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Abstract
We look at low-rank adaptation methods, e.g.,
LoRA, from the lens of data privacy. We show
theoretically that the low-rank adaptation used in
LoRA is equivalent to fine-tuning adapters with
noisy batch gradients - just like what DPSGD algo-
rithm does. We also quantify the variance of the
induced noise as a decreasing function of adap-
tation rank. By establishing a Berry-Esseen type
bound on the total variation distance between dis-
tribution of the induced noise and a Gaussian dis-
tribution with the same variance, we show that the
dynamics of low-rank adaptation is very close to
that when performing DPSGD w.r.t the adapters.
Consequently, low-rank adaptation provides ro-
bustness to membership inference attacks.

1. Introduction
Stochastic Gradient Descent (SGD) is the power engine of
training deep neural networks, which updates parameters
of a model by using batch gradient descent. Modern deep
learning models, e.g., GPT-3 (Brown et al., 2020) and Stable
Diffusion (Rombach et al., 2022) have a large number of
parameters, which induces a large space complexity for their
fine-tuning with SGD. LoRA (Hu et al., 2021) updates only
some of the parameters, called adapters, by restricting their
updates to be a low-rank matrix. This low-rank restriction
considerably reduces the number of trainable parameters, at
the cost of limiting the optimization space of the adapters.
As another parameter-efficient training technique, ReLoRA
(Lialin et al., 2023) utilizes low-rank updates to train high-
rank networks to mitigate the low-rank constraint of LoRA.
Similarly, the work in (Hao et al., 2024) identifies that the
dynamics of LoRA can be approximated by a random ma-
trix projection. Based on this, the work proposes FLoRA to
achieve high-rank updates by resampling the random projec-
tion matrices, which enables achieving higher utility while
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enjoying the sublinear space complexity of LoRA.

On the other hand, from the lens of data privacy, fine-tuning
data often happens to be privacy-sensitive. DPSGD (Abadi
et al., 2016) fine-tunes the existing parameters in a pre-
trained model by using noisy clipped batch gradients. How-
ever, it induces a high space complexity (Abadi et al., 2016).
As a remedy, DPSGD can be used to fine-tune only the
adapters in a pre-trained model (Liu et al., 2024).

In this work, we draw a connection between low-rank adap-
tation and DPSGD w.r.t the adapters. We show that low-rank
adaptation of the adapter parameters is equivalent to fine-
tuning them with noisy batch gradients, which is very close
to what DPSGD does for fine-tuning adapters privately. We
also quantify the variance of the noise injected into the batch
gradients as a decreasing function of the adaptation rank.
Furthermore, we show that the distribution of the injected
noise is very close to a Gaussian distribution with the same
variance. Our derivations shows that low-rank adaptation
and DPSGD w.r.t the adapters are very close to each other in
terms of their mechanisms. The highlights of our contribu-
tions are as follows:

• We show that low-rank adaptation of adapters is equiv-
alent to fine-tuning them with noisy batch gradients
(Equation (3)).

• We quantify the variance of the noise injected into the
batch gradients w.r.t the adapters, and show that the
noise approaches a Gaussian distribution as the adapta-
tion layer’s input dimension increases (Lemma 3.1).

• We bound the total variation distance between the dis-
tribution of the injected noise and a pure Gaussian
noise with the same variance. The bound decreases
as the input dimension of the adaptation layer and the
adaptation rank increase (Lemma 3.2).

• Based on the above findings, we show that the dy-
namics of low-rank adaptation is very close to that of
fine-tuning the adapters with DPSGD (Section 4).

• Finally, we show experimentally that low-rank adap-
tation provides robustness to memebrship inference
atatcks w.r.t the fine-tuning dataset (Section 5), con-
firming our theoretical findings.
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Figure 1. Low-rank decomposition of LoRA in an adaptation layer.

2. Dynamics of low-rank adaptation
We start by studying the dynamics of low-rank adaptation.
In order to update a pre-trained adapter weight W ∈ Rn×m

located in a layer of a pre-trained model, LoRA incorpo-
rates low-rank decomposition matrices B ∈ Rn×r and
A ∈ Rr×m, where r ≪ min{n,m}, and performs the
following forward pass in an adaptation layer (see Figure 1):

y = (W +BA)x = Wx+BAx, (1)

where x ∈ Rm and y ∈ Rn are the input and the pre-
activation output of the current adaptation layer, respec-
tively. For instance, there are 12 self-attention layers in
GPT-2 model and when fine-tuning it with LoRA, W can be
considered to be the query layer in each of those 12 layers,
which has dimension (m,n) = (768, 2304). For each adap-
tation layer, it is common to initialize B with an all-zero
matrix and sample A from the normal distribution N (0, 1

r ).
We will use this intialization of A for deriving our theo-
retical results. When back-propagating, LoRA calculates
the gradients w.r.t only A and B, which can be found as
follows:

∂L
∂A

=
∂BA

∂A
· ∂L
∂BA

= B⊤ · ∂L
∂y
· ∂y

∂BA
= B⊤(∇WL),

∂L
∂B

=
∂L
∂BA

· ∂BA

∂B
=

∂L
∂y
· ∂y

∂BA
·A⊤ = (∇WL)A⊤.

(2)

Hence, ∂L
∂A ∈ Rr×m and ∂L

∂B ∈ Rn×r. In fact, LoRA down-
projects the batch gradient ∇WL from Rn×m to a lower
dimension, and updates the matrices A and B with the
resulting projections of∇WL (Hao et al., 2024).

Having understood the connection between low-rank adap-
tation in LoRA and random projection, in the next section,

we show that adaptation of the matrices A and B in Equa-
tion (2) is equivalent to “fine-tuning” adapter W with a
noisy version of batch gradient ∇W tLt at every time step
t. This is our first step towards establishing a comparison
framework between the dynamics of low-rank adaptation
and that of DPSGD w.r.t the dapter W .

3. Random noise injection by low-rank
adaptation

Let A0, B0 and W 0 denote the initial/pre-trained values of
the matrices A, B and the adapter W . A recent work (Hao
et al., 2024) showed that during low-rank adaptation with
LoRA, it is mostly the matrix B that gets adapted and matrix
A is almost frozen. Hence, LoRA can be approximated by
freezing A at A0. For simplicity of our analysis, we keep
using this approximation of LoRA. In that case, as we have
shown in Appendix C, performing T SGD steps w.r.t Bt is
equivalent to updating the forward-pass parameter W 0 in
Equation (1) to the following forward pass parameter:

W 0 − η

T−1∑
t=0

[
∇W tLt︸ ︷︷ ︸

batch gradient w.r.t W t

+∇W tLt(A0⊤A0 − Im)︸ ︷︷ ︸
noise ∈ Rn×m

]
,

(3)

where W t = W 0 +BtA0, i.e. the equivalent forward pass
parameter at time step t. The second term in the sum rep-
resents a noise term introduced by the low-rank adaptation.
Therefore, “low-rank adaptation” of pretrained adapter
W 0 (by introducing low-rank matrices A and B) is equiva-
lent to “fine-tuning” W 0 with noisy batch gradients.

We are now particularly interested in the behavior of this
noise term, which is added to each batch gradient ∇W tLt

in every step t. Recall that the entries of A0 were sampled
fromN (0, 1

r ) (see Figure 1), and that each of the r columns
of A0⊤ is an m-dimensional Gaussian random variable.
Consequently, A0⊤A0 follows a Wishart distribution with r
degrees of freedom (Bhattacharya & Burman, 2016), which
is the multivariate generalization of the chi-squared distri-
bution. Therefore, for any q ∈ R1×m, q · (A0⊤A0 − Im) is
a weighted sum of multiple chi-squared random variables,
which implies that the result follows a Gaussian distribu-
tion approximately, according to the Central Limit Theorem
(CLT) (Bhattacharya et al., 2016). Therefore, we first state
and prove the following lemma concerning the noise term
in Equation (3).

Lemma 3.1. Let A ∈ Rr×m be a matrix with i.i.d entries
sampled from N (0, 1

r ). Given a fixed q ∈ R1×m, the distri-
butions of the elements of q ·(A⊤A−Im) ∈ R1×m approach
the Gaussian distribution N (0, ∥q∥2

r ), as m increases.
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Table 1. Membership inference attack on GPT-2. LoRA (with both frozen and trainable A) shows robustness to the attacks in terms of
AUC and TPR of MIA by mimicking DPSGD and incorporating noisy batch gradients w.r.t adapters during adaptation.

Dataset Enron Pubmed PTB
Evaluation Criterion Utility MIA Success Metrics Utility MIA Success Metrics Utility MIA Success Metrics
Metric PPL↓ AUC↓ @FPR 10%↓ @FPR 1%↓ PPL↓ AUC↓ @FPR 10%↓ @FPR 1%↓ PPL↓ AUC↓ @FPR 10%↓ @FPR 1%↓
Full fine-tuning 18.49 0.876 66.31 13.02 16.64 0.929 80.67 6.48 27.70 0.963 90.54 65.84
LoRA (r = 16) 19.66 0.757 40.56 8.08 18.82 0.816 50.43 2.68 31.18 0.961 89.97 59.88
LoRA (frozen A0, r = 16) 21.90 0.614 16.76 4.49 20.85 0.546 14.93 2.37 37.93 0.952 82.23 55.58
DPSGD on adapters (ϵ = 20) 27.74 0.541 13.62 1.19 27.16 0.532 12.21 1.78 44.53 0.542 55.21 9.87

We also prove the following lemma to show the closeness of
the distribution of the elements of q · (A⊤A− Im) ∈ R1×m

to N (0, ∥q∥2

r ) for limited values of m.

Lemma 3.2. Let A ∈ Rr×m be a matrix with i.i.d entries
sampled from N (0, 1

r ). Given a fixed q ∈ R1×m with 0 <
c ≤ |qi| ≤ C, let u = q · (A⊤A− Im) ∈ R1×m. Let ui be
the i-th element of u. There exists z ∼ N (0, ∥q∥2

r ) such that

Pr{ui ̸= z} ∈ O
(

1√
mr

)
. (4)

The lemma above means that each element of q·(A⊤A−Im)

follows a mixture of distributions: N (0, ∥q∥2

r ) with weight
wg and another distribution M - which we dont know - with
weight (1−wg) ∈ O

(
1√
mr

)
. For instance, when finetuning

GPT-2 model with LoRA with r = 16, 1/
√
mr ≈ 9×10−3,

showing the distribution of the injected noise is indeed very
close to a Gaussian distribution. The larger mr, the closer
the mixture distribution gets to N (0, ∥q∥2/r).

4. Comparing Low Rank Adaptation and
DPSGD

Based on our understandings from Lemma 3.2, low rank
adaptation (with rank r) of adapter W ∈ Rn×m at time
step t is equivalent to fine-tuning it with the noisy stochastic
batch gradient ∇̃W tLt = ∇W tLt+N t, where N t ∈ Rn×m

is a noise-term with Gaussian-like distribution: Pr{N t
i,j ̸=

zti} ∈ O
(
1/
√
mr

)
, where zti ∼ N (0,

∥[∇WtLt]i,:∥2

r ). In
other words, low-rank adaptation injects noise into each row
of the batch gradient ∇W tLt, and the standard deviation of
the noise added to the elements of the row i is proportional
to the ℓ2 norm of row i. Also, as mr grows (i.e., the input
dimension of the adaptation layer or the adaptation rank
increase), the distribution of noise element N t

i,j gets closer

to N (0,
∥[∇WtLt]i,:∥2

r ).

The operation above is very similar to what DPSGD (Abadi
et al., 2016) does when it is applied to W (see Appendix B
for a background about DPSGD). At the t-th gradient update
step on a current adapter parameter W t, DPSGD computes
the following noisy clipped batch gradient on a batch Bt:

∇̃W tLt =

(
1

b

∑
i∈Bt

∇̄W tLt
i

)
︸ ︷︷ ︸

batch gradient w.r.t W t

+N (0,
(ct)2z2

b2
)︸ ︷︷ ︸

noise ∈ Rn×m

, (5)

where ∇̄W tLt
i is the clipped sample gradient computed on

sample i with clipping threshold ct. If ct ≥ ∥∇W tLt
i∥, then

the clipping will be ineffective and can be ignored. This is
very similar to the noisy batch gradients used in Equation (3).
LoRA adds random noise to different rows of the average
batch gradient according to their norms: rows with larger
norms experience a larger noise. Also, the injected noise
to each element follows a Gaussian distribution with a high
probability (Lemma 3.2). Accordingly, we expect low-rank
adaptation to provide informal robustness to privacy attacks
against the fine-tuning data, just like DPSGD.

5. Experiments
In this section, we perform membership inference attacks
(MIA) on some fine-tuned models to show how low-rank
adaptation indeed provides robustness against them. We use
model perplexity as a measure of utility. We also use TPR
(true positive rate) and AUC to measure the MIA success
rate. See the short paragraph in Appendix A for complete
description of the experimental setup.

Experimental results: In Table 1, we have reported the
results obtained from evaluating MIA effectiveness on the
GPT-2 model and different fine-tuning algorithms. As ob-
served, full fine-tuning all parameters achieves the best
utility (PPL) on all datasets with the cost of a considerable
vulnerability to MIA. In contrast, choosing a subset of pa-
rameters in the existing 12 layers of the model (the adapters)
and adapting them with LoRA improves robustness to MIA
considerably. As observed, LoRA achieves a considerably
lower AUC and TPR@FPR compared to full fine-tuning at
the cost of a slight drop in utility (larger perplexity), thanks
to the low-rank adaptation mechanism incorporating noisy
batch gradients w.r.t to the adapter parameters. Also, we can
observe that LoRA with a frozen A0 enhances this robust-
ness even further. For comparison, we have included the
results for fine-tuning the same adapter parameters in the ex-
isting 12 layers with DPSGD. As expected, fine-tuning with
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Figure 2. The ffect of adaptation rank r on the model fine-tuned on Pubmed averaged over three different data splits (random seeds). Left:
The perplexity (utility) of the fine-tuned model decreases (increases) as r increases. Middle: The AUC of MIA attacks increases as r
increases, showing less robustness to attacks for lager r. Right: The success rate of MIA increases as r increases.
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Figure 3. Experimental results obtained on Pubmed dataset show-
ing that, unlike DPSGD, LoRA adds noise to batch gradient w.r.t
the adapter parameters non-uniformly. Left: the norm of the batch
gradient w.r.t the adapters in different layers of the GPT-2 model.
Right: The noise measure N(W 0

ℓ , r) evaluated at different layers
(indexed by ℓ) of the model for different ranks r.

DPSGD also improves the robustness to MIA compared to
full fine-tuning. However, it leads to a more severe drop in
utility, which can be attributed to the fact that DPSGD adds
noise uniformly with the same variance to all the elements
in batch gradients. In contrast, LoRA tends to add smaller
noise to the rows in batch gradients that have a smaller norm.
It is also noteworthy that, in all our experiments, running
DPSGD needed more than twice as much runtime as LoRA
needed, due to its higher space complexity. Figure 4 in
appendix summarizes the results in Table 1 more clearly.

According to Lemma 3.1 and Lemma 3.2, we expect LoRA
to show more robustness to MIA as r decreases. As observed
in Figure 2, the perplexity (and robustness to MIA) of the
fine-tuned model increases as r decreases. In this sense,
the adaptation rank r in LoRA behaves very similar to the
privacy parameter ϵ of DPSGD in adjusting the robustness
of the fine-tuned model to MIA.

Now, we introduce a measure to quantify the amount of
noise introduced by low-rank adaptation. Let W 0

ℓ denote
the pretrained adapter parameter at the layer ℓ of the model.
Also, let W 1

ℓ denote the adapter parameter that is obtained
for the layer ℓ after one SGD update with step size η w.r.t
W 0

ℓ . In that case, the forward pass of the adaptation layer
ℓ will be updated to y = W 1

ℓ x (Figure 1). Similarly, let

A1
ℓ and B1

ℓ denote the parameters obtained from low-rank
adaptation of W 0

ℓ (with rank r) after one SGD update with
the same step size η w.r.t A0

ℓ and B0
ℓ (when matrix A0

ℓ is
frozen, we will have A1

ℓ = A0
ℓ ). In that case, according

to Equation (12), the forward pass of the adaptation layer
ℓ will be updated to y = (W 0

ℓ + B1
ℓA

1
ℓ)x. According to

our understandings that low-rank adaptation of W 0
ℓ is the

same as fine-tuning it with noisy batch gradients, the noise
amount introduced by low-rank adaptation to the adapter in
layer ℓ after one gradient step can be measured by:

N(W 0
ℓ , r) =

∥∥W 1
ℓ − (W 0

ℓ +B1
ℓA

1
ℓ)
∥∥. (6)

We have used the above noise measure in Figure 3 to con-
firm our theoretical findings that LoRA adds more noise to
the adapter parameters that have a batch gradient with larger
norm. We clearly observe that the adapter W 0

6 ∈ R768×2304

in the sixth attention layer of GPT-2, which has a largest
∥∇W 0

6
L∥ (left figure), experiences the largest noise in one

gradient step of LoRA (tight figure). Also, as seen in the
right figure, the amount of noise injected to different layers
decreases uniformly as the rank r increases. We already ob-
served in Figure 2 that larger r results in more vulnerability
of the adapted model to privacy attacks, altogether confirm-
ing our theoretical findings in Lemma 3.1 and Section 4.
Therefore, low-rank adaptation indeed provides robustness
against MIA attacks by imitating the mechanism of DPSGD.

6. Conclusion
We uncovered a close similarity between the dynamics of
low-rank adaptation and DPSGD. We showed that low-rank
adaptation is equivalent to injecting random noise into the
batch gradients w.r.t the adapter parameters non-uniformly.
Accordingly, it provides robustness against privacy attacks
w.r.t the fine-tuning data and this robustness increases as
adaptation rank decreases.
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Appendix for Low-Rank Adaptation Secretly Imitates Differentially Private SGD

Figure 4. The trade-off existing between utility, privacy and computational/space complexity (run time) for different adaptation algorithms.
LoRA provides robustness against privacy attacks to fine-tuning data without much adverse effect on utility or additional computa-
tional/space complexity.

A. Experimental setup
Datasets: We run our experiments on three fine-tuning datasets with confidential properties, including Penn Treebank
(PTB)(Marcus et al., 1993), Enron (Klimt & Yang, 2004) and Pubmed (Cohan et al., 2018). We split each dataset into three
parts and use them as train, validation and auxilliary datasets.

Models: We perform our experiments with GPT-2 (12-layer, 125M parameters, vocab size 50257) on two Nvidia A100
GPUs. We apply LoRA (Hu et al., 2021) with default r = 16 to the query parameters in the 12 attention layers of GPT-2, as
in (Liu et al., 2024). For comparison, we also consider a baseline algorithm that fine-tunes the same set of adapter parameters
with DPSGD without using any low-rank decomposition matrices. We also consider fine-tuning all parameters as another
baseline. We use E = 20 epochs for fine-tuning with the default learning rates {1e-5, 5e-5, 5e-4} (with a linear
scheduler) for full fine-tuning, fine-tuning adapters with DPSGD and low-rank adaptation with LoRA, respectively.

Membership Inference Attacks: We use a calibrated membership score for membership inference (Carlini et al., 2022;
Mireshghallah et al., 2022; Sablayrolles et al., 2019; Ye et al., 2022). More specifically, we train a reference model θref on
the auxiliary dataset and use the following signal for classifying a sample x as a member/non-member of the fine-tuning
dataset:

Iθ(x) := I[L(x; θ)− L(x; θref ) < γ]. (7)

The threshold γ is set to the highest value for which the false positive rate over all samples will be lower than α. We consider
α ∈ {10%, 1%} and report the corresponding true positive rates (TPR).

Metrics: To measure utility, we use the perplexity on the validation set (PPL). For measuring the effectiveness of MIA, we
use AUC and TPR@FPR α for α ∈ {10%, 1%}.

B. Background
In this section, we provide some background about differential privacy and DPSGD algorithm, which are used in the paper.
In machine learning, differential privacy is often used to provide formal and rigorous data privacy guarantees w.r.t to training
data. The following definition of differential privacy is one of the most commonly used definitions:

Definition B.1 ((ϵ, δ)-DP, (Dwork et al., 2006)). A randomized mechanismM : D → R with domain D and range R
satisfies (ϵ, δ)-DP if for any two adjacent inputs d, d′ ∈ D, which differ only by a single record, and for any measurable
subset of outputs S ⊆ R it holds that

Pr[M(d) ∈ S] ≤ eϵPr[M(d′) ∈ S] + δ.

Gaussian mechanism, which randomizes the output of a non-private computation f on a dataset d as Gσf(d) ≜ f(d) +
N (0, σ2), provides (ϵ, δ)-DP. The variance of the noise, σ2, is calibrated to the sensitivity of f , i.e., the maximum amount

7



Submission and Formatting Instructions for ICML 2025

of change in its output (measured in ℓ2 norm) on two neighboring datasets d and d′. Gaussian mechanism has been used in
DPSGD algorithm (Abadi et al., 2016) for private ML by randomizing intermediate data-dependent computations, e.g., batch
gradients. More specifically, at the t-th gradient update step on a current model θ ∈ Rp, DPSGD computes the following
noisy batch gradient:

g̃(θ) =
1

b

[( ∑
i∈Bt

ḡi(θ)
)
+N (0, σ2

DPIp)
]
, (8)

where ḡi(θ) = clip(gi, c), gi is the sample gradient computed on the sample i in the batch Bt and c is a clipping threshold.
For a given vector v, clip(v, c) = min{∥v∥, c} · v

∥v∥ . Also, σDP = c · z, where z is the noise scale that should be used by
DPSGD in order to achieve (ϵ, δ)−DP (for desired values of ϵ and δ) with respect to train data at the end of training. It can
be computed by using a privacy accountant, e.g., the moments accountant (Abadi et al., 2016).

C. Derivation of Equation (3)
Let A0, B0 and W 0 denote the initial/pre-trained values of the matrices A, B and the adapter W (coming from the pretrained
model). We restate the following thorem from (Hao et al., 2024) without restating its proof:

Theorem C.1 ((Hao et al., 2024)). Let LoRA update matrices A and B with SGD as:

At+1 ← At − η
∂L
∂At

= At − ηBt⊤(∇W tLt), (9)

Bt+1 ← Bt − η
∂L
∂Bt

= Bt − η(∇W tLt)At⊤, (10)

where η is the learning rate. We assume ∥
∑T

t=0∇W tLt∥F ≤ L for every T , implying that the model stays within a finite
Euclidean ball from W 0. In this case, the dynamics of At and Bt are given by

At = A0 + ηA0fA(t), Bt = ηfB(t)A
0⊤, (11)

where the forms of fA(t) ∈ Rm×m and fB(t) ∈ Rn×m are expressed in the proof. In particular, ∥fA(t)∥2 ≤
ηL2

(
1−(η2L2)t

)
1−η2L2 for every t.

In the equation above, W t = W 0 +BtAt, i.e. the equivalent forward pass parameter at time step t. Let us denote the total
changes of A and B after T gradient steps as ∆A and ∆B, respectively. Then, the forward pass in Equation (1) will get
updated to:

(
W 0 + (B0 +∆B)(A0 +∆A)

)
x =

(
W 0 +∆BA0 +∆B∆A

)
x, (12)

where we have substituted the initialization B0 = 0 ∈ Rn×r. From Equation (11) and after substituting the values of ∆A
and ∆B after T gradient steps into the above equation, we get to the following updated forward pass parameter for the
adaptation layer:

W 0 +∆BA0 +∆B∆A = W 0 + ηfB(T )A
0⊤A0 + η2fB(T )A

0⊤A0fA(T ). (13)

Also, from Theorem C.1, we have ∥fA(T )∥2 ≤ ∥fA(T )∥F ≤
ηL2

(
1−(η2L2)T

)
1−η2L2 . Hence, if η ≪ 1/L, we have

limT→∞ η∥fA(T )∥2 = limT→∞
(ηL)2

(
1−(ηL)(2T )

)
1−(ηL)2 ≪ 1. Therefore, the last term on the right side is significantly

8
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smaller than the second term ηfB(T )A
0⊤A0. Hence, the second term is the dominant term in the update to the forward

pass parameter W 0. Therefore, we can closely approximate LoRA by freezing A to its initial value A0 and adapting only
the matrix B. In this case:

W 0 +∆BA0 +∆B∆A = W 0 +∆BA0 = W 0 + ηf̃B(T )A
0⊤A0, (14)

where f̃B(0) = 0 and f̃B(t+ 1) = f̃B(t)−∇W tLt. Equivalently, f̃B(T ) = −
∑T−1

t=0 ∇W tLt. Substituting this into the
equation above, we get:

W 0 +∆BA0 +∆B∆A = W 0 +∆BA0 = W 0 − η

T−1∑
t=0

[
(∇W tLt)A0⊤A0

]
, (15)

where the last term shows the exact change in the forward pass parameter W 0 after performing T rounds of SGD on the
matrix B. The term∇W tLt in the sum is the batch gradient that would be obtained if we had “fine-tuned” the adapter
W using SGD. Therefore, low rank adaptation with LoRA can be viewed as performing a random projection of stochastic
batch gradient∇W tLt in every step t with matrix A0⊤ and projecting it back with matrix A0. Finally, Equation (15) can be
directly rewritten as Equation (3).

D. Useful Theorems
In this section, we mention some theorems, which we will use in our proofs.

Theorem D.1 (Chi-Squared distribution: (Mood & Franklin, 1974), Section 4.3, Theorem 7). If the random variables Xi,
i = 1, . . . , k, are normally and independently distributed with means µi and variances σ2

i , then

U =

k∑
i=1

(Xi − µi

σi

)2
(16)

has a chi-squared distribution with k degrees of freedom: U ∼ X 2
k . Also, E[U ] = k and Var[U ] = 2k.

The theorem above states that sum of the squares of k standard normal random variables is a chi-squared distribution with k
degrees of freedom.

Lemma D.2 (Raw moment of Chi-Squared distribution). Suppose X ∼ X 2
k . Then, the m-th raw moment of X can be found

as follows;

E[Xm] =

m−1∏
i=0

(k + 2i) (17)

Proof. From the definition of Chi-Squared distribution with r degrees of reddom, U has the following probability density
function:

fX(x) =
1

2
k
2 Γ(k2 )

x
k
2−1e−

x
2 (18)

Therefore, we have:

9
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E[Xm] =
1

2
k
2 Γ(k2 )

∫ +∞

0

x
k
2+m−1e−

x
2 dx =

2

2
k
2 Γ(k2 )

∫ +∞

0

(2u)
k
2+m−1e−udu

=
2

k
2+m−1+1

2
k
2 Γ(k2 )

∫ +∞

0

u
k
2+m−1e−udu =

2m

Γ(k2 )
Γ(

k

2
+m) =

2mΓ(k2 )

Γ(k2 )

m−1∏
i=0

(
k

2
+ i)

=

m−1∏
i=0

(k + 2i). (19)

Note that the fifth equality directly results from the property of gamma function that for z > 0, Γ(1 + z) = zΓ(z).

Theorem D.3 (Classical Central Limit Theorem: (Billingsley, 1995), Theorem 27.1). Suppose that {Xi}ni=1, is an
independent sequence of random variables having the same distribution with mean µ and positive variance σ2. Define
Sn =

∑n
i=1 Xi as their sum. Let Zn be defined by

Zn =
Sn − nµ√

nσ
. (20)

Then, the distribution of Zn approaches standard normal distribution as n approaches infinity.

The theorem above states that Sn is approximately, or asymptotically, distributed as a normal distribution with mean nµ and
variance nσ2.

The next theorem is about the Lindeberg’s condition, which is a sufficient (and under certain conditions also a necessary
condition) for the Central Limit Theorem (CLT) to hold for a sequence of independent random variables {Xi}ni=1. Unlike
the classical CLT stated above, which requires the sequence of random variables to have a finite variance and be both
independent and identically distributed (i.i.d), Lindeberg’s CLT only requires the sequence of random variables to have
finite variance, be independent and also satisfy the Lindeberg’s condition. The following states the theorem.

Theorem D.4 (Lindeberg and Lyapounov Theorem: (Billingsley, 1995), Theorem 27.2). Suppose X1, . . . , Xn are n
independent random variables with E[Xi] = µi and Var[Xi] = σ2

i > 0. Define Sn =
∑n

i=1 Xi and let s2n =
∑n

i=1 σ
2
i .

Also assume the following condition holds for all ϵ > 0:

Lindeberg’s condition: lim
n→∞

n∑
i=1

1

s2n

∫
|x−µi|≥ϵsn

(x− µi)
2PXi

(x)dx = 0. (21)

where PXi is the pdf of variable Xi. Assuming Zn =
Sn−

∑n
i=1 µi

sn
, the distribution of Zn approaches standard normal

distribution as n approaches infinity.

The theorem above states that, given that Lindeberg’s condition is satisfied, Sn is approximately, or asymptotically, distributed
as a normal distribution with mean

∑n
i=1 µi and variance s2n, even if the sequence of variables are not identically distributed.

E. Proof of Lemma 3.1
Using the theorems above, we are now able to prove Lemma 3.1.

Proof. From the theorem’s assumption, we know that elements of A are sampled from N (0, 1
r ). Therefore, we can rewrite

the product q · (A⊤A− Im) ∈ R1×m as the following product:

q · (A
⊤A

r
− Im) ∈ R1×m (22)

10
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where the elements of A are now from standard normal distribution. Let ai,j denote the element in i-th row and j-th column
of this new A. Therefore, for all i and j, ai,j has distribution N (0, 1). Let B = A⊤A

r − Im. Also, let Ai,: and A:,j denote
the i-th row and j-th column of the new A, respectively. We have:

Bi,i =
1

r
[A⊤A]i,i − 1 =

1

r
A⊤

:,iA:,i − 1 =
1

r
∥A:,i∥22 − 1 = (

1

r

r∑
l=1

a2l,i)− 1 (23)

From Equation (22), we know that al,i is from standard normal distribution. Hence, a2l,i is a chi-squared with 1 degree
of freedom: a2l,i ∼ X 2

1 . Therefore,
∑r

l=1 a
2
l,i, which is the sum of r independent chi-squared variables with 1 degree of

freedom, is a chi-squared with r degrees of freedom:
∑r

l=1 a
2
l,i ∼ X 2

r (see Theorem D.1). Therefore, for i ∈ {1, . . . ,m},
we have:

E[Bi,i] = E
[∑r

l=1 a
2
l,i

r

]
− 1 =

r

r
− 1 = 0,

Var[Bi,i] = Var[

∑r
l=1 a

2
l,i

r
] =

Var(X 2
r )

r2
=

2r

r2
=

2

r
. (24)

Similarly, we find the mean and variance of the non-diagonal elements Bi,j(i ̸= j) of B. We have:

Bi,j =
1

r
[A⊤A]i,j =

1

r
A⊤

:,iA:,j =
1

r

r∑
l=1

al,ial,j , (25)

where al,i and al,j are independent and standard normal. Therefore, al,i + al,j ∼ N (0, 2). Similarly, al,i − al,j ∼ N (0, 2).
So we can rewrite al,ial,j as:

al,ial,j =
1

4
(al,i + al,j)

2 − 1

4
(al,i − al,j)

2 =
1

2
z21 −

1

2
z22 , (26)

where z1 and z2 are from standard normal. Therefore, al,ial,j = ν1−ν2

2 , where ν1, ν2 ∼ X 2
1 . Also, al,i + al,j and al,i − al,j

are independent variables. Hence, z1 and z2 are independent, and likewise ν1 and ν2 are independent. We conclude that:

al,ial,j =
1

2
(ν1 − ν2), (27)

where ν1, ν2 ∼ X 2
1 , and are independent.

Now, lets assume ν1, ν2 ∼ X 2
k (a more general case), and let Mν1

(t) = E[etν1 ] be the moment generating function (MGF)
of ν1. In this case, we know that Mν1

(t) = Mν2
(t) = (1−2t)−

k
2 (MGF of X 2

k ). Hence, Mν1−ν2
(t) = Mν1

(t) ·Mν2
(−t) =

(1 − 4t2)−
k
2 =

( 1
4

1
4−t2

) k
2 , which is the MGF of a symmetric about origin variance-gamma distribution with parameters

λ = k
2 , α = 1

2 , β = 0, µ = 0, γ = 1
2 . Therefore, when ν1, ν2 ∼ X 2

k , then ν1 − ν2 has this distribution, which has mean
µ+ 2βλ/γ2 = 0 and variance 2λ(1 + 2β2/γ2)/γ2 = 4k.

In Equation (27), we had k = 1, as we had ν1, ν2 ∼ X 2
1 . Hence, based on the discussion above, we have:

E[al,ial,j ] = 0 (28)

Var[al,ial,j ] =
1

4
Var[ν1 − ν2] =

4k

4
= 1 (29)

11



Submission and Formatting Instructions for ICML 2025

Consequently, based on Equation (25) and from the results above, we can compute the mean and variance of the non-diagonal
elements of B (i ̸= j):

E[Bi,j ] = E
[∑r

l=1 al,ial,j
r

]
=

∑r
l=1 E[al,ial,j ]

r
= 0,

Var[Bi,j ] = Var[

∑r
l=1 al,ial,j

r
] =

∑r
l=1 Var[al,ial,j ]

r2
=

r

r2
=

1

r
. (30)

So far, we have computed the mean and variance of each entry in B = A⊤A
r − Im ∈ Rm×m in Equation (24) and

Equation (30). Now, for a given q ∈ R1×m, we have:

q ·B =

m∑
l=1

qlBl,:, (31)

where Bl,: is row l of B. Let ui denote the i-th element of q ·B. Hence, for each element ui (i ∈ {1, . . . ,m}), we have:

E[ui] = E
[ m∑

l=1

qlBl,i

]
=

m∑
l=1

qlE[Bl,i] = 0,

Var[ui] = Var

[ m∑
l=1

qlBl,i

]
=

m∑
l=1

q2l Var[Bl,i] = q2i Var[Bi,i] +
∑
l ̸=i

q2l Var[Bl,i]

= q2i
2

r
+
∑
l ̸=i

q2l
1

r
=

q2i
r

+

m∑
l=1

q2l
1

r
=

q2i +
∑m

l=1 q
2
l

r
≈

∑m
l=1 q

2
l

r
=
∥q∥22
r

, (32)

where the approximation is indeed valid because m, which is the dimension of the input of the current layer (see Figure 1),
is a large integer. Finally, according to Equation (31), each element ui of qB is the sum of m random variables, for which
the Lindeberg’s condition is also satisfied: as m → ∞, s2m =

∥q∥2
2

r → ∞ (m is the dimension of q, and sm is the sum
of variances of the m random variables, which we found in Equation (32)). Hence, [|ui − 0| > ϵsm] ↓ ∅ as m → ∞.
Therefore, from Theorem D.4, we also conclude that as m→∞, each element of qB approaches a Gaussian with the mean
and variance found in Equation (32). Therefore, we conclude that having an A, where the elements of A are i.i.d and from
N (0, 1

r ), then as m→∞, q · (A⊤A− Im) ∈ R1×m approaches a Gaussian N (0, ∥q∥2

r ), which completes the proof.

F. Proof of Lemma 3.2
Despite having proved Lemma 3.1 when m approaches infinity, yet we need to quantify the distance between the distribution
of q · (A⊤A− Im) ∈ R1×m (for a given q ∈ R1×m) and the Gaussian distribution with the same variance for limited values
of m. In this section, we derive a closed form upper-bound for the total variation distance between the distribution of each
element of q · (A⊤A− Im) ∈ R1×m and the Gaussian distribution N (0, ∥q∥2/r).

Suppose X1, . . . , Xn are n independent random variables that are not necessarily i.i.d, and E[Xi] = 0 (mean) and
Var[Xi] = σ2

i > 0 (variance). Define Sn =
∑n

i=1 Xi and let s2n =
∑n

i=1 σ
2
i . Assuming Zn = Sn

sn
, and having Lindeberg’s

condition satisfied (see Theorem D.3 and Theorem D.4 in the appendix), the normalized sum Zn has standard normal
distribution in a weak sense for a bounded n. More precisely, the closeness of the cumulative distribution function (CDF)
Fn(x) = Pr{Zn ≤ x} to the standard normal CDF has been studied in terms of the Lyapounov ratios:

Lt =

∑n
i=1 E[|Xi|t]

stn
. (33)
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Particularly, if all {Xi}ni=1 are i.i.d and have a finite third absolute moment E[|Xi|3], the classical Berry-Esseen theorem
(gustav Esseen, 1945; Feller, 1971; Petrov, 1975) bounds the Kolmogrov distance between Fn(x) and Φ(x):

sup
x
|Fn(x)− Φ(x)| ≤ CL3, (34)

where C is an absolute constant. In the more general case, when {Xi}ni=1 are independent (and not necessarily i.i.d), the
number of summand variables n implicitly affects the value of L3. Yet, we can bound the difference between Fn(x) and
Φ(x) in terms of generally stronger distances of total variation or entropic distance (Bobkov et al., 2011). To this end, let
D(Xi) denote the KL divergence between Xi and a normal variable fromN (0, σ2

i ), i.e., the KL divergence between Xi and
a normal variable with the same variance. Therefore, we have the following theorem about the distance between Fn and Φ:

Theorem F.1 ((Bobkov et al., 2011), theorem 1.1). Assume that the independent random variables X1, . . . , Xn have finite
third absolute moments, and that D(Xi) ≤ D, where D is a non-negative number. Then,

∥Fn(x)− Φ(x)∥TV ≤ CDL3, (35)

where the constant CD depends on D only and ∥Fn(x) − Φ(x)∥TV = supA
∣∣ ∫

A
dFn −

∫
A
dΦ

∣∣ is the total variation
distance between Fn and Φ.

Having the theorem above, we can now derive a Berry-Esseen type bound for the total variation distance between each
element of q · (A⊤A− Im) ∈ R1×m in Lemma 3.1 and the normal law N (0, ∥q∥2/r): we need to find the third Lyapounov
ratio for the summands contributing to each of the m elements in q · (A⊤A− Im) ∈ R1×m. To this end, we state and prove
the following lemma:

Lemma F.2. Let A ∈ Rr×m be a matrix with i.i.d entries sampled from N (0, 1
r ). Given a fixed q ∈ R1×m with

0 < c ≤ |qi| ≤ C, let u = q · (A⊤A− Im) ∈ R1×m. Let ui be the i-th element of u and Qm(x) = Pr{ui ≤ x}, the CDF
of ui. Also, let Φ(x) be the CDF of z ∼ N (0, ∥q∥2

r ). Then:

∥Qm(x)− Φ(x)∥TV ∈ O
(

1√
mr

)
. (36)

The above result shows that the distribution of q · (A⊤A− Im) ∈ R1×m gets closer to N (0, ∥q∥2/r) as m and r increase.
We now prove the above lemma before proceeding to the proof of Lemma 3.2.

Proof. From Equation (31), we had:

ui =

m∑
l ̸=i,l=1

qlBl,i + qiBi,i, (37)

where Bl,i =
1
rA

⊤
:,lA:,i =

1
2r

∑r
t=1 Vt, where Vt ∼ Variance-Gamma(ν, α, β, µ) with ν = β = µ = 0 and α = 1

2 .
Also Bi,i =

1
rA

⊤
:,iA:,i − 1 = X

r − 1, where X ∼ X 2
r . Therefore, we can rewrite the equation above for ui as:

ui =

m∑
l ̸=i,l=1

ql
2r

r∑
t=1

Vt + qi(
X

r
− 1) =

m∑
l ̸=i,l=1

r∑
t=1

ql
2r

Vt +
qi
r
(X− r), (38)

where Vt ∼ Variance-Gamma(ν, α, β, µ) with ν = β = µ = 0 and α = 1
2 and X ∼ X 2

r . Hence, Vt has mean 0 and
variance 4 and (X− r) has mean 0 and variance 2r. Also note that X can be written as the summation of r independent
variables with distribution X 2

1 . Therefore, ui is the weighted sum of mr independent random variables with mean 0. Also,

13
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from Equation (32) in the proof of Lemma 3.1, we know that ui has mean 0 and variance ∥q∥2
2

r . Now, in order to bound

the TV distance between the distribution of ui and N (0,
∥q∥2

2

r ), we have to use Theorem F.1 and Equation (33). More

specifically, we have to find the third Lyapounov ratio L3 =
∑

i E[|Xi|3]
s3n

=
∑

i E[|Xi|3](∑
i Var[Xi]

)3 =
∑

i E[|Xi|3](∑
i E[X2

i ]
)3 , where Xi is each

of the 1+(m−1)r summands in Equation (38). First we note that, based on Equation (32), s3n = (
∥q∥2

2

r )
3
2 =

∥q∥3
2

r
√
r

. Now, we
find the numerator

∑
i E[|Xi|3]. From (Gaunt, 2024), we know that for Vt ∼ Variance-Gamma(ν, α, 0, 0),E[|Vt|r] =

2r√
παr

Γ(ν+(r+1)/2)Γ((r+1)/2)
Γ(ν+1/2) . Therefore, for Vt ∼ Variance-Gamma(0, 1

2 , 0, 0),E[|Vt|3] = 26

π . On the other hand, we

know that the skewness of X ∼ X 2
r is equal to E[(X−E[X])3]

Var[X]
3
2

= E[(X−r)3]

(2r)
3
2

=
√

8
r . Hence, E[(X − r)3] = (2r)

3
2

√
8
r = 8r.

Hence for X ∼ X 2
r , E[|X − r|3] ≥ E[(X − r)3] = 8r. Now, we can find the numerator

∑
i E[|Xi|3] as:

∑
i

E[|Xi|3] =
m∑

l ̸=i,l=1

r∑
t=1

|ql|3

8r3
E[|Vt|3] +

|qi|3

r3
E[|X− r|3]

=

m∑
l ̸=i,l=1

|ql|3

8r2
· 2

6

π
+
|qi|3

r3
E[|X− r|3]

≈
m∑

l ̸=i,l=1

8|ql|3

πr2
+

8|qi|3

r2
≈

m∑
l=1

8|ql|3

πr2
=

8

πr2
∥q∥33. (39)

Therefore, for the sum ui in Equation (38), we have the third Lyapounov ratio:

L3 =
8

πr2
∥q∥33 ×

r
√
r

∥q∥32
=

8

π
√
r

(
∥q∥3
∥q∥2

)3

. (40)

Therefore, based on Theorem F.1, we have:

∥Qm(x)− Φ(x)∥TV ≤
8CD

π
√
r

(
∥q∥3
∥q∥2

)3

, (41)

where CD ≤ π
√
r

8 is a constant, which depends only on D, where D is an upperbound for the KL divergence between
each of the random variable summands in Equation (38) and a Gaussian with the same mean and variance. Now, assuming

0 < c ≤ |qi| ≤ C for the elements qi in q, we have
(

∥q∥3

∥q∥2

)3

≤
(

|C|
|c|

)3
1√
m

. Therefore:

∥Qm(x)− Φ(x)∥TV ≤
8CD

π

(
|C|
|c|

)3
1√
mr

. (42)

Therefore,

∥Qm(x)− Φ(x)∥TV ∈ O
(

1√
mr

)
. (43)

We can now benefit from the useful coupling characterization of the total variation distance to establish a more understandable
interpretation of the above result.
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The coupling characterization of the total variation distance. For two distributions P and Q, a pair of random variables
(X,Y ), which are defined on the same probability space, is called a coupling for P and Q if X ∼ P and Y ∼ Q (Levin
et al., 2008; Devroye et al., 2023). A very useful property of total variation distance is the coupling characterization (Levin
et al., 2008):

∥P −Q∥TV ≤ t if and only if there exists a coupling (X,Y ) for them such that Pr{X ̸= Y } ≤ t.

We can now use the above coupling characterization to directly prove Lemma 3.2 from Lemma F.2 as follows:

Proof. Given a fixed q ∈ R1×m with 0 < c ≤ |qi| ≤ C, let u = q · (A⊤A− Im) ∈ R1×m. Let ui be the i-th element of u.
From Lemma F.2, we had the following upperbound for the total variation distance between Qm(x) = Pr{ui ≤ x} and
Φ(x) (the CDF of z ∼ N (0, ∥q∥2

r )):

∥Qm(x)− Φ(x)∥TV ∈ O
(

1√
mr

)
. (44)

Therefore, from the coupling characterization of the total variation distance we can directly conclude that there exists a
coupling (ui, z), where z ∼ N (0, ∥q∥2

r ) and

Pr{ui ̸= z} ∈ O
(

1√
mr

)
. (45)
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