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ABSTRACT

Human-centric vision models (HVMs) have achieved remarkable generalization
due to large-scale pretraining on massive person images. However, their depen-
dence on large neural architectures and the restricted accessibility of pretraining
data significantly limits their practicality in real-world applications. To address this
limitation, we propose Dynamic Pattern Alignment Learning (DPAL), a distillation-
based pretraining framework that effectively transfers generalization capability of
large HVMs to lightweight ones by mimicking three heterogeneous visual patterns
(i.e., global identity pattern, local shape pattern and multi-person interaction pat-
tern). Specifically, we design a dynamic pattern decoder (D-PaDe) that functions
as a dynamic mixture of expert (Dy-MoE) model with three specialized experts.
This design allows each visual pattern to be generated independently, thus avoiding
optimization conflicts caused by pattern heterogeneity during training. Moreover,
three alignment objectives are designed to narrow the visual representation gap be-
tween large HVMs and lightweight ones at global image, local pixel, and instance
relation levels, respectively. Once pretrained, the lightweight model acquires strong
generalization capability from large HVMs, thereby supporting a wide range of
human-centric vision tasks. Extensive experiments conducted on 15 challenging
datasets demonstrate the effectiveness of the DPAL. Remarkably, when employing
PATH-B as the teacher, DPAL-ViT/Ti (SM parameters) achieves surprising gener-
alizability similar to existing large HVMs such as PATH-B (84M) and Sapiens-L
(307M), and outperforms previous distillation-based pretraining methods includ-
ing Proteus-ViT/Ti (5M) and TinyMiM-ViT/Ti (5M) by a large margin. More
importantly, the DPAL is performed on a limited dataset (i.e., around 1M unla-
beled images) that is unseen for large HVMs, which bypasses the need for those
inaccessible or constrained pretraining datasets, offering an affordable approach to
generalizable HVMs. All code and checkpoints will be publicly available{ﬂ

1 INTRODUCTION

Recent years have witnessed remarkable progresses in human-centric visual perception (HVP) (Yuan
et al., [2023; Khirodkar et al., |2024; |Chen et al., [2023). This success is mainly attributed to the
advancement in pretraining of large vision models with massive collected data. By leveraging such
extensive pretraining, large human-centric vision models (HVMs) are able to learn generalizable
visual patterns, which widely benefit various human-centric perception tasks, such as single-person
discrimination (Fu et al.} 2021a; He et al.,|2021)), dense prediction (Yuan et al.l 20215 [Li et al.| [2020)
and multi-person visual understanding (Ci et al.| 2023} Tang et al., [2023]).

Although large HVMs exhibit strong generalization capability, there are two primary computational
challenges that significantly limit the practicality of large HVMs in real-world application. First, large
HVMs typically exhibit substantial model size, demanding considerable computational resources
and making the pretraining of HVMs prohibitively expensive for most researchers. For example,
Sapiens (Khirodkar et al., [2024)), a typical self-supervised pretrained HVM, employs ViT-G (2B
parameters) as the model architecture and trains it on Humans-300M for 18 days using 1024 A100
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Figure 1: (a) Existing HVMs are limited in real-world application due to two factors: 1) Large model
size with heavy computational costs, and 2) high-quality pretraining datasets are strictly constrained.
To address these, Dynamic Pattern Alignment Learning (DPAL) is proposed to pretrain lightweight
HVMs by distilling generalization capability from large HVMs across three typical human visual

patterns. (b) Extensive experiments conducted on 12 datasets demonstrate effectiveness of the DPAL.

GPUs. The PATH, a representative supervised pretrained HVM, trains ViT-L on HumanBench with
11M images using 64 V100 GPUs. This substantial dependence on huge computational resources
complicates real-world deployment of HVMs. Second, pretraining HVMs relies on extensive and
high-quality datasets. However, the qualified pretraining datasets such as Humans-300M (Khirodkar
et al.,[2024) and HumanBench (Tang et al.| |2023)) are often inaccessible or strictly constrained due to
the concern about violations to copyright ownership of these digital assets. These challenges pose
significant limitation on the broad applicability of existing pretraining methods.

To achieve strong generalizability while maintain the broad applicability, exploiting the potential of
lightweight HVMs via extensive pretraining is a promising direction. Previous works (Caron et al.|
2021; He et al.,|2022)) on lightweight HVMs focus on self-supervised pretraining by using alternative
dataset such as LUPerson (Fu et al.|[2021a)), which is widely used for advancements in human-centric
vision foundation models. Nevertheless, the scale of publicly available dataset is relatively small,
e.g., the number of image in LUPerson is around 4M which is much less than that of those private
datasets, limiting the optimization of lightweight HVMs. Motivated by these issues, we focus on a
significant question that is considerably less studied: is it possible to replicate strong generalization
capability from large HVMs to lightweight HVMs without requiring access to those inaccessible or
strictly constrained pretraining datasets?

In this work, we seek to answer the question by exploring distillation-based pretraining framework,
which transfers the generalization capability of large HVMs to lightweight ones by leveraging limited
dataset as a medium. Specifically, human-centric visual perception generally relies on three typical
visual patterns: 1) global identity pattern for single-person discrimination tasks such as Person
RelD, 2) local shape pattern for dense prediction tasks such as pose estimation, and 3) multi-person
interaction pattern for multi-instance visual understanding tasks like pedestrian detection. This
reliance suggests that a robust human-centric vision model with strong generalization must be capable
of acquiring all three visual patterns. However, directly learning different patterns is hindered by
optimization conflicts caused by pattern heterogeneity. As analyzed in previous works (Chen et al.|
2023} Yuan et al.| [2023)), global pattern learning tends to homogenize pixel representations, sacrificing
fine-grained information. In contrast, local pattern learning hurts the global identity information, as
it is expected to learn semantic-consistent region representations. To overcome these limitations,
we propose Dynamic Pattern Alignment Learning (DPAL), a novel distillation-based pretraining
framework that effectively transfers generalization capability of large HVMs to lightweight ones by
mimicking those heterogeneous visual patterns. Specifically, we firstly design a dynamic pattern
decoder (D-PaDe), acting as a dynamic MoE model with three experts dedicated to separately
processing local, global, and relational patterns. It activates only one expert module per input to
ensure alignment with one pattern. And then, three alignment objectives are further designed to
minimize visual representation gap between large HVMs and lightweight ones at global image, local



Under review as a conference paper at ICLR 2026

pixel, and instance relation levels, respectively. Once pretrained, the lightweight model successfully
acquires strong generalization capability of large HVMs, thus supporting various downstream tasks.

We conduct extensive experiments on 15 challenging benchmarks involving 9 representative human-
centric visual perception tasks and three cross-domain visual perception tasks, demonstrating the
impressive effectiveness of proposed DPAL. Remarkably, when employing PATH-B as the teacher,
DPAL-ViT/Ti (SM parameters) achieves surprising generalizability competitive to that of existing
large HVMs such as PATH-B (84M) and Sapiens-L (307M), and outperforms previous distillation-
based pretraining methods including Proteus-ViT/Ti (SM) and TinyMiM-ViT/Ti (SM) by a large
margin. More importantly, the distillation pretraining in DPAL is performed on the limited dataset
that is unseen for large HVMs for around 1 day, without the need for those inaccessible or constrained
pretraining datasets, offering an affordable approach to generalizable HVM:s.

2 RELATED WORKS

2.1 HUMAN-CENTRIC VISION MODEL

Human-centric vision models (HVMs) refer to pretrained models specifically designed and trained to
handle human-related visual tasks, including person re-identification (ReID) (Fu et al., 2022} He et al.,
2021;|Luo et al., 2021)), text-to-image person RelD (Shao et al.| 2022} Ding et al., 2021b; [Suo et al.|
2022;Shao et al., [2023)), pedestrian attribute recognition (Jia et al.,[2022; 2021)), action recognition
(Sun et al., 2022; [Qian et al., 2024} [Zhong et al., [2023)), and body structure understanding such as
2D/3D pose estimation (Choi et al.| 2022} Xu et al.| 2022; [Yuan et al., [2021}; [Li et al.| [2020).

Recent works (Yuan et al.} 2023} |Ci et al.| 2023 |Tang et al., 2023} |[Khirodkar et al.| [2024; |Chen
et al.,|2023) have proposed HVMs tailored for human-centric tasks. For example, both SOLIDER
(Chen et al.| [2023) and the HAP (Yuan et al., 2023) propose to leverage the human body layouts for
pretraining, demonstrating the importance of human body structure priors in learning robust human-
centric visual representations. In a different line, several studies such as PATH (Tang et al., [2023)
and Sapiens (Khirodkar et al., [2024) focus on the construction of high-qualified pretraining datasets,
resulting in large-scale person-centric data sources such as HumanBench-11M and Humans-300M.
Although these methods have achieved impressive results in human-centric downstream tasks, the
large parameter size and inaccessible large-scale dataset of HVMs (Yuan et al., 2023 Tang et al.|[2023];
Ci et al., [2023} [Khirodkar et al.,|2024)) makes them unsuitable for real-world application. Therefore,
our primary objective is to leverage knowledge distillation to effectively transfer generalization
capability of large HVMs to a lightweight counterpart without relying on source pretraining datasets.

2.2 KNOWLEDGE DISTILLATION

Traditional knowledge distillation (Hinton et al.| 2015} |Chen et al.l 2019;|Yin et al.| 2020; |Chen et al.|
2022 |Yang et al.| [2024;Son et al.| [2024; [Fan et al., [2024) aims to model compression via aligning
the outputs from small model to that of larger model. To replicate representation capability of large
visual foundation models, which are usually computationally intensive, several studies (Zhang et al.,
2025 |Ren et al., [2023) study distillation-based pretraining for compact foundation models. For
example, the TinyMIM (Ren et al.,2023) uses ImageNet (Deng et al.,|2009)) to explore the impact
of various distillation factors such as aligning objectives and the way of distillation, and find that
distilling attentions in vision transformer is the key to narrow the gap between the small MAE model
and the large one. Unlike traditional single-stage distillation, G2SD (Huang et al., 2023)) proposes
a two-stage distillation approach, where a MAE pretrained model is used as the teacher model for
distillation, followed by distillation on specific tasks. Furthermore, theia (Shang et al., 2024)) proposes
a multi-teacher off-the-shelf distillation strategy, which learns rich visual representations of multiple
teachers simultaneously. Proteus (Zhang et al.,[2025) proposes distillation across three different levels
of training objectives for mimicking the teacher’s behaviors.

These methods illustrate the considerable potential of knowledge distillation in model compression
and efficiency improvement. However, existing methods are limited to a single visual pattern (e.g.
DeiT (Touvron et al.,2021)) captures global identity patterns, G2SD (Huang et al., 2023) focuses on
local patterns), resulting in a significant gap in human-centric visual perception tasks. To overcome
this limitation, we introduce DPAL, which dynamically learns three typical patterns from large HVMs
to enhance generalizability across diverse downstream tasks.



Under review as a conference paper at ICLR 2026

|
|
|
' |
v | |
[%é Block 1 : |
|
y | |
[3% Block 2 : |
|
' |
' |
|

v ; I I :
% Blockm Dynamic Pattern| I I |
& Decoder I : I |
| | |

WEGEE  OVEREE I
@)} (| 1 o S YO | | [ | \ I Pattern | |[D-Expert] [D-Expert] [D-Expert]I
I . |

\ Generation I
Three-level \ : ¥ I I

Alignment \ :“‘:.’""'.:E‘]‘E]‘: I .

e . L __:___'_-%n';t:-_“-:‘:';«_«_' _ _!'1_Dynamic Expert Generator
e e e = | 1
' |
' |
I |
' |
I |
|
L Global-level Local-level Relation-level :
(T Teacherblock i Global representation iV Local representation 1 _1 Multi-person representation
(—Jstudentblock  i_} Global identity pattern ~ £.3 Local shape pattern £} Multi-person interaction pattern

1O Teacher representations  []O Student representations (OO Pattern queries % Frozen @ Train

Figure 2: The overview of DPAL. It comprises of (1) Teacher model, (2) Student backbone and (3)
Dynamic pattern decoder. Dynamic pattern decoder captures three types of patterns conditioned on
the input image and pattern queries. Finally, three-level alignment objectives are employed to acquire
generalization capability from large HVMs to lightweight HVMs.

3 METHOD

As illustrated in Fig. 2} we propose Dynamic Pattern Alignment Learning (DPAL), a distillation-
based pretraining framework for building generalizable lightweight HVMs. Following standard
teacher-student architecture (Caron et al., 2021)), the DPAL relies on two major designs: 1) Dynamic
Pattern Decoder that extracts three typical human visual patterns in a dynamic way, and 2) three levels
of alignment objectives that maximize knowledge transfer from the large HVMs to the lightweight
one by leveraging those patterns as the medium.

3.1 MODEL ARCHITECTURE

Similar to standard knowledge distillation framework, our distillation-based pretraining framework
consists of three major components: visual encoder of student model (s-VisEn), visual encoder of
teacher model (t-VisEn) and Dynamic Pattern Decoder (D-PaDe). In particular, the D-PaDe functions
as an adapter to align the outputs of s-VisEn with those of t-VisEn by projecting them into a common
latent space. Once pretrained, the s-VisEn is retained for supporting downstream tasks, while the
t-VisEn and D-PaDe are discarded.

s-VisEn. The basic architecture of s-VisEn is built on lightweight vision transformer (e.g., ViT/Ti),
which tokenizes input image into numerous vision tokens. Formally, given an input image I €
REXHXW 'the s-VisEn is able to output two types of tokens: 1) class token F'Y € R”s representing
D, dimensional global representation of an image, and 2) patch token ! € RL*Ds representing
pixel feature of L image patches.
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t-VisEn. The architecture of teacher model is a large vision transformer (e.g., ViT/B), and it has
been pretrained using large-scale datasets. Therefor, the t-VisEn often has a stronger representation
capacity for extracting diverse visual patterns. Unlike to the s-VisEn, a pretrained t-VisEn can be
used to yield three types of tokens from an image, including class token Y € RP¢, patch token
F! € RL*Pt and attention token F) € RE*E. As demonstrated in previous works (Tang et al.,[2023;
Ci et al., |2023)), class token of a pretrained ViT carries global discriminative visual information, the
patch token captures local visual layouts, and intern-patch relations are encoded in attention token.
Therefore, the class, patch, and attention tokens from a large pretrained ViT are adopted to serve as
the latent representations for global identity, local shape, and interaction patterns, respectively.

D-PaDe. To avoid the optimization conflicts caused by pattern heterogeneity, the D-PaDe is designed
as a dynamic mixture of experts (MoE) model, which decouples the generation of different patterns.
Existing MoE models (Riquelme et al.|[2021; Dai et al., 2024) adopt a fix set of small feed-forward
network (FFN) as experts, and use a router module to decide which expert should be activated.
However, those fixed experts are insufficient to cope with the diversity in visual patterns. To
overcome this, we adopt a different strategy, where the experts in D-PaDe are dynamically predicted
based on the type of input tokens and pattern queries. Specifically, we denote three learnable tokens
as the pattern queries T, = [T}, T2, T3], each of which is responsible for deciding what expert
should be generated. And then, a self-attention module S A(-) is used to encode pattern queries and a
cross-attention module C'A(-) is further used to adapatively filter the visual tokens with the guide of
the pattern queries. Finally, those filtered tokens are projected to computational parameters of three
experts { E}3_; via a linear FFN. Additionally, the router in D-PaDe is typically a linear layer that
computes expert selection scores {W¢}2_, based on the input token type. Based on this, the D-PaDe
is activated to decode only one specified pattern once the query is assigned. In the following, we
present how to utilize D-PaDe to decode various visual patterns.

3.2 PATTERN GENERATION

Global identity pattern is generally expressed via global discrimination information. Therefore, this
pattern can be directly obtained from single-person image I;, as formulated as follows:

3
F{ =Y "W¢-Ei(F% + SA(FY)) (1)
=1

where FY, is the global token of the single-person image I, which is extracted from s-VisEn. W¢ is
the weight score for i-th expert.

Local shape pattern represents local human body shape information. To achieve this shape infor-
mation, we use the attention score in t-VisEn as the a coarse mask M4y, Which roughly attends
foreground body shape. Then, the local shape pattern is generated by filtering irrelevant patch tokens
via the mask. This process can be formulated in Equ. 2}

3
Fl = Manape - | YW - Ei(Fly + SA(FL)) @
i=1

where F; is the local patch tokens of the single-person image I}, which are obtained from s-VisEn.

Multi-person interaction pattern represents the relational information between different instances.
To generate this kind of pattern, we firstly cast image patch tokens F,, which are extracted from
a multi-person image [ via the s-VisEn, as latent tokens using D-PaDe. And then, we compute
inter-token similarity using softmax nonlinear function. The resulted scores can be viewed as relations
among the patches. This process is formulated through Equ. [3}

Fly = Y0 W E(Fly+ SA(FL))
— T T 3)
Fr = softmax( S\Z/DTSZ)

3.3 ALIGNMENT OBJECTIVES

To minimize the generalization gap between lightweight HVMs and large HVMs, we conduct pattern
alignment across three different levels, i.e., global image, local pixel, and relation levels.
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Global-level Alignment. To learn global identity pattern, we construct M multi-view images derived
from the single-person image I;. Then, we extract global identity patterns from those multi-view
images and minimize their representation gap between the student model and teacher model, as
formulated in Equf]

M
1 —~ —
— E g g
gg_Mi=1HFsi_FtH2 (4)

Local-level Alignment. To align local shape pattern, we use the MSE loss to encourage the
consistency between patch tokens decoded via proposed D-PaDe and local shape pattern extracted
from the t-VisEn, as illustrated in Equ E}

b = |[Ff = Fl ®)

Relation-level Alignment. To further acquire instance-level relationships learned in the teacher
model, we enforce the lightweight HVMs mimic the multi-person interaction patterns of large HVMs
via KL divergence loss:

l, = Lgr(Fr, F]) (6)

Three loss functions are combined as the overall learning objective £ for optimizing student model:
L=Xglg+ Nl + XA, @)

where Ay, \; and A, are hyperparameters for balancing three learning objectives. For simplicity, we
set them to 1 during training.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. Unless otherwise stated, all models in this paper are pretrained on LUP1M, a subset
of 1 million single-person images sampled randomly from LUPerson dataset (Fu et al.| [2021b).
Specificaly, the multi-persons are synthesized by applying a simple copy-paste technique (Ghiasi
et al.,|2021) to different resolution images. For downstream task evaluation, the pretrained models
are exhaustively evaluated on standard benchmark datasets to ensure comprehensive performance
assessment. Specifically, we adopt Market1501 (Zheng et al.,[2015) and MSMT17 (Wei et al., 2018)
for image-to-image RelD (121 ReID), CUHK-PEDES (Li et al.,[2017) and ICFG-PEDES (Ding et al.,
2021a) for text-to-image RelD (T2I RelD), PA-100K (Liu et al.;2017) and PETA (Deng et al., 2014)
for attribute recognition, COCO-Keypoint (Lin et al.,2014) for pose estimation, Whole-body COCO
(Jin et al.,|2020) for landmark detection, LIP (Liang et al., [2018)) for human parsing, CrowdHuman
(Shao et al.,[2018]) for pedestrain detection, CIHP (Gong et al.l 2018) for multiple human parsing,
Fashionpedia (Jia et al., [2020) for part-level attribute parsing. In addition to general human-centric
visual perception tasks, we further evaluate generalizability of pretrained models using a cross-domain
setting, where models are pretrained using natural person images, and fine-tuned on cross-style or
cross-species visual perception tasks using images from unseen domains. Therefore, we consider
three representative datasets: 1) Humanart (Ju et al., [2023)) with person images in unseen styles
such as cartoons and sketches; 2) Chimpact-Pose (Ma et al.} 2023)) with chimpanzee images, and 3)
AP-10K (Yu et al.|[2021) with common animal images.

Evaluation. Following previous works, we adopt Rank1 for I2I RelD and T2I RelD, mean accu-
racy (mAP) for attribute recognition, average precision (AP) and recall (AR) for pose estimation
and landmark detection, mean intersection of union (mloU) and mean pixel accuracy (mAcc) for
human parsing, AP and missing rate (M R) for pedestrain detection, m/oU and AP, for multiple
human parsing, AP}S5 , . and AP;59" ;. for part-level attribute parsing. To fairly evaluate the
pretrained HVMs, any decoder or alignment module (e.g., P-DaDe) is discarded and only pretrained
backbone model using different pretraining paradigms (self-supervised/distillation-based) is retained
for downstream tasks. For additional details, we refer readers to Appendix.
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Table 1: Comparison with self-supervised pretraining and distillation-based pretraining methods
across three single-person discriminative tasks and three single-person dense prediction tasks. *:
Swin-tiny is adopted as the student backbone.

121 T21 Attribute Pose Landmark Human
Method Person ReID  Person ReID  Recognition | Estimation Detection Parsing
(Market/ MSMT)  (CUHK /ICFG) (PA100/PETA) | (AP/AR) (AP/AR) (mIoU/mAcc)

DINO 90.5/65.8 55.3/40.2 77.4/69.3 69.3/72.6  43.9/57.1 48.7/59.3
MAE 79.7/39.9 36.6/19.1 68.3/61.1 67.0/70.6  40.1/52.7 43.5/54.0
MAE+DINO 89.2/61.6 52.7/37.7 72.9/66.5 69.9/73.2  45.1/58.2 49.8/60.3
HAP 81.6/42.4 40.2/20.4 66.3/64.1 68.8/72.3  42.6/55.4 44.4/54.5
SOLIDER 91.6/69.2 55.5/40.7 78.6/69.4 69.3/72.6  44.2/57.2 48.9/59.2
SAIP 93.6/75.6 59.2/46.1 80.7/71.4 70.1/73.3  45.7/58.7 52.3/63.3
ViTKD 88.3/65.7 46.3/35.5 77.6/67.0 71.3/74.5 44.4/57.3 52.0/62.8
MaskedKD 87.9/62.1 52.4/42.8 75.6/67.6 67.9/71.5  40.4/54.0 50.9/61.7
ScaleKD 90.7/68.9 57.4/46.5 78.2/69.3 70.8/74.1  43.8/57.0 55.6/66.5
TinyMIM 92.5/74.5 59.6/48.7 81.7/72.5 70.2/73.6  44.2/57.5 53.0/63.7
Proteus 92.4/73.5 58.0/46.9 77.3/68.1 70.0/73.3  43.3/56.4 52.9/63.9
DPAL (Ours) 95.2/84.3 64.3/56.0 82.4/74.0 72.6/75.8  48.8/61.5 55.9/66.7
DPAL* (Ours) 96.4/86.2 66.9/58.5 83.1/74.9 75.1/78.1  53.9/65.7 59.3/69.7

Table 2: Comparison with state-of-the-arts across three multi-person perception tasks, and three
cross-domain visual perception tasks. *: Swin-tiny is adopted as the student backbone.

Pedestrian Multiple Human  Part Attribute | Human Art Chimpanzee Animal Pose
Method Detection Parsing Parsing Estimation  Estimation Estimation
(APIMR) (mIoUlAP,) (AP} |APR) | (AP/AR) (AP/AR) (AP AR)
DINO 86.1/51.6 46.9/45.7 35.4/32.9 65.7/69.7 16.1/19.2 58.0/61.6
MAE 83.7/56.5 45.8/44.4 32.0/30.3 65.1/69.0 13.9/16.7 48.8/53.5
MAE+DINO 86.4/50.2 47.4/46.2 37.7/35.2 67.4/71.1 18.2/21.2 59.5/63.6
HAP 83.3/57.5 44.1/42.8 33.0/30.4 66.0/70.0 13.2/15.8 50.5/54.7
SOLIDER 85.7/51.9 46.8/45.7 36.7/34.2 66.7/70.6 16.0/18.9 57.4/61.4
SAIP 87.1/49.6 48.2/46.9 38.0/35.5 67.5/71.2 18.2/21.3 60.8/64.6
ViTKD 86.6/50.3 44.1/42.9 35.6/33.4 68.2/71.8 18.9/22.4 44.0/48.7
MaskedKD 84.2/53.5 47.6/46.5 33.3/31.0 64.9/68.9 16.2/19.1 55.3/59.0
ScaleKD 87.4/47.5 49.0/48.3 37.5/34.9 65.7/69.6 20.8/24.3 62.9/66.4
TinyMIM 86.4/50.3 47.1/46.0 36.2/33.5 67.3/71.0 17.5/20.5 61.6/65.1
Proteus 86.0/50.3 49.3/47.9 38.0/35.4 69.4/73.0 19.7/23.2 64.7/68.1
DPAL (Ours) | 88.7/45.5 51.9/50.3 39.8/37.0 69.9/73.4 21.9/25.5 67.0/70.3
DPAL* (Ours) | 90.2/42.3 55.8/53.3 42.9/39.8 72.9/76.1 25.2/29.4 69.4/73.0

4.2 COMPARISON WITH STATE-OF-THE-ARTS

In this section, we compare DPAL with existing pretraining methods across a wide range of down-
stream tasks. Specifically, we conduct a comprehensive evaluation against six self-supervised pre-
training paradigms, including DINO (Caron et al.,[2021), MAE (He et al., [2022)), MAE+DINO (Park
et al.,|2023)), HAP (Yuan et al.|[2023), SOLIDER (Chen et al.,[2023)) and SAIP (Wang et al., [2025)).
Besides, five distillation-based pretraining paradigms are also included for comprehensive compari-
son, involving ViTKD (Yang et al.,2024), MaskedKD (Son et al., [2024), ScaleKD (Fan et al.| 2024),
TinyMIM (Ren et al.,[2023)) and Proteus (Zhang et al.| 2025). We adopt PATH (Tang et al.,|2023)
as the teacher model and use ViT-Tiny and Swin-Tiny (Liu et al.;,2021a) as the student model. All
student models are trained using LUP1M dataset for 100 epochs by default.
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Figure 3: Qualitative comparison between proposed DPAL and state-of-the-art methods.

Single-person Discriminative Tasks. We evaluate DPAL’s performance on single-person discrimi-
native tasks, including T2I RelD, 12I RelD, and attribute recognition. As shown in Table |IL DPAL
outperforms SAIP by significant margins of 1.6% and 8.7% on Market-1501 and MSMT 17 for 121
RelD, and by 5.1% and 9.9% on CUHK and ICFG for T2I RelD. For attribute recognition, DPAL
outperforms TinyMIM by 0.7% and 1.5% on PA100K and PETAzs, respectively. Additionally,
when using Swin-Tiny as the student backbone, the performance improves by an average of 1.63%
compared to DPAL. The performance of DPAL on a wide range of single-person discriminative tasks
demonstrates that our method is able to effectively learn the global identity patterns from teacher
while maintaining strong generalization ability.

Dense Prediction Tasks. We compare DPAL with existing methods on three dense prediction tasks,
as shown in Table[T] For pose estimation, DPAL achieved 72.6% AP and 75.8% AR, outperforming
TinyMiM which scores 70.2% and 73.6%, respectively. In landmark detection, DPAL achieved 48.8%
AP and 61.5% AR, surpassing TinyMiM by 4.6% and 4%. For human parsing, DPAL achieves mIoU
of 55.9, exceeding TinyMiM by 2.9%. It also achieves 66.7% mean accuracy (mAcc), outperforming
Proteus by 2.8%. Most notably, employing Swin-Tiny as the student model demonstrates an average
3.42% performance improvement over DPAL. The results substantiate that DPAL successfully learns
both global identity patterns and local shape patterns.

Multi-person Visual Understanding Tasks. We evaluate DPAL’s performance on three multi-person
visual understanding tasks, as shown in Table |Z|, In pedestrian detection, DPAL achieves an AP of
88.7% and an MR of 45.5%, outperforming SAIP (2nd best) by 1.6% and 4.1%, respectively. In
multiple human parsing, DPAL achieves a mIoU of 51.9 and an AP, of 50.3%, surpassing Proteus
by 2.6% and 2.4%, respectively. Specifically, using Swin-Tiny as the student model yields an average
performance gain of 2.92% relative to DPAL. In part-level attribute parsing, DPAL delivers the best
performance across key evaluation metrics.

Cross-domain Generalization. As shown in Table[2] the DPAL consistently outperforms previous
self-supervised pretraining/distillation-based pretraining methods on two different scenarios unseen
in the pretraining phase, including 1 cross-style recognition task and 2 cross-species recognition
tasks. This indicates that learning three typical human visual patterns from large HVMs enables
generalizable representations for cross-domain adaptation. Similar findings are also observed when
applying DPAL to general vision-language tasks (Appendix.C.3).

Qualitative Comparison. To validate whether DPAL correctly captures the three visual patterns,
we visualize the model’s outputs. As shown in the figure[3] for global identity patterns, DPAL can
distinguish between different instances in the representation space, while both Proteus and TinyMIM
struggle to do so. For local shape patterns, DPAL achieves results comparable to those of the teacher
model. Additionally, it can differentiate between distinct instances in multi-person images.

4.3 ABLATION STUDY

In this section, we analyze the effectiveness of our learning strategy and seek to best practice
for distillation-based pretraining. We adopt 121 RelD, human parsing and pedestrian detection as
representative tasks for investigation. For 121 RelD, we evaluate Rankl on Market1501. For human
parsing, we evaluate mIoU on LIP. For pedestrian detection, we evaluate AP on CrowdHuman.

The Effect of Major Components. To investigate the most suitable distillation strategy, we conduct
ablation experiments on three types of learning objectives. We use PATH as the teacher model and
distill it for 100 epochs on the LUP1M dataset. Comparative results are reported in Table[3] We find
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Table 3: Investigating the effect of major components of DPAL, including three alignment objectives
and dynamic pattern decoder.

D-PaDE | ¢, ¢, ¢, I2IReID Human parsing Detection

v v 95.3 52.7 87.3
v v 93.1 55.7 88.4
v v 92.5 53.0 86.4
v v v 94.9 55.7 88.1
v v v 93.9 55.5 88.1
v v v 95.3 53.1 86.7
v v v Y 95.2 55.9 88.7
- v v v 95.2 552 87.2

that £, focuses more on global information, which allows it to outperform both ¢; and Z, in single-
person discrimination task (95.3% vs 93.1% vs 92.5%). As for dense prediction task, ¢; outperforms
{4 and £, for human parsing (55.7% vs 52.7% vs 53.0%). When three strategies are combined, they
achieve strongest generalization ability across three types of downstream tasks. Therefore, we adopt
three-level alignment objectives as our default distillation approach. In addition, removing D-PaDe
leads to sub-optimal performance, indicating proposed D-PaDe is capable of alleviating the adverse
effect of inter-pattern conflict problem.

Table 4: Ablation study on different teacher (%). ViT-Ti/16 models are pretrained with three-level
alignment objectives from different teachers on LUP1M for 100 epochs.

121 Human  Pedestrian

Method Arch #1imgs Teacher . .
ReID  Parsing  Detection
HAP-B ViT-B/16  2.1M - 95.5 54.8 89.6
DPAL ViT-Ti/16  1.2M HAP-B 94.1 56.1 87.7
PATH-B ViT-B/16  12M - 93.5 59.1 90.1
DPAL ViT-Ti/l6  1.2M PATH-B 95.2 55.9 88.7
Sapiens-L  ViT-L/16  300M - 89.4 34.8 89.5
DPAL ViT-Ti/16  1.2M Sapiens-L.  85.9 48.6 85.2

The Effect of Teacher Models. As shown in Table[d] we explore the effects of DPAL on different
teacher models. Specifically, we select three teacher models and perform three-level alignment objec-
tives on LUP1M. Notably, DPAL, utilizing a smaller backbone (ViT-Ti/16) and fewer training images
(1.2M), achieves superior human parsing mIoU compared to MAE and HAP, with improvements of
approximately 12.4% and 11.5%, respectively. Moreover, DPAL surpasses PATH in the 121 RelD task
by 1.7%, despite PATH employing a larger model (ViT-B/16) and a significantly larger dataset (12M
images). These results demonstrate that DPAL attains enhanced performance while maintaining a
more compact model size, indicating its efficiency and strong generalization capability.

5 CONCLUSION

In this paper, we propose DPAL, a novel distillation-based pretraining framework for distilling general
knowledge from large HVMs into lightweight ones without requiring access to large-scale source
pretraining datasets. Specifically, we design a dynamic pattern decoder that adaptively extracts various
visual patterns conditioning on input image and pattern queries. Finally, we introduce three-level
alignment objectives to maximize the effectiveness of knowledge transfer from the teacher to the
student. Extensive experiments on 15 datasets demonstrate that DPAL achieves strong generalization
comparable to much larger models while significantly outperforming previous pretraining methods.
Notably, DPAL trains on a limited, unlabeled dataset unseen to large HVMs, providing a more
accessible and cost-effective approach to developing generalizable models.
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A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we employed Large Language Models (LLMs) solely as a writing
assistance tool for limited text polishing and language refinement. LLMs were not involved in
any aspects of research ideation, conceptual development, technical analysis, algorithm design,
experimental execution, or result analyses. All scientific contributions, methodological innovations,
and intellectual content remain entirely our own.
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B DISCUSSION

Limitation. The performance of the student modle is influenced by the teacher model used for
pretraining. Additionally, due to limitations in computational resource, we have only tested our
method on image datasets and downstream tasks. However, our approach is also applicable to
human-centric video understanding tasks, which will be explored in our future work.

Broader Impact. As demonstrated in Section 4, our method outperforms existing pretraining meth-
ods across various downstream tasks, highlighting the potential of DPAL as a novel distillation-based
pretraining paradigm. Moreover, DPAL serves as an efficient knowledge distillation technique that
enables the development of compact variants of large HVMs, making them suitable for deployment
on resource-constrained edge devices. Additionally, DPAL eliminates the necessity of accessing
the teacher model’s original pretraining datasets by utilizing a relatively small open-source dataset
of approximately 1 million images for pretraining. This pretraining paradigm significantly reduces
training costs and enhances the accessibility of DPAL for the research community, thereby broadening
its potential applications. Furthermore, the codebase developed in this work is publicly released to
promote reproducibility and further advancements in research.

C MORE IMPLEMENTATION DETAILS

C.1 MODEL ARCHITECTURE

Backbone. We conducted experiments on various student backbones and teacher backbones, with
the corresponding settings presented in Table 3]

Table 5: Configuration of neural architectures. Both Vision Transformer (ViT-X) and Swin
Transformer (Swin-X) are used for investigation.

Arch Patch size Embed dim Heads Blocks
ViT-Ti 16 192 6 12
ViT-S 16 384 6 12
ViT-B 16 768 12 24
Arch Patch size Window Embed dim Heads Blocks
size
Swin-Ti 4 7 96 (3,6,12,24) 2,2,6,2)
Swin-S 4 7 96 (3,6,12,24) (2,2,18,2)
Swin-B 4 7 128 (4,8,16,32) (2,2,18,2)

Dynamic Pattern Decoder. The dynamic pattern decoder comprises a self-attention module, a
router module, three experts and a dynamic expert generator. The router is responsible for assigning
experts to different visual tokens. The experts specialize in handing specific patterns. The dynamic
expert generator produces weights for experts conditioned on the visual tokens and pattern queries.

Table 6: Configurations of pretraining.
Dynamic Expert Generator. The dynamic expert
generator consists of self-attention, cross-attention,

and FFN modules. We design three learnable ex- Configuration Value
pert tokens T, = [T}, T2, T3], which pass through Batch size 2048
self-attention, cross-attention, and FFN modules to Optimizer AdamW
update the parameters of the three experts. In the Learning rate 2.5e-4
cross-attention module, representations from back- Learning rate decay | Consine scheduler
bone are used as the keys and values, while the expert Weight decay 0.05
tokens serve as the queries. The cross-attention mod- W, h 10

le ensures that the parameters of the experts are ATmUp €POcis
4 Epochs 100

Image size 256 x 128
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updated based on the corresponding representations and pattern queries, enabling each expert to
selectively focus on the most relevant pattern.

Router. We designed a router that dynamically assigns experts to distanct visual patterns, thereby
decoupling the alignment learning of three visual patterns. We designed a learnable router token
T, using the representations extracted by the backbone as keys and values. The routing token
dynamically adjusts the weights of different experts W, based on different patterns, enabling the
model to effectively capture diverse patterns and enhance its performance in complex visual tasks.

C.2 PRETRAINING DETAILS

All lightweight HVMs are pretrained using 8 A6000 48G GPUs. We employ the AdamW opti-
mizer(Loshchilov & Hutter, 2017) with an effective batch size of 2048 (i.e., 256 per GPU). As shown
in Table|6l each model is pretrained from scratch for 100 epochs. The learning rate is 2.5e-4 and is
decayed via Cosine Annealing scheduler(Loshchilov & Hutter, 2016)). The single-person image size
is 256 x 128, while the multi-person image is 256 x 256.

C.3 FINETUNING DETAILS

We utilize representative methods from downstream tasks as baselines, subsequently replacing their
backbones with our pretrained backbones for finetuning. The list of codebases used for evaluation is
presented in Table

Table 7: Implementation codebases and configurations of fine-tuning on 12 datasets.

Task Dataset Codebases Image size Learning rate  Epoch

121 RelD Market150] @Zheng et al.J2015} - o1 DR (Chenetal|p023] 256 x 128 2e-4 120
MSMT17 (Wei et al.}2018)

T21 RelD CUHK-PEDES(Lietal |P017) IRRA (Jiang & Ye|2023} 384 x 128 le-4 60
ICFG-PEDES(Ding et al.|2021a)

Attribute recognition PAL00(Liuct al J2017) SOLIDER (Chen et al.J2023] 256 x 128 le-4 25
PETAzs(Deng et al.{2014)

Pose estimation COCO keypoint(Lin et al.|[2014} ViTPose (Xu et al.|[2022) 256 x 192 Se-4 210

Landmark detection ‘Whole-body COCO(Jin et al.}2020)  ViTPose (Xu et al.||2022) 256 x 192 Se-4 210

Human parsing LIP (Liang et al.|[2018}) SOLIDER(Chen et al.}2023) 576 x 384 Te-4 150

Pedestrian detection CrowdHuman(Shao et al.}|2018) CrowdDet (Chu et al.|[2020) 1400 x 800 2e-4 30

Multiple human parsing CIHP(Gong et al.||2018) Cpi-parser (Wang et al.|[2024) 1333 x 800 2e-2 25

Part-level attribute parsing  Fashionpedia(Jia et al.;|2020) KE-RCNN (Wang et al.{2023) 1024 x 1024 le-4 32

Table 8: The computational cost in pretraining stage, involving training epoch, training time (Hours)
and Memory per GPU (GB).

Setting ‘ ViTKD MaskedKD ScaleKD TinyMiM Proteus ‘ DPAL
Epochs 300 300 200 300 300 100
Time 41 26 60 15 30 22
Memory 10 22 26 24 16 26

Downstream Tasks

121 Person ReID 90.5 79.7 81.6 91.6 93.6 95.2
Human Parsing 52.0 50.9 55.6 53.0 54.3 55.9
Pedestrian Detection 86.6 84.2 87.4 86.4 87.6 88.7
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Table 9: Investigating the effect of DPAL on vision-language spatial reasoning task.

Evaluation on OmniSpatial

. Dynamic Spatial Complex Perspective
Method Vision Encoder Avg.
Reasoning Interaction Logic Taking
LLaVA-1.5-78 CLIP-ViT-L (304M) 34.97 54.46/31.23 35.29/36.19/33.94 29.01/24.08 55.60/34.66/35.14
aVA-1.5-
DPAL-ViT-T (5M) 35.62 45.95/26.30 56.47/35.24/42.73 18.56/25.16 53.92/36.70/46.99
Evaluation on Robo2VLM
. Spatial Reasoning Goal Reasoning Interaction Reasoning
Method Vision Encoder Avg.
RS/OS/SR/SU/MV TS-G/TS-S/TS-GL AU/IP/TU
LLaVA-1.5-7B CLIP-ViT-L (304M) 21.58 35.32/23.87/16.08/17.78/17.50 31.82/23.79/19.03 20.30/21.74/22.37
aVA-1.5-
DPAL-ViT-T (5M) 24.58 53.66/27.16/19.29/2.52/17.31 29.55/19.88/46.88 17.24/21.18/31.82

Table 10: Investigating the effect of DPAL on vision-language robot control task.

Simulation ACT RDT PIO H-RDT Ours
Task (ResNet-18-11M) (SigLip-400M) (SigLip-400M) (SigLip-400M) (ViT-Ti-5M)
as
Easy/Hard Easy/Hard Easy/Hard Easy/Hard Easy/Hard
Grab Roller 66.0/6.0 74.0/43.0 96.0/80.0 95.0/52.0 83.0/57.0
Place_object_basket 0.0/0.0 42.0/14.0 62.0/10.0 62.0/19.0 32.0/4.0

D ABLATION STUDY

D.1 TRAINING EFFICIENCY

From the results listed in Table 8] we observe that the proposed DPAL achieves superior downstream
performance while maintaining comparable pretraining costs. As shown in Table 1, all methods
require 15 40 hours, while the proposed DPAL requires 22 hours. Second, from the perspective
of downstream fine-tuning, we choose a fair and widely-used setting, where only the pre-trained
backbone is retained in downstream evaluation, and the alignment module is discarded. In this way,
the training costs in downstream tasks are the same for all pre-training methods. Based on this, the
DPAL does not bring significant computational burden.

D.2 ABLATION STUDY ON SCALE OF THE DATASET

To explore the optimal scale of the dataset, we con-

struct five subsets of varying scales (0.2M, 0.5M, 1M, 9% 58
2M, and 4M samples) from the LUPerson dataset <
for pretraining. As shown in Figure ] we observe 3 9520 9530 9530 =y
that the performance on the 0.2M and 0.5M subsets =, | 480 559 .
is significantly worse than on the 1M subset. More- £ 55.2 i
over, increasing the dataset size does not lead to fur- & 548 E
ther performance improvement. Therefore, LUPIM, Q 820 345 5
as the subset of LUPerson, is sufficient to support & 92 54
distillation-based pretraining. N F— g
52.5 ,
®= Human Parsing >
~o~ 121 RelD T
D.3 VISION-LANGUAGE TASKS %0 ; ; ; ; 52
02 05 1 2 4

In this section, we further investigate the effectiveness Ratio of pretraining dataset

of proposed method on two vision-language tasks:
1) spatial reasoning; and 2) embodied robot control.
Specifically, we choose the InternViT-400M (Chen
et al.| [2025¢) as the teacher model, and use proposed DPAL to distill it into ViT-Ti by leveraging the
ImageNet-1M (Deng et al.| [2009) as a medium. When testing pretrained model on spatial reasoning
task, we replace the vision part of LLaVA-1.5-vicuna-7B (Liu et al.| 2023) with the pretrained ViT-Ti,
and test it using OmniSpatial (Jia et al.,|2025) and Robo2VLM (Chen et al.| [2025a) benchmark. As

Figure 4: The impact of different scale of
datasets on I2I Reid and human parsing tasks.
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for the embodied robot control task, we replace the vision part of the H-RDT (B et al.} [2025)) and test
it using RobotWin2.0 (Chen et al.| 2025b) simulation benchmark. The results reported in TableE]
and Table [I0]shows that adopting pretrained lightweight ViT (5M) as the vision encoder achieves
competitive performance, which is comparable to that of large vision encoder (400M).

D.4 ABLATION STUDY ON VARIANTS OF PATTERN DECODER

Pattern decoder functions as an adapter to align the outputs of lightweight HVMs to that of large
HVMs. This section study the variants of pattern decoder: 1) MAE-Style (He et al., [2022) decoder,
which contains two transformer blocks; 2) Standard MoE, where experts in MoE block is the fixed
MLP; and 3) proposed D-PaDe, where the experts are dynamically generated via pattern queries
with input image. Comparison results reported in Table [T T|show that D-PaDe is the best choice for
distillation-based pretraining by far.

Table 11: Ablation study on variants of pattern decoder (%). Aligning ViT-Ti/16 with PATH-B using
MAE-style decoder, Standard MoE or D-PaDe.

Setting ‘ 121 RelD Human Parsing Detection
wlodecoder | 952 55.2 87.2
MAE-style 95.1 55.0 87.8
Standard MoE 94.1 559 88.5
D-PaDe 95.2 559 88.7

D.5 ABLATION STUDY ON VARIANTS OF STUDENT MODEL

We evaluate the performance of DPAL on downstream tasks with different model architectures. We
use PATH-B as the teacher model and perform distillation for 100 epochs by default. As shown in
the Table we employ vision transformer (Dosovitskiy et al., 2020) for the ViT architecture and
swin transformer (Liu et al.;,2021b) for the hybrid architecture. The other settings are the same as in
Section 4.1 ans Section 4.2. We observe a consistent improvement in model performance concomitant
with the increasing model parameters, as exemplified by 121 RelD task where Rank]1 increases by
0.6% (+16M), 1.2% (+22M), 1.7% (+44M) compared to ViT-Tiny. However, this improvement is
accompanied by a corresponding increase in training costs. Moreover, our method is model-agnostic,
demonstrating strong performance on both ViT and hybrid architectures.

D.6 ABLATION STUDY ON MODEL SIZE OF TEACHER

We investigate whether employing teacher models with larger size enhances the performance of the
student model. Specifically, we employ PATH-B and PATH-L as teacher models to distill ViT-Tiny.
The results presented in Table[T3|indicate that increasing the size of the teacher model does not yield
performance gains across a wide range of downsream tasks. This may be due to the larger gap between
the larger teacher models and the student model, which is also mentioned in the TinyMIM(Ren et al.,
2023).

E VISUALIZATION RESULTS

We provide additional visualization results in Figure[5] First, we visualize the class token represen-
tation space of PATH (Tang et al.| 2023), Proteus(Zhang et al., 2025)), TinyMIM(Ren et al., [2023)
and DPAL for two single-person images to investigate the models’ ability to learn global identity
patterns. As shown in Figure [5] (a), DPAL and PATH distinctly separate the two instances in the
representation space, whereas the other methods do not. Second, we conduct principal component
analysis (PCA) visualization to investigate the model’s capability in capturing local shape patterns.
DPAL successfully captures local body shape patterns comparable to those of PATH, while the others
fail to capture the whole structure of a person instance. Third, we perform PCA visualization on
multi-person images. Similar to PATH, DPAL is able to distinguish different individuals that are
depicted by different colors in the visualization. This demonstrates that DAPL has successfully
enabled lightweight model to acquire multi-person interaction patterns.
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Table 12: Impact of model architecture. We employ PATH-B as teacher model and perform
distillation with DPAL on four student architectures.

(a) Single-person discrimitive tasks (%).

121 ReID T2I RelD Attribute recognition
Arch Type #Param
Markett MSMT171| CUHK? ICFGT | PA100KT PETAzs?
ViT-Ti/16 ViT M 95.2 84.3 64.3 56.0 82.4 74.0
ViT-S/16 ViT 21M 95.8 86.1 65.8 58.5 83.9 74.1
Swin-Ti/4  Hybrid 27M 96.4 86.2 66.9 58.5 83.1 74.9
Swin-S/4  Hybrid 49M 96.9 88.2 69.6 60.0 85.9 77.1

(b) Single-person dense prediction tasks (%).

Pose estimation

Landmark detection

Human parsing

Arch T #P.

e be WM TP T T ART | AP+ ART | mIoUT  mAcet
ViT-Ti/16 ViT M 72.6 75.8 48.8 61.5 55.9 66.7
ViT-S/16 ViT 21M 73.3 76.3 53.1 65.5 58.1 68.7
Swin-Ti/4  Hybrid 27TM 75.1 78.1 53.9 65.7 59.3 69.7
Swin-S/4  Hybrid 49M 76.3 79.4 55.6 67.2 60.7 71.5

(c) Multi-person visual understanding tasks (%).
Arch Type #Param Pedestrian detection |Multiple human parsing|Part-level attribute parsing
AP 1 MR | mIoU?t AP, T |APPSE . p) tAPISE g 1
ViT-Ti/16 ViT M 88.7 45.5 51.9 50.3 39.8 37.0
ViT-S/16 ViT 21M 89.2 42.9 55.9 534 429 39.3
Swin-Ti/4 Hybrid 27TM 90.2 42.3 55.8 53.3 429 39.8
Swin-S/4  Hybrid 49M 89.7 43.1 55.2 52.4 44.9 41.1
(d) Cross-domain perception tasks (%).
Humanart Chimpact-Pose AP-10K
Arch T #P:

a ype Y TAPT ARt | APt ART | APT  AR?
ViT-Ti/16 ViT M 69.9 73.4 21.9 25.5 67.0 70.3
ViT-S/16 ViT 21M 72.0 75.5 24.7 28.4 69.0 72.4
Swin-Ti/4  Hybrid 27M 72.9 76.1 252 294 69.4 73.0
Swin-S/4  Hybrid 49M 75.1 78.3 27.8 321 71.5 74.7

Table 13: Impact of teacher size. We use ViT-Tiny as the student model and perform DPAL
distillation separately with teacher models of two different sizes.

(a) Single-person discrimitive tasks (%).

Teacher 121 RelD T2I RelD Attribute recognition
Markett MSMTI171 CUHK?T ICFG?T PA100Kt PETAzs?T
PATH-B 95.2 84.3 64.3 56.0 824 74.0
PATH-L 95.2 83.7 66.0 55.9 82.7 74.3
(b) Single-person dense prediction tasks (%).
Teacher Pose estimation Landmark detection Human parsing
AP 1 AR 7?1 APt AR mloU 1 mAcc 1
PATH-B 72.6 75.8 48.8 61.5 55.9 66.7
PATH-L 72.7 78.2 48.6 61.2 55.7 66.6
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(a) Global identity pattern

PATH Proteus TinyMIM DPAL|

(b) Local shape pattern
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(c) Multi-person interaction pattern

Figure 5: Visualization of learned patterns among four models. From left to right: (a) global identity
pattern, (b) local shape pattern, and (c) multi-person interaction pattern.
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