DYNAMIC PATTERN ALIGNMENT LEARNING FOR PRETRAINING LIGHTWEIGHT HUMAN-CENTRIC VISION MODELS

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

034

037 038

040

041

042

043

044

045

046

047

048

049

051

052

ABSTRACT

Human-centric vision models (HVMs) have achieved remarkable generalization due to large-scale pretraining on massive person images. However, their dependence on large neural architectures and the restricted accessibility of pretraining data significantly limits their practicality in real-world applications. To address this limitation, we propose Dynamic Pattern Alignment Learning (DPAL), a distillationbased pretraining framework that effectively transfers generalization capability of large HVMs to lightweight ones by mimicking three heterogeneous visual patterns (i.e., global identity pattern, local shape pattern and multi-person interaction pattern). Specifically, we design a dynamic pattern decoder (D-PaDe) that functions as a dynamic mixture of expert (Dy-MoE) model with three specialized experts. This design allows each visual pattern to be generated independently, thus avoiding optimization conflicts caused by pattern heterogeneity during training. Moreover, three alignment objectives are designed to narrow the visual representation gap between large HVMs and lightweight ones at global image, local pixel, and instance relation levels, respectively. Once pretrained, the lightweight model acquires strong generalization capability from large HVMs, thereby supporting a wide range of human-centric vision tasks. Extensive experiments conducted on 15 challenging datasets demonstrate the effectiveness of the DPAL. Remarkably, when employing PATH-B as the teacher, DPAL-ViT/Ti (5M parameters) achieves surprising generalizability similar to existing large HVMs such as PATH-B (84M) and Sapiens-L (307M), and outperforms previous distillation-based pretraining methods including Proteus-ViT/Ti (5M) and TinyMiM-ViT/Ti (5M) by a large margin. More importantly, the DPAL is performed on a limited dataset (i.e., around 1M unlabeled images) that is unseen for large HVMs, which bypasses the need for those inaccessible or constrained pretraining datasets, offering an affordable approach to generalizable HVMs. All code and checkpoints will be publicly available¹.

1 Introduction

Recent years have witnessed remarkable progresses in human-centric visual perception (HVP) (Yuan et al., 2023; Khirodkar et al., 2024; Chen et al., 2023). This success is mainly attributed to the advancement in pretraining of large vision models with massive collected data. By leveraging such extensive pretraining, large human-centric vision models (HVMs) are able to learn generalizable visual patterns, which widely benefit various human-centric perception tasks, such as single-person discrimination (Fu et al., 2021a; He et al., 2021), dense prediction (Yuan et al., 2021; Li et al., 2020) and multi-person visual understanding (Ci et al., 2023; Tang et al., 2023).

Although large HVMs exhibit strong generalization capability, there are two primary computational challenges that significantly limit the practicality of large HVMs in real-world application. First, large HVMs typically exhibit substantial model size, demanding considerable computational resources and making the pretraining of HVMs prohibitively expensive for most researchers. For example, Sapiens (Khirodkar et al., 2024), a typical self-supervised pretrained HVM, employs ViT-G (2B parameters) as the model architecture and trains it on Humans-300M for 18 days using 1024 A100

https://anonymous.4open.science/r/DPAL-23D6

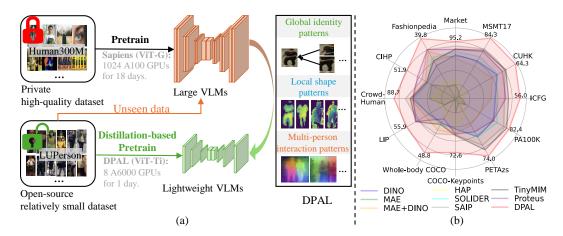


Figure 1: (a) Existing HVMs are limited in real-world application due to two factors: 1) Large model size with heavy computational costs, and 2) high-quality pretraining datasets are strictly constrained. To address these, Dynamic Pattern Alignment Learning (DPAL) is proposed to pretrain lightweight HVMs by distilling generalization capability from large HVMs across three typical human visual patterns. (b) Extensive experiments conducted on 12 datasets demonstrate effectiveness of the DPAL.

GPUs. The PATH, a representative supervised pretrained HVM, trains ViT-L on HumanBench with 11M images using 64 V100 GPUs. This substantial dependence on huge computational resources complicates real-world deployment of HVMs. Second, pretraining HVMs relies on extensive and high-quality datasets. However, the qualified pretraining datasets such as Humans-300M (Khirodkar et al., 2024) and HumanBench (Tang et al., 2023) are often inaccessible or strictly constrained due to the concern about violations to copyright ownership of these digital assets. These challenges pose significant limitation on the broad applicability of existing pretraining methods.

To achieve strong generalizability while maintain the broad applicability, exploiting the potential of lightweight HVMs via extensive pretraining is a promising direction. Previous works (Caron et al., 2021; He et al., 2022) on lightweight HVMs focus on self-supervised pretraining by using alternative dataset such as LUPerson (Fu et al., 2021a), which is widely used for advancements in human-centric vision foundation models. Nevertheless, the scale of publicly available dataset is relatively small, e.g., the number of image in LUPerson is around 4M which is much less than that of those private datasets, limiting the optimization of lightweight HVMs. Motivated by these issues, we focus on a significant question that is considerably less studied: is it possible to replicate strong generalization capability from large HVMs to lightweight HVMs without requiring access to those inaccessible or strictly constrained pretraining datasets?

In this work, we seek to answer the question by exploring distillation-based pretraining framework, which transfers the generalization capability of large HVMs to lightweight ones by leveraging limited dataset as a medium. Specifically, human-centric visual perception generally relies on three typical visual patterns: 1) global identity pattern for single-person discrimination tasks such as Person ReID, 2) local shape pattern for dense prediction tasks such as pose estimation, and 3) multi-person interaction pattern for multi-instance visual understanding tasks like pedestrian detection. This reliance suggests that a robust human-centric vision model with strong generalization must be capable of acquiring all three visual patterns. However, directly learning different patterns is hindered by optimization conflicts caused by pattern heterogeneity. As analyzed in previous works (Chen et al., 2023; Yuan et al., 2023), global pattern learning tends to homogenize pixel representations, sacrificing fine-grained information. In contrast, local pattern learning hurts the global identity information, as it is expected to learn semantic-consistent region representations. To overcome these limitations, we propose Dynamic Pattern Alignment Learning (DPAL), a novel distillation-based pretraining framework that effectively transfers generalization capability of large HVMs to lightweight ones by mimicking those heterogeneous visual patterns. Specifically, we firstly design a dynamic pattern decoder (D-PaDe), acting as a dynamic MoE model with three experts dedicated to separately processing local, global, and relational patterns. It activates only one expert module per input to ensure alignment with one pattern. And then, three alignment objectives are further designed to minimize visual representation gap between large HVMs and lightweight ones at global image, local

pixel, and instance relation levels, respectively. Once pretrained, the lightweight model successfully acquires strong generalization capability of large HVMs, thus supporting various downstream tasks.

We conduct extensive experiments on 15 challenging benchmarks involving 9 representative humancentric visual perception tasks and three cross-domain visual perception tasks, demonstrating the impressive effectiveness of proposed DPAL. Remarkably, when employing PATH-B as the teacher, DPAL-ViT/Ti (5M parameters) achieves surprising generalizability competitive to that of existing large HVMs such as PATH-B (84M) and Sapiens-L (307M), and outperforms previous distillationbased pretraining methods including Proteus-ViT/Ti (5M) and TinyMiM-ViT/Ti (5M) by a large margin. More importantly, the distillation pretraining in DPAL is performed on the limited dataset that is unseen for large HVMs for around 1 day, without the need for those inaccessible or constrained pretraining datasets, offering an affordable approach to generalizable HVMs.

2 RELATED WORKS

2.1 Human-centric Vision Model

Human-centric vision models (HVMs) refer to pretrained models specifically designed and trained to handle human-related visual tasks, including person re-identification (ReID) (Fu et al., 2022; He et al., 2021; Luo et al., 2021), text-to-image person ReID (Shao et al., 2022; Ding et al., 2021b; Suo et al., 2022; Shao et al., 2023), pedestrian attribute recognition (Jia et al., 2022; 2021), action recognition (Sun et al., 2022; Qian et al., 2024; Zhong et al., 2023), and body structure understanding such as 2D/3D pose estimation (Choi et al., 2022; Xu et al., 2022; Yuan et al., 2021; Li et al., 2020).

Recent works (Yuan et al., 2023; Ci et al., 2023; Tang et al., 2023; Khirodkar et al., 2024; Chen et al., 2023) have proposed HVMs tailored for human-centric tasks. For example, both SOLIDER (Chen et al., 2023) and the HAP (Yuan et al., 2023) propose to leverage the human body layouts for pretraining, demonstrating the importance of human body structure priors in learning robust human-centric visual representations. In a different line, several studies such as PATH (Tang et al., 2023) and Sapiens (Khirodkar et al., 2024) focus on the construction of high-qualified pretraining datasets, resulting in large-scale person-centric data sources such as HumanBench-11M and Humans-300M. Although these methods have achieved impressive results in human-centric downstream tasks, the large parameter size and inaccessible large-scale dataset of HVMs (Yuan et al., 2023; Tang et al., 2023; Ci et al., 2023; Khirodkar et al., 2024) makes them unsuitable for real-world application. Therefore, our primary objective is to leverage knowledge distillation to effectively transfer generalization capability of large HVMs to a lightweight counterpart without relying on source pretraining datasets.

2.2 Knowledge Distillation

Traditional knowledge distillation (Hinton et al., 2015; Chen et al., 2019; Yin et al., 2020; Chen et al., 2022; Yang et al., 2024; Son et al., 2024; Fan et al., 2024) aims to model compression via aligning the outputs from small model to that of larger model. To replicate representation capability of large visual foundation models, which are usually computationally intensive, several studies (Zhang et al., 2025; Ren et al., 2023) study distillation-based pretraining for compact foundation models. For example, the TinyMIM (Ren et al., 2023) uses ImageNet (Deng et al., 2009) to explore the impact of various distillation factors such as aligning objectives and the way of distillation, and find that distilling attentions in vision transformer is the key to narrow the gap between the small MAE model and the large one. Unlike traditional single-stage distillation, G2SD (Huang et al., 2023) proposes a two-stage distillation approach, where a MAE pretrained model is used as the teacher model for distillation, followed by distillation on specific tasks. Furthermore, theia (Shang et al., 2024) proposes a multi-teacher off-the-shelf distillation strategy, which learns rich visual representations of multiple teachers simultaneously. Proteus (Zhang et al., 2025) proposes distillation across three different levels of training objectives for mimicking the teacher's behaviors.

These methods illustrate the considerable potential of knowledge distillation in model compression and efficiency improvement. However, existing methods are limited to a single visual pattern (e.g. DeiT (Touvron et al., 2021) captures global identity patterns, G2SD (Huang et al., 2023) focuses on local patterns), resulting in a significant gap in human-centric visual perception tasks. To overcome this limitation, we introduce DPAL, which dynamically learns three typical patterns from large HVMs to enhance generalizability across diverse downstream tasks.

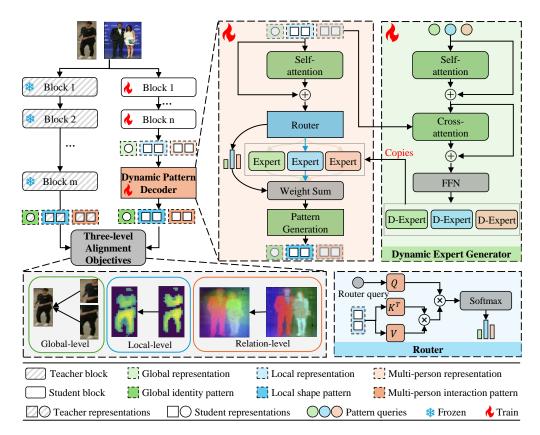


Figure 2: The overview of DPAL. It comprises of (1) Teacher model, (2) Student backbone and (3) Dynamic pattern decoder. Dynamic pattern decoder captures three types of patterns conditioned on the input image and pattern queries. Finally, three-level alignment objectives are employed to acquire generalization capability from large HVMs to lightweight HVMs.

3 Method

As illustrated in Fig. 2, we propose **D**ynamic **P**attern **A**lignment **L**earning (DPAL), a distillation-based pretraining framework for building generalizable lightweight HVMs. Following standard teacher-student architecture (Caron et al., 2021), the DPAL relies on two major designs: 1) Dynamic Pattern Decoder that extracts three typical human visual patterns in a dynamic way, and 2) three levels of alignment objectives that maximize knowledge transfer from the large HVMs to the lightweight one by leveraging those patterns as the medium.

3.1 Model Architecture

Similar to standard knowledge distillation framework, our distillation-based pretraining framework consists of three major components: visual encoder of student model (s-VisEn), visual encoder of teacher model (t-VisEn) and Dynamic Pattern Decoder (D-PaDe). In particular, the D-PaDe functions as an adapter to align the outputs of s-VisEn with those of t-VisEn by projecting them into a common latent space. Once pretrained, the s-VisEn is retained for supporting downstream tasks, while the t-VisEn and D-PaDe are discarded.

s-VisEn. The basic architecture of s-VisEn is built on lightweight vision transformer (e.g., ViT/Ti), which tokenizes input image into numerous vision tokens. Formally, given an input image $I \in \mathbb{R}^{C \times H \times W}$, the s-VisEn is able to output two types of tokens: 1) class token $F_s^g \in \mathbb{R}^{D_s}$ representing D_s dimensional global representation of an image, and 2) patch token $F_s^l \in \mathbb{R}^{L \times D_s}$ representing pixel feature of L image patches.

t-VisEn. The architecture of teacher model is a large vision transformer (e.g., ViT/B), and it has been pretrained using large-scale datasets. Therefor, the t-VisEn often has a stronger representation capacity for extracting diverse visual patterns. Unlike to the s-VisEn, a pretrained t-VisEn can be used to yield three types of tokens from an image, including class token $F_t^g \in \mathbb{R}^{D_t}$, patch token $F_t^l \in \mathbb{R}^{L \times D_t}$ and attention token $F_t^r \in \mathbb{R}^{L \times L}$. As demonstrated in previous works (Tang et al., 2023; Ci et al., 2023), class token of a pretrained ViT carries global discriminative visual information, the patch token captures local visual layouts, and intern-patch relations are encoded in attention token. Therefore, the class, patch, and attention tokens from a large pretrained ViT are adopted to serve as the latent representations for global identity, local shape, and interaction patterns, respectively.

D-PaDe. To avoid the optimization conflicts caused by pattern heterogeneity, the D-PaDe is designed as a dynamic mixture of experts (MoE) model, which decouples the generation of different patterns. Existing MoE models (Riquelme et al., 2021; Dai et al., 2024) adopt a fix set of small feed-forward network (FFN) as experts, and use a router module to decide which expert should be activated. However, those fixed experts are insufficient to cope with the diversity in visual patterns. To overcome this, we adopt a different strategy, where the experts in D-PaDe are dynamically predicted based on the type of input tokens and pattern queries. Specifically, we denote three learnable tokens as the pattern queries $T_e = [T_e^1, T_e^2, T_e^3]$, each of which is responsible for deciding what expert should be generated. And then, a self-attention module $SA(\cdot)$ is used to encode pattern queries and a cross-attention module $CA(\cdot)$ is further used to adapatively filter the visual tokens with the guide of the pattern queries. Finally, those filtered tokens are projected to computational parameters of three experts $\{E\}_{i=1}^3$ via a linear FFN. Additionally, the router in D-PaDe is typically a linear layer that computes expert selection scores $\{W^e\}_{i=1}^3$ based on the input token type. Based on this, the D-PaDe is activated to decode only one specified pattern once the query is assigned. In the following, we present how to utilize D-PaDe to decode various visual patterns.

3.2 PATTERN GENERATION

Global identity pattern is generally expressed via global discrimination information. Therefore, this pattern can be directly obtained from single-person image I_1 , as formulated as follows:

$$\widetilde{F_s^g} = \sum_{i=1}^3 W_i^e \cdot E_i(F_{s1}^g + SA(F_{s1}^g))$$
 (1)

where F_{s1}^g is the global token of the single-person image I_1 , which is extracted from s-VisEn. W_i^e is the weight score for *i*-th expert.

Local shape pattern represents local human body shape information. To achieve this shape information, we use the attention score in t-VisEn as the a coarse mask M_{shape} , which roughly attends foreground body shape. Then, the local shape pattern is generated by filtering irrelevant patch tokens via the mask. This process can be formulated in Equ. 2:

$$\widetilde{F}_{s}^{l} = M_{shape} \cdot \left[\sum_{i=1}^{3} W_{i}^{e} \cdot E_{i}(F_{s1}^{l} + SA(F_{s1}^{l})) \right]$$
 (2)

where F_{s1}^{l} is the local patch tokens of the single-person image I_1 , which are obtained from s-VisEn.

Multi-person interaction pattern represents the relational information between different instances. To generate this kind of pattern, we firstly cast image patch tokens F_{s2}^l , which are extracted from a multi-person image I_2 via the s-VisEn, as latent tokens using D-PaDe. And then, we compute inter-token similarity using softmax nonlinear function. The resulted scores can be viewed as relations among the patches. This process is formulated through Equ. 3:

$$\widetilde{F}_{s2}^{l} = \sum_{i=1}^{3} W_{i}^{e} \cdot E_{i}(F_{s2}^{l} + SA(F_{s2}^{l}))$$

$$\widetilde{F}_{s}^{r} = softmax(\widetilde{F}_{s2}^{l} \widetilde{F}_{s2}^{l})$$
(3)

3.3 ALIGNMENT OBJECTIVES

To minimize the generalization gap between lightweight HVMs and large HVMs, we conduct pattern alignment across three different levels, i.e., global image, local pixel, and relation levels.

Global-level Alignment. To learn global identity pattern, we construct M multi-view images derived from the single-person image I_1 . Then, we extract global identity patterns from those multi-view images and minimize their representation gap between the student model and teacher model, as formulated in Equ 4.

$$\ell_g = \frac{1}{M} \sum_{i=1}^{M} \|\widetilde{F}_{si}^g - \widetilde{F}_{ti}^g\|_2 \tag{4}$$

Local-level Alignment. To align local shape pattern, we use the MSE loss to encourage the consistency between patch tokens decoded via proposed D-PaDe and local shape pattern extracted from the t-VisEn, as illustrated in Equ 5:

$$\ell_l = \|\widetilde{F}_s^l - \widetilde{F}_t^l\|_2 \tag{5}$$

Relation-level Alignment. To further acquire instance-level relationships learned in the teacher model, we enforce the lightweight HVMs mimic the multi-person interaction patterns of large HVMs via KL divergence loss:

$$\ell_r = L_{KL}(\widetilde{F_s^r}, \widetilde{F_t^r}) \tag{6}$$

Three loss functions are combined as the overall learning objective \mathcal{L} for optimizing student model:

$$\mathcal{L} = \lambda_q \ell_q + \lambda_l \ell_l + \lambda_r \ell_r \tag{7}$$

where λ_g , λ_l and λ_r are hyperparameters for balancing three learning objectives. For simplicity, we set them to 1 during training.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. Unless otherwise stated, all models in this paper are pretrained on LUP1M, a subset of 1 million single-person images sampled randomly from LUPerson dataset (Fu et al., 2021b). Specificaly, the multi-persons are synthesized by applying a simple copy-paste technique (Ghiasi et al., 2021) to different resolution images. For downstream task evaluation, the pretrained models are exhaustively evaluated on standard benchmark datasets to ensure comprehensive performance assessment. Specifically, we adopt Market1501 (Zheng et al., 2015) and MSMT17 (Wei et al., 2018) for image-to-image ReID (I2I ReID), CUHK-PEDES (Li et al., 2017) and ICFG-PEDES (Ding et al., 2021a) for text-to-image ReID (T2I ReID), PA-100K (Liu et al., 2017) and PETA (Deng et al., 2014) for attribute recognition, COCO-Keypoint (Lin et al., 2014) for pose estimation, Whole-body COCO (Jin et al., 2020) for landmark detection, LIP (Liang et al., 2018) for human parsing, CrowdHuman (Shao et al., 2018) for pedestrain detection, CIHP (Gong et al., 2018) for multiple human parsing, Fashionpedia (Jia et al., 2020) for part-level attribute parsing. In addition to general human-centric visual perception tasks, we further evaluate generalizability of pretrained models using a cross-domain setting, where models are pretrained using natural person images, and fine-tuned on cross-style or cross-species visual perception tasks using images from unseen domains. Therefore, we consider three representative datasets: 1) Humanart (Ju et al., 2023) with person images in unseen styles such as cartoons and sketches; 2) Chimpact-Pose (Ma et al., 2023) with chimpanzee images, and 3) AP-10K (Yu et al., 2021) with common animal images.

Evaluation. Following previous works, we adopt Rank1 for I2I ReID and T2I ReID, mean accuracy (mAP) for attribute recognition, average precision (AP) and recall (AR) for pose estimation and landmark detection, mean intersection of union (mIoU) and mean pixel accuracy (mAcc) for human parsing, AP and missing rate (MR) for pedestrain detection, mIoU and AP_p for multiple human parsing, $AP_{IoU+F_1}^{box}$ and $AP_{IoU+F_1}^{segm}$ for part-level attribute parsing. To fairly evaluate the pretrained HVMs, any decoder or alignment module (e.g., P-DaDe) is discarded and only pretrained backbone model using different pretraining paradigms (self-supervised/distillation-based) is retained for downstream tasks. For additional details, we refer readers to **Appendix**.

Table 1: Comparison with self-supervised pretraining and distillation-based pretraining methods across three single-person discriminative tasks and three single-person dense prediction tasks. *: Swin-tiny is adopted as the student backbone.

	I2I	T2I	Attribute	Pose	Landmark	Human
Method	Person ReID	Person ReID	Recognition	Estimation	Detection	Parsing
	(Market / MSMT)	(CUHK / ICFG)	(PA100 / PETA)	(AP / AR)	$(AP \mid AR)$	$(mIoU \ / \ mAcc)$
DINO	90.5/65.8	55.3/40.2	77.4/69.3	69.3/72.6	43.9/57.1	48.7/59.3
MAE	79.7/39.9	36.6/19.1	68.3/61.1	67.0/70.6	40.1/52.7	43.5/54.0
MAE+DINO	89.2/61.6	52.7/37.7	72.9/66.5	69.9/73.2	45.1/58.2	49.8/60.3
HAP	81.6/42.4	40.2/20.4	66.3/64.1	68.8/72.3	42.6/55.4	44.4/54.5
SOLIDER	91.6/69.2	55.5/40.7	78.6/69.4	69.3/72.6	44.2/57.2	48.9/59.2
SAIP	93.6/75.6	59.2/46.1	80.7/71.4	70.1/73.3	45.7/58.7	52.3/63.3
ViTKD	88.3/65.7	46.3/35.5	77.6/67.0	71.3/74.5	44.4/57.3	52.0/62.8
MaskedKD	87.9/62.1	52.4/42.8	75.6/67.6	67.9/71.5	40.4/54.0	50.9/61.7
ScaleKD	90.7/68.9	57.4/46.5	78.2/69.3	70.8/74.1	43.8/57.0	55.6/66.5
TinyMIM	92.5/74.5	59.6/48.7	81.7/72.5	70.2/73.6	44.2/57.5	53.0/63.7
Proteus	92.4/73.5	58.0/46.9	77.3/68.1	70.0/73.3	43.3/56.4	52.9/63.9
DPAL (Ours)	95.2/84.3	64.3/56.0	82.4/74.0	72.6/75.8	48.8/61.5	55.9/66.7
DPAL * (Ours)	96.4/86.2	66.9/58.5	83.1/74.9	75.1/78.1	53.9/65.7	59.3/69.7

Table 2: Comparison with state-of-the-arts across three multi-person perception tasks, and three cross-domain visual perception tasks. *: Swin-tiny is adopted as the student backbone.

Method	Pedestrian Detection (AP / MR)	Multiple Human Parsing $(mIoU \mid AP_p)$	Part Attribute Parsing $(AP_{F_1}^b / AP_{F_1}^m)$	Human Art Estimation (AP / AR)	Chimpanzee Estimation (AP / AR)	Animal Pose Estimation (AP / AR)
DINO	86.1/51.6	46.9/45.7	35.4/32.9	65.7/69.7	16.1/19.2	58.0/61.6
MAE	83.7/56.5	45.8/44.4	32.0/30.3	65.1/69.0	13.9/16.7	48.8/53.5
MAE+DINO	86.4/50.2	47.4/46.2	37.7/35.2	67.4/71.1	18.2/21.2	59.5/63.6
HAP	83.3/57.5	44.1/42.8	33.0/30.4	66.0/70.0	13.2/15.8	50.5/54.7
SOLIDER	85.7/51.9	46.8/45.7	36.7/34.2	66.7/70.6	16.0/18.9	57.4/61.4
SAIP	87.1/49.6	48.2/46.9	38.0/35.5	67.5/71.2	18.2/21.3	60.8/64.6
ViTKD	86.6/50.3	44.1/42.9	35.6/33.4	68.2/71.8	18.9/22.4	44.0/48.7
MaskedKD	84.2/53.5	47.6/46.5	33.3/31.0	64.9/68.9	16.2/19.1	55.3/59.0
ScaleKD	87.4/47.5	49.0/48.3	37.5/34.9	65.7/69.6	20.8/24.3	62.9/66.4
TinyMIM	86.4/50.3	47.1/46.0	36.2/33.5	67.3/71.0	17.5/20.5	61.6/65.1
Proteus	86.0/50.3	49.3/47.9	38.0/35.4	69.4/73.0	19.7/23.2	64.7/68.1
DPAL (Ours) DPAL* (Ours)	88.7/45.5 90.2/42.3	51.9/50.3 55.8/53.3	39.8/37.0 42.9/39.8	69.9/73.4 72.9/76.1	21.9/25.5 25.2/29.4	67.0/70.3 69.4/73.0

4.2 Comparison With State-Of-The-Arts

In this section, we compare DPAL with existing pretraining methods across a wide range of down-stream tasks. Specifically, we conduct a comprehensive evaluation against six self-supervised pre-training paradigms, including DINO (Caron et al., 2021), MAE (He et al., 2022), MAE+DINO (Park et al., 2023), HAP (Yuan et al., 2023), SOLIDER (Chen et al., 2023) and SAIP (Wang et al., 2025). Besides, five distillation-based pretraining paradigms are also included for comprehensive comparison, involving ViTKD (Yang et al., 2024), MaskedKD (Son et al., 2024), ScaleKD (Fan et al., 2024), TinyMIM (Ren et al., 2023) and Proteus (Zhang et al., 2025). We adopt PATH (Tang et al., 2023) as the teacher model and use ViT-Tiny and Swin-Tiny (Liu et al., 2021a) as the student model. All student models are trained using LUP1M dataset for 100 epochs by default.

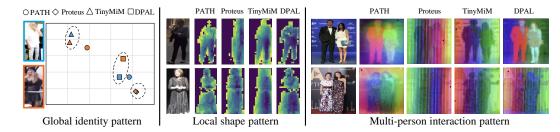


Figure 3: Qualitative comparison between proposed DPAL and state-of-the-art methods.

Single-person Discriminative Tasks. We evaluate DPAL's performance on single-person discriminative tasks, including T2I ReID, I2I ReID, and attribute recognition. As shown in Table 1, DPAL outperforms SAIP by significant margins of 1.6% and 8.7% on Market-1501 and MSMT17 for I2I ReID, and by 5.1% and 9.9% on CUHK and ICFG for T2I ReID. For attribute recognition, DPAL outperforms TinyMIM by 0.7% and 1.5% on PA100K and PETAzs, respectively. Additionally, when using Swin-Tiny as the student backbone, the performance improves by an average of 1.63% compared to DPAL. The performance of DPAL on a wide range of single-person discriminative tasks demonstrates that our method is able to effectively learn the global identity patterns from teacher while maintaining strong generalization ability.

Dense Prediction Tasks. We compare DPAL with existing methods on three dense prediction tasks, as shown in Table 1. For pose estimation, DPAL achieved 72.6% AP and 75.8% AR, outperforming TinyMiM which scores 70.2% and 73.6%, respectively. In landmark detection, DPAL achieved 48.8% AP and 61.5% AR, surpassing TinyMiM by 4.6% and 4%. For human parsing, DPAL achieves mIoU of 55.9, exceeding TinyMiM by 2.9%. It also achieves 66.7% mean accuracy (mAcc), outperforming Proteus by 2.8%. Most notably, employing Swin-Tiny as the student model demonstrates an average 3.42% performance improvement over DPAL. The results substantiate that DPAL successfully learns both global identity patterns and local shape patterns.

Multi-person Visual Understanding Tasks. We evaluate DPAL's performance on three multi-person visual understanding tasks, as shown in Table 2, In pedestrian detection, DPAL achieves an AP of 88.7% and an MR of 45.5%, outperforming SAIP (2nd best) by 1.6% and 4.1%, respectively. In multiple human parsing, DPAL achieves a mIoU of 51.9 and an AP_p of 50.3%, surpassing Proteus by 2.6% and 2.4%, respectively. Specifically, using Swin-Tiny as the student model yields an average performance gain of 2.92% relative to DPAL. In part-level attribute parsing, DPAL delivers the best performance across key evaluation metrics.

Cross-domain Generalization. As shown in Table 2, the DPAL consistently outperforms previous self-supervised pretraining/distillation-based pretraining methods on two different scenarios unseen in the pretraining phase, including 1 cross-style recognition task and 2 cross-species recognition tasks. This indicates that learning three typical human visual patterns from large HVMs enables generalizable representations for cross-domain adaptation. Similar findings are also observed when applying DPAL to general vision-language tasks (**Appendix.C.3**).

Qualitative Comparison. To validate whether DPAL correctly captures the three visual patterns, we visualize the model's outputs. As shown in the figure 3, for global identity patterns, DPAL can distinguish between different instances in the representation space, while both Proteus and TinyMIM struggle to do so. For local shape patterns, DPAL achieves results comparable to those of the teacher model. Additionally, it can differentiate between distinct instances in multi-person images.

4.3 Ablation Study

In this section, we analyze the effectiveness of our learning strategy and seek to best practice for distillation-based pretraining. We adopt I2I ReID, human parsing and pedestrian detection as representative tasks for investigation. For I2I ReID, we evaluate Rank1 on Market1501. For human parsing, we evaluate mIoU on LIP. For pedestrian detection, we evaluate AP on CrowdHuman.

The Effect of Major Components. To investigate the most suitable distillation strategy, we conduct ablation experiments on three types of learning objectives. We use PATH as the teacher model and distill it for 100 epochs on the LUP1M dataset. Comparative results are reported in Table 3. We find

Table 3: Investigating the effect of major components of DPAL, including three alignment objectives and dynamic pattern decoder.

D-PaDE	ℓ_g	ℓ_l	ℓ_r	I2I ReID	Human parsing	Detection
	./			95.3	52.7	87.3
·	`	./		93.1	55.7	88.4
,		•	1	92.5	53.0	86.4
,	1	1	•	94.9	55.7	88.1
· ✓	ľ	·	√	93.9	55.5	88.1
✓	1		✓	95.3	53.1	86.7
\checkmark	1	✓	√	95.2	55.9	88.7
	\	√	√	95.2	55.2	87.2
	ı					

that ℓ_g focuses more on global information, which allows it to outperform both ℓ_l and ℓ_r in single-person discrimination task (95.3% vs 93.1% vs 92.5%). As for dense prediction task, ℓ_l outperforms ℓ_g and ℓ_r for human parsing (55.7% vs 52.7% vs 53.0%). When three strategies are combined, they achieve strongest generalization ability across three types of downstream tasks. Therefore, we adopt three-level alignment objectives as our default distillation approach. In addition, removing D-PaDe leads to sub-optimal performance, indicating proposed D-PaDe is capable of alleviating the adverse effect of inter-pattern conflict problem.

Table 4: Ablation study on different teacher (%). ViT-Ti/16 models are pretrained with three-level alignment objectives from different teachers on LUP1M for 100 epochs.

Method	Arch	# imgs	Teacher	I2I ReID	Human Parsing	Pedestrian Detection
HAP-B	ViT-B/16	2.1M	-	95.5	54.8	89.6
DPAL	ViT-Ti/16	1.2M	HAP-B	94.1	56.1	87.7
PATH-B	ViT-B/16	12M	-	93.5	59.1	90.1
DPAL	ViT-Ti/16	1.2M	PATH-B	95.2	55.9	88.7
Sapiens-L	ViT-L/16	300M	-	89.4	34.8	89.5
DPAL	ViT-Ti/16	1.2M	Sapiens-L	85.9	48.6	85.2

The Effect of Teacher Models. As shown in Table 4, we explore the effects of DPAL on different teacher models. Specifically, we select three teacher models and perform three-level alignment objectives on LUP1M. Notably, DPAL, utilizing a smaller backbone (ViT-Ti/16) and fewer training images (1.2M), achieves superior human parsing mIoU compared to MAE and HAP, with improvements of approximately 12.4% and 11.5%, respectively. Moreover, DPAL surpasses PATH in the I2I ReID task by 1.7%, despite PATH employing a larger model (ViT-B/16) and a significantly larger dataset (12M images). These results demonstrate that DPAL attains enhanced performance while maintaining a more compact model size, indicating its efficiency and strong generalization capability.

5 CONCLUSION

In this paper, we propose DPAL, a novel distillation-based pretraining framework for distilling general knowledge from large HVMs into lightweight ones without requiring access to large-scale source pretraining datasets. Specifically, we design a dynamic pattern decoder that adaptively extracts various visual patterns conditioning on input image and pattern queries. Finally, we introduce three-level alignment objectives to maximize the effectiveness of knowledge transfer from the teacher to the student. Extensive experiments on 15 datasets demonstrate that DPAL achieves strong generalization comparable to much larger models while significantly outperforming previous pretraining methods. Notably, DPAL trains on a limited, unlabeled dataset unseen to large HVMs, providing a more accessible and cost-effective approach to developing generalizable models.

REFERENCES

- Hongzhe Bi, Lingxuan Wu, Tianwei Lin, Hengkai Tan, Zhizhong Su, Hang Su, and Jun Zhu. H-rdt: Human manipulation enhanced bimanual robotic manipulation. *arXiv preprint arXiv:2507.23523*, 2025.
- Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.
- Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and Qi Tian. Data-free learning of student networks. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3514–3522, 2019.
- Kaiyuan Chen, Shuangyu Xie, Zehan Ma, Pannag R Sanketi, and Ken Goldberg. Robo2vlm: Visual question answering from large-scale in-the-wild robot manipulation datasets. *arXiv preprint arXiv:2505.15517*, 2025a.
- Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Zixuan Li, Qiwei Liang, Xianliang Lin, Yiheng Ge, Zhenyu Gu, Weiliang Deng, Yubin Guo, Tian Nian, Xuanbing Xie, Qiangyu Chen, Kailun Su, Tianling Xu, Guodong Liu, Mengkang Hu, Huan ang Gao, Kaixuan Wang, Zhixuan Liang, Yusen Qin, Xiaokang Yang, Ping Luo, and Yao Mu. Robotwin 2.0: A scalable data generator and benchmark with strong domain randomization for robust bimanual robotic manipulation. *arXiv preprint arXiv:2506.18088*, 2025b.
- Weihua Chen, Xianzhe Xu, Jian Jia, Hao Luo, Yaohua Wang, Fan Wang, Rong Jin, and Xiuyu Sun. Beyond appearance: a semantic controllable self-supervised learning framework for human-centric visual tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15050–15061, 2023.
- Xianing Chen, Qiong Cao, Yujie Zhong, Jing Zhang, Shenghua Gao, and Dacheng Tao. Dearkd: data-efficient early knowledge distillation for vision transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12052–12062, 2022.
- Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen, Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye Ge, Kai Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2025c.
- Hongsuk Choi, Gyeongsik Moon, JoonKyu Park, and Kyoung Mu Lee. Learning to estimate robust 3d human mesh from in-the-wild crowded scenes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1475–1484, 2022.
- Xuangeng Chu, Anlin Zheng, Xiangyu Zhang, and Jian Sun. Detection in crowded scenes: One proposal, multiple predictions. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2020.
- Yuanzheng Ci, Yizhou Wang, Meilin Chen, Shixiang Tang, Lei Bai, Feng Zhu, Rui Zhao, Fengwei Yu, Donglian Qi, and Wanli Ouyang. Unihcp: A unified model for human-centric perceptions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 17840–17852, 2023.
- Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.

- Yubin Deng, Ping Luo, Chen Change Loy, and Xiaoou Tang. Pedestrian attribute recognition at far distance. In *Proceedings of the 22nd ACM international conference on Multimedia*, pp. 789–792, 2014.
 - Zefeng Ding, Changxing Ding, Zhiyin Shao, and Dacheng Tao. Semantically self-aligned network for text-to-image part-aware person re-identification. *arXiv* preprint arXiv:2107.12666, 2021a.
 - Zefeng Ding, Changxing Ding, Zhiyin Shao, and Dacheng Tao. Semantically self-aligned network for text-to-image part-aware person re-identification. *arXiv* preprint arXiv:2107.12666, 2021b.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
 - Jiawei Fan, Chao Li, Xiaolong Liu, and Anabang Yao. Scalekd: Strong vision transformers could be excellent teachers. *Thirty-eighth Conference on Neural Information Processing Systems*, 2024.
 - Dengpan Fu, Dongdong Chen, Jianmin Bao, Hao Yang, Lu Yuan, Lei Zhang, Houqiang Li, and Dong Chen. Unsupervised pre-training for person re-identification. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14750–14759, 2021a.
 - Dengpan Fu, Dongdong Chen, Jianmin Bao, Hao Yang, Lu Yuan, Lei Zhang, Houqiang Li, and Dong Chen. Unsupervised pre-training for person re-identification. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14750–14759, 2021b.
 - Dengpan Fu, Dongdong Chen, Hao Yang, Jianmin Bao, Lu Yuan, Lei Zhang, Houqiang Li, Fang Wen, and Dong Chen. Large-scale pre-training for person re-identification with noisy labels. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2476–2486, 2022.
 - Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2918–2928, 2021.
 - Ke Gong, Xiaodan Liang, Yicheng Li, Yimin Chen, Ming Yang, and Liang Lin. Instance-level human parsing via part grouping network. In *European Conference on Computer Vision*, pp. 770–785, 2018.
 - Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16000–16009, 2022.
 - Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li, and Wei Jiang. Transreid: Transformer-based object re-identification. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 15013–15022, 2021.
 - Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531, 2015.
 - Wei Huang, Zhiliang Peng, Li Dong, Furu Wei, Jianbin Jiao, and Qixiang Ye. Generic-to-specific distillation of masked autoencoders. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15996–16005, 2023.
 - Jian Jia, Houjing Huang, Xiaotang Chen, and Kaiqi Huang. Rethinking of pedestrian attribute recognition: A reliable evaluation under zero-shot pedestrian identity setting. *arXiv* preprint arXiv:2107.03576, 2021.
 - Jian Jia, Naiyu Gao, Fei He, Xiaotang Chen, and Kaiqi Huang. Learning disentangled attribute representations for robust pedestrian attribute recognition. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 1069–1077, 2022.

- Mengdi Jia, Zekun Qi, Shaochen Zhang, Wenyao Zhang, Xinqiang Yu, Jiawei He, He Wang, and Li Yi. Omnispatial: Towards comprehensive spatial reasoning benchmark for vision language models. *arXiv preprint arXiv:2506.03135*, 2025.
 - Menglin Jia, Mengyun Shi, Mikhail Sirotenko, Yin Cui, Claire Cardie, Bharath Hariharan, Hartwig Adam, and Serge Belongie. Fashionpedia: Ontology, segmentation, and an attribute localization dataset. In *European Conference on Computer Vision*, pp. 316–332, 2020.
 - Ding Jiang and Mang Ye. Cross-modal implicit relation reasoning and aligning for text-to-image person retrieval. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2023.
 - Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli Ouyang, and Ping Luo. Whole-body human pose estimation in the wild. In *European Conference on Computer Vision*, pp. 196–214. Springer, 2020.
 - Xuan Ju, Ailing Zeng, Jianan Wang, Qiang Xu, and Lei Zhang. Human-art: A versatile human-centric dataset bridging natural and artificial scenes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023.
 - Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su Zhaoen, Austin James, Peter Selednik, Stuart Anderson, and Shunsuke Saito. Sapiens: Foundation for human vision models. In *European Conference on Computer Vision*, pp. 206–228. Springer, 2024.
 - Peike Li, Yunqiu Xu, Yunchao Wei, and Yi Yang. Self-correction for human parsing. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(6):3260–3271, 2020.
 - Shuang Li, Tong Xiao, Hongsheng Li, Bolei Zhou, Dayu Yue, and Xiaogang Wang. Person search with natural language description. 2017.
 - Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin. Look into person: Joint body parsing & pose estimation network and a new benchmark. *IEEE transactions on pattern analysis and machine intelligence*, 41(4):871–885, 2018.
 - Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European Conference on Computer Vision*, pp. 740–755. Springer, 2014.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in Neural Information Processing Systems, 2023.
 - Xihui Liu, Haiyu Zhao, Maoqing Tian, Lu Sheng, Jing Shao, Shuai Yi, Junjie Yan, and Xiaogang Wang. Hydraplus-net: Attentive deep features for pedestrian analysis. In *Proceedings of the IEEE international conference on computer vision*, pp. 350–359, 2017.
 - Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021a.
 - Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021b.
 - Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv* preprint arXiv:1608.03983, 2016.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
 - Hao Luo, Pichao Wang, Yi Xu, Feng Ding, Yanxin Zhou, Fan Wang, Hao Li, and Rong Jin. Self-supervised pre-training for transformer-based person re-identification. *arXiv preprint arXiv:2111.12084*, 2021.

- Xiaoxuan Ma, Stephan Kaufhold, Jiajun Su, Wentao Zhu, Jack Terwilliger, Andres Meza, Yixin Zhu, Federico Rossano, and Yizhou Wang. Chimpact: A longitudinal dataset for understanding chimpanzee behaviors. *Advances in Neural Information Processing Systems*, 36:27501–27531, 2023.
 - Namuk Park, Wonjae Kim, Byeongho Heo, Taekyung Kim, and Sangdoo Yun. What do self-supervised vision transformers learn? *arXiv preprint arXiv:2305.00729*, 2023.
 - Yang Qian, Yinan Sun, Ali Kargarandehkordi, Parnian Azizian, Onur Cezmi Mutlu, Saimourya Surabhi, Pingyi Chen, Zain Jabbar, Dennis Paul Wall, and Peter Washington. Advancing human action recognition with foundation models trained on unlabeled public videos. *arXiv preprint arXiv:2402.08875*, 2024.
 - Sucheng Ren, Fangyun Wei, Zheng Zhang, and Han Hu. Tinymim: An empirical study of distilling mim pre-trained models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3687–3697, 2023.
 - Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 8583–8595, 2021.
 - Jinghuan Shang, Karl Schmeckpeper, Brandon B May, Maria Vittoria Minniti, Tarik Kelestemur, David Watkins, and Laura Herlant. Theia: Distilling diverse vision foundation models for robot learning. *arXiv preprint arXiv:2407.20179*, 2024.
 - Shuai Shao, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu, Xiangyu Zhang, and Jian Sun. Crowdhuman: A benchmark for detecting human in a crowd. *arXiv preprint arXiv:1805.00123*, 2018.
 - Zhiyin Shao, Xinyu Zhang, Meng Fang, Zhifeng Lin, Jian Wang, and Changxing Ding. Learning granularity-unified representations for text-to-image person re-identification. In *Proceedings of the 30th acm international conference on multimedia*, pp. 5566–5574, 2022.
 - Zhiyin Shao, Xinyu Zhang, Changxing Ding, Jian Wang, and Jingdong Wang. Unified pre-training with pseudo texts for text-to-image person re-identification. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 11174–11184, 2023.
 - Seungwoo Son, Jegwang Ryu, Namhoon Lee, and Jaeho Lee. The role of masking for efficient supervised knowledge distillation of vision transformers. In *European Conference on Computer Vision*, 2024.
 - Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, and Jun Liu. Human action recognition from various data modalities: A review. *IEEE transactions on pattern analysis and machine intelligence*, 45(3):3200–3225, 2022.
 - Wei Suo, Mengyang Sun, Kai Niu, Yiqi Gao, Peng Wang, Yanning Zhang, and Qi Wu. A simple and robust correlation filtering method for text-based person search. In *European conference on computer vision*, pp. 726–742. Springer, 2022.
 - Shixiang Tang, Cheng Chen, Qingsong Xie, Meilin Chen, Yizhou Wang, Yuanzheng Ci, Lei Bai, Feng Zhu, Haiyang Yang, Li Yi, et al. Humanbench: Towards general human-centric perception with projector assisted pretraining. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21970–21982, 2023.
 - Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. In *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.
 - Xuanhan Wang, Jingkuan Song, Xiaojia Chen, Lechao Cheng, Lianli Gao, and Heng Tao Shen. Ke-rcnn: Unifying knowledge-based reasoning into part-level attribute parsing. *IEEE Transactions on Cybernetics*, 53(11):7263–7274, 2023.

- Xuanhan Wang, Xiaojia Chen, Lianli Gao, Jingkuan Song, and Heng Tao Shen. Cpi-parser: Integrating causal properties into multiple human parsing. *IEEE Transactions on Image Processing*, 33: 5771–5782, 2024.
- Xuanhan Wang, Huimin Deng, Lianli Gao, and Jingkuan Song. Scale-aware pre-training for human-centric visual perception: Enabling lightweight and generalizable models. *arXiv* preprint *arXiv*:2503.08201, 2025.
- Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Person transfer gan to bridge domain gap for person re-identification. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 79–88, 2018.
- Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vitpose: Simple vision transformer baselines for human pose estimation. *Advances in neural information processing systems*, 35:38571–38584, 2022.
- Zhendong Yang, Zhe Li, Ailing Zeng, Zexian Li, Chun Yuan, and Yu Li. Vitkd: Feature-based knowledge distillation for vision transformers. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1379–1388, 2024.
- Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8715–8724, 2020.
- Hang Yu, Yufei Xu, Jing Zhang, Wei Zhao, Ziyu Guan, and Dacheng Tao. Ap-10k: A benchmark for animal pose estimation in the wild. In *Advances in Neural Information Processing Systems*, 2021.
- Junkun Yuan, Xinyu Zhang, Hao Zhou, Jian Wang, Zhongwei Qiu, Zhiyin Shao, Shaofeng Zhang, Sifan Long, Kun Kuang, Kun Yao, et al. Hap: Structure-aware masked image modeling for human-centric perception. In Advances in Neural Information Processing Systems, volume 36, pp. 50597–50616, 2023.
- Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao Zhang, Xilin Chen, and Jingdong Wang. Hrformer: High-resolution transformer for dense prediction. *arXiv preprint arXiv:2110.09408*, 2021.
- Yitian Zhang, Xu Ma, Yue Bai, Huan Wang, and Yun Fu. Accessing vision foundation models via imagenet-1k. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable person re-identification: A benchmark. In *Proceedings of the IEEE international conference on computer vision*, pp. 1116–1124, 2015.
- Howard Zhong, Samarth Mishra, Donghyun Kim, SouYoung Jin, Rameswar Panda, Hilde Kuehne, Leonid Karlinsky, Venkatesh Saligrama, Aude Oliva, and Rogerio Feris. Learning human action recognition representations without real humans. *Advances in Neural Information Processing* Systems, 36:65069–65087, 2023.

A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we employed Large Language Models (LLMs) solely as a writing assistance tool for limited text polishing and language refinement. LLMs were not involved in any aspects of research ideation, conceptual development, technical analysis, algorithm design, experimental execution, or result analyses. All scientific contributions, methodological innovations, and intellectual content remain entirely our own.

B Discussion

Limitation. The performance of the student modle is influenced by the teacher model used for pretraining. Additionally, due to limitations in computational resource, we have only tested our method on image datasets and downstream tasks. However, our approach is also applicable to human-centric video understanding tasks, which will be explored in our future work.

Broader Impact. As demonstrated in Section 4, our method outperforms existing pretraining methods across various downstream tasks, highlighting the potential of DPAL as a novel distillation-based pretraining paradigm. Moreover, DPAL serves as an efficient knowledge distillation technique that enables the development of compact variants of large HVMs, making them suitable for deployment on resource-constrained edge devices. Additionally, DPAL eliminates the necessity of accessing the teacher model's original pretraining datasets by utilizing a relatively small open-source dataset of approximately 1 million images for pretraining. This pretraining paradigm significantly reduces training costs and enhances the accessibility of DPAL for the research community, thereby broadening its potential applications. Furthermore, the codebase developed in this work is publicly released to promote reproducibility and further advancements in research.

C More Implementation Details

C.1 MODEL ARCHITECTURE

Backbone. We conducted experiments on various student backbones and teacher backbones, with the corresponding settings presented in Table 5.

Table 5: Configuration of neural architectures. Both Vision Transformer (ViT-X) and Swin Transformer (Swin-X) are used for investigation.

Arch	Patch size	Emb	ed dim	Heads	Blocks
ViT-Ti	16	1	92	6	12
ViT-S	16	3	84	6	12
ViT-B	16	7	68	12	24
Arch	Patch size	Window size	Embed dim	Heads	Blocks
Swin-Ti	4	7	96	(3,6,12,24)	(2,2, 6,2)
Swin-S	4	7	96	(3,6,12,24)	(2,2,18,2)
Swin-B	4	7	128	(4,8,16,32)	(2,2,18,2)

Dynamic Pattern Decoder. The dynamic pattern decoder comprises a self-attention module, a router module, three experts and a dynamic expert generator. The router is responsible for assigning experts to different visual tokens. The experts specialize in handing specific patterns. The dynamic expert generator produces weights for experts conditioned on the visual tokens and pattern queries.

Dynamic Expert Generator. The dynamic expert generator consists of self-attention, cross-attention, and FFN modules. We design three learnable expert tokens $T_e = [T_e^1, T_e^2, T_e^3]$, which pass through self-attention, cross-attention, and FFN modules to update the parameters of the three experts. In the cross-attention module, representations from backbone are used as the keys and values, while the expert tokens serve as the queries. The cross-attention module ensures that the parameters of the experts are

Table 6: Configurations of pretraining.

Configuration	Value
Batch size	2048
Optimizer	AdamW
Learning rate	2.5e-4
Learning rate decay	Consine scheduler
Weight decay	0.05
Warmup epochs	10
Epochs	100
Image size	256×128

updated based on the corresponding representations and pattern queries, enabling each expert to selectively focus on the most relevant pattern.

Router. We designed a router that dynamically assigns experts to distanct visual patterns, thereby decoupling the alignment learning of three visual patterns. We designed a learnable router token T_r , using the representations extracted by the backbone as keys and values. The routing token dynamically adjusts the weights of different experts W_e based on different patterns, enabling the model to effectively capture diverse patterns and enhance its performance in complex visual tasks.

C.2 PRETRAINING DETAILS

All lightweight HVMs are pretrained using 8 A6000 48G GPUs. We employ the AdamW optimizer(Loshchilov & Hutter, 2017) with an effective batch size of 2048 (i.e., 256 per GPU). As shown in Table 6, each model is pretrained from scratch for 100 epochs. The learning rate is 2.5e-4 and is decayed via Cosine Annealing scheduler(Loshchilov & Hutter, 2016). The single-person image size is 256×128 , while the multi-person image is 256×256 .

C.3 FINETUNING DETAILS

We utilize representative methods from downstream tasks as baselines, subsequently replacing their backbones with our pretrained backbones for finetuning. The list of codebases used for evaluation is presented in Table 7.

Table 7: Implementation codebases and configurations of fine-tuning on 12 datasets.

Task	Dataset	Codebases	Image size	Learning rate	Epoch
I2I ReID	Market1501 (Zheng et al., 2015) MSMT17 (Wei et al., 2018)	SOLIDER (Chen et al., 2023)	256×128	2e-4	120
T2I ReID	CUHK-PEDES(Li et al., 2017) ICFG-PEDES(Ding et al., 2021a)	IRRA (Jiang & Ye, 2023)	384×128	1e-4	60
Attribute recognition	PA100(Liu et al., 2017) PETAzs(Deng et al., 2014)	SOLIDER (Chen et al., 2023)	256×128	1e-4	25
Pose estimation	COCO keypoint(Lin et al., 2014)	ViTPose (Xu et al., 2022)	256×192	5e-4	210
Landmark detection	Whole-body COCO(Jin et al., 2020)	ViTPose (Xu et al., 2022)	256×192	5e-4	210
Human parsing	LIP (Liang et al., 2018)	SOLIDER(Chen et al., 2023)	576×384	7e-4	150
Pedestrian detection	CrowdHuman(Shao et al., 2018)	CrowdDet (Chu et al., 2020)	1400×800	2e-4	30
Multiple human parsing	CIHP(Gong et al., 2018)	Cpi-parser (Wang et al., 2024)	1333×800	2e-2	25
Part-level attribute parsing	Fashionpedia(Jia et al., 2020)	KE-RCNN (Wang et al., 2023)	1024×1024	1e-4	32

Table 8: The computational cost in pretraining stage, involving training epoch, training time (Hours) and Memory per GPU (GB).

Setting	ViTKD	MaskedKD	ScaleKD	TinyMiM	Proteus	DPAL
Epochs	300	300	200	300	300	100
Time	41	26	60	15	30	22
Memory	10	22	26	24	16	26
Downstream Tasks						
I2I Person ReID	90.5	79.7	81.6	91.6	93.6	95.2
Human Parsing	52.0	50.9	55.6	53.0	54.3	55.9
Pedestrian Detection	86.6	84.2	87.4	86.4	87.6	88.7

Table 9: Investigating the effect of DPAL on vision-language spatial reasoning task.

Evaluation on On	iiispauai					
Method	Vision Encoder	Avg.	Dynamic	Spatial	Complex	Perspective
Wichiod	Vision Encoder	Avg.	Reasoning	Interaction	Logic	Taking
LLaVA-1.5-7B	CLIP-ViT-L (304M)	34.97	54.46/31.23	35.29/ 36.19 /33.94	29.01 /24.08	55.60 /34.66/35.14
LLavA-1.5-7B	DPAL-ViT-T (5M)	35.62	45.95/26.30	56.47 /35.24/ 42.73	18.56/ 25.16	53.92/ 36.70/46.99
Evaluation on Ro						
Z. mannon on Ro	bo2VLM					
		Ava	Spatia	al Reasoning	Goal Reasoning	Interaction Reasoning
Method	Vision Encoder	Avg.		al Reasoning S/SR/SU/MV	Goal Reasoning TS-G/TS-S/TS-GL	Interaction Reasoning AU/IP/TU
		Avg. 21.58	RS/OS	e	ε	

Table 10: Investigating the effect of DPAL on vision-language robot control task.

Simulation Task	ACT (ResNet-18-11M) Easy/Hard	RDT (SigLip-400M) Easy/Hard	PI0 (SigLip-400M) Easy/Hard	H-RDT (SigLip-400M) Easy/Hard	Ours (ViT-Ti-5M) Easy/Hard
Grab Roller Place_object_basket	66.0/6.0 0.0/0.0	74.0/43.0 42.0/14.0	96.0 /80.0 62.0/10.0	95.0/52.0 62.0/19.0	83.0/ 57.0 32.0/4.0

D ABLATION STUDY

D.1 TRAINING EFFICIENCY

From the results listed in Table 8, we observe that the proposed DPAL achieves superior downstream performance while maintaining comparable pretraining costs. As shown in Table 1, all methods require 15 40 hours, while the proposed DPAL requires 22 hours. Second, from the perspective of downstream fine-tuning, we choose a fair and widely-used setting, where only the pre-trained backbone is retained in downstream evaluation, and the alignment module is discarded. In this way, the training costs in downstream tasks are the same for all pre-training methods. Based on this, the DPAL does not bring significant computational burden.

D.2 ABLATION STUDY ON SCALE OF THE DATASET

To explore the optimal scale of the dataset, we construct five subsets of varying scales (0.2M, 0.5M, 1M, 2M, and 4M samples) from the LUPerson dataset for pretraining. As shown in Figure 4, we observe that the performance on the 0.2M and 0.5M subsets is significantly worse than on the 1M subset. Moreover, increasing the dataset size does not lead to further performance improvement. Therefore, LUP1M, as the subset of LUPerson, is sufficient to support distillation-based pretraining.

D.3 VISION-LANGUAGE TASKS

In this section, we further investigate the effectiveness of proposed method on two vision-language tasks: 1) spatial reasoning; and 2) embodied robot control. Specifically, we choose the InternViT-400M (Chen

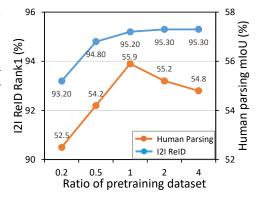


Figure 4: The impact of different scale of datasets on I2I Reid and human parsing tasks.

et al., 2025c) as the teacher model, and use proposed DPAL to distill it into ViT-Ti by leveraging the ImageNet-1M (Deng et al., 2009) as a medium. When testing pretrained model on spatial reasoning task, we replace the vision part of LLaVA-1.5-vicuna-7B (Liu et al., 2023) with the pretrained ViT-Ti, and test it using OmniSpatial (Jia et al., 2025) and Robo2VLM (Chen et al., 2025a) benchmark. As

for the embodied robot control task, we replace the vision part of the H-RDT (Bi et al., 2025) and test it using RobotWin2.0 (Chen et al., 2025b) simulation benchmark. The results reported in Table 9 and Table 10 shows that adopting pretrained lightweight ViT (5M) as the vision encoder achieves competitive performance, which is comparable to that of large vision encoder (400M).

D.4 ABLATION STUDY ON VARIANTS OF PATTERN DECODER

Pattern decoder functions as an adapter to align the outputs of lightweight HVMs to that of large HVMs. This section study the variants of pattern decoder: 1) MAE-Style (He et al., 2022) decoder, which contains two transformer blocks; 2) Standard MoE, where experts in MoE block is the fixed MLP; and 3) proposed D-PaDe, where the experts are dynamically generated via pattern queries with input image. Comparison results reported in Table 11 show that D-PaDe is the best choice for distillation-based pretraining by far.

Table 11: Ablation study on variants of pattern decoder (%). Aligning ViT-Ti/16 with PATH-B using MAE-style decoder, Standard MoE or D-PaDe.

Setting	I2I ReID	Human Parsing	Detection
w/o decoder	95.2	55.2	87.2
MAE-style	95.1	55.0	87.8
Standard MoE	94.1	55.9	88.5
D-PaDe	95.2	55.9	88.7

D.5 ABLATION STUDY ON VARIANTS OF STUDENT MODEL

We evaluate the performance of DPAL on downstream tasks with different model architectures. We use PATH-B as the teacher model and perform distillation for 100 epochs by default. As shown in the Table 12, we employ vision transformer (Dosovitskiy et al., 2020) for the ViT architecture and swin transformer (Liu et al., 2021b) for the hybrid architecture. The other settings are the same as in Section 4.1 ans Section 4.2. We observe a consistent improvement in model performance concomitant with the increasing model parameters, as exemplified by I2I ReID task where Rank1 increases by 0.6% (+16M), 1.2% (+22M), 1.7% (+44M) compared to ViT-Tiny. However, this improvement is accompanied by a corresponding increase in training costs. Moreover, our method is model-agnostic, demonstrating strong performance on both ViT and hybrid architectures.

D.6 ABLATION STUDY ON MODEL SIZE OF TEACHER

We investigate whether employing teacher models with larger size enhances the performance of the student model. Specifically, we employ PATH-B and PATH-L as teacher models to distill ViT-Tiny. The results presented in Table 13 indicate that increasing the size of the teacher model does not yield performance gains across a wide range of downsream tasks. This may be due to the larger gap between the larger teacher models and the student model, which is also mentioned in the TinyMIM(Ren et al., 2023).

E VISUALIZATION RESULTS

We provide additional visualization results in Figure 5. First, we visualize the class token representation space of PATH (Tang et al., 2023), Proteus(Zhang et al., 2025), TinyMIM(Ren et al., 2023) and DPAL for two single-person images to investigate the models' ability to learn global identity patterns. As shown in Figure 5 (a), DPAL and PATH distinctly separate the two instances in the representation space, whereas the other methods do not. Second, we conduct principal component analysis (PCA) visualization to investigate the model's capability in capturing local shape patterns. DPAL successfully captures local body shape patterns comparable to those of PATH, while the others fail to capture the whole structure of a person instance. Third, we perform PCA visualization on multi-person images. Similar to PATH, DPAL is able to distinguish different individuals that are depicted by different colors in the visualization. This demonstrates that DAPL has successfully enabled lightweight model to acquire multi-person interaction patterns.

Table 12: Impact of model architecture. We employ PATH-B as teacher model and perform distillation with DPAL on four student architectures.

(a) Single-person discrimitive tasks (%).

977	
978	
979	
980	
981	
982	

Arch	Type	#Param	I2I ReID		T2I ReID		Attribute recognition	
	Турс		Market†	MSMT17↑	CUHK↑	ICFG↑	PA100K↑	PETAzs↑
ViT-Ti/16	ViT	5M	95.2	84.3	64.3	56.0	82.4	74.0
ViT-S/16	ViT	21M	95.8	86.1	65.8	58.5	83.9	74.1
Swin-Ti/4	Hybrid	27M	96.4	86.2	66.9	58.5	83.1	74.9
Swin-S/4	Hybrid	49M	96.9	88.2	69.6	60.0	85.9	77.1
(b) Single no	reen dence	prodiction to	olzo (0%)					

(b) Single-person dense prediction tasks (%).

9	7 ()	J
ć	36	3	6
ć	36	3	7
Ć	36	3	8
ć	36	3	9

Arch Typ	Type	#Param	Pose estimation		Landmark detection		Human parsing	
	турс	π1 alaili	$AP\uparrow$	$AR\uparrow$	$AP\uparrow$	$AR\uparrow$	$mIoU\uparrow$	$mAcc\uparrow$
ViT-Ti/16	ViT	5M	72.6	75.8	48.8	61.5	55.9	66.7
ViT-S/16	ViT	21M	73.3	76.3	53.1	65.5	58.1	68.7
Swin-Ti/4	Hybrid	27M	75.1	78.1	53.9	65.7	59.3	69.7
Swin-S/4	Hybrid	49M	76.3	79.4	55.6	67.2	60.7	71.5

(c) Multi-person visual understanding tasks (%).

Arch Ty	Type	Type #Param	Pedestrian detection		Multiple human parsing		Part-level attribute parsing		
	Турс	"I didili	$AP \uparrow$	$MR \downarrow$	$mIoU \uparrow$	$AP_p \uparrow$	$AP_{IoU+F_1}^{box}$	$\uparrow\! AP_{IoU+F_1}^{segm} \uparrow$	
ViT-Ti/16	ViT	5M	88.7	45.5	51.9	50.3	39.8	37.0	
ViT-S/16	ViT	21M	89.2	42.9	55.9	53.4	42.9	39.3	
Swin-Ti/4	Hybrid	27M	90.2	42.3	55.8	53.3	42.9	39.8	
Cavin C/A	Hybrid	40M	80.7	13.1	55.2	52.4	44.0	<i>1</i> 1 1	

(d) Cross-domain perception tasks (%).

Arch	Туре	pe #Param	Humanart		Chimpact-Pose		AP-10K	
			$AP\uparrow$	$AR\uparrow$	$AP\uparrow$	$AR\uparrow$	$AP\uparrow$	$AR\uparrow$
ViT-Ti/16	ViT	5M	69.9	73.4	21.9	25.5	67.0	70.3
ViT-S/16	ViT	21M	72.0	75.5	24.7	28.4	69.0	72.4
Swin-Ti/4	Hybrid	27M	72.9	76.1	25.2	29.4	69.4	73.0
Swin-S/4	Hybrid	49M	75.1	78.3	27.8	32.1	71.5	74.7

Table 13: Impact of teacher size. We use ViT-Tiny as the student model and perform DPAL distillation separately with teacher models of two different sizes.

(a) Single-person discrimitive tasks (%).

Teacher	I2I	ReID	T2I I	ReID	Attribute recognition		
	Market↑	MSMT17↑	CUHK↑	ICFG↑	PA100K↑	PETAzs↑	
PATH-B	95.2	84.3	64.3	56.0	82.4	74.0	
PATH-L	95.2	83.7	66.0	55.9	82.7	74.3	

(b) Single-person dense prediction tasks (%).

Teacher	Pose estimation		Landmark	detection	Human parsing		
	$AP \uparrow$	$AR\uparrow$	$AP\uparrow$	$AR\uparrow$	$mIoU \uparrow$	$mAcc\uparrow$	
PATH-B	72.6	75.8	48.8	61.5	55.9	66.7	
PATH-L	72.7	78.2	48.6	61.2	55.7	66.6	

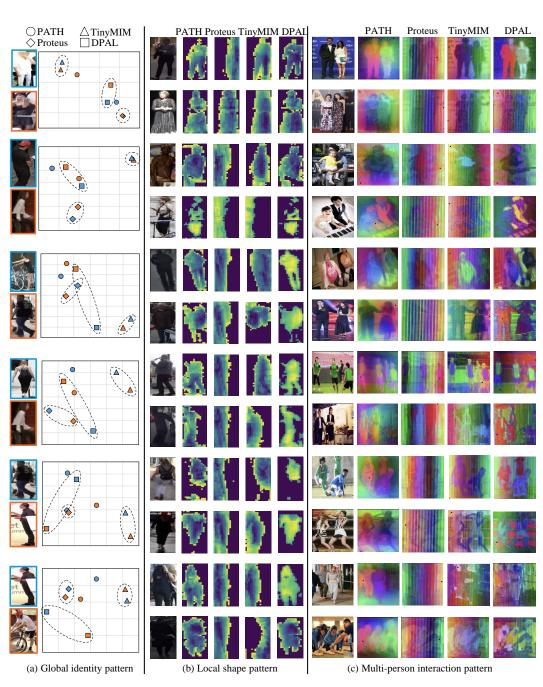


Figure 5: Visualization of learned patterns among four models. From left to right: (a) global identity pattern, (b) local shape pattern, and (c) multi-person interaction pattern.