64e+0 1.44e+0 3.09e+0 3.55e+0 3.31e+0	Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0 7.8e-1 1.0e+0 10D) Std 7.9e-1 7.4e-1 6.8e-1	1.59e+2 2.59e+2 1.37e+2 1.37e+2	Std 9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0 1.4e+0 10D) Std 2.1e+1 6.3e+1 1.6e+1 2.0e+1
RS NM GA DE CMA-ES Vanilla BO TuRBO Method RS NM GA DE	f13 (1 Mean 1.00e+3 7.12e+2 7.65e+2 1.03e+3 5.11e+2 4.94e+1 3.21e+1 f19 (1 Mean 1.24e+1 2.84e+1 9.01e+0 1.20e+1	10D) Std 1.5e+2 3.3e+2 1.4e+2 1.7e+2 1.4e+2 4.8e+0 7.1e+0 10D) Std 2.3e+0 1.7e+1 2.1e+0 2.5e+0	f14 (1 Mean 1.25e+1 2.36e+1 9.46e+0 1.23e+1 5.03e+0 3.89e-1 3.05e-1 f20 (1 Mean 5.40e+3 1.95e+4 2.84e+3 6.67e+3	Std 3.9e+0 2.0e+1 2.5e+0 3.5e+0 2.8e+0 1.7e-1 2.7e-1 10D) Std 2.2e+3 2.9e+4 2.1e+3 4.1e+3	f15 (1 Mean 2.25e+2 5.07e+2 1.75e+2 2.36e+2 1.15e+2 1.16e+2 8.05e+1 f21 (1 Mean 4.83e+1 3.46e+1 4.01e+1 4.74e+1	Std 3.8e+1 2.0e+2 2.5e+1 3.8e+1 3.2e+1 2.1e+1 1.9e+1 1.1e+1 1.1e+1 1.1e+1 1.3e+1 9.7e+0	f16 (1 Mean 2.08e+1 3.13e+1 1.91e+1 2.24e+1 2.19e+1 5.37e+0 7.73e+0 f22 (1 Mean 5.81e+1 4.99e+1 4.90e+1 5.80e+1	10D) Std 5.3e+0 1.8e+1 5.1e+0 4.8e+0 5.0e+0 3.3e+0 2.9e+0 10D) Std 1.4e+1 2.8e+1 1.2e+1 1.6e+1 6.2e+0	f17 (Mean 8.89e+0 5.06e+1 7.21e+0 1.00e+1 4.67e+0 2.44e+0 2.20e+0 Mean 3.64e+0 1.44e+0 3.09e+0 3.55e+0	Std 2.2e+0 5.3e+1 1.4e+0 2.1e+0 1.1e+0 7.8e-1 1.0e+0 10D) Std 7.9e-1 7.4e-1 6.8e-1 7.9e-1	1.59e+2 2.59e+2 1.37e+2 1.75e+2 1.75e+2	10D) Std 9.5e+0 3.9e+2 6.5e+0 8.6e+0 4.4e+0 1.2e+0 1.4e+0 10D) Std 2.1e+1 6.3e+1 1.6e+1 2.0e+1 2.2e+1 6.6e+0

Table 4: The statistical results (mean and standard deviation) of the regret (i.e., the difference between the true optimum and the best function value obtained) were computed for the seven methods across the 24 BBOB functions, under a budget of 800 evaluations over 30 independent runs. Methods that are statistically the best are highlighted in **bold**.

									1 07 (107)			
Method	f1 (1	0D)	f2 (1	0D)	f3 (1	. 0D)	f4 (1	. 0D)	f5 (1	0D)	f6 (1	. 0D)
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
RS	1.99e+1	5.4e+0	2.28e+5	1.0e+5	1.64e+2	2.2e+1	2.19e+2	3.3e+1	7.31e+1	9.3e+0	3.91e+3	4.3e+3
NM	7.96e+0	1.0e+1	1.15e+5	2.6e+5	4.22e+2	1.7e+2	4.32e+2	1.4e+2	1.37e+1	2.5e+1	1.01e+3	3.8e+3
GA	3.38e+0	1.0e+0	2.12e+4	1.6e+4	7.11e+1	1.2e+1	9.77e+1	1.7e+1	2.83e+1	4.4e+0	7.35e+1	2.4e+1
DE	1.31e+1	3.1e+0	8.85e+4	4.0e+4	1.45e+2	2.0e+1	2.03e+2	3.3e+1	1.98e+1	1.0e+1	2.38e+2	1.0e+2
CMA-ES	8.91e-4	7.8e-4	4.29e+3	6.5e+3	4.70e+1	1.3e+1	5.33e+1	1.5e+1	2.31e-2	2.5e-2	8.21e+0	5.0e+0
Vanilla BO	1.74e - 3	$3.4e{-4}$	1.65e+2	1.3e+1	5.19e+1	1.1e+0	1.04e+2	1.0e+1	1.33e-1	5.9e-2	5.61e+1	$4.3e{-1}$
TuRBO	$1.30e{-2}$	$1.3e{-3}$	2.94e+3	1.1e+3	4.10e+1	4.5e+0	1.23e+2	1.9e+1	4.34e-1	5.7e-2	1.39e+1	2.2e+0
Method	f7 (10D)		f8 (10D)		f9 (10D)		f10 (10D)		f11 (10D)		f12 (10D)	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
RS	9.17e+1	2.5e+1	8.25e+3	2.7e+3	6.58e+3	2.8e+3	2.15e+5	1.1e+5	1.27e+2	6.1e+1	1.98e+7	6.6e+6
NM	5.39e+2	4.3e+2	3.07e+3	4.9e+3	2.65e+3	4.7e+3	5.33e+4	1.1e+5	7.28e+1	4.1e+1	2.43e+7	2.7e+7
GA	2.65e+1	7.4e+0	7.87e+2	4.4e+2	5.18e+2	2.7e+2	5.35e+4	2.1e+4	8.33e+1	4.1e+1	3.52e+6	1.3e+6
DE	7.86e+1	2.6e+1	5.36e+3	2.8e+3	3.20e+3	1.8e+3	1.53e+5	6.3e+4	1.57e+2	6.8e+1	1.78e+7	6.9e+6
CMA-ES	4.02e+0	2.6e+0	1.22e+1	1.3e+1	2.55e+1	3.5e+1	1.34e+4	1.2e+4	1.06e+2	4.3e+1	2.22e+3	3.9e+3
Vanilla BO	3.88e+0	$6.3e{-1}$	1.76e+1	1.1e+1	4.36e+1	1.1e+1	4.58e+3	9.2e+2	7.70e+1	8.7e+0	1.08e+7	7.0e+6
TuRBO	5.43e+0	1.2e+0	5.01e+1	1.3e+1	5.31e+1	2.0e+1	3.00e+3	1.6e+3	9.22e+1	1.4e+1	1.06e+5	1.2e+5
	f13 (10D)		f14 (10D)						f17 (10D)			
Method	f13 (1	10D)	f14 (1	10D)	f15 (1	10D)	f16 (10D)	f17 (1	10D)	f18 (10D)
Method	f13 (1 Mean	1 0D) Std	f14 (1 Mean	1 0D) Std	f15 (1 Mean	10D) Std	f16 (2) Mean	10D) Std	f17 (1 Mean	1 0D) Std	Mean	10D) Std
Method		-		-		-						Std
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std 5.5e+0
RS	Mean 7.87e+2	Std 1.1e+2	Mean 8.44e+0	Std 2.4e+0	Mean 1.74e+2	Std 2.1e+1	Mean 1.65e+1	Std 3.7e+0	Mean 7.16e+0	Std 1.4e+0	Mean 2.68e+1	Std 5.5e+0
RS NM	Mean 7.87e+2 2.62e+2	Std 1.1e+2 2.7e+2	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0	Std 2.4e+0 1.2e+1 9.8e-1 2.0e+0	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2	Std 2.1e+1 1.9e+2	Mean 1.65e+1 3.08e+1	Std 3.7e+0 1.8e+1	Mean 7.16e+0 4.37e+1	Std 1.4e+0 4.3e+1	Mean 2.68e+1 2.88e+2	Std 5.5e+0 3.2e+2 2.1e+0
RS NM GA	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1	Std 1.1e+2 2.7e+2 5.8e+1	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2	Std 2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2	Mean 1.74e+2 4.88e+2 8.80e+1	Std 2.1e+1 1.9e+2 1.1e+1	Mean 1.65e+1 3.08e+1 1.43e+1	3.7e+0 1.8e+1 3.6e+0 4.4e+0	Mean 7.16e+0 4.37e+1 2.68e+0	Std 1.4e+0 4.3e+1 6.4e-1	Mean 2.68e+1 2.88e+2 1.08e+1	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0
RS NM GA DE CMA-ES Vanilla BO	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1 4.16e+1	Std 1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1 4.5e+0	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2 7.97e-2	Std 2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2	Std 2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1 8.2e+0	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0	Std 3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0 1.2e+0	Mean 7.16e+0 4.37e+1 2.68e+0 6.96e+0	Std 1.4e+0 4.3e+1 6.4e-1 1.4e+0	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0	5.5e+0 3.2e+2 2.1e+0 5.7e+0
RS NM GA DE CMA-ES	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1	Std 1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2	Std 2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2 5.70e+1	Std 2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0	3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0	7.16e+0 4.37e+1 2.68e+0 6.96e+0 6.38e -1	Std 1.4e+0 4.3e+1 6.4e-1 1.4e+0 5.2e-1	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0
RS NM GA DE CMA-ES Vanilla BO	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1 4.16e+1	1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1 4.5e+0 2.1e+0	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2 7.97e-2	2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2 3.4e-2	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2 5.70e+1 6.38e+1	Std 2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1 8.2e+0 5.7e+0	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0	3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0 1.2e+0 4.3e-1	Mean 7.16e+0 4.37e+1 2.68e+0 6.96e+0 6.38e-1 1.42e+0	1.4e+0 4.3e+1 6.4e-1 1.4e+0 5.2e-1 3.1e-1 4.6e-1	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0 8.1e-1 5.5e-1
RS NM GA DE CMA-ES Vanilla BO TuRBO	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1 4.16e+1 1.99e+1	1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1 4.5e+0 2.1e+0	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2 7.97e-2 1.45e-1	2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2 3.4e-2	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2 5.70e+1 6.38e+1 6.77e+1	Std 2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1 8.2e+0 5.7e+0	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0 3.02e+0	3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0 1.2e+0 4.3e-1	Mean 7.16e+0 4.37e+1 2.68e+0 6.96e+0 6.38e-1 1.42e+0 1.26e+0	1.4e+0 4.3e+1 6.4e-1 1.4e+0 5.2e-1 3.1e-1 4.6e-1	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0 3.89e+0	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0 8.1e-1 5.5e-1
RS NM GA DE CMA-ES Vanilla BO TuRBO	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1 4.16e+1 1.99e+1	1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1 4.5e+0 2.1e+0	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2 7.97e-2 1.45e-1 f20 (1	2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2 3.4e-2	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2 5.70e+1 6.38e+1 6.77e+1 f21 (2)	Std 2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1 8.2e+0 5.7e+0	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0 3.02e+0	3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0 1.2e+0 4.3e-1	Mean 7.16e+0 4.37e+1 2.68e+0 6.96e+0 6.38e-1 1.42e+0 1.26e+0	Std 1.4e+0 4.3e+1 6.4e-1 1.4e+0 5.2e-1 3.1e-1 4.6e-1	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0 3.89e+0 f24 (Mean	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0 8.1e-1 5.5e-1
RS NM GA DE CMA-ES Vanilla BO TuRBO	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1 4.16e+1 1.99e+1 f19 (1) Mean	Std 1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1 4.5e+0 2.1e+0 Std	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2 7.97e-2 1.45e-1 f20 (1 Mean	Std 2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2 3.4e-2 10D) Std	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2 5.70e+1 6.38e+1 6.77e+1 f21 (1) Mean	Std 2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1 8.2e+0 5.7e+0 Std	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0 3.02e+0 f22 (1) Mean	Std 3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0 1.2e+0 4.3e-1 10D) Std	Mean 7.16e+0 4.37e+1 2.68e+0 6.96e+0 6.38e-1 1.42e+0 1.26e+0 f23 (1 Mean	Std 1.4e+0 4.3e+1 6.4e-1 1.4e+0 5.2e-1 3.1e-1 4.6e-1 (IOD) Std	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0 3.89e+0 f24 (Mean	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0 8.1e-1 5.5e-1 10D) Std
RS NM GA DE CMA-ES Vanilla BO TuRBO Method	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1 4.16e+1 1.99e+1 f19 (1 Mean 1.01e+1	Std 1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1 4.5e+0 2.1e+0 Std 1.4e+0	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2 1.45e-1 f20 (1 Mean 2.97e+3	2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2 3.4e-2 10DD) Std 1.5e+3	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2 5.70e+1 6.38e+1 6.77e+1 f21 (1) Mean 3.29e+1	Std 2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1 8.2e+0 5.7e+0 Std 1.0e+1	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0 3.02e+0 f22 (0 Mean 4.23e+1	Std 3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0 1.2e+0 4.3e-1 10D) Std 1.2e+1	Mean 7.16e+0 4.37e+1 2.68e+0 6.96e+0 6.38e-1 1.42e+0 1.26e+0 f23 (1 Mean 2.69e+0	Std 1.4e+0 4.3e+1 6.4e-1 1.4e+0 5.2e-1 3.1e-1 4.6e-1 10DD Std 6.7e-1	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0 3.89e+0 f24 (Mean 1.36e+2	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0 8.1e-1 5.5e-1 10D) Std 1.6e+1
RS NM GA DE CMA-ES Vanilla BO TuRBO Method RS NM	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1 4.16e+1 1.99e+1 f19 (1) Mean 1.01e+1 2.62e+1	1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1 4.5e+0 2.1e+0 Std 1.4e+0 1.7e+1	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2 1.45e-1 f20 (1 Mean 2.97e+3 1.02e+4	2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2 3.4e-2 10DD) Std 1.5e+3 2.1e+4	Mean 1.74e+2 4.88e+2 4.88e+2 8.80e+1 1.57e+2 5.70e+1 6.38e+1 6.77e+1 f21 (: Mean 3.29e+1 1.82e+1	Std 2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1 8.2e+0 5.7e+0 Std 1.0e+1 1.6e+1	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0 3.02e+0 f22 (Mean 4.23e+1 3.20e+1	Std 3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0 1.2e+0 4.3e-1 10D) Std 1.2e+1 2.7e+1	Mean 7.16e+0 4.37e+1 2.68e+0 6.96e+0 6.38e-1 1.42e+0 1.26e+0 f23 (1 Mean 2.69e+0 1.17e+0	Std 1.4e+0 4.3e+1 6.4e-1 1.4e+0 5.2e-1 3.1e-1 4.6e-1 10DD Std 6.7e-1 7.4e-1	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0 3.89e+0 f24 (Mean 1.36e+2 2.49e+2	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0 8.1e-1 5.5e-1 10D) Std 1.6e+1 6.1e+1
RS NM GA DE CMA-ES Vanilla BO TuRBO Method RS NM GA	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1 4.16e+1 1.99e+1 f19 (1) Mean 1.01e+1 2.62e+1 5.16e+0	Std 1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1 4.5e+0 2.1e+0 Std 1.4e+0 1.7e+1 6.8e-1	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2 1.45e-1 f20 (1 Mean 2.97e+3 1.02e+4 2.49e+1	2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2 3.4e-2 10D) Std 1.5e+3 2.1e+4 8.3e+1	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2 5.70e+1 6.38e+1 6.77e+1 f21 (: Mean 3.29e+1 1.82e+1 1.46e+1	2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1 8.2e+0 5.7e+0 10D) Std 1.0e+1 1.6e+1 5.6e+0	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0 3.02e+0 f22 (Mean 4.23e+1 3.20e+1 1.12e+1	3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0 1.2e+0 4.3e-1 10D) Std 1.2e+1 2.7e+1 4.7e+0 1.6e+1	Mean 7.16e+0 4.37e+1 2.68e+0 6.96e+0 6.38e-1 1.42e+0 1.26e+0 f23 (1 Mean 2.69e+0 1.17e+0 2.50e+0	Std 1.4e+0 4.3e+1 6.4e-1 1.4e+0 5.2e-1 3.1e-1 4.6e-1 10D) Std 6.7e-1 7.4e-1 4.9e-1	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0 3.89e+0 f24 (Mean 1.36e+2 2.49e+2 8.08e+1	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0 8.1e-1 5.5e-1 10D) Std 1.6e+1 6.1e+1 1.4e+1 1.9e+1
RS NM GA DE CMA-ES Vanilla BO TuRBO Method RS NM GA DE	Mean 7.87e+2 2.62e+2 3.39e+2 7.50e+2 2.44e+1 4.16e+1 1.99e+1 f19 (1 Mean 1.01e+1 2.62e+1 5.16e+0 7.65e+0	1.1e+2 2.7e+2 5.8e+1 1.1e+2 2.1e+1 4.5e+0 2.1e+0 Std 1.4e+0 1.7e+1 6.8e-1 1.7e+0	Mean 8.44e+0 9.97e+0 2.58e+0 7.47e+0 2.75e-2 1.45e-1 f20 (1 Mean 2.97e+3 1.02e+4 2.49e+1 1.16e+3	2.4e+0 1.2e+1 9.8e-1 2.0e+0 2.1e-2 2.6e-2 3.4e-2 10D) Std 1.5e+3 2.1e+4 8.3e+1 1.1e+3	Mean 1.74e+2 4.88e+2 8.80e+1 1.57e+2 5.70e+1 6.38e+1 6.77e+1 f21 (: Mean 3.29e+1 1.82e+1 1.46e+1 3.57e+1	2.1e+1 1.9e+2 1.1e+1 2.8e+1 1.0e+1 8.2e+0 5.7e+0 10D) Std 1.0e+1 1.6e+1 5.6e+0 1.2e+1	Mean 1.65e+1 3.08e+1 1.43e+1 1.93e+1 1.37e+1 1.64e+0 3.02e+0 f22 (Mean 4.23e+1 3.20e+1 1.12e+1 3.85e+1	3.7e+0 1.8e+1 3.6e+0 4.4e+0 6.5e+0 1.2e+0 4.3e-1 10D) Std 1.2e+1 2.7e+1 4.7e+0 1.6e+1 1.3e+1	Mean 7.16e+0 4.37e+1 2.68e+0 6.96e+0 6.38e-1 1.42e+0 1.26e+0 Mean 2.69e+0 1.17e+0 2.50e+0 3.17e+0	Std 1.4e+0 4.3e+1 6.4e-1 1.4e+0 5.2e-1 3.1e-1 4.6e-1 10D) Std 6.7e-1 7.4e-1 4.9e-1 6.6e-1	Mean 2.68e+1 2.88e+2 1.08e+1 2.58e+1 2.38e+0 4.39e+0 524 (Mean 1.36e+2 2.49e+2 8.08e+1 1.29e+2	5.5e+0 3.2e+2 2.1e+0 5.7e+0 1.4e+0 8.1e-1 5.5e-1 10D) Std 1.6e+1 6.1e+1 1.4e+1 1.9e+1 9.3e+0

Table 5: The statistical results (mean and standard deviation) of the regret (i.e., the difference between the true optimum and the best function value obtained) were computed for the seven methods across the 24 BBOB functions, under a budget of 2,000 evaluations over 30 independent runs. Methods that are statistically the best are highlighted in **bold**.

Method	f1 (1	0D)	f2 (1	0D)	f3 (1	.0D)	f4 (1	0D)	f5 (1	0D)	D) f6 (10D)	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
RS	1.65e+1	3.9e+0	1.43e+5	6.5e+4	1.50e+2	2.0e+1	1.89e+2	2.6e+1	6.67e+1	1.0e+1	1.77e+3	2.8e+3
NM	9.58e-1	4.7e+0	6.13e+4	1.8e+5	3.93e+2	1.7e+2	4.03e+2	1.6e+2	7.90e+0	2.0e+1	6.35e+2	2.1e+3
GA	1.61e-1	7.5e-2	7.36e+2	5.6e+2	1.97e+1	5.1e+0	2.80e+1	5.8e+0	5.40e+0	1.1e+0	2.68e+1	8.3e+0
DE	3.18e+0	1.1e+0	1.35e+4	5.4e+3	8.36e+1	1.2e+1	1.18e+2	1.5e+1	0.00e+0	0.0e+0	1.72e+2	6.4e+1
CMA-ES	9.74e-12	1.3e-11	3.11e+1	3.0e+1	1.55e+1	7.1e+0	2.19e+1	9.1e+0	4.19e-10	6.0e-10	1.20e-2	1.8e-
Vanilla BO	1.74e-3	$3.4e{-4}$	1.65e+2	1.3e+1	5.19e+1	1.1e+0	9.78e+1	1.3e+1	1.33e-1	5.9e-2	5.61e+1	4.3e-
TuRBO	1.30e-2	$1.3e{-3}$	2.94e+3	1.1e+3	4.10e+1	4.5e+0	1.23e+2	1.9e+1	4.34e-1	5.7e-2	1.37e+1	1.7e+0
Method	f7 (10D)		f8 (10D)		f9 (10D)		f10 (10D)		f11 (10D)		f12 (10D)	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
RS	7.08e+1	1.9e+1	6.03e+3	2.4e+3	4.36e+3	2.2e+3	1.45e+5	5.1e+4	8.07e+1	2.3e+1	1.67e+7	5.5e+6
NM	3.68e+2	3.7e+2	7.59e+2	2.0e+3	5.79e+2	1.4e+3	1.89e+4	6.0e+4	5.57e+1	3.6e+1	8.10e+6	1.6e+7
GA	6.47e+0	3.0e+0	6.33e+1	3.4e+1	7.41e+1	5.4e+1	1.67e+4	9.6e+3	5.55e+1	2.5e+1	1.85e+5	1.3e+5
DE	2.84e+1	9.0e+0	6.54e+2	3.7e+2	5.47e+2	1.9e+2	4.84e+4	1.7e+4	1.03e+2	2.9e+1	4.18e+6	1.8e+6
CMA-ES	1.94e+0	1.9e+0	5.08e+0	2.0e+0	1.05e+1	2.3e+1	4.50e+2	4.8e+2	6.52e+1	3.9e+1	1.11e+1	1.9e+1
Vanilla BO	3.88e+0	$6.3e{-1}$	1.57e+1	9.3e+0	2.57e+1	5.0e+0	3.65e+3	9.3e+2	7.70e+1	8.7e+0	1.07e+7	7.3e+6
TuRBO	5.43e+0	1.2e+0	3.91e+1	1.2e+1	4.71e+1	1.5e+1	3.00e+3	1.6e+3	9.22e+1	1.4e+1	8.65e+4	2.7e+4
Method	f13 (1	10D)	f14 (10D)		f15 (10D)		f16 (10D)		f17 (10D)		f18 (10D)	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
RS	7.00e+2	9.2e+1	7.13e+0	1.4e+0	1.60e+2	2.5e+1	1.43e+1	3.2e+0	6.39e+0	1.0e+0	2.28e+1	3.5e+0
NM	9.06e+1	1.3e+2	5.92e+0	8.2e+0	4.32e+2	1.9e+2	2.31e+1	1.2e+1	4.14e+1	4.3e+1	2.74e+2	2.8e+2
GA			1								0.00	1.3e+0
	8.05e+1	1.8e + 1	2.54e-1	2.0e - 1	5.05e+1	7.6e + 0	8.65e+0	3.8e+0	8.30e-1	2.6e - 1	3.33e+0	
_	8.05e+1 3.70e+2	1.8e+1 6.5e+1	2.54e-1 2.70e+0	2.0e-1 6.6e-1	5.05e+1 9.15e+1	7.6e+0 1.4e+1	8.65e+0 1.70e+1	3.8e+0 4.0e+0	8.30e-1 3.17e+0	2.6e-1 6.8e-1	3.33e+0 1.18e+1	
DE				6.6e-1		1.4e+1						2.6e+0
DE CMA-ES	3.70e+2	6.5e+1	2.70e+0 6.67e -5 7.97e-2	6.6e-1 4.9e-5 2.6e-2	9.15e+1	1.4e+1 8.0e+0	1.70e+1	4.0e+0	3.17e+0	$6.8e{-1}$	1.18e+1	2.6e+0 3.9e - 8.7e-
DE CMA-ES Vanilla BO	3.70e+2 4.77e+0	6.5e+1 5.6e+0	2.70e+0 6.67e -5	6.6e-1 4.9e-5 2.6e-2	9.15e+1 1.81e+1	1.4e+1 8.0e+0	1.70e+1 6.68e+0	4.0e+0 6.7e+0	3.17e+0 6.80e-2	6.8e-1 1.0e-1	1.18e+1 3.21e-1	2.6e+0 3.9e - 8.7e-
DE CMA-ES Vanilla BO TuRBO	3.70e+2 4.77e+0 4.16e+1	6.5e+1 5.6e+0 4.5e+0 1.2e+0	2.70e+0 6.67e -5 7.97e-2	6.6e-1 4.9e-5 2.6e-2 5.0e-2	9.15e+1 1.81e+1 6.38e+1	1.4e+1 8.0e+0 8.2e+0 3.1e+0	1.70e+1 6.68e+0 1.64e+0	4.0e+0 6.7e+0 1.2e+0 4.3e-1	3.17e+0 6.80e-2 1.30e+0	6.8e-1 1.0e-1 2.7e-1 4.6e-1	1.18e+1 3.21e-1 4.21e+0	2.6e+0 3.9e- 8.7e- 3.2e-
DE CMA-ES Vanilla BO TuRBO	3.70e+2 4.77e+0 4.16e+1 1.95e+1	6.5e+1 5.6e+0 4.5e+0 1.2e+0	2.70e+0 6.67e-5 7.97e-2 7.72e-2	6.6e-1 4.9e-5 2.6e-2 5.0e-2	9.15e+1 1.81e+1 6.38e+1 5.87e+1	1.4e+1 8.0e+0 8.2e+0 3.1e+0	1.70e+1 6.68e+0 1.64e+0 3.02e+0	4.0e+0 6.7e+0 1.2e+0 4.3e-1	3.17e+0 6.80e-2 1.30e+0 1.26e+0	6.8e-1 1.0e-1 2.7e-1 4.6e-1	1.18e+1 3.21e-1 4.21e+0 3.81e+0	2.6e+0 3.9e- 8.7e- 3.2e-
DE CMA-ES Vanilla BO TuRBO Method	3.70e+2 4.77e+0 4.16e+1 1.95e+1	6.5e+1 5.6e+0 4.5e+0 1.2e+0	2.70e+0 6.67e-5 7.97e-2 7.72e-2	6.6e-1 4.9e-5 2.6e-2 5.0e-2	9.15e+1 1.81e+1 6.38e+1 5.87e+1	1.4e+1 8.0e+0 8.2e+0 3.1e+0	1.70e+1 6.68e+0 1.64e+0 3.02e+0	4.0e+0 6.7e+0 1.2e+0 4.3e-1	3.17e+0 6.80e-2 1.30e+0 1.26e+0	6.8e-1 1.0e-1 2.7e-1 4.6e-1	1.18e+1 3.21e-1 4.21e+0 3.81e+0	2.6e+0 3.9e- 8.7e- 3.2e-
DE CMA-ES Vanilla BO TuRBO Method	3.70e+2 4.77e+0 4.16e+1 1.95e+1 f19 (1 Mean	6.5e+1 5.6e+0 4.5e+0 1.2e+0 10D) Std	2.70e+0 6.67e-5 7.97e-2 7.72e-2 f20 (1 Mean	6.6e-1 4.9e-5 2.6e-2 5.0e-2	9.15e+1 1.81e+1 6.38e+1 5.87e+1 f21 (1) Mean	1.4e+1 8.0e+0 8.2e+0 3.1e+0	1.70e+1 6.68e+0 1.64e+0 3.02e+0 f22 (1 Mean	4.0e+0 6.7e+0 1.2e+0 4.3e-1	3.17e+0 6.80e-2 1.30e+0 1.26e+0 f23 (1 Mean	6.8e-1 1.0e-1 2.7e-1 4.6e-1 10D) Std	1.18e+1 3.21e-1 4.21e+0 3.81e+0 f24 (1 Mean	2.6e+0 3.9e- 8.7e- 3.2e- 10D) Std
DE CMA-ES Vanilla BO TURBO Method	3.70e+2 4.77e+0 4.16e+1 1.95e+1 f19 (1 Mean 8.96e+0	6.5e+1 5.6e+0 4.5e+0 1.2e+0 10D) Std 1.4e+0	2.70e+0 6.67e-5 7.97e-2 7.72e-2 f20 (1 Mean 1.99e+3	6.6e-1 4.9e-5 2.6e-2 5.0e-2 10D) Std 1.2e+3	9.15e+1 1.81e+1 6.38e+1 5.87e+1 f21 (1) Mean 2.54e+1	1.4e+1 8.0e+0 8.2e+0 3.1e+0 10D) Std 7.6e+0	1.70e+1 6.68e+0 1.64e+0 3.02e+0 f22 (Mean 3.18e+1	4.0e+0 6.7e+0 1.2e+0 4.3e-1 10D) Std 1.1e+1	3.17e+0 6.80e-2 1.30e+0 1.26e+0 f23 (1 Mean 2.08e+0	6.8e-1 1.0e-1 2.7e-1 4.6e-1 10D) Std 4.5e-1	1.18e+1 3.21e-1 4.21e+0 3.81e+0 f24 (1 Mean 1.26e+2	2.6e+(3.9e- 8.7e- 3.2e- 10D) Std 1.4e+1 6.1e+1
DE CMA-ES Vanilla BO TURBO Method RS NM GA	3.70e+2 4.77e+0 4.16e+1 1.95e+1 f19 (1 Mean 8.96e+0 1.97e+1	6.5e+1 5.6e+0 4.5e+0 1.2e+0 10D) Std 1.4e+0 1.3e+1	2.70e+0 6.67e-5 7.97e-2 7.72e-2 f20 (1 Mean 1.99e+3 5.60e+3	6.6e-1 4.9e-5 2.6e-2 5.0e-2 10D) Std 1.2e+3 1.6e+4	9.15e+1 1.81e+1 6.38e+1 5.87e+1 f21 (1 Mean 2.54e+1 1.44e+1	1.4e+1 8.0e+0 8.2e+0 3.1e+0 10D) Std 7.6e+0 1.5e+1	1.70e+1 6.68e+0 1.64e+0 3.02e+0 f22 (Mean 3.18e+1 2.50e+1	4.0e+0 6.7e+0 1.2e+0 4.3e-1 10D) Std 1.1e+1 2.4e+1	3.17e+0 6.80e-2 1.30e+0 1.26e+0 f23 (1 Mean 2.08e+0 6.79e-1	6.8e-1 1.0e-1 2.7e-1 4.6e-1 10D) Std 4.5e-1 3.0e-1	1.18e+1 3.21e-1 4.21e+0 3.81e+0 f24 (1 Mean 1.26e+2 2.29e+2	2.6e+(3.9e- 8.7e- 3.2e- 10D) Std 1.4e+1 6.1e+1 5.0e+(
DE CMA-ES Vanilla BO TuRBO	3.70e+2 4.77e+0 4.16e+1 1.95e+1 f19 (1 Mean 8.96e+0 1.97e+1 3.59e+0	6.5e+1 5.6e+0 4.5e+0 1.2e+0 10D) Std 1.4e+0 1.3e+1 7.4e-1	2.70e+0 6.67e-5 7.97e-2 7.72e-2 f20 (1 Mean 1.99e+3 5.60e+3 1.82e+0	6.6e-1 4.9e-5 2.6e-2 5.0e-2 10D) Std 1.2e+3 1.6e+4 3.6e-1	9.15e+1 1.81e+1 6.38e+1 5.87e+1 f21 (1 Mean 2.54e+1 1.44e+1 4.41e+0	1.4e+1 8.0e+0 8.2e+0 3.1e+0 10D) Std 7.6e+0 1.5e+1 3.0e+0	1.70e+1 6.68e+0 1.64e+0 3.02e+0 f22 (Mean 3.18e+1 2.50e+1 2.24e+0	4.0e+0 6.7e+0 1.2e+0 4.3e-1 10D) Std 1.1e+1 2.4e+1 1.1e+0 9.2e+0	3.17e+0 6.80e-2 1.30e+0 1.26e+0 f23 (1 Mean 2.08e+0 6.79e-1 2.06e+0	6.8e-1 1.0e-1 2.7e-1 4.6e-1 10D) Std 4.5e-1 3.0e-1 4.8e-1	1.18e+1 3.21e-1 4.21e+0 3.81e+0 f24 (1 Mean 1.26e+2 2.29e+2 5.88e+1	2.6e+(3.9e- 8.7e- 3.2e- 10D) Std 1.4e+1 5.0e+(1.2e+1
DE CMA-ES Vanilla BO TuRBO Method RS NM GA DE	3.70e+2 4.77e+0 4.16e+1 1.95e+1 f19 (1 Mean 8.96e+0 1.97e+1 3.59e+0 5.73e+0	6.5e+1 5.6e+0 4.5e+0 1.2e+0 10D) Std 1.4e+0 1.3e+1 7.4e-1 8.8e-1	2.70e+0 6.67e-5 7.97e-2 7.72e-2 f20 (1 Mean 1.99e+3 5.60e+3 1.82e+0 3.60e+0	6.6e-1 4.9e-5 2.6e-2 5.0e-2 10D) Std 1.2e+3 1.6e+4 3.6e-1 4.9e-1	9.15e+1 1.81e+1 6.38e+1 5.87e+1 f21 (1 Mean 2.54e+1 1.44e+1 4.41e+0 2.11e+1	1.4e+1 8.0e+0 8.2e+0 3.1e+0 10D) Std 7.6e+0 1.5e+1 3.0e+0 7.2e+0	1.70e+1 6.68e+0 1.64e+0 3.02e+0 f22 (Mean 3.18e+1 2.50e+1 2.24e+0 1.92e+1	4.0e+0 6.7e+0 1.2e+0 4.3e-1 10D) Std 1.1e+1 2.4e+1 1.1e+0 9.2e+0	3.17e+0 6.80e-2 1.30e+0 1.26e+0 1.26e+0 2.08e+0 6.79e-1 2.06e+0 2.79e+0	6.8e-1 1.0e-1 2.7e-1 4.6e-1 10D) Std 4.5e-1 3.0e-1 4.8e-1 5.6e-1	1.18e+1 3.21e-1 4.21e+0 3.81e+0 f24 (1 Mean 1.26e+2 2.29e+2 5.88e+1 8.61e+1	2.6e+0 3.9e-1 8.7e-1 3.2e-1

Table 6: The statistical results (mean and standard deviation) of the regret (i.e., the difference between the true optimum and the best function value obtained) were computed for the seven methods across the 24 BBOB functions, under a budget of 8,000 evaluations over 30 independent runs. Methods that are statistically the best are highlighted in **bold**.

Method	f1 (1	0D)	f2 (1	0D)	f3 (1	0D)	f4 (1	0D)	f5 (1	0D)	f6 (10D)		
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	
RS	1.19e+1	2.7e+0	8.11e+4	3.8e+4	1.23e+2	1.7e+1	1.67e+2	1.7e+1	5.66e+1	9.1e+0	1.66e+2	1.3e+2	
NM	1.02e-10	5.1e-11	1.20e+4	4.4e+4	2.18e+2	7.2e+1	2.81e+2	1.0e+2	0.00e+0	0.0e+0	1.02e+2	1.3e+2	
GA	2.12e-7	$3.1e{-7}$	4.23e-3	7.5e - 3	2.99e+0	1.5e+0	4.28e+0	1.7e+0	1.09e-3	6.2e - 4	3.93e+0	2.5e+0	
DE	2.67e-3	1.5e - 3	9.14e+0	5.1e+0	3.98e+1	4.6e+0	4.53e+1	5.4e+0	0.00e+0	0.0e+0	1.52e+1	6.6e+0	
CMA-ES	1.42e-14	8.2e-15	1.99e-14	1.5e-14	1.18e+1	5.1e+0	1.72e+1	6.1e+0	6.99e-15	6.2e-15	5.46e-13	4.9e-13	
Vanilla BO	1.74e - 3	$3.4e{-4}$	1.65e+2	1.3e+1	5.19e+1	1.1e+0	9.78e+1	1.3e+1	1.33e-1	5.9e-2	5.61e+1	4.3e - 1	
TuRBO	1.30e-2	1.3e-3	2.94e+3	1.1e+3	4.10e+1	4.5e+0	1.23e+2	1.9e+1	4.34e-1	5.7e-2	1.37e+1	1.7e+0	
Method	f7 (10D)		(10D) f8 (10D)		f9 (1	f9 (10D)		f10 (10D)		10D)	f12 (10D)		
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	
RS	4.93e+1	1.4e+1	3.13e+3	1.3e+3	2.69e+3	9.8e+2	7.92e+4	3.4e+4	5.93e+1	1.4e+1	1.21e+7	3.2e+6	
NM	1.14e+2	8.0e+1	2.27e+2	1.1e+3	1.17e+1	2.3e+1	8.15e+2	7.6e+2	2.53e+1	1.7e+1	2.79e+2	7.8e+2	
GA	3.57e+0	1.9e+0	1.05e+1	1.3e+1	2.08e+1	3.1e+1	8.60e+3	5.4e+3	4.56e+1	2.2e+1	6.25e+0	9.4e+0	
DE	9.41e-1	$4.1e{-1}$	9.85e+0	1.2e+0	9.77e+0	1.4e+0	1.61e+3	6.3e+2	8.00e+0	2.8e+0	8.61e+3	4.7e+3	
CMA-ES	6.17e-1	$7.2e{-1}$	3.99e-1	1.2e+0	2.58e-1	9.5e-1	7.26e+0	2.3e+1	2.09e+0	5.9e+0	2.02e+0	6.7e+0	
Vanilla BO	3.88e+0	6.3e - 1	1.57e+1	9.3e+0	2.57e+1	5.0e+0	3.65e+3	9.3e+2	7.70e+1	8.7e+0	1.07e+7	7.3e+6	
TuRBO	5.43e+0	1.2e+0	3.91e+1	1.2e+1	4.71e+1	1.5e+1	3.00e+3	1.6e+3	9.22e+1	1.4e+1	8.65e+4	2.7e+4	
Method	f13 (1	10D)	f14 (1	10D)	f15 (10D)		f16 (10D)		f17 (10D)		f18 (10D)		
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	
RS	6.01e+2	7.9e+1	5.57e+0	1.3e+0	1.36e+2	1.6e+1	1.05e+1	2.0e+0	4.97e+0	$7.8e{-1}$	1.74e+1	3.7e+0	
NIN #					1								
INIVI	1.55e+1	3.9e+1	1.15e-2	$4.4e{-2}$	2.73e+2	1.0e + 2	1.28e+1	7.4e+0	2.00e+1	1.6e + 1	1.09e+2	7.7e+1	
NM GA	1.55e+1 6.76e+0	3.9e+1 6.4e+0		4.4e-2 3.3e-3	2.73e+2 2.11e+1	1.0e+2 9.0e+0	1.28e+1 3.63e+0	7.4e+0 2.0e+0	2.00e+1 2.11e-1	1.6e+1 1.8e-1	1.09e+2 7.32e-1	7.7e+1 4.9e-1	
				3.3e-3				2.0e+0		1.8e-1			
GA	6.76e+0	6.4e+0	4.55e-3 1.25e-2 8.11e-12	3.3e-3 4.7e-3 6.6e-12	2.11e+1 4.52e+1 1.27e+1	9.0e+0	3.63e+0	2.0e+0 2.6e+0	2.11e-1	1.8e-1 6.0e-2 7.2e-2	7.32e-1	4.9e-1	
GA DE CMA-ES Vanilla BO	6.76e+0 2.23e+1 2.10e-5 4.16e+1	6.4e+0 5.4e+0	4.55e-3 1.25e-2 8.11e-12 7.97e-2	3.3e-3 4.7e-3 6.6e-12 2.6e-2	2.11e+1 4.52e+1 1.27e+1 6.38e+1	9.0e+0 6.5e+0 6.1e+0 8.2e+0	3.63e+0 1.45e+1 1.40e+0 1.64e+0	2.0e+0 2.6e+0 2.3e+0 1.2e+0	2.11e-1 2.99e-1 3.42e-2 1.30e+0	1.8e-1 6.0e-2 7.2e-2 2.7e-1	7.32e-1 1.33e+0 1.51e-1 4.21e+0	4.9e-1 3.8e-1 2.0e-1 8.7e-1	
GA DE CMA-ES Vanilla BO	6.76e+0 2.23e+1 2.10e-5	6.4e+0 5.4e+0 7.9e -5	4.55e-3 1.25e-2 8.11e-12	3.3e-3 4.7e-3 6.6e-12 2.6e-2	2.11e+1 4.52e+1 1.27e+1	9.0e+0 6.5e+0 6.1e+0	3.63e+0 1.45e+1 1.40e+0	2.0e+0 2.6e+0 2.3e+0	2.11e-1 2.99e-1 3.42e-2	1.8e-1 6.0e-2 7.2e-2	7.32e-1 1.33e+0 1.51e-1	4.9e-1 3.8e-1 2.0e-1	
GA DE CMA-ES	6.76e+0 2.23e+1 2.10e-5 4.16e+1	6.4e+0 5.4e+0 7.9e-5 4.5e+0 1.3e+0	4.55e-3 1.25e-2 8.11e-12 7.97e-2	3.3e-3 4.7e-3 6.6e-12 2.6e-2 5.0e-2	2.11e+1 4.52e+1 1.27e+1 6.38e+1	9.0e+0 6.5e+0 6.1e+0 8.2e+0 3.1e+0	3.63e+0 1.45e+1 1.40e+0 1.64e+0	2.0e+0 2.6e+0 2.3e+0 1.2e+0 4.3e-1	2.11e-1 2.99e-1 3.42e-2 1.30e+0	1.8e-1 6.0e-2 7.2e-2 2.7e-1 4.6e-1	7.32e-1 1.33e+0 1.51e-1 4.21e+0	4.9e-1 3.8e-1 2.0e-1 8.7e-1 3.2e-1	
GA DE CMA-ES Vanilla BO TuRBO	6.76e+0 2.23e+1 2.10e-5 4.16e+1 1.92e+1	6.4e+0 5.4e+0 7.9e-5 4.5e+0 1.3e+0	4.55e-3 1.25e-2 8.11e-12 7.97e-2 7.72e-2	3.3e-3 4.7e-3 6.6e-12 2.6e-2 5.0e-2	2.11e+1 4.52e+1 1.27e+1 6.38e+1 5.87e+1	9.0e+0 6.5e+0 6.1e+0 8.2e+0 3.1e+0	3.63e+0 1.45e+1 1.40e+0 1.64e+0 3.02e+0	2.0e+0 2.6e+0 2.3e+0 1.2e+0 4.3e-1	2.11e-1 2.99e-1 3.42e-2 1.30e+0 1.26e+0	1.8e-1 6.0e-2 7.2e-2 2.7e-1 4.6e-1	7.32e-1 1.33e+0 1.51e-1 4.21e+0 3.81e+0	4.9e-1 3.8e-1 2.0e-1 8.7e-1 3.2e-1	
GA DE CMA-ES Vanilla BO TuRBO	6.76e+0 2.23e+1 2.10e-5 4.16e+1 1.92e+1	6.4e+0 5.4e+0 7.9e-5 4.5e+0 1.3e+0	4.55e-3 1.25e-2 8.11e-12 7.97e-2 7.72e-2	3.3e-3 4.7e-3 6.6e-12 2.6e-2 5.0e-2	2.11e+1 4.52e+1 1.27e+1 6.38e+1 5.87e+1	9.0e+0 6.5e+0 6.1e+0 8.2e+0 3.1e+0	3.63e+0 1.45e+1 1.40e+0 1.64e+0 3.02e+0	2.0e+0 2.6e+0 2.3e+0 1.2e+0 4.3e-1	2.11e-1 2.99e-1 3.42e-2 1.30e+0 1.26e+0	1.8e-1 6.0e-2 7.2e-2 2.7e-1 4.6e-1	7.32e-1 1.33e+0 1.51e-1 4.21e+0 3.81e+0	4.9e-1 3.8e-1 2.0e-1 8.7e-1 3.2e-1	
GA DE CMA-ES Vanilla BO TuRBO Method	6.76e+0 2.23e+1 2.10e-5 4.16e+1 1.92e+1 f19 (1	6.4e+0 5.4e+0 7.9e-5 4.5e+0 1.3e+0	4.55e-3 1.25e-2 8.11e-12 7.97e-2 7.72e-2 f20 (1 Mean	3.3e-3 4.7e-3 6.6e-12 2.6e-2 5.0e-2	2.11e+1 4.52e+1 1.27e+1 6.38e+1 5.87e+1 f21 (Mean	9.0e+0 6.5e+0 6.1e+0 8.2e+0 3.1e+0	3.63e+0 1.45e+1 1.40e+0 1.64e+0 3.02e+0 f22 (Mean	2.0e+0 2.6e+0 2.3e+0 1.2e+0 4.3e-1	2.11e-1 2.99e-1 3.42e-2 1.30e+0 1.26e+0 f23 (1 Mean 1.63e+0	1.8e-1 6.0e-2 7.2e-2 2.7e-1 4.6e-1	7.32e-1 1.33e+0 1.51e-1 4.21e+0 3.81e+0 f24 (1 Mean	4.9e-1 3.8e-1 2.0e-1 8.7e-1 3.2e-1	
GA DE CMA-ES Vanilla BO TuRBO Method RS	6.76e+0 2.23e+1 2.10e-5 4.16e+1 1.92e+1 f19 (1 Mean 7.37e+0	6.4e+0 5.4e+0 7.9e-5 4.5e+0 1.3e+0 Std 1.1e+0	4.55e-3 1.25e-2 8.11e-12 7.97e-2 7.72e-2 f20 (1 Mean 8.07e+2	3.3e-3 4.7e-3 6.6e-12 2.6e-2 5.0e-2 10D) Std 6.1e+2	2.11e+1 4.52e+1 1.27e+1 6.38e+1 5.87e+1 f21 (Mean 1.88e+1	9.0e+0 6.5e+0 6.1e+0 8.2e+0 3.1e+0 10D) Std 5.0e+0	3.63e+0 1.45e+1 1.40e+0 1.64e+0 3.02e+0 f22 (Mean 2.26e+1	2.0e+0 2.6e+0 2.3e+0 1.2e+0 4.3e-1 10D) Std 7.1e+0	2.11e-1 2.99e-1 3.42e-2 1.30e+0 1.26e+0 f23 (1 Mean 1.63e+0	1.8e-1 6.0e-2 7.2e-2 2.7e-1 4.6e-1	7.32e-1 1.33e+0 1.51e-1 4.21e+0 3.81e+0 Mean 1.15e+2	4.9e-1 3.8e-1 2.0e-1 8.7e-1 3.2e-1 (0D) Std	
GA DE CMA-ES Vanilla BO TuRBO Method RS NM	6.76e+0 2.23e+1 2.10e-5 4.16e+1 1.92e+1 f19 (1 Mean 7.37e+0 1.13e+1	6.4e+0 5.4e+0 7.9e-5 4.5e+0 1.3e+0 10D) Std 1.1e+0 5.0e+0	4.55e-3 1.25e-2 8.11e-12 7.97e-2 7.72e-2 f20 (1 Mean 8.07e+2 5.79e+2	3.3e-3 4.7e-3 6.6e-12 2.6e-2 5.0e-2 10D) Std 6.1e+2 1.3e+3	2.11e+1 4.52e+1 1.27e+1 6.38e+1 5.87e+1 f21 (Mean 1.88e+1 2.75e+0	9.0e+0 6.5e+0 6.1e+0 8.2e+0 3.1e+0 10D) Std 5.0e+0 2.7e+0	3.63e+0 1.45e+1 1.40e+0 1.64e+0 3.02e+0 f22 (Mean 2.26e+1 2.10e+0	2.0e+0 2.6e+0 2.3e+0 1.2e+0 4.3e-1 10D) Std 7.1e+0 3.0e+0	2.11e-1 2.99e-1 3.42e-2 1.30e+0 1.26e+0 f23 (1 Mean 1.63e+0 3.81e-1	1.8e-1 6.0e-2 7.2e-2 2.7e-1 4.6e-1 10D) Std 3.4e-1 1.3e-1	7.32e-1 1.33e+0 1.51e-1 4.21e+0 3.81e+0 Mean 1.15e+2 1.60e+2	4.9e-1 3.8e-1 2.0e-1 8.7e-1 3.2e-1 10D) Std 9.7e+0 4.1e+1	
GA DE CMA-ES Vanilla BO TuRBO Method RS NM GA	6.76e+0 2.23e+1 2.10e-5 4.16e+1 1.92e+1 f19 (1 Mean 7.37e+0 1.13e+1 1.86e+0	6.4e+0 5.4e+0 7.9e-5 4.5e+0 1.3e+0 10D) Std 1.1e+0 5.0e+0 5.7e-1	4.55e-3 1.25e-2 8.11e-12 7.97e-2 7.72e-2 f20 (Mean 8.07e+2 5.79e+2 7.33e-1	3.3e-3 4.7e-3 6.6e-12 2.6e-2 5.0e-2 10D) Std 6.1e+2 1.3e+3 2.5e-1	2.11e+1 4.52e+1 1.27e+1 6.38e+1 5.87e+1 f21 (Mean 1.88e+1 2.75e+0 2.11e+0	9.0e+0 6.5e+0 6.1e+0 8.2e+0 3.1e+0 10D) Std 5.0e+0 2.7e+0 1.8e+0	3.63e+0 1.45e+1 1.40e+0 1.64e+0 3.02e+0 F22 (Mean 2.26e+1 2.10e+0 1.85e+0 2.03e+0	2.0e+0 2.6e+0 2.3e+0 1.2e+0 4.3e-1 10D) Std 7.1e+0 3.0e+0 4.9e-1	2.11e-1 2.99e-1 3.42e-2 1.30e+0 1.26e+0 f23 (1 Mean 1.63e+0 3.81e-1 1.46e+0	1.8e-1 6.0e-2 7.2e-2 2.7e-1 4.6e-1 10D) Std 3.4e-1 1.3e-1 3.1e-1	7.32e-1 1.33e+0 1.51e-1 4.21e+0 3.81e+0 Mean 1.15e+2 1.60e+2 2.97e+1	4.9e-1 3.8e-1 2.0e-1 8.7e-1 3.2e-1 10D) Std 9.7e+0 4.1e+1 7.6e+0	
GA DE CMA-ES Vanilla BO TuRBO Method RS NM GA DE	6.76e+0 2.23e+1 2.10e-5 4.16e+1 1.92e+1 f19 (1 Mean 7.37e+0 1.13e+1 1.86e+0 3.21e+0	6.4e+0 5.4e+0 7.9e-5 4.5e+0 1.3e+0 Std 1.1e+0 5.0e+0 5.7e-1 6.4e-1	4.55e-3 1.25e-2 8.11e-12 7.97e-2 7.72e-2 f20 (1) Mean 8.07e+2 5.79e+2 7.33e-1 2.22e+0	3.3e-3 4.7e-3 6.6e-12 2.6e-2 5.0e-2 10D) Std 6.1e+2 1.3e+3 2.5e-1 1.6e-1	2.11e+1 4.52e+1 1.27e+1 6.38e+1 5.87e+1 f21 (Mean 1.88e+1 2.75e+0 2.11e+0 2.62e+0	9.0e+0 6.5e+0 6.1e+0 8.2e+0 3.1e+0 10D) Std 5.0e+0 2.7e+0 1.8e+0	3.63e+0 1.45e+1 1.40e+0 1.64e+0 3.02e+0 f22 (Mean 2.26e+1 2.10e+0 1.85e+0 2.03e+0	2.0e+0 2.6e+0 2.3e+0 1.2e+0 4.3e-1 10D) Std 7.1e+0 3.0e+0 4.9e-1 5.4e-1	2.11e-1 2.99e-1 3.42e-2 1.30e+0 1.26e+0 Mean 1.63e+0 3.81e-1 1.46e+0 2.13e+0	1.8e-1 6.0e-2 7.2e-2 2.7e-1 4.6e-1 10D) Std 3.4e-1 1.3e-1 3.1e-1 4.3e-1	7.32e-1 1.33e+0 1.51e-1 4.21e+0 3.81e+0 Mean 1.15e+2 1.60e+2 2.97e+1 5.73e+1	4.9e-1 3.8e-1 2.0e-1 8.7e-1 3.2e-1 0D) Std 9.7e+0 4.1e+1 7.6e+0 6.8e+0	

B.2 Convergence Trajectories

Figures 6-10 show the convergence trajectories of the seven algorithms throughout the optimisation process on the BBOB f1-f4, f5-f9, f10-f14, f15-f19, and f20-f24, respectively, with the low-dimension (left), medium-dimension (middle), and high-dimension (right).

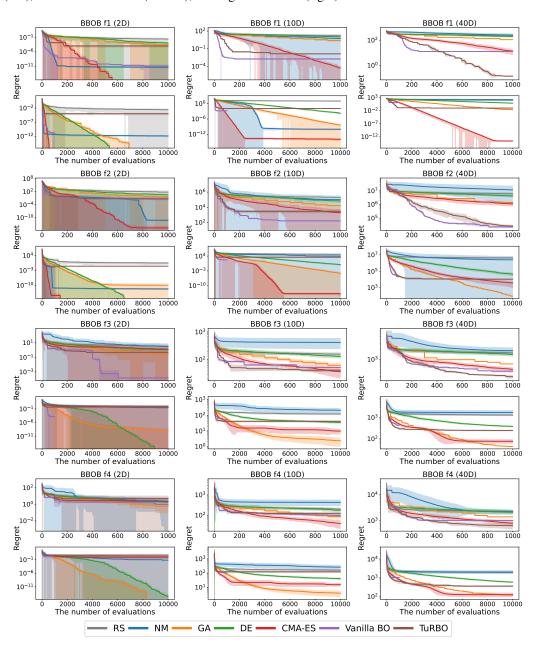


Figure 6: The convergence trajectories of the seven algorithms throughout the optimisation process on the BBOB f1-f4 with the low-dimension (left), medium-dimension (middle), and high-dimension (right). Each coloured line represents the mean regret (the difference between the true optimum and the best function value) obtained over 30 independent runs.

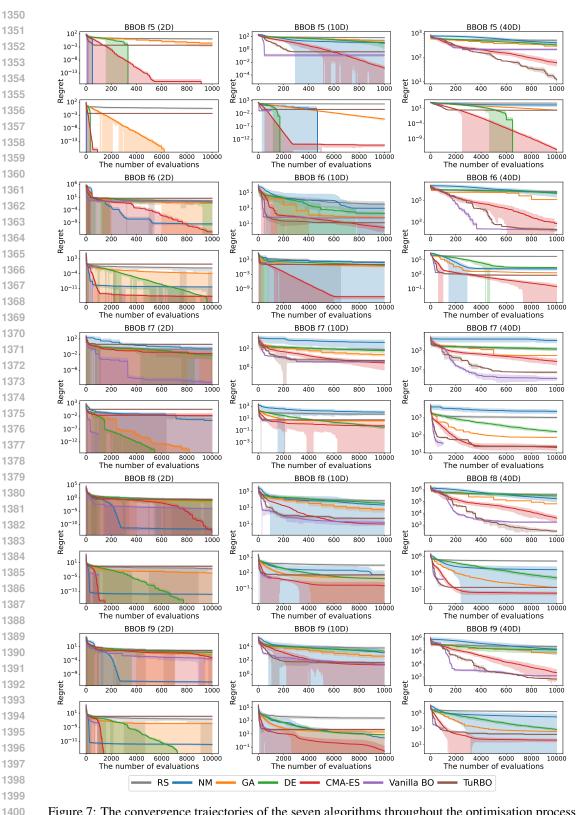


Figure 7: The convergence trajectories of the seven algorithms throughout the optimisation process on the BBOB f5-f9 with the low-dimension (left), medium-dimension (middle), and high-dimension (right). Each coloured line represents the mean regret (the difference between the true optimum and the best function value) obtained over 30 independent runs.

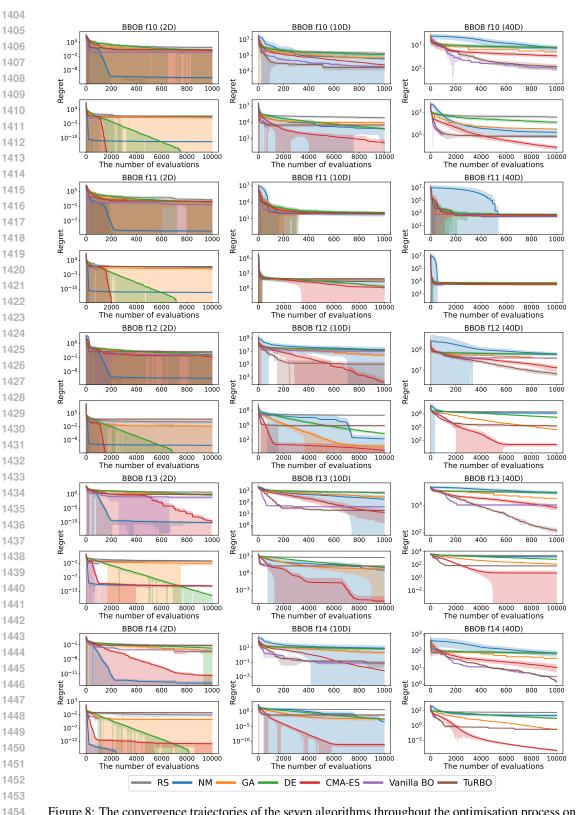


Figure 8: The convergence trajectories of the seven algorithms throughout the optimisation process on the BBOB f10-f14 with the low-dimension (left), medium-dimension (middle), and high-dimension (right). Each coloured line represents the mean regret (the difference between the true optimum and the best function value) obtained over 30 independent runs.

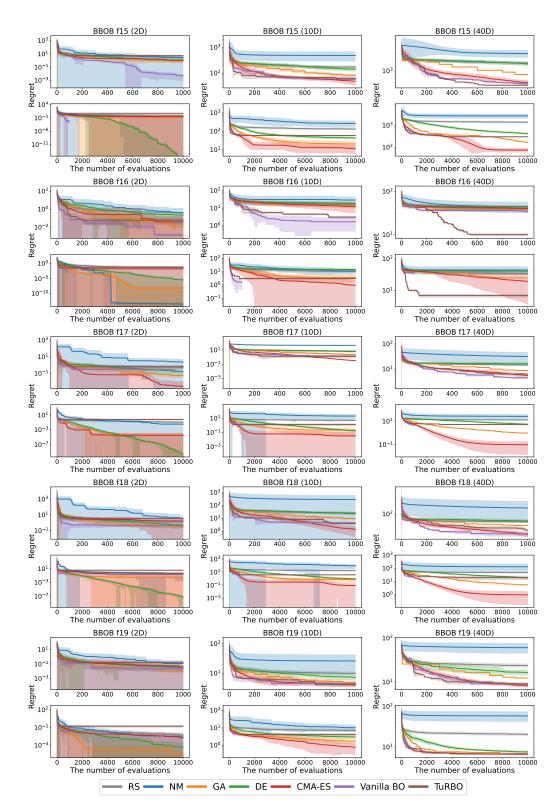


Figure 9: The convergence trajectories of the seven algorithms throughout the optimisation process on the BBOB f15-f19 with the low-dimension (left), medium-dimension (middle), and high-dimension (right). Each coloured line represents the mean regret (the difference between the true optimum and the best function value) obtained over 30 independent runs.

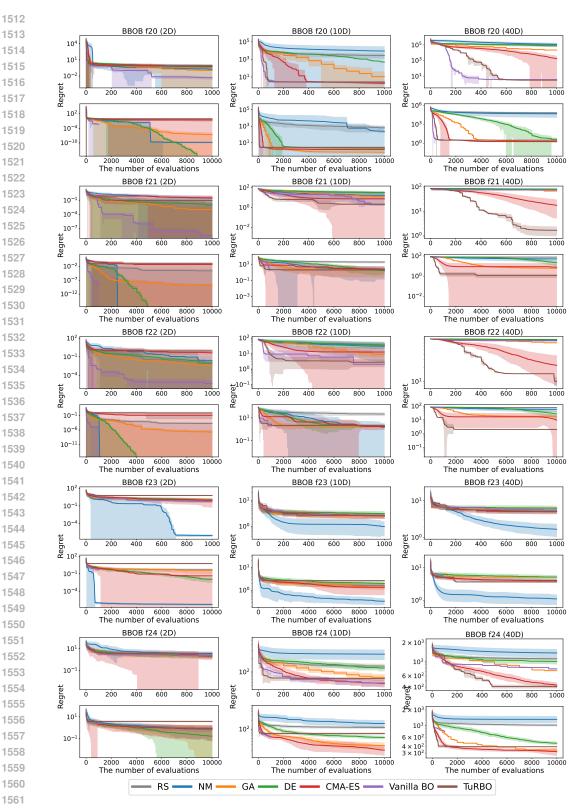


Figure 10: The convergence trajectories of the seven algorithms throughout the optimisation process on the BBOB f20-f24 with the low-dimension (left), medium-dimension (middle), and high-dimension (right). Each coloured line represents the mean regret (the difference between the true optimum and the best function value) obtained over 30 independent runs.

C LLM USAGE

We used large language models (LLMs) solely for language polishing.