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ABSTRACT

In this paper, we derive refined generalization bounds for the Deep Ritz Method
(DRM) and Physics-Informed Neural Networks (PINNs). For the DRM, we focus
on two prototype elliptic partial differential equations (PDEs): Poisson equation
and static Schrodinger equation on the d-dimensional unit hypercube with the
Neumann boundary condition. Furthermore, sharper generalization bounds are
derived based on the localization techniques under the assumptions that the exact
solutions of the PDEs lie in the Barron spaces or the general Sobolev spaces.
For the PINNs, we investigate the general linear second order elliptic PDEs with
Dirichlet boundary condition using the local Rademacher complexity in the multi-
task learning setting. Finally, we discuss the generalization error in the setting of
over-parameterization when solutions of PDEs belong to Barron space.

1 INTRODUCTION

Partial Differential Equations (PDEs) play a pivotal role in modeling phenomena across physics,
biology and engineering. However, solving PDEs numerically has been a longstanding challenge
in scientific computing. Classical numerical methods like finite difference, finite element, finite
volume and spectral methods may suffer from the curse of dimensionality when dealing with high-
dimensional PDEs. Recent years, the remarkable successes of deep learning in diverse fields like
computer vision, natural language processing and reinforcement learning have sparked interest in
applying machine learning techniques to solve various types of PDEs. In fact, the idea of using
machine learning to solve PDEs dates back to the last century (Lagaris et al., |1998)), but it has
recently gained renewed attention due to the significant advancements in hardware technology and
the algorithm development.

There are numerous methods proposed to solve PDEs using neural networks. One popular method,
known as PINNSs (Raissi et al.l 2019), utilizes neural network to represent the solution and enforces
the neural network to satisfy the PDE constraints, initial conditions and boundary conditions by
encoding these conditions into the loss function. The flexibility and scalability of the PINNs make
it a widely used framework for addressing PDE-related problems. The Deep Ritz method (Yu et al.}
2018)), on the other hand, incorporates the variational formulation into training the neural networks
due to the widespread use of the variational formulation in traditional methods. In comparison to
PINNSs, the form of DRM has a lower derivative order, but the fact that not all PDEs have variational
forms limits its applications. Both methods hinge on the approximation ability of the deep neural
networks.

The approximation power of feed-forward neural networks (FNNs) with diverse activation func-
tions has been studied for different types of functions, including smooth functions (Lu et al., 2021a),
continuous functions (Shen et al., 2022), Sobolev functions (Belomestny et al., 2023; Yang et al.,
2023bja; |Yarotsky, [2017), Barron functions (Barron, [1993)). It was proven in the last century that
a sufficiently large neural network can approximate a target function in a certain function class
with any given tolerance. Specifically, it has been shown in [Hornik| (1991) that the two-layer neu-
ral network with ReLU activation function is a universal approximator for continuous functions.
More recently, specific approximate rate of neural networks has been shown for different func-
tion classes in terms of depth and width. |Lu et al.| (2021a)) showed that a ReLU FNN with width
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O(N log N) and depth O(L log L) can achieve approximation rate O (N ~25/4[,=25/d) for the func-
tion class C*([0, 1]%) in the L> norm, which is nearly optimal. In the context of applying neural
networks to solve PDEs, the focus shifts to the approximation rates in the Sobolev norms. Be-
lomestny et al|(2023) utilized multivariate spline to derive the required depth, width, and sparsity
of a ReLU” deep neural network to approximate any Holder smooth function in Holder norms with
the given approximation error. And the weights of the neural network are also controlled, which
is essential to derive generalization error. |Yang et al. (2023b) derived the nearly optimal approxi-
mation results of deep neural networks in Sobolev spaces with Sobolev norms. Specifically, deep
ReLU neural networks with width O(N log N) and depth O(L log L) can achieve approximation
rate O(N ~2(n=1/d=2(n=1)/d) for functions in W™°((0,1)¢) with W1> norm. For higher or-
der approximation in Sobolev spaces, |Yang et al.|(2023a) introduced deep super ReL.U networks for
approximating functions in Sobolev spaces under Sobolev norms W™ for m € N with m > 2.
The optimality was also established by estimating the VC-dimension of the function class consisting
of higher-order derivatives of deep super ReL.U networks.

In this work, we focus on the DRM and PINNS, aiming to derive sharper generalization bounds.
Compared to Jiao et al.| (2021); Duan et al.| (2021b), the localized analysis utilized in this paper
leads to improved generalization bounds. We believe that this study provides a unified framework
for deriving generalization bounds for methods that solve PDEs involving machine learning.

1.1 RELATED WORKS

Deep learning based PDE solvers: Solving high-dimensional PDEs has been a long-standing chal-
lenge in scientific computing due to the curse of dimensionality. Inspired by the ability and flexibility
of neural networks for representing high dimensional functions, numerous studies have focused on
developing efficient deep learning-based PDE solvers. In recent years, the PINNs have emerged as
a flexible framework for addressing problems related to PDEs and have achieved impressive results
in numerous tasks. Despite their success, there are areas where further improvements can be made,
such as developing better optimization targets (Chiu et al., 2022) and neural network architectures
(Ren et al.| |2022; Zhang et al.,2020). Inspired by the use of weak formulation in traditional solvers,
Zang et al.|(2020) proposed to solve the weak formulation of PDEs via an adversarial network and
the DRM (Yu et al.,|2018) trains a neural network to minimize the variational formulations of PDEs.

Fast rates in machine learning: In statistical learning, the excess risk is expressed as the form

(%"(I))a, where n is the sample size, COMP,,(F) measures the complexity of the function

class 7 and v € [3, 1] represents the learning rate. The slow learning rate ﬁ (o = 3) can be easily

derived by invoking Rademacher complexity (Bartlett & Mendelson, 2002), but achieving the fast
rate % (a = 1) is much more challenging. Based on localization techniques, the local Rademacher
complexity (Bartlett et al., |2005; |[Koltchinskiil, [2006) was introduced to statistical learning and has
become a popular tool to derive fast rates. It has been successfully applied across a variety of tasks,
like clustering (L1 & Liu, |2021)), learning kernels (Cortes et al., [2013), multi-task learning (Yousefi
et al.l 2018)), empirical variance minimization (Belomestny et al., 2017), among others. Variants of
Rademacher complexity, such as shifted Rademacher complexity (Zhivotovskiy & Hanneke, [2018)
and offset Rademacher complexity (Liang et al.||2015), also offer a potential direction for achieving
the fast rates (Duan et al., 2023} Kanade et al.||2022} [Yang et al.}2019)). In this paper, our results are
based on the localized analysis in Bartlett et al.| (2005); [Koltchinskii| (20065 201 1).

Generalization bounds for machine learning based PDE solvers: Based on the probabilistic
space filling arguments (Calder} 2019)), [Shin et al.| (2020) demonstrated the consistency of PINNs
for the linear second order elliptic and parabolic type PDEs. An abstract framework was introduced
in Mishra & Molinaro| (2022) and stability properties of the underlying PDEs were leveraged to
derive upper bounds on the generalization error of PINNs. Following similar methods widely used
in machine learning for deriving generalization bounds, the convergence rate of PINNs was derived
in Jiao et al.| (2021 by decomposing the error and estimating related Rademacher complexity. For
the DRM, when the solutions are in the spectral Barron space, |[Lu et al.|(2021c) demonstrated the
generalization error bounds of two-layer neural networks for solving the Poisson equation and static
Schrodinger equation, but in expectation and with the slow rates. When solutions of the PDE:s fall in
general Sobolev spaces, Duan et al.| (2021b)) established non-asymptotic convergence rate for DRM
using a method similar to [Jiao et al.| (2021). The most relevant work to ours is |[Lu et al.| (2021b),
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which used peeling methods to derive sharper generalization bounds of the DRM and PINNs for the
Schrodinger equation on a hypercube with zero Dirichlet boundary condition. However, |Lu et al.
(2021b)) assumed that the function class of neural networks is a subset of H{, which is challenging
to achieve. For the DRM, the peeling method in |Lu et al.| (2021b) cannot be applied to derive
the generalization error of the Poisson equation, as in this scenario, the population loss isn’t the
expectation of the empirical loss. For the PINNs, [Lu et al.| (2021b) required the strong convexity
and only considered the static Schrodinger equation with zero Dirichlet boundary condition, but our
approach does not need this condition and works for general linear second order elliptic PDEs.

1.2 CONTRIBUTIONS

* For the aspect of approximation via neural networks, we show that the functions in B2(2)
can be well approximated in the H' norm by two-layer ReLU neural networks with con-
trolled weights, and similar results are also presented for functions in B3(£2) in the H?>
norm. Compared to the results in |Lu et al.| (2021c), our approximation rate is faster and
the Barron space in our setting is larger than the spectral Barron space in|Lu et al.| (2021c).
Compared with other approximation results for Barron functions (Siegel & Xul 2022aj
Siegel, [2023)), the constant in our result is independent of the dimension.

» For the DRM, we derive sharper generalization bounds for the Poisson equation and
Schrodinger equation with Neumann boundary condition, regardless of whether the so-
lutions fall in Barron spaces or Sobolev spaces. Our methods rely on the strongly convex
property of the variational form and the localized analysis of |Bartlett et al.|(2005)); | Koltchin-
skii| (2006). However, these methods cannot be applied directly, as for the Poisson equation,
the expectation of empirical loss is not equal to the variational formulation. Additionally,
for the static Schrédinger equation, the strongly convex property cannot be simply regarded
as the Bernstein condition in Bartlett et al.| (2005)), as the solutions of the PDEs often do
not belong to the function class of neural networks in our setting.

* For the PINNs, we regard this framework as a scenario within multi-task learning (MTL).
At this time, there are two key points: one is that the loss functions are non-negative and the
other one is that a non-exact oracle inequality suffices. To achieve our goal, we extend the
entropy method to derive a Talagrand-type concentration inequality for MTL, which offers
better constants than those provided by Theorem 1 in |Yousefi et al.| (2018). Consequently,
similar results to those in single-task setting can be established, yielding a non-exact or-
acle inequality tailored for PINNs. Unlike |Lu et al.[| (2021b), which required the strong
convexity, our approach does not impose this requirement. While we have only presented
results for the linear second order elliptic equations with Dirichlet boundary conditions,
our method can serve as a framework for PINNs for a wide range of PDEs, as well as other
methods that share similar forms with PINNs.

* In the Discussion section, we investigate the complexity of over-parameterized two-layer
neural networks when approximating functions in Barron space, and demonstrate meaning-
ful generalization errors in the setting of over-parameterization. Additionally, we discuss
other boundary conditions for Deep Ritz Method.

1.3 NOTATION

For x € R%, |z|, denotes its p-norm and we use |z| as shorthand for |z|>. We denote the inner
product of vectors z,y € R? by z - 3. For the d-dimensional ball with radius r in the p-norm
and the boundary of this ball, we denote them by Bg(r) and 8Bg(r) respectively. For a set F
that is a subset of a metric space with metric d, we use N'(F,d, €) to denote its covering number
with given radius e and the metric d. For given probability measure P and a sequence of random
variables {X;}? ; distributed according to P, we denote the empirical measure of P by P,, i.e.
P, = 13" | 4x,. For the activation functions, we write o (z) for the ReLU* activation function,
ie., ox(z) := (max(0,2))*. And we use o for oy for simplicity. Given a domain Q C R?, we
denote || and |02 the measure of €2 and its boundary 052, respectively.
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2 DEEP RiTZ METHOD

2.1 SET UP

Let Q = (0, 1)? be the unit hypercube on R? and 952 be the boundary of 2. We consider the Poisson
equation and static Schrodinger equation on €2 with Neumann boundary condition.

Poisson equation:

Au=Fin9 2 Zoonon. (1)
ov
Static Schrodinger equation:
) ou
—Au+Vu=finQ, 5200118(2. (2)

In this section, we follow the framework established in |Lu et al.| (2021c), which characterizes the
solutions through variational formulations. For completeness, the detailed results are presented as
follows.

Proposition 1 (Proposition 1 in Lu et al. (2021c) ). (1) Assume that f € L*(Q) with fQ fdx = 0.

Then there exists a unique weak solution vy € H!() := {u € H*(Q) : [,udz = 0} to the
Poisson equation. Moreover, we have that

2
up = argmin Ep(u) := argmin / |Vul|*dx + </ udm) — 2/ fudzx ;| 3)
u€H1(Q) u€H(Q) Q Q Q
and that for any u € H' (),
Ep(u) = Ep(up) < [lu — uplff q) < max{2cp + 1,2}(Ep(u) — Ep(up)), S

where cp is the Poincaré constant on the domain ().

(2) Assume that f,V € L*(Q) and that 0 < Vi < V(2) < Vipax < 00 forall x €  and
some constants Vipin, and Vi, qq. Then there exists a unique weak solution vy € H 1 (Q) to the static
Schrodinger equation. Moreover, we have that

ug = argmin Eg(u) := argmm{/ |Vul? 4+ V|ul? da:—Z/ fudac} 3)

u€H(Q) uweH(Q)
and that for any u € H' (1),

1 1

(Es(u) = Es(ug)) < [lu—usllFn o) < m(gs(u) —&s(ug)).  (6)

max(1, Vinaz)

Throughout the paper, we assume that f € L>°(2) and V € L*°(Q) with 0 < Vp;, < V() <
Vinaz < 00. The boundedness is essential in our method for deriving fast rates and it also leads to
the strongly convex property in There are also some methods for deriving gener-
alization error beyond boundedness, as discussed in [Mendelson| (2015} |2018)); |[Lecué & Mendelson
(2013). However, these approaches often require additional assumptions, such as specific properties
of the data distributions or function classes, which can be difficult to verify in practice.

The core concept of DRM involves substituting the function class of neural networks for Sobolev
spaces and then training the neural networks to minimize the variational formulations. Subse-
quently, we can employ Monte-Carlo method to compute the high-dimensional integrals, as tra-
ditional quadrature methods are constrained by the curse of dimensionality in this context.

Let {X;}? , be an i.i.d. sequence of random variables distributed uniformly in 2. As in our setting,
the volume of 2 is 1, thus the empirical losses can be written directly as
n

Enp() = = S (IVu(X0)? ~ 2f(X; > ulx, )

i=1 i=1

S\H
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and
n

1
En,s(u) =~ D (IVa(X0) P+ V(X0 [u(X0) P = 2f (X )u(X)), (®)
i=1
where we write &, p and &,, s for the empirical losses of the Poisson equation and static Schrodinger
equation respectively. Note that the expectation of £,, p(u) is not equal to Ep(u), which limits most
methods for deriving a fast rate for the Poisson equation.

2.2 MAIN RESULTS

The aim of this section is to establish a framework for deriving improved generalization bounds
for the DRM. In the setting where the solutions lie in the Barron space B*()), we demonstrate
that the generalization error between the empirical solutions from minimizing the empirical losses
and the exact solutions grows polynomially with the underlying dimension, enabling the DRM to
overcome the curse of dimensionality in this context. Furthermore, when the solutions fall in the
general Sobolev spaces, we provide tight generalization bounds through the localization analysis.

We begin by presenting the definition of the Barron space, as introduced in |Barron| (1993)).

B(Q):={f: Q—=C:|f]

e = it [ QW@ <) ©

where the infimum is over extensions f, € L'(R?) and fe is the Fourier transform of f.. Note that
we choose 1-norm for w in the definition just for simplicity.

There are also several different definitions of Barron space (Ma et al.| [2022) and the relationships
between them have been studied in|Siegel & Xu|(2023)). The most important property of functions in
the Barron space is that those functions can be efficiently approximated by two-layer neural networks
without the curse of dimensionality. It has been shown in Barron| (1993) that two-layer neural
networks with sigmoidal activation functions can achieve approximation rate O(1/4/m) under the
L? norm, where m is the number of neurons. And the results have been extended to the Sobolev
norms (Siegel & Xu|, 2022ajb). However, some constants in these extensions implicitly depend
on the dimension and there is a possibility that the weights may be unbounded. To address these
concerns, we demonstrate the approximation results for functions in the Barron space under the H'*
norm. Additionally, for completeness, the approximation result in W*°°(Q) with 1> norm is
also presented, which was originally derived in|Yang et al.|(2023b).

Proposition 2 (Approximation results in the H' norm).

(1) Barron space: For any f € B2%(Q), there exists a two-layer neural network f,, €
Fm, 15| fllB2()) such that

1f = Fmll ey < ell Fll2(@ym ™25, (10)

where Fpp 1(B) = {> vio(w; -z +t;) : |wi|1 = 1,8 € [-1,1), > |v| < B} for any positive
i=1 i=1
constant B and c is a universal constant.
(2) Sobolev space: For any f € WE>°(Q) with k € N, k > 2 and Il f o) < 1, any N, L €
N, there exists a ReLU neural network ¢ with the width (34 + d)2¢k?T1(N + 1) log,(8N) and
depth 56d*k*(L + 1) logy(4L) such that
1 (@) = ¢(@) [l oe 0y < C(k, d)N 2D/ AL =201/ (1)

where C'(k,d) is the constant independent with N, L.

Remark 1. When approximation functions in B%(S)), our derived bound exhibits a faster rate
than the bound of m2 presented in | Xu| (2020). Although our bound is slower than the bound

m_(%+m) shown in |Siegel & Xu|(2022a), it is important to note that the constant within the
approximation rate of Siegel & Xu| (2022a) may depend exponentially on the dimension and the
weights of two-layer neural network could potentially be unbounded. In contrast, the constant in
our approximation is dimension-independent and the weights are controlled.
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For the convenience of expression, we write ®(N, L, B) for the function class of ReLU neural
networks in with width (34 + d)22k%+1 (N + 1) log,(8N), depth 56d2k2§L +
1)log,(4L) and W+>° norm bounded by B such that the approximation result in[Proposition 2(2)
holds for any f € W*>°(Q) with || f|lyr.c () < 1.

With the approximation results above, we can derive the generalization error for the Poisson equation
and the static Schrodinger equation through the localized analysis.

Theorem 3 (Generalization error for the Poisson equation).

Letup € H i (2) solve the Poisson equation and u,, p be the minimizer of the empirical loss €, p
in the function class F.

(1) For u}, € B*(Y), taking F = Fp 1(5||up]|g2(q2)), then with probability as least 1 — e~

1 1\!*3a
Ep(un,p) — Ep(up) < CM?log M (Wlnog” + <m> + i) : (12)

where C'is a universal constant and M is the upper bound for || f|| L=, |[up | 52(q)-

d
By taking m = (%) 2T , we have
5 d\ 2Gd+D) t
Ep(un,p) —Ep(up) < CM=log M (n) logn + - (13)

(2) For uj, € WF=(Q), taking F = ®(N, L, Bllu}|lyr. (), then with probability at least
1—et

2 3
gp(ump) _ gp(u};) < C ((NL) (1oiN10gL) + (NL)—4(k—1)/d + :;) , (14)

where n > C(NL)?(log N log L)? and C'is a constant independent of N, L, n.

By taking N = L = n4<d+2‘<ik*1>>, we have
"  2k—2 6 t
Ep(un,p) — Ep(up) < C | n” #FF=2(logn)® + -~ (15)

The generalization error for the static Schrodinger equation shares similar form with that in[Theorem|
B] For readability and brevity, we put it in Appendix (see [Theorem 9).

Remark 2. By utilizing the strong convexity of the Ritz functional and localtzed analysis, we improve
the convergence rate n~ TH45-3 g shown in|\Duan et al. (2021b) ton~ THER-T, Furthermore when
the solution belongs to B*(SY), our convergence rate (%)md“) is faster than n™% in|Lu et al.

(2021c|) and explicitly demonstrates its dependency on the dimension.

Remark 3. Due to the equivalence between H'-error and the energy excess as shown in
we are able to deduce the generalization error for both the Poisson equation and the static
Schrodinger equation under the H' norm. For example, one can derive that for the Poisson equa-
tion, if u} € B2(Y), then

d 2(3d+1) t
. — bl o) < CM2log M ((n) logn + n) | (16)

In the setting of over-parameterization, the generalization bound in (12) becomes meaningless. For-
tunately, the function class F in[Theorem 3(T)|has constraints on the weights of the two-layer neural
networks, thus we can obtain width-independent upper bounds on their covering number. See
in the appendix for more details.
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3  PHYSICS-INFORMED NEURAL NETWORKS

3.1 SeET UP

In this section, we will consider the following linear second order elliptic equation with Dirichlet
boundary condition.

d d
- Z aijﬁiju+2bi8iu+cu = f, n ),
ij=1 i=1 (17

u=g, ondfl,

where a;; € C(), b, ¢, f € L®(2), g € L>=(9£) and 2 C (0,1)¢ is an open bounded domain
with properly smooth boundary. Additionally, we assume that the strictly elliptic condition holds,
i.e., there exists a constant A > 0 such that E;{Fl ai;&i; > NEPP forVr € Q,€ € RL

In the framework of PINNs, we train the neural network u with the following loss function.

2
d d
£ = [ = 3 ay(@dyute) + S b@hute) + clahulo) = @) | dot | (ul=glo)*ds
ij=1 i=1
(18)
By employing the Monte Carlo method, the empirical version of £ can be written as
|Q‘ N, d d 2
Ly(u) = N, kz::l - i]z::1 aij (X)) Opju(Xk) + izzlbi<Xk)aiu(Xk) + o(Xp)u(Xy) — f(Xk)
N.
00|
+ 2005 (i) — 9ri)?,
N i
19)

where N = (N1, Na), {X k.}kN:ll and {Yk}kNil are i.i.d. random variables distributed according to
the uniform distribution U(€2) on © and U (02) on OS2, respectively.

Given the empirical loss £, the empirical minimization algorithm aims to seek u, which mini-
mizes Ly, that is:

uy € argmin Ly (u),
ueF

where F is a parameterized hypothesis function class.

3.2 MAIN RESULTS
We begin by presenting the approximation results in the H? norm.
Proposition 4 (Approximation results in the H2 norm).

(1) Barron space: For any f € B3(Q), there exists a two-layer neural network f,, €
Fm2(cllfllBs)) such that

1 = Fmll 2y < el fllss@m =G T30, (20)

m m

where Fp 2(B) = {>_ vioa(wi - x +t;) : |wil1 = 1,t; € [-1,1), > || < B} for any positive
i=1 i=1

constant B and c is a universal constant.

(2) Sobolev space: For any f € WF>(Q) with k > 3 and any integer K > 2, there exists
some sparse ReLU® neural network ¢ € ®(L, W, S, B; H) with L = O(1),W = O(K%),S =
O(K%),B =1,H = O(1), such that

C
I f(z) — ¢($)||H2(Q) < =2 21
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where C' is a constant independent of K, ®(L, W, S, B; H) denote the function class of ReLU?
neural networks with depth L, width W and at most S non-zero weights taking their values in
[— B, B]. Moreover, the W% norms of functions in ®(L, W, S, B; H) have the upper bound H.

The framework of PINNs can be regarded as a form of multi-task learning (MTL), as a single
neural network is designed to simultaneously learn multiple related tasks, involving the enforcement
of physical laws and constraints within the learning process. In contrast to traditional single-task
learning, MTL encompasses T supervised learning tasks sampled from the input-output space X X
Vi, -+, Xp x Yp respectively. Each task ¢ is represented by an independent random vector (X, Y})
distributed according to a probability distribution ;.

Before presenting our results, we first introduce some notations. Let (X}, Yti)ﬁvzt1 be a sequence

of i.i.d. random samples drawn from the distribution y; for ¢ = 1,--- ,T". For any vector-valued
function f = (f1,-- -, fr), we denote its expectation and its empirical part as
1 « 1 —
Pf:=—= Pfi, PNf == P 22
f T; fi. Pxf T; o (22)

where N = (Ny,---,Np), Pf; := E[f(X;)] and Py, f; == §- SN fi(X7). We denote the
component-wise exponentiation of f as f* = (f{,---, f¢) for any a € R. In the following, we
use bold lowercase letters to represent vector-valued functions and bold uppercase letters to indicate
the class of functions consisting of vector-valued functions.

To derive sharper generalization bounds for the PINNs, we require results from the field of MTL,
with a core component being the Talagrand-type concentration inequality. |Yousefi et al.| (2018)) has
established a Talagrand-type inequality for MTL, which is based on so-called Logarithmic Sobolev
inequality on log-moment generating function. Of independent interest, we provide a proof using
the entropy method. This not only demonstrates the entropy method’s capability in proving results
for the single-task scenario but also shows that it can be readily adapted to the multi-task scenario.
Additionally, the concentration inequality yields better constants compared to those offered by The-
orem 1 in|Yousefi et al.|(2018)).

Theorem 5. Let F = {f := (f1,---,fr)} be a class of vector-valued functions satisfying

L iy (T Ny) . T . :
max fél/]\i |fe(x)] < b. Also assume that X := (Xt)(m.):(l’l) is a vector of y_,_, Ny inde
pendent random variables. Let {oi};; be a sequence of independent Rademacher variables. If

T
7 sup > Var(fi(X})) < r, then for every x > 0, with probability at least 1 — ™,
feFt=1

) xr 4\ bz
;,Lelg_(Pf —Pyf) < ét;fo (2(1 + )R(F) + 24/ T + (1 + a) nT) , (23)

where n = minj <;<7 Ny and the multi-task Rademacher complexity of function class F is defined
as

R(F) = EXJ

1m 1
sup — > — Y olfi(XH] . (24)
oy 13 Yot
Moreover, the same bound also holds for sup s z(Py f — Pf).

Remark 4. In comparison with the concentration inequality provided in|Yousefi et al.|(2018), which

is stated as
8xr  12bx
Pf—-P < 4R —_—+ — 25
;gg( f=Pnf) SARF) +4| =+~ (25)

our result exhibits improved constants by taking o = 1.
Note that the loss functions of the PINNs are all non-negative, which facilitates the derivation of

analogous results to those obtained in the single-task context. With the results in MTL, the general-
ization error for the PINNs can be established.

Theorem 6 (Generalization error for PINN loss of the linear second order elliptic equation).
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Let u* be the solution of the linear second order elliptic equation and n = min(Ny, No).

(1) If u* € B3(Q), taking F = Fp, 2(c|u*|| s (q2)), then with probability at least 1 — e~ ",

I+
Llun) < eCr (9, M) <”“°g n (1> + t) , 26)

n m n
where c is a universal constant and C1(Q, M) := max{d*M?,C(Tr,Q), |Qd*M* + |0Q|M?>},
C(Tr, Q) is the constant in the Trace theorem for ().

By taking m = nﬂﬁil), we have

1 2(?)3(1&121) t
Luyn) < cC1(Q, M) - logn + — 27

(2) If u* € WF>(Q) for k > 3, taking F = ®(L,W, S, B; H) with L = O(1), W = O(K?%), S =
O(K?), B =1, H = O(1), then with probability at least 1 — e~ ",

K(log K +1 1\ ¢
L(un) s0< log M+ logn) () += 1, (28)
n K n
where C'is a constant independent of K, N.
By taking K = n d+21k74, we have
_ t
Luny) <C (n TR logn + ) . (29)
n

Remark 5. The convergence rate n” T faster than e presented in\Jiao et al.|(2021)
and is same as that in |Lu et al.| (2021b)) for the static Schrodinger equation with zero Dirichlet
boundary condition. However, our result does not require the strong convexity of the objective
function. Furthermore, the objective function in|Lu et al.|(2021b) only involves one task.

Note that in certain cases, for instance, when 2 = (0, 1)<, the constant C(T'r, ) is at most d, at this
time, £(uy) in[Theorem 6(1)|only depends polynomially with the underlying dimension.

Although provides a generalization error for the loss function of PINNS, it is often
necessary to measure the generalization error between the empirical solution and the true solution
under a certain norm. Fortunately, from we can deduce that
2 2 2
l|un — U*||H%(Q) < Ca(llLun — fllz2(0) + lun — glli2(90)) = Cal(un). (30)
Therefore, under the settings of [Theorem 6, we can obtain the generalization error for the linear
second order elliptic equation in the H 2 norm.

For the PINNs, we only focus on the L2 loss, as considered in the original study (Raissi et al.,|2019).
Actually, the design of the loss function should incorporate some priori estimation, which serves as
a form of stability property (Wang et al., [2022). Specifically, the design of the loss function should
follow the principle that if the loss of PINNs £(u) is small for some function u, then « should be
close to the true solution under some appropriate norm. For instance, Theorem 1.2.19 in Garroni
& Menaldi| (2002) demonstrates that, under some suitable conditions for domain €2 and related
functions a5, b;, ¢, f, g, the solution u* of the linear second order elliptic equation satisfies that

[u* [ 2(0) < CUIf 2@ + (9]l €2V

H%(an))'
Thus, if we apply the loss
L(w) = 1L = flza@) + lu =gl 5 o0 (32)

we may obtain the generalization error in the 2 norm. However, this term ||g/| is challeng-

3
H?2(09)
ing to compute because it also requires ensuring Lipschitz continuity with respect to the parameters,
which is essential for estimating the covering number. We leave this as a direction for future work.

On the other hand, some variants of PINNs do not fit the standard MTL framework. For instance,
within the extended physics-informed neural networks (XPINNs) framework, to ensure continu-
ity, samples from adjacent regions have cross-correlations. The detailed theoretical framework for
XPINNSs remains an area for future research.
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4 CONCLUSION

In this paper, we have refined the generalization bounds for the DRM and PINNs through the local-
ization techniques. For the DRM, our attention was centered on the Poisson equation and the static
Schrodinger equation on the d-dimensional unit hypercube with Neumann boundary condition. As
for the PINNS, our focus shifted to the general linear second elliptic PDEs with Dirichlet boundary
condition. Additionally, in both neural networks based approaches for solving PDEs, we considered
two scenarios: when the solutions of the PDEs belong to the Barron spaces and when they belong
to the Sobolev spaces. Furthermore, we believe that the methodologies established in this paper can
be extended to a variety of other methods involving machine learning for solving PDEs.
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APPENDIX

The Appendix is organized into four parts: Proof of Section 2, Proof of Section 3, Auxiliary Lem-
mas, and Discussion.

A PROOF OF SECTION 2

A.1  PROOF OF[PROPOSITION 2]

The proof follows a similar procedure to that in [Barron| (1993)), but the method in Barron| (1993)
can only yield a slow rate of approximation. We start with a sketch of the proof. For any function
in the Barron space, we first prove that it belongs to the H'(Q) closure of the convex hull of some
set. Then estimating the metric entropy of the set and applying Theorem 1 in Makovoz| (1996)) (see

ILemma 10) leads to the fast rate of approximation.

For the function f € BQ(Q), according to the definition of Barron space, we can assume that the
infimum can be attained at the function f,. To simplify the notation, we write f, as f, since fe|q =
f. From the formula of Fourier inverse transform and the fact that f is real-valued,

f(z) = Re /]Rd e f(w)dw
—R iw-x i0(w)| £ d
o [ et o)

= [ oost -+ 01w s (33)

B Beos(w -z + 0(w)) "
= e Qrelgz )

- / gl w)A (),

where B = [, (1 + |w[1)?|f(w)|dw, A(dw) = w is a probability measure , e is
the phase of f(w) and

Beos(w -z + 6(w))
T,w) =
A0 = a2

(34)

From the integral representation of f and the form of g, i.e. (33) and (34), we can deduce that f is
in the H'(£2) closure of the convex hull of the function class

Beos(w -z +1t)

QCOS(B)::{ 0t ol)? :weRd,teR}. (35)

It could be easily verified via the probabilistic method. Assume that {w;}? ; is a sequence of i.i.d.
random variables distributed according to A, then

E [nf(x) - izgu,mn%p(m]

[E
Q

%/QVar(g(m,w))dx—i—%/QTT(COU[Vg(x,w)])dx

< IE[Hg(x,W)H?{l(Q)]

n

£ = =3 gle,w)? + (95 (z) - ;Zw,wi)?} o

i=1

n
2B2?

)

<
n
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where the first equality follows from Fubini’s theorem and the last inequality holds due to the facts
that |g(z,w)| < B and |Vg(z,w)| < B for any z, w.

Then, for any given tolerance € > 0, by Markov’s inequality,

<||f - 729 (@, wi)llm () > 6) [Ilf - 729 (w31 0

By choosing a large enough n such that 2752

P (Hf(l“) - %Zg(l‘awi)HHl(Q) < 6) >0,
=1

B
< —

which implies that there exist realizations of the random variables {w;}!" ; such that || f(x) —

1 Z g(z,w;)|| g1 () < e Therefore, the conclusion holds.

=1

Next, we are going to show that those functions in G..s(B) are in the H'(2) closure of the convex
hull of the function class 7, (5B8) U F,(—5B) U {0}, where

Fo(0) :i={bo(w-z+1t):|w=1te[-1,1]} (36)
for any constant b € R.
Note that although G.,s(B) consists of high-dimensional functions, those functions depend only

B cos(w-z+t) c
(1+]w|1)?

and a linear func-

on the projection of multivariate variable z. Specifically, each function g(x,w) =

B cos(|w]|1z+t)
(I+|wl1)?
tion z = W a with value in [—1,1]. Therefore, it suffices to prove that the conclusion holds

for g(z) on [—1,1], i.e., to prove that for each w, g is in the H!([—1,1]) closure of convex hull of
FL(5B)U .7: - (—5B) U {0}, where

FLb) :={bo(ez +t):e=—1or1,t c[-1,1]} 37

for any constant b € R. Then applying the variable substitution leads to the conclusion for g(z,w).

Geos(B) is the composition of a one-dimensional function g(z) =

In fact, it is easier to handle that in one-dimension due to the relationship between the ReLLU func-
tions and the basis function in the finite element method (FEM) (He et al.l 2018)), specifically the
basis functions in the FEM can be represented by ReLU functions. To make it more precise, let us
consider the uniform mesh of interval [—1, 1] by taking m + 1 points

—l=zg<21 < - <y =1,

and set h = %, -1 =—1—h,zmy41 = 1+ h. For 0 < ¢ < m, introduce the function ¢;(z), which
is defined as follows:

1 .
E(Z - Zi71)7 Zf Z € [2'7;717,27;],
(=<1
vi2) E(Ziﬂ —z), ifz €[z zipa), (38)
0, otherwise.
Clearly, the set {¢o, - ,¢m ]} is a basis of P}, which is a vector space of continuous, piece-wise

linear functions (P; Lagrange finite element, see Chapter 1 of [Ern & Guermond| (2004) for more
details). And ¢; can be written as
o(z—zi—1) —20(z — 2z) + o(z — zi+1)

pi(z) = Z . (39)

Now, we are ready to present the definition of interpolation operator and the estimation of interpo-
lation error (Ern & Guermond, |2004) (Proposition 1.5 in|[Ern & Guermond| (2004)).

Consider the so-called interpolation operator

I} v e O] —>Zv (z:)pi € P (40)
=0
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Then for all h and v € H?([—1, 1]), the interpolation error can be bounded as

||v _I}}LU”LZ([—Ll]) < h2||v ||L2([—1,1]) and HU — (I&U) HL2([—1,1]) < hH’U ||L2([—1,1])- 41

By invoking the interpolation operator and the connection between the ReLU functions and the basis
functions, we can establish the following conclusion for one-dimensional functions.

Lemma 1. Let g € C%([—1,1)) with ||g®) ||~ < B for s = 0,1,2. Then there exists a two-layer
ReLU network g, of the form
6m—1
gm(2) = > aio(ez+t), (42)

i=1

6m—1
with |a;| < %, > lai] < 5B,
i=1

ti| <16 €{-1,1}, 1 <i < 6m — 1 such that

4v/2B
lg = gmllar(=11)) < e (43)

Therefore, g is in the H'([—1,1]) closure of the convex hull of F1(5B) U FL(—5B) U {0}.

Proof. Note that from (39) and (40), the interpolant of g can be written as a combination of ReLLU
functions as follows

I (9) = Zg(zz')%(Z)

R oz —2im1) —20(2 — zi) + o(2 — 2i11)
= ;g(%) - +
_ 9(z0)(o(z - Z—Z) —20(2 — 20)) n 9(31)022 — 20) . 7%: g(zi—1) — 29221) + 9(zit1)

i=1

—Zi).

=g(z0) + Ma(z —2) + Z g(zi—1) — 29(2;) + g(Zi+1)J(Z

h

(44)
By the mean value theorem, there exist £y € [29, z1] and §; € [z;_1, zi+1] for 1 <7 < m — 1 such
that g(z1) — g(20) = g (§0)h and g(zi_1) — 2g(2;) + g(zi1) = ¢ (&)h? for1 <i <m — 1.
Therefore, Z} (g) can be rewritten as

m—1
1"

Zh(9) = 9(20) + g (S0)o(z — 20) + D _ g (&)o(z — zi)h. (45)

i=1

On the other hand, the constant can also be represented as a combination of ReLU functions on
[—1, 1]. By the observation that o (z) + o(—z) = |z|, we have that for any z € [—1, 1]
2+ -2 o(z4+1)+o(—z—1)+0o(—2z+1)+o(z—1)
N 2 N 2 '

1 (40)

Plugging (46) into (45) yields that

Ti(g) = i g(zo)(o(z+ 1) +o(=2-D+o(=2+1)+0(z-1)) n i g (&0)o(z — 2)

2m < m

(47)
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Combining the expression of I}L(g) and the estimation for interpolation error, i.e. (47) and (41),
leads to that there exists a two-layer neural network g,,, of the form

6m—1

gn(2) = Thg) = 3 wiolesz + 1),

i=1

6m—1
with |a;] < 2B, 3 Ja;| < 5B, |t;| <1, € {—1,1},1 <i < 6m — 1 such that

i=1

4/2B

lg = gmlla(—11)) <

O

Although the interpolation operator can be view as a piece-wise linear interpolation of g, which is
similar to Lemma 18 in Lu et al.| (2021c), our result does not require ¢’ (0) = 0 and the value of g
at the certain point is also expressed as a combination of ReLU functions. Specifically, the g,, in
Lemma 18 of [Lu et al.|(2021c)) has the form g,,,(2) = ¢ + 212:1 a;0(€;z 4+ t;), where ¢ = ¢(0) and
they partition |—1, 1] by 2m points with zg = —1, 2, = 0, 29, = 1. And our result can also be
extended in W1°°([—1, 1]) norm like Lemma 18 of [Lu et al.[(2021c). Note that on [z;_1, 2;]

Zi — 2 Z— Zi—1

Ti(9)(2) = 9(zi1) =5— + 9(z) —F—

which is the piece-wise linear interpolation of g. Then by bounding the remainder in Lagrange

interpolation formula, we have ||Z;,(9) — gl o[z, 2] < 8 ||g ||Loo (21,2 and
/ / g(zi) —g(zi1)
[(Zh(9) (z) —g (2)| = |T —g (2)]
7 / 4
<19'(&) — g ()] “%)

<hllg loofziy 2
where the first inequality follows from the mean value theorem.

Therefore, ||Z}(g) — gllwree(=1,1]) < %.

(I+|wl1)?
H'([-1,1]) closure of convex hull of F1(5B) U F1(—5B) U {0}. Then applying the variable
substitution yields that those functions in G.,s(B) are in the H'(£2) closure of the convex hull of
the function class F, (5B) UF,(—5B) U{0}. Specifically, for any function h : R — R and w € R?
with |w]; = 1, without loss of generality, we can assume that w; > 0. Then for the integral

/ |h(w - x)|*de = / |h(w - x)|2de,
Q (0,14

implies that for any w, the one-dimension function g(z) = Beoswhztt) is in the

lety; =w-x,y2 = 22, -+ , Y4 = T4, We have
w2 Y2+ wayYd+wi ) 1 1 )
[ Ihwa)ds = f/ | )Py -+ dya < = [ ) P
[0,1]4 wo Y2+ WaYd W1 J-1

Therefore, the conclusion holds for G.,s(B). Recall that f is in the H*(£2) closure of the convex
hull of G, (B), thus we have the following conclusion.

Proposition 7. For any given function f in B(SY), f is in the H*(Q) closure of the convex hull of
Fo (Bl fllB2(0) U Fo (=5 fllB2(0)) U {0}, ie., for any € > O, there exist m € N and w;, t;, a;,1 <
1 < m such that

| £ (x Zal o(wi -z +t)|me <6 (49)

=1

m
where |w;|1 = 1,t; € [-1,1],1 <i <mand ) |a;] < 5| fz2)
i=1
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implies that functions in B%(£2) can be approximated by a linear combination of func-
tions in F,(1).

Recall that F,(1) = {o(w -z +t) : |w|y = 1, € [—1, 1]}. For simplicity, we write F,, for F,(1).

Then to invoke Theorem 1 in [Makovoz| (1996) (see [Lemma 10)), it remains to estimate the metric
entropy of the function class F,, which is defined as

en(Fy) := inf{e : F, can be covered by at most n sets of diameter < e under the H' norm}.
(50

By[Lemma 12| we just need to estimate the covering number of F,,, which is easier to handle.
Proposition 8 (Estimation of the metric entropy). For anyn € N,

en(Fo) < cn_ﬁ,

where c is a universal constant.

Proof. For (w1, t1), (wa,t2) € OB{(1) x [—1,1], we have
lo(wr - @ +t1) = o(ws - 2+ t2) |7 (g

/ lo(wy -z + 1) — o(ws - 2+ to)|2dx + /Q |Vo(wy -2 4t1) — Vo(ws -2 + o) 2de
< /Q (w1 —ws) - @+ (1 — t2)|*da + /Q (Wil w20y = W2l fwpati >0y *de
< 2(|wr —wolf + [t —ta]?) + /Q (w1 = w2) Ly oty 20) + 2Lty 20) — Nwsatta0p)|*da
2(|wr —walf + [t — t2]*) + 2Jwi —wol + 2/9 L in ot 20} = Lws-atta >0y [*d

A|lwr — walT + [t1 — t2*) + 2/ L (wr att20) = L ar 203 2,
Q

(5D
where the first inequality is due to that o is 1-Lipschitz continuous, the second and the third in-
equalities follow the from the mean inequality and the fact that the 2-norm is dominated by the 1-
norm.

It is challenging to handle the first and second terms simultaneously due to the discontinuity of
indicator functions, thus we turn to handle two terms separately. Note that the first term is related
to the covering of 9B¢(1) x [—1, 1] and the second term is related to the covering of a VC-class of
functions (see Chapter 2.6 of |Vaart & Wellner| (2023) or Chapter 9 of |Kosorok] (2008)). Therefore,
we consider a new space G; defined as

G1 = {((w,t), [{wzrtz0}) 1w € OBY(1),t € [-1,1]}.

Obviously, it is a subset of the metric space
Go = {((W17t1)71{w2~m+t220}) tWi, w2 € 8Bf(1)’t1’t2 € [_15 1]}

with the metric d that for b = ((w%, t1), I{w;~x+t;20}) yby = ((wl, D Iz, 1+t2>0})

d(bla b2 \/2 |w1 - W1|2 + |t1 - t2|2) + ”I{w2 z+t3>0} — I{w2 w+t2>O}HL2(Q

The key point is that G» can be seen as a product space of dB{(1) x [—1,1] and the function class
Fi = {Lwarezop : (w,t) € OBY(1) x [~1,1]} is a VC-class. Therefore, we can handle the two
terms separately.

By defining the metric d; in 9B (1) x [—1,1] as

dy ((wh 1), (@, ) = /2l — P} + |} — 2]2)
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and the metric ds in F7 as

do (I{w%-m—&-tézo}v I{w%«r—i—t%ZO}) = HI{w%m-&-t%ZO} - I{wglz+t§20} ||L2(Q)a
the covering number of G, can be bounded as

N(Ga,d,€) < N(OBL(1) x [-1,1],dy, g) N (Fi,do, %).

As JFi is a subset of the collection of all indicator functions of sets in a class with finite VC-
dimension, then Theorem 2.6.4 in|Vaart & Wellner (2023) implies

2d
N(Fiyda, ) < K(d+1)(4e) ! (2)

with a universal constant K, since the collection of all half-spaces in R is a VC-class of dimension
d + 1 (see Lemma 9.12(i) in |Kosorok| (2008))).

By the inequality +/|a| + [b] < +/|a| + +/|b|, we have

V20wt — W2 4 1] — 212 < VRt — W+ 16— D),

therefore

V20 N1 -1 e,

N@B{(1) x [=1,1],d1, ) < N(OB{(1), | - |, 5

Combining all results above and we can compute an upper bound for the covering

number of G;.

N(Gr.d,€) < N (Ga,d, §>

€

< N(9BI(1) x [~1,1], dy, i) N (Fiyda, 7)
< N(aBil(l)’ | ' ‘15 ge) 'N([_lv 1]7 ‘ ' |’ gé) 'N(]:hd% z)

< K(d+1)(de)*H! (g)gd,

where c is a universal constant.

Therefore, applying yields the desired conclusion.

Note that in[Proposition 2(1)} we require t; € [—1,1) instead of ¢; € [—1, 1] due to the measurability
(see Remark 6). At this time, the approximation result does not change. In fact, for any w € R?,
taking a sequence {¢,}nen that is monotonically increasing and tends to 1, we can deduce that
low -z +tu)llar @) — llo(w: 2+ 1)| g1 (o). It suffices to prove that

/Q L wattn>0r — L{wor1z0p P da = /Q L {wraott, >0} — Lwwt1>0y[7dz — 0.

Since the function ¢ — Iy, <4} is left-continuous for any u € R, so that I{,.»1¢,>0} = L{w.z41>0}
for all x € 2. Then, applying the dominated convergence theorem leads to the conclusion. O

A.2  PROOF OF[THEOREM J|

The proof is based on a new error decomposition and the peeling method. The key point is the fact
that [, u*(z)dz = 0, thus for any u € H'(9),
2 2
</ u(m)dm) = </ (u(z) — u*(x))dm) < /(u(m) —u*(z))dz < ||lu — u*||%p(ﬂ), (52)
Q Q Q
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which implies that if u is close enough to v* in the H! norm, then ( fQ dx) is also proportion-

ately small. Furthermore, if u is bounded, we can also prove that the empirical part of ( fQ dx) ,

n 2
ie., <71L >u(X L)) is also small in high probability via the Hoeffding inequality.
i=1
In the proof, we omit the notation for the Poisson equation, i.e., we write £ and &,, for the population

loss £p and empirical loss &, p respectively. Additionally, we assume that there is a constant M
such that |u*|, |Vu*|, |f| < M.

Assume that u,, is the minimal solution obtained by minimizing the empirical loss &, in the function
class F, here we just take F as a parameterized hypothesis function class. When considering the
specific setting, we can choose F to be the function class of two-layer neural networks or deep
neural networks. Additionally, we assume that those functions in F and their gradients are bounded
by M in absolute value and 2-norm.

Recall that the population loss and its empirical part are

2
E(u) :/Q|Vu(x)|2dx—/ﬂ2f(x)u(x)d;v+ </Q u(m)dm) (53)
and ,
= Y IV - 23 S u(X) + (i Zuua—)) e
i=1 i=1 i=1

By taking ur € argmin, ¢ » [|u — u*|| g1 (). we have the following error decomposition:

E(up) = E(u”) = E(un) - A&: (un) + A(En(un) = En(ur)) + An(ur) — E(u")
< E(un) — An(upn) + An(ur) — S(u*)
= E(un) = An(un) + M&n(ur) — En(u”)) + An(u”) — ( ") (55)

) (
= (E(un) - (U*)) AEn(un) = En(u”)) + A(En(ur) — Enlu?))
Ssup[( (u) = E(")) = A€n(u) = En(u"))] + A(En(ur) = Enlu?)),

where the first inequality follows from the definition of u,, and X is a constant to be determined.
In the following, we estimate the two terms separately.

Rearranging the term &, (ux) — &, (u*) yields
En(ur) — En(u”)

n n 2 n
- [i S vur(x Z - izf<xi>u*<xi>]

=1

3

= 3 [(Fur (X0 P = 20(X)ur(X0) = (IVa" (X = 20(X:)u" (X)]

2 2

1< 1<

- X. R *(X.

(FEw ») (r2)
=1 =1
= ¢, + O,
where in the last equality, we denote the right two terms in the second equality as ¢, and ¢2 respec-
tively.
Define
h(z) = (|Vur(z)* = 2f(2)ur(z)) - (|Vu* (@) - 2f(z)u"(2)),
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then by the boundedness of ur, |Vuz|, u*,|Vu*| and f, we can deduce that

Var(h) < P(h?) < 8M2||uf—u*\|%{1(9) =8M?2 and |h—E[h]| < 2sup|h| < 12M?, (57)

app
where €,,,, denotes the approximation error in the H'(€2) norm, i.e., €4pp = [Jur — u*|| g1 (0)-

Therefore, from Bernstein inequality (see and (57), we have that with probability at least
1—e"t,

n

11

bn = ﬁ Z[(|VUF(X1')|2 —2f(X)ur(X;)) — (|Vu* (X)) = 2F(Xo)u* (X3))]
<E[(x)] + ) 2 e AM °t
! , (58)

2
) [24 M2t 4M*
_5(u;)5(u)</ﬂufd:c) + - eipp+ -
M?*t
< 2 -
—= C <€app + n > )

where the last inequality follows by the basic inequality 2vab < a + b for any a,b > 0 and

Proposition 1(1)
/2t
>2M > < 2¢7%,
n

For ¢2, the Hoeffding inequality (see[Lemma 8) implies

P ( %ZU]:(Xl) — /Qu}-(x)dx

Therefore with probability at least 1 — 2¢~?,

(59
2 2

+ /Quf(x)d:c

1 n
<2(|=> U]-'(xi)_/u]-'(x)dx
nia Q
M?*t
2
<C (eapp + - ) .

Combining the upper bounds for ¢} and ¢2, i.e. (58) and (59), we can deduce that with probability
as least 1 — 3e~?t,

M?t
En(ur) — En(uy) < C <63M, + n) . (60)
Plugging this into the error decomposition (55) yields that with probability as least 1 — 3e ¢,

2
£(un) — E(u") < sup [(E(u) — £(u")) = A(Ea(u) — Euu)] +AC ( + Aff) NG)

For the first term in the right of (61), we employ the peeling technique to establish an upper bound
for it.

Let pg be a positive constant to be determined and py, = 2p;_ for k > 1.

Consider the sets Fj, := {u € F : pp_1 < |lu— U*H?‘II(Q) < pg}fork>1land Fy = {u € F:
[|uw— u*H?{l(Q) < po}fork =0.
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The boundedness of the functions in F, v* and their respective gradients implies that

M2
K :=maxk < Clog —,
Po

since px = 25 py and sup,,c 7 [|u — u*||§{1(m < 4M?2.

Then for the fixed constant 6 € (0,1), set 0 = KLH for0 < k< K.

From|[Lemma 4] we know that with probability at least 1 — dj,

sup (E(u) — E(u")) = (Enlu) — En(u?))
uEF

2 2 M2p; log L
< Q@M | [V, W ©

M?log + aM?2py,  4b
t— —— log +7),

where a, 3, a, b are constants depending on the complexity of F (see the definitions in|[Lemma 14).

Note that
pr < max{po, 2pk—1}

< max{po, 2[lu — w1 (o)}

(63)
< max{po, 2Cp (£ (u) — £(u*))}
< po+2Cp(E(u) — E(u"))
holds for any u € Fj, and
1 K+1 1 M?
log — = log + <log = + C'loglog —. (64)
5k 0 ) Lo

Therefore, setting po = 1/n, then with (63) for py, for the right terms in (62), we can deduce that
the following inequality holds for all u € Fy,.

o \/M?pwlog(zﬁﬁ)
n

<c \/ M2(py + 2Cp (€ (u) - £(u*)))alog(28y/n)

<c \/ Monalzg(Qﬂx/ﬁ) c \/QMch(s(u) - ifu*))alog(?ﬁ\/ﬁ) -
<c \/M%oalc;g(w\/ﬁ) ) ;Cau*) N 20M20panlog(25ﬁ>)

_ &) = E(u) +C(\/M2poa1(;g(25\/ﬁ) N M?cpalzg(w\/m

_Ew) = E(w)  CM*Cpa Tiog(%\/ﬁ)’

)

where the third inequality follows from the basic inequality 2v/ab < a + b for any a, b > 0.
Similarly, with the upper bound for log i (64), we can deduce that

1 *
C\/m - E(u) —45(u ) N C’CPMQ(log% +1oglog(nM2)), (©6)
n n

M? log(%k - M?(log 3 + loglog(nM?))
n o n

(67)
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and

alM?py, log4—b < E(u) — E(u*) N CM2Cpalog%.
M 4 n

Combining (65), (66), (67), (68) and (62) yields that with probability at least 1 — J, for all u € F,
(E(u) = E(u")) — 4(En(u) — En(u”))
<C <M20pa10g(2ﬂ\/ﬁ) N CCpM?(log ; + loglog(nM?)) N M?Cpalog ﬁ/b[) (69)

C

(68)

n n n

Note that ZkK:o dr = 0, therefore the above inequality (69) holds with probability at least 1 — §
uniformly for all u € F, i.e.,

SEE(S(U) — E(u)) = 4(En(u) = En(u”))

<C (MQC’pa log(268+/n) n CpM?(log + + loglog(nM?)) N Mszalog;l\f’[> (70)
- n n n '

By taking A = 4 and § = e~! in (70), together with the error decomposition (55), we have that with
probability at least 1 — 4e™¢,

E(un) — E(u”)
o (M?CPalog(zﬁﬁ) | CpM(t+loglog(nM?))  M*Cpalog 3y, M’

€app

n n n n

(71)
From [Lemma 15} we know that

(1) when F = F,, 1(5[|uplB,(0))
b=cM,a=cmd,f=cM? a=cmd,
where c is a universal constant.
(2) when F = ®(N, L, B||[up |lwr.(0))
b=Cn,a=CN?L*(logNlog L), 8 = Cn,a = CN*L*(log N log L)?,
where n > CN?L?(log N log L)? and C is a constant independent of N, L.

Finally, recall the tensorization of variance:

Var(f(Xy,--, X)) <E [ Vari f(X1,-++, X)
i=1
whenever X1, - - - , X,, are independent, where
Varif(x1, - ,xn) :=Var[f(x1, - ,@i—1, Xi, Tit1,+ ,Tn)].

Combining this fact and the observation of the product structure of [0, 1]? yields that the Poincaré
constant is a universal constant.

Hence, the conclusion follows.

Remark 6. In the proof of[Theorem 3] we have made an implicit assumption that the empirical pro-
cesses are measurable. Typically, when considering some empirical process, corresponding func-
tions are Lipschitz continuous with respect to the parameters and the parameter space is separable,
thus the measurability holds directly. However, in our setting where ReLU neural networks are
used in the DRM, the functions fail to satisfy the Lipschitz continuity with respect to the parameters.
Thus, it’s necessary to discuss the measurability of the empirical processes. For simplicity, we only
consider the two-layer neural networks.

Here, we require the concept of pointwise measurability. Recall that a function class F of measur-
able functions in X is pointwise measurable if there exists a countable subset G C F such that for
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every [ € F, there exists a sequence {gm} € G with g, (x) — f(x) for every x € X (see Chapter
2.3 in\Vaart & Wellner|(2023) or Chapter 8.2 in|Kosorok| (2008))).

Note that when applying two-layer neural networks in the DRM, the term I, . >0} is not Lipschitz
continuous with respect to w and t. Fortunately, we can adapt the proof of Lemma 8.12 in|Kosorok
(2008) to show that the function class is pointwise measurable. Specifically, consider the function
class

G={I{—wecy: weIBH)NQ%t e [-1,1)NQ},
where Q is the set consisting of all rationals.

Fix w andt, we can construct {(wm, t,m)} as follows: pick w,, € dB¢(1)NQ? such that |w,, —w|; <
1/(2m) and pick t,, € (t +1/(2m),t + 1/m]. Now, for any z € [0, 1]%, we have that

I{—wmmgtm} = I{—wmgtm—&-(u}m—w)-z} .

Since |(wm — w) - x| < |wy —wli < 1/(2m), we have that vy, =ty + (W —w) -z —t >0
for all m and v, — 0 as m — oc. Note that the function t — Ig,<yy is right-continuous for any

u € R, sothat I{_,, .a<i,} = I{—w.a<s) forall x € [0, 1)4. Thus, the pointwise measurability is
established.

Therefore, for the function class of two-layer neural networks F, 1(B),

Fma(B) = {Z%‘U(wi T4 t) |wihi =1t € [—171)72 [vi| < 3}7
i=1

i=1

we can pick vy;,w;,t; to be rationals. To prove the measurability for the empirical processes of the
formsup,,c 7(E(u) — A& (u)), where F is related to ReLU functions and their gradients, it remains
to focus on the term P f.

Note that for v, € Fp, 1(B) with the forms
u() =Y yio(wi -z +1t;),0(z) = Gio(Wi -z +1),
=1 =1

we have that

|P(|Vul* = 2fu) — P(|Va|* - 2fa)|
< C(P|Vu — Vi| + Plu — 4])

m
<C (Z Vi = il + lwi = ily + [t = Bl + Pllw,.0t, 30y — I{wi.x+tgzo}|> :
i=1

The dominated convergence theorem implies that

P|I{w~m+t20} - I{wm-rthmZO}‘ — 0.

Therefore, with a little abuse of notation, we have sup,c 7(E(u) — A&, (u)) = sup,eg(E(u) —
ﬂ

AEn(w)), which implies that the empirical processes in the proof of[Theorem 3| are measurable, as
the parameters in F can be replaced by rationals.

A.3 PROOF OF[THEOREM 9|

Theorem 9. Let ug solve the static Schréodinger and ., s be the minimizer of the empirical loss
En,s in the function class F.

(1) For ug € B(Q), taking F = Fpn 1 (5||uk || g2()). then with probability as least 1 — e~

mdlogn 1 L+ t
gs(un,s) — 5s(u§) < CM? <ng + (m) + ) , (72)

n

where C'is a universal constant and M is the upper bound for || f|| L=, ||u§|52(q), IV ||z
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By taking m = (%) 2G4, we have
. o, d, _2d+2 t
Es(un,s) —Es(ug) < CM (g)2<3d+1> logn + ) (73)

(2) Foruy € WH(Q), taking F = ®(N, L, B||u||yyr. (q)), then with probability at least 1—e ™"

NL)?(log Nlog L)3
n

Es(un,s) — Es(ug) < C <( + (NL)~#h=D/d ;) , (74)

where n > C(NL)?*(log N log L)? and C'is a constant independent of N, L, n.

1
By taking N = L = n*@+2Gx=D)  we have

2k—2 t
Esluns) ~ Es(u3) < € (w5 (logm)® 4+ 1) 75)

Proof. For the static Schrédinger equation, we can also use the method in the proof of or
other methods in|Lu et al.|(2021b) and [Farrell et al.|(2021)), due to the similarity between the problem
and the generalization error of L? regression with bounded noise. However, the methods mentioned
above are quite complex. Here, we provide a simple proof through a different error decomposition
and LRC, which can be easily adapted for other problems with similar strongly convex structures.

As before, in the proof, we write £ and &,, for the population loss £g and empirical loss &, s
respectively. Additionally, we assume that |u*|, |[Vu*|, |V, |f] < M for some positive constant M.

Recall that

u* = argmin E(u /\Vu\2+V|u|2dx—2/fudx (76)
u€EH(Q)

and wu,, is the minimal solution to the empirical loss &£, in the function class . We also assume that
, SUp,er |Vul < M.

Through an error decomposition, the same as that for the Poisson equation (55), we have
E(uy) —E(U") = E(un) — Aén(un) + A(En(un) — En(ur)) + Apn(ur) — E(u*)
< E(up) — A (un) + An(ur) — S(u*)
= E(un) = A&n(un) + A(En(ur) — En(u”)) + A0 (u”) — ( ") 77)
= (E(un) = E(u?)) = AMEn(un) — En(u”)) + A(En(ur) — En(u™))
< igg[(g(u) — &) = Mé&n(u) = En(u?))] + A(En(ur) — En(ur)),

where the first inequality follows from the definition of u,, and A is a constant to be determined.

Let €4pp = |lur — u*|| g1 () be the approximation error.

From the Bernstein inequality, we can deduce that with probability at least 1 — ¢!

2tVar(g) | tlglr-
+ )
n 3n

(En(ur) = En(u?)) = (E(ur) — E(WT)) <

(78)

where
9(@) = (|Vur* + V(2)|ur(@)* = 2f (2)ur(x)) — (|Vu*(2)* + V(2)[u" (@)]* - 2f (x)u" (2)).
From the boundedness of ur, u*, Vur, Vu*, f and V, we can deduce that |g| < 8M? and

Var(g) < Pg*> < cM?||ur — u*||?{1( =cM?e2 (79)

app

Therefore, plugging (79) into (78) yields that with probability at least 1 — e~*
2teM?e2 8t M2

* 2 app
gn(u]:) - 511(” ) < CEapp + n + 3n
) (80)
, tM
=Gt )
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where the first inequality follows from [Proposition 1(2)|and the second inequality follows from the
mean inequality.

Plugging (80) into the error decomposition (77) yields that

E(un) — E(w*) < sup[(E(u) — E(u*)) — MEn(u) — En(u™))] + Ac (eipp + Ait) (81)

ueF
holds with probability at least 1 — e~*.
Note that (E(u) — E(u*)) — AM(En(u) — E,(u*)) can be rewritten as
(E(u) — EW™)) — MEn(u) — En(u*)) = Ph — AP,h, (82)

where h(z) = (|Vu(z)[*+V (@)u(@)|*—2f (2)u(z)) - (Ve (@) P+V (@)|u* (2) P -2f (z)u* (2)).
And the form (82) motivates the use of LRC.

To invoke the LRC, we begin by defining the function class
H o= {(|Vu(@)P+V (@) [u(@)]*=2f (2)u(2)) — (Vu* (@) P+V (2) [u* ()P =2 (@)u" (2)) : v € F}
and a functional on H as T'(h) := Ph?. It is easy to check that

Var(h) < T(h) < cM?Ph, (83)
as Ph? < eM?|lu — u* ”%11(9) < cM?(E(u) — E(u*)) = eM?Ph. It implies that the functional T
satisfies the condition of Theorem 3.3 in Bartlett et al.| (2005).

Following the procedure of Theorem 3.3 in Bartlett et al.| (2005)), we are going to seek a sub-root
function and compute its fixed point.

Define the sub-root function

M*logn
n )

Y(r) := 8OM*ER,,(h € star(H,0) : Ph* < r) + 704 (84)

where star(H,0) := {ah : o € [0,1], h € H} and invoking the star-hull of H around 0 is to make
1) to be a sub-root function.
Next, our goal is to bound the fixed point of .

If » > 4(r), then Corollary 2.2 in Bartlett et al. (2005) implies that with probability at least 1 — %,

{h € star(H,0) : Ph? <r} C {h € star(H,0) : P,h* < 2r},

and thus
ER,(h € star(#,0) : Ph* <r) <ER,(h € star(H,0) : P,h* <2r)+ (85)
Assume that 7* is the fixed point of ¢/, then
M*1
= () < eM2ER, (h € star(H,0) : Pyh? < 2r*) + e 28" (86)

where we use a universal constant c to represent the upper bound for the constants in the definition
of ¢(r), i.e. (84).

To estimate the first term in (86), we need the assumption about the empirical covering number of

H.

Assumption 1. For any € > 0, assume that

N(H,Ly(Py),€)

IN
N\
o |
~
Q

e

»

for some constant 3 > supy,cy |h|.
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Then by Dudley’s theorem,
ER,.(h € star(H,0) : P,h* < 2r%)

V2rs

< —]E Vog N (e, star(#,0), La(Py,))de
\/W
< 7]]«:/ \/1og/\/ H, Lo(P) ( )de
« \/F
_c\/;/o Hlog g de
Norsa
« B 1
cﬂ\/;/o 1/ log <6)de
< c\/a r*log ( B
n N

n
r*log < 2

where the fourth inequality follows from [Lemma 3]and the last inequality follows by the fact that

r* =(r*) > 07M47110g”.
r* < cM21/ r*log (

logn
<ot (@ og (Y18 .
r=e (n Og(M2 + n

The final step is to estimate the empirical covering numbers of the function classes of two-layer
neural networks and deep neural networks, i.e., to determine « and 3 for F = F,,(5||u%| 52 (0))
and F = (I)(N, L, BHugHWlm(Q))

Therefore,

M 4 log n
n
which implies

(1) When F = F,, 1(5]|u%| 52 (). estimation of the covering number of # is almost same as the
estimation of G for the two- layer neural networks in[Lemma I5(T)} It is not difficult to deduce that
a = emd, 3 = ¢M?. For simplicity, we omit the proof.

(2) When F = ®(N, L, Blju}||yr.(q)), we can also deduce that « = CN2L?(log N log L)3, 3 =
Cn by a similar method as that in[Lemma 15(2)

As a result, given the upper bound for 7*, applying Theorem 3.3 in Bartlett et al.|(2005) with A = 2
allows us to reach the conclusion. O

B PROOF OF SECTION 3

B.1 PROOF OF[PROPOSITION 4]

Proof. (1) The proof mainly follows the 2procedure in the proof the but the tools
from the FEM may not work for ReLU” functions. Therefore, we turn to use Taylor’s theorem
with integral remainder, which enables us to establish a connection between the one-dimensional
C? functions and the ReLU2 functions. And the method has been also used in [Klusowski & Barron
(2018); Xu| (2020).

Recall that Taylor’s theorem with integral remainder states that for f : R — R that has & + 1
continuous derivatives in some neighborhood U of z = a, then for z € U

/ &) (g k4 o )k
f@) = f@)+ £ @ —a)+ o+ @ apr [l

k!
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Similar as the proof of [Proposition 2(1)| for any f € B3(Q2), we have
flz) = / g(z,w)A(dw),
Rd

where B = [, (1 + |w[1)?|f(w)]dw, A(dw) = (1 + |w|1)?| f(w)|/B and
Bcos(w -z + 0(w))
(1+ |wl1)?

Therefore, f is in the H?(2) closure of the convex hull of the function class

gcos(B) = {w W e Rd,t ER} .

B cos(w-z+t)
(I+[wl1)?

and a linear function z = - - = with value in [-1,1]. There-

g(x,w) =

Note that any function g(z,w) =
B cos(|w|1z+t)
(T+[wlh)®
fore, in order to prove that f is in the H?(f2) closure of the convex hull of the function class
Foy(¢B) U Fy,(—cB) U {0}, it suffices to prove that g is in the H?([—1,1]) closure of the convex

hull of the function class 7, (¢cB) U F,_ (—cB) U {0}, where

is a composition of a one-dimensional func-

tion g(z) =

Foy(b) 1= {boz(wz+t) : |w]1 = 1,¢ € [-1,1]} and F,(b) := {boa(ez+t) : e = +1orl,t € [-1,1]}
for any constant b € R.

For
) Beos(lw|1z+1t)  B(cos(|w|1z) cost — sin(Jw|12) sint)
g(z) = =
(14 |wf1)? (14 [wl1)?
with z € [—1, 1], applying Taylor’s theorem with integral remainder for cos(|w|;2) and sin(|w]|;z)
at the point 0, we have

2 2 Y
cos(|wrz) =1— %22 +/ |wl3 sin(|w|1s) (= 28) ds
0

and

z 2
sin(|w|12) = \w|1z—/ w3 cos(|wl1 ) (z 28) ds.
0

Note that 22, z, 1 can be represented by combinations of ReLU? functions, specifically

22:0'2(2’)4»()'2(72)72: (Z+1)2;(z—1)2,1: (Z+1)2;(271)2 722.

Therefore, we only need to prove that the integral remainders are in the H?([—1, 1]) closure of the
convex hull of the function class F_(cB) U F,_(—cB) U {0}. In the following, the constant ¢ may
change line by line, but it is still a universal constant, so we still denote it by c.

Due to the form of the integral remainder, we consider the general form h(z) = foz o(s)(z — s)%ds
with ¢ € C([—1,1]). By the fact that (z — s)* = (z — s)1 + (—2z + s)3, we have

z

/Oz o(s)(z — s)%ds = /OZ o(s)(z — s)%ds + /O @(s)(—2 + 8)3ds == A1 + Ay

In the following, we aim to prove that
1 1
A+ Ay = / o(s)(z — s)3ds — / o(—s)(—z — s)%ds := By + B,
0 0

which enables the method used in the proof of [Proposition 2(1)|to be feasible.

(1) When z > 0, it is easy to obtain that

z 1
A = / o(s)(z — s)3ds = / ¢(s)(z — s)3ds = By, and Ay = 0,By = 0. 87)
0 0
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Therefore, A1 + Ay = By + Bs.

(2) When z < 0, it is easy to check that A; = B; = 0. Therefore, it remains only to check that
Ay = B

For As, we can deduce that

Ay = /zw( )=z + 5)%ds

0
—z+3) d

\
ﬁ

0 z
[/ @(s)(—2 + 8)2ds + / o(s)(—2 + s)3ds (88)

[ s otas
. / 1¢<—y><—z—y>idy = B,

where the third equality follows by that [~ ¢(s)(—z 4 s)% ds=0 and the fifth equality is due to the
variable substitution s = —y.

Combining (87) and (88), we can deduce that
z 1 1
h(z) = / o(s)(z — 5)*ds = / o(s)(z — s)1ds — / o(—s)(—z — s)Lds. (89)
0 0 0
The next step is to prove that h is the H?([—1, 1]) closure of convex hull of 7}, (¢B)UF}, (—cB)U
{0}
Let hy(z fo ©(s)(z — s)2.ds, ha(z fo —z — 5)2.ds, then h(z) = hy(2) — ha(2).

Note that A ( fo 2@ (z — s)4ds and b} (2 fo 20(s)I{.—s>01ds ae., since (z — s)4 is
dlfferentlable for s a.e.

Let {s;}_; be an i.i.d. sequence of random variables distributed according the uniform distribution
of the interval [0, 1], then by Fubini’s theorem

Z‘Psz _z

2

H2([-1,1])
= 90(81')(2*31')3 2 ’ _ - 20(8:)(2 — 8i)+ 2 - 2p( I{z 5:>0} |2
/ ha (2 E:j—n 24 1 (2) ;—n 2 4 41 ;—|
) / — )3 + Var(e()(e = )4) + VerCeO) I s0)) |
n
Q

\ N

where the last inequality follows from the boundedness of ¢. And the same conclusion also holds
for h(z) and h(z). Therefore, we can deduce that h is in the H?([—1, 1]) closure of convex hull of
the function class F, (cB) U F2, (—cB) U {0}.

Then applying the variable substitution yields that for any f € B3(Q) and € > 0, there exists a
two-layer o5 neural network such that

IIf(x Zalag wi - T+ 1) 520) <€, (90)

i=1

m
where |w;|1 = 1,[t;] < 1,3 |a;| < c||f]|53(q) and c is a universal constant.

i=1
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Just as the proof of it remains only to estimate the metric entropy of the function
class

Foi={oa(w-z+1): |wh =1,t € [-1,1]}
under the H?2 norm.

For (wy,t1), (w2, t2) € OBY(1) x [—1, 1], we have

loa(wr -+ 1) — oa(wa -z + t2)||§12(9)

= |log(wi - & +t1) = oa(wa - &+ t2)[[F2(q) + 12010 (w1 - 2 +t1) = 2w20 (w2 - &+ t2)[[|72(q)
d d

2
+ Z HZC‘)liwle{wl-fc-‘thO} - 2w2iw2jl{w2-m+t220}||L2(Q)
i=1 j—1

= () + (i1) + (419),
where we denote the i-th element of the vector wy, by wy; fork =1,2,1 <i <d.
For (4), since o9 is 4-Lipschitz in [—2, 2],
() = [loa(w - @+ t1) — oa(wa - @ + t2) [ F2(q)
< 16| (w1 — wa) - @ + (t1 — t2) [ 720 oD
§ 32(|w1 — CUQﬁ -+ |t1 — t2|2).
For (1),
(1) = |||2wio (w1 - T+ t1) — 2wa0(we - T + t2)|||%2(Q)
=2|[[(w1 —w2)o(wr -z +t1) +walo(wr -z +t1) — 0wy -z +t2)) [l 72 (0

< Al[(wr —wa)o(wr - @+ t)||72(q) + Alllwa(o(wr - 2 + 1) = o (w2 - @+ t2))|[172(q
< 16]wy — wa|? + 8(Jwr — wal? + [t — t2]?),

92)

where the first inequality follows from the mean inequality and the boundedness of o.

For (ii7),

M=~
M=

2
12w15w15 e, wtty>01 — 202002 Ly w2501 | 22(0)

(iii) =

s
Il
—

<

|
‘E%& I
M& —

o
Il
N

<.
Il
—

[(wriwij = woiwj) [, it 20y + W2i2i Iyt 20) = Lwnwt:20)) | F2(0)

.E‘%&
M=

«
Il
-

<.
Il
-

wiiwij — waiwaj|® + (W2iw2;) (w4120} = Lwn-atta>03 | 72(0)

wis — wail|wr;|? + Jwij — waj*wail® + (W2iw2;) [ w44, 20) — Twswtt203 720

,E’%&
M=~

©
Il

=
I

-

J
< 16Jwr — wa i 48[ fw, a4ty 200 — Twa-otta0} 20>
(93)
where the last inequality follows from the fact that |w; | < |wi]1 = 1, |we| < |wa]1 = 1.

Combining the upper bounds for (), (i), (ii7), we obtain that

lloa(wi-a+t1) =0 (wa-z+ta) [ B2y < T2(Jwr —wa i+t —t2|*) 48] Iwyatt, 200 —Lws-att2>0} | 72 (0)-
(%94)

Therefore, based on the same method used in the proof of we can deduce that

&~

en(F2) <en™
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Finally, applying Theorem 1 in Makovoz|(1996) (Lemma 10} yields the conclusion for f in B3(2).

(2) Recall that based on the spline theory, [Belomestny et al.| (2023)) has demonstrated the approxima-
tion rates for Holder continuous functions with sparse ReLU* neural networks. Then Belomestny
et al.| (2024)) extended these results for sparse ReLU?® neural networks. In fact, the approximation
results also hold for Sobolev functions, we only need to replace the Theorem 3 in|Belomestny et al.
(2023) with the results from [Schumaker (2007 on approximating Sobolev functions with multivari-
ate splines. For simplicity, we omit the proof. O

B.2 PROOF OF

Before the proof, we first provide some preliminaries about the entropy method, which is a common
method to derive concentration inequalities. For Q@ = [[,_, Q, u = []¢_, k. Where p is a
probability measure, let (€2,3) be a measurable space and A()) denote the algebra of bounded,
measurable real valued function on ). For f € A, § € R, define the expectation functional as

E[ge’/]

Eﬁf[g] = E[eﬁf} Zﬁ E[geﬁfL forge A,

where Zgy = [E[ef7] is the normalizing quantity. Then, we can define the entropy as

Entf(ﬁ) = ﬁEBf[f] — log ng.

The connection between the entropy and the exponential moment makes the entropy method popular
for deriving concentration inequalities, i.e.,

b Ent
log E[e#F—EN] < ﬁ/ "7’;(7)@ (95)
0 v
holds for any f € Aand 8 > 0.
For any real-valued function F on Q and y € Q for k € {1,--- ,n}, define the substitution operator
Sfj on F' as
SE(F) (@1, yan) = F(x1,  , The1,Ys Tpg1, ** » Tn), (96)
i.e., the k-th argument is simply replaced by y. And define the operator V_E : A — Aby
" 2
)i= Y By [(Fl@) = S5F())4)°]. ©7)
k=1

T
Proof. Assume that sup sup |f;(z)| < band & sup > Var(fy(X})) <r

1<t<T zeX, feF i=1
Let
T T N,
7 = sup — Z (P, —P)f; = sup Z Z —Efi(X}) (98)
fef t=1 t:l =1
and
Nt
F(zwaM;mwwmw7 (99)
where n = minj<;<r Ny and z = (z, -+ , 2k, - a:gt)
Define
n2 Ny
W(w) = g s Z 2 Z fi(@) = BA(XD))* + E(A(X]) - EA(X)*. (100)

the maximum in the definition of F is achieved at f = ( fl, , fT) cF.
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Then for any y, (F(z) — Sy F(x))4 < %Nt(f (215) — fi(y)) . therefore

2

t

VfF(f) = EyNum [((F - S;’iF)Jr)ﬂ

o~
Il

[M]=
Ng

14

R

2 Nt r

1
< 25 2 By,
t=1 "'t =1

T N
1 n? T R
< _ E, ., AN 2}
< 17 g I gj s |(fe(a) = Fo(y) on)
n2 X o o . L2
- Z 7 2 B (Fad) ~ (XD - Gl - BA(XD) |
2 Nt . .
- Z N7 20 () —BA(XE)* 4 BUAX) ~BA(XD)
<W,
where X follows the distribution p, i.e., ui = ;.
Therefore, VfF < W. Then equation (26) in Maurer (2021)) yields that for 0 < v < 8 < 2,
Entr(y) < 5 T logBe?ViF < g T logEe™™. (102)
— _

Next, we are going the prove that W is self-bounding, so that Lemma 32 (i) in Maurer] (2021)
can be applied to bound Ee?". Assume that the maximum in the definition of W is achieved at
f=(f, -, fr) €F,then for any y,

n2

n? . —
(W S“W)+7462N2((f( zy)—Efi(X; ))2—(ﬁ(y)—1Eﬁ(Xf))2)+§W(ft(xi)—Eft(XZ))2»

therefore
T N,
=3 D By (W) = Sp'W (@)%
t=11=1
T 4 N; B . B B .
< Z N Z]Ey% (Fi(x) = EFU(XD)? — (Fily) — B (X))
nt (103)
< 16b4 ZN4 Z filwy) —Ef(X])*
n2 Nf
<1 Z Nz Z Filwy) — Ef(X}))*
< W.
Combining (103) with Lemma 32(i) in Maurer| (2021)), we have
“E[W] VE[W]
log E[e"W] < T2 W] = . 104
Plugging (104) into (102) yields that
EW] v E[W]
Entp(v) < logE[e"W] < L (L - (105)
F(’Y)— — g [ ]—2_7(1_7/2) (1_7/2)2 )
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Combining (95) and (105), we can conclude that

8
log Ee’ ("5 < 3 / Entr) g,
0 v

EW] [? 1
<675 |, T (109
_ B EW]
1-8/2 2

In fact, the above inequality implies that F' is a sub-gamma random variable. Thus with the following
lemma, we can derive the concentration inequality for F'.

Lemma 2. Let Z be a random variable, A, B > 0 be some constants. If for any A € (0,1/B) it
holds

AN?

IOgE[ ANZ—- EZ)] (1 = B)\)

then for all x > 0,

P(Z >EZ + V2Axz + Bx) <e™ "

Applying[Lemma 2| with A = E[W], B = 1/2 for F, we can deduce that with probability at least
1—e™®
F < EF + V2zEW + g (107)

From the definitions of F' and Z, i.e. (99) and (98), we have Z = QbF , then with probability at least
1—e"

2
Z <EZ+ —b\/Q:cEW—i—b—x. (108)
nT nT
Note that EZ < 2R(F) and
2 Nt . . .
EW = oF sup Z N2 Z Fi(X) = Ef(XD)” +E(fu(Xp) — Ef(X)*

2Nt

= ﬁE iy Z W 2 (X0 ~ BACKD)? — () ~ BAXD)] + 22X ~ B

t .

2 Nt T 2
e (21& sup Z 5 Do) — BA(XD) + sup 257 (X)) - Eﬁ(Xz))?)

feFia i=1 fer =

< 4b2 (8bE sup Z w, ;ag(ft(xg') —Efi(X])) + 2nTr)

feF i —

\ /\

462 (16bnTR(F) + 2nT'r)

< AnTR(F) n nT'r
- b 202’

(109)
where the first inequality follows from the standard symmetrization technique and the second in-
equality follows from the contraction property of the Rademacher complexity.
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Plugging (109) into the concentration inequality for Z, i.e. (108), we have

2
7 <87+ 22 vamEw + 2
nT nT

2b AnTR(F) nTr bx
< — -
<2R(F) + T \/2:5( ; + o ) + T
8baR(F b
= 2R(F) +2/ — ( )+ 2 (110)

\/W /wr
nT
<214+ a)R(F) + 2,/nT <1 + > 25;7

where the last inequality follows from the inequality 2v/ab < aa + g forany o > 0,a > 0,0 >
0. O

B.3 PROOF OF

In the following, we assume that for any f = (f1, -+, fr) € F,0< fy <b(1 <t <T).

Define

Un(F) = sup (Pf - P f).
feF

Lemma 3. For normalized function class F .,

Fr = f: fe}'} (111)

r
Pf2vr
and assume that for some fixed constants K > 1 and r > 0,

r
< —

Then for any f € F the following inequality holds:

(112)

K r
Pf< P, —. 11
f< o Prf+oz (113)

Proof. Let us consider two cases:

1: Pf2 <r,

2: Pf2>r.

For the first case, f = ﬁ f € F,, therefore

r

PfSPNf+UN(-7'-)<PNf+ PNf‘FW-

K K-

For the second case, %f = Pszf € F,, thus

2f Py 2f+UN(-7:) 2f+

Phy Pf

Basic algebraic transformation yields that

Pf

P2

pr<pyf+ L < -7,

Pynf+—

which implies

Pf<
f_Kfl

P f S

P -
Nf+bK
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Lemma 4. Let us consider a sub-root function 1 (r) with fixed point v* and suppose that N'r > r*,

P(r) = bR(F ).
Then for any K > 1, we have that, with probability at least 1 — e~ %, forVf € F

K 32K (106 + 8bK)a
< .
Pisgatnft——+ =7

(114)

(115)

Proof. The aim is to find some r such that Ux(F,) < %, then applying yields the

conclusion.

Note that the variance of functions in J,. is at most r. For any f € JF,., we consider two cases:

1: Pf2 <r,
2: Pf2>r.

For the first case, f = ﬁf c F,,thus Var (%f) =Var(f) < Pf2 <.

For the second case,

' ' 2 7“2
V”(Pva”) V”(Pf2f> SP(Pﬁf) ~pp <"

Then applying for Un (F,) with & = 1, we have that with probability at least 1 — e™7,

xr  5bx
<4 2 —
Un(F,) <AR(F,) + T + T

U(r) xr  5bx

<4—= 42 —

- b + nT + nT

\/ P xr L 5bx

nT ' nT

= A\/; + B,

where the third inequality follows from the property of the sub-root function, i.e., ¥(r)/y/r <

Y(r*)/\/r* = /r* forany r > r* and A = 4r+2\/73 Sz,

Solving the equation

AVI+B =

yields that

= bKA+ VB?K?A? 4 4bK B

= 5 .
Thus
b2K2 A2
r> 5 > r*

and

r <bK?A®+ 20K B.
Therefore by we have

K
w1 g

K
P bK A% + 2B
K1 ~f + +

Pf<——

<

16r* + 4i) + 10bx
K-1 b2 nT nT
K 32K r* n (10b + 8bK)x

g iinFr— nT

<

Py f + 2bK(
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There remain some problems regarding the selection of the sub-root function ¥ and the computation
of its fixed point. Just as in the single-task scenario, we can take v as the local Rademacher averages
of the star-hull of F around 0.

Specifically, let
14b2 log(nT)

Y(r) == 16bERN{Ff : f € star(F,0),Pf* <r}+ nT ’

(117)

where star(F,0) :={af: f € F,ac|0,1]}.

Note that the normalized function class J, defined in the [Lemma 3|is a subset of the function class
{f: f € star(F,0),Pf? < r}, thus (r) > bR(F,).

For the first term in the definition of ¥ (r), i.e. (117), with the following lemma, we can translate the
ball in L?(P) into the ball in L?( Py ), so that Dudley’s theorem can be applied.

Lemma 5. Let G be a class of vector-valued functions that map X into [—b,b|T with b > 0. For
every x > 0 and r satisfy

14b%x
r > 160ERN{g:g € G, Pg®> <7} + T (118)
then with probability at least 1 — e™"
{geG:Pg*<r}c{gegG:Png*<2r}. (119)

Proof. Define G, := {g* : g € G, Pg?> <r}.

Note that ||g?||.c < b%,Var(g?) < Pg* < b>Pg? < b?r. Then applying the [Theorem 5| for G,
with a = 1 yields that with probability at least 1 — e~ %, for any g € G such that g € G,

b2xr  bbix

Png? < Pg? +4ERN{g” : Pg* < 2
Ng” < Pg° +4ERN{g" : 9 € G, Pg” <} +2\[ — + —F
r  Thz
<r+8ERnN{g:g€G,Pg* <r}+ + — T
n

< 2r
where the second inequality follows from the contraction property of the Rademacher complexity
and the mean inequality. 0

Remark 7. Although the contraction property used in the proof of Lemma 5 is slightly different from
the standard form (see Lemma 5.7 in \Mohri et al.| (2018)), it is just an adaptation of the standard
one.

Specifically, let ®; be l;-Lipschitz functions from R to R for i = 1,--- ;m and o1, -+ ,0, be
Rademacher random variables. Then for any set A C R™, the following inequality holds.

m

E, sup 0:®;(a;) <E,sup oil;a;
ONLIDEL I

For completeness, we give a brief proof.
By the Fubini’s theorem, we have
E, sup Z 0;®i(ai) =Eq, . 0, 1 Eo,, [SUD Um—1(a) + 07 P (am)],
acA’ ac€A
m—1
where uy,—1(a) = > 0;P;(a;).
i=1
From the proof of Lemma 5.7 inMohri et al.|(2018), we know
Eo,, [sup um—1(a) + 0m®Pm(am)] < Eq, [SUp um—1(a) + omlmam].
acA acA

Proceeding in the same way for all other o;(i # m) leads to the conclusion. In fact, we have used
2
the conclusion with ® ;(x) = X in the pr()ofof
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With[Cemma 3] we can bound r* as follows.
Lemma 6.

16b? + 14b2 log(nT)

r* <16bERN{Ff : f € star(F,0), Py f2 < 2r*} + T

(120)

Proof. From and the fact that
14b* log(nT
r* =(r*) = 16bERN{Ff : f € star(F,0),Pf> <r*} + 7:1%(” >,

we can deduce that with probability at least 1 — ni,

{f: fcstar(F,0),Pf?> <r*} C {f: f € star(F,0),Pyf* < 2r*}.
Therefore,
b 14b% log(nT)

nT nT

16H% + 14b% 1 T
= 16bERN{S : f € star(F, 0),Pvf? < 2r*} + 60" + an og(n )

r* <16b |ERN{Ff : f € star(F,0), Pxnf? < 2r*} +

Now, we are ready to use the Dudley’s theorem to bound the first term in the right.

(T',Ne)

Specifically, define F . := {f : f € star(F,0), Py f? < 2r}, with the samples (XZ)(t He(1,1)

fixed, define a random process (X¢)scF, , as
1 Iy M
Xgi= ; A ;agft(xg) for f=(fi,---,fr) € Fer. (121)

From the fact that o} is sub-gaussian, we can deduce that for any A € R and f/ = (f{, e ,f/T) €
For

Z

ol (fo(XD— 11 (X1))

M=

A 1
AXp—X T2 N
Ee XXy —geT 2

Il
A
I
—

7
A2 £

< i (e (X1 (X1))?

M=
e

1
3
Ni

-
Il

1 1

o
Il

2 ’

d(f,f)

M

K

N‘y

<e

)

_ 1
where K = T and

/ 1 en 1 & _
d(f.F) = | 7 2y 2R (XD = fi (X)) (122)
t=1 i=1

It implies that | Xy — X4 ||y, < CKd(f, f") with a universal constant C'.
Then using Dudley’s theorem yields that

diam(F s, ) 2T
E sup Xy < CK/ \/91og N(Fs,,d, €)de < CK/ \/1Iog N(F . d, €)de,
fEFs 0 0

(123)
where diam(F s ;) :=sup; pc . d(f, ).

Proof of Theorem 6: In the following, we assume that F is a parameterized hypothesis function
class to be determined. When considering the framework of PINNs for the linear second order
elliptic equation as MTL, the function class in MTL associated with F is defined as

F = fu = (|(Lu(e) - f(2))%,102/(uly) — 9(4))?) : u € F}. (124)
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Note that here we use notation w« to represent a function in F and u to denote the corresponding
vector-valued function associated with u.

Then the empirical loss can be written as

Ny d d
L) = B (= 20 (X020 + 30 (Xi)dhu(X0) + e(Xiu(Xi) = F(Xe)
k=1 Q=1 i=1
N»
+ % > (u(Yi) — g(Ye))?
k=1
= 2PN'U,,

where N = (N7, N2) and n = min(Ny, Na).

The aim is to seek uy € F which minimizes L. It is equivalent to seek u € F which minimizes
Pyuie.,

uy € arg min Pyu. (125)
ucF

Assume that u* is the solution of the linear second order elliptic PDE and there is a constant M
such that |a;;|, |bi], |cl, |g], [w*], |0su*], |0iu*| < M and |ul,|0ul, |0;u] < M for any u € F,
1<i4,5<d.

Then sup,,c » max(|Q|(Lu — f)?,109Q|(u — g)?) < c(|Q|d*M* + |0Q|M?) := b with a universal
constant c.

Therefore, with probability at least 1 — e~*

tV 2bt
Pyuy < Pyur < Pur +2 M—Ff

2n 2n
tbP bt
< Pup+2y) —Z 4 = (126)
2n n
2bt
S §P’U/]: + )
2 n

where ur = (|Q|(Luy — f)?,[0Q(ur — 9)*), ur € argmin, ez [u — u*||32 g, and the second
inequality follows from by taking F = {ur} and o« = 4,T = 2, which can be seen
as a vector version of the Bernstein inequality. Here, we define the approximation error as €y, =
ur — u|m2(0)-

Then applyingwith K = 2 yields that with probability at least 1 — 2¢~*

a1
Puy < 2Pyuy + 6; 4 130
64r*  17bt 27
< 3Pur + + =,
b n
which implies that
128 34bt
L(uy) = 2Pyuy < 3L(ur) + ——— + 22 (128)

b
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Note that £(uz) can be bounded by the approximation error, since for any u € H?({2)

= u — 21’ u — 2
c(u%/ﬂ(L f)d +/m< 9)%dy

/ Za2]0”u4r2b8u+cu— dx+/m(u_g)2dy

i,7=1
2

/ ZGU i ( —l—Zba u—u") + c(u—u¥) dm—|—/{m(u—u*)2dy

1,j=1

2 d 2
a; —u* 10 (u — u* c(u —u*))?dz u—u*)?
/ S atlu— ) +<;ba< )) + (cfu - u*))*d +/m< Y2dy

2,7=1
< 3d2M2||’LL — U ||?'_12(Q) + C(TT7 Q)QHU’ - U*H%Il (©2)
< Bd*M? + C(Tr, Q%) u = u* 320
(129)

where in the last inequality, we use the boundedness of a;;, b;, c and the Sobolev trace theorem with
the constant C'(T'r, ) that depends only on the domain 2.

Thus,
L(ug) < (3d*M?* + C(Tr,Q)*)el,, (130)
and with probability at least 1 — 2¢™*
128r*  34bt
L(uy) = 2Pyun < 3(3d2M? + C(Tr, Q)%)e2, + br + 22 (131)

It remains only to bound the fixed point r*. With[Lemma 6} it suffices to bound the covering number
of F under d, which is done in the[Lemma 16| Thus, we have the following results.

(1) For the two-layer neural networks, we know

log N (F,d,e) < emdlog (b> , (132)
€

where c is a universal constant.

2\/77 21
r* < cby/ m—d/ log (b)de + cb”logn
n 0 € n
/ iz 1 2]
_ @/ \/T log ()de—i— cb*logn
n Jy € n (133)

[mdr* | 2 21
< b mdr log b +ch ogn
n * n
2
| mdr* 1
< b %_Fcb ogn

where second inequality follows from

It implies that

Therefore

b2md 1
pr < LMA0B N (134)
n
(2) For the deep neural networks, we know
K
log N (F,d,e) < CK%log () , (135)
€
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where C is a constant independent of K.

Similar to that in (1), we have

< CK%(log K + logn)
- n

with a constant C' independent of K, N, n. O

*

r

(136)

C AUXILIARY LEMMAS

Lemma 7 (Bernstein inequality). Let X;,1 < ¢ < n bei.i.d. centred random variables a.s. bounded
by b < oo in absolute value. Set o2 = IEX12 and S,, = % > X;. Then, for all t > 0,
i=1

22
P(S’nz Ut—l—bt)ge_t.

n ' 3n

Lemma 8 (Hoeffding inequality). Let X;,1 < i < n be i.id. centred random variables a.s.

13
bounded by b < oo in absolute value. Set S,, = % > X, then forall t > 0,
i=1

P <|Sn > b\/zt> < 2"
n

Lemma 9 (Bounded difference inequality). Let Xy, -- , X, € X be a set of m > 1 independent
random variables and assume that there exists c1,- -+ ,Cp such that f : X" — R satisfies the
following conditions:

|f(xla"' s Lgy et 7xm)_f(xl7"' am;a"' ,.’I?m)|§Ci7

for all i € [m] and any points 1, - - ,&m,x; € X. Let f(S) denote f(X1,--- , Xm), then, for all
€ > 0, the following inequalities hold:

PUS) - BU(S) = 0 <o (5 ).

—2¢2
P(f(S)_E(f(S)) < _6) < exp m 9
2ie1 G
Lemma 10 (Theorem 1 in Makovoz (1996)). Let ® := {¢1, ¢, } be an arbitrary bounded
sequence of elements of the Hilbert space H. For every f € H of the form

[= Zcz’¢i7 Z |ci| < oo,

and for every natural number n, there is a g =y, a;¢; with at most n non-zero coefficients a; and
with ), |a;| <>, |ci|, for which

If = gll < 262 (@) 2 eyl.

The definition of metric entropy ¢, is given in

Lemma 11 (Covering number of dB{(1) in the L norm). For any € > 0,

N@B(1), |- 1,e) <2 (12)

€

Proof. By the symmetry of B¢ (1), it suffices to consider the set
S :={(x1, - ,x4) € OB}(1),2; > 0,1 < i <d}, (137)
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as N(OBSL(1),| - |1,€) < 29N(S,]| - |1,¢€).

Note that for (z1,--- ,z4) € OBY(1), z4 is determined by x1,--- ,z4_1. Thus the problem of
estimating the covering number of B (1) can be reduced to estimating the covering number of
Sy ={(x1, - ,xg-1):x1+ -+ a1 < 1,2, >20,1<i<d—1}, (138)

which is a subset of B{~*(1).

By Lemma 5.7 in Wainwright (2019), we know N’ (B{ (1), | [1,€) < (2+1)?7! < (2)4=1. Thus,
there exists a §- cover of B ' (1) with cardinality (¢)?~! which we denote by C. Although C'is

also a 5- cover of Sy, the elements in C' may not belong to .S;. To fix this issue, we can transform

C to a subset of S and the transformation doesn’t change the property that C' is a 5- cover of 5.
Specifically, for (y1, -+ ,yq4—1) € C, we do the transformation as follows

(Y1, Ya—1) = Wilgy>0y s Ya—11{y,_,>0})-

Note that
Yl o1+ Fva1lyy, so0r <yl 4+ A ya-1] <1, (139)

and for any (z1, -+ ,24-1) € 51

lz1 — y1lpy >0+ |[Ta—1 — Va1 l{y, 01| < o1 —ya| + -+ |[va—1 —ya-1|,  (140)

£

which imply that after transformation, it is a subset of .S1 and also a 5- cover of S7. For simplicity,
we still denote it by C.

Now we are ready to give a e-cover of S via extending C to a subset of 9B{(1). Define C, :=
{(y17"' ayd) : (yla" : 7yd—1) S Cayd =1- (yl + - +yd—1)}-

Thus for any (x1,--- ,24) € S, since (z1,--- ,2q-1) € S1 and C'is a §-cover of Sy, there exists a
element of C, we denote it by (z1,- -, z4—1), such that
€
|$1_Zl|+"'+|md—1_zd71|Si- (141)

Note that for zg =1 — (21 + -+ - + 24-1), (21, -+ , z4) € C. and

21 — 21|+ F a1 — Za—1] + [2a — 2d]
=l|ry— 21|+ +|va—1 —zaa| t |z —21 4+ -+ Ta1 — Za1
2Alzy — 21l 4+ [wa-1 — 2a-1])

<
<e
which implies that C, is a e-cover of S.

Recall that |C.| = |C| = (2)471, then N (0B1 (1), | - |1,€) < 24 (g)d_l =2 (%)d_l :

Note that in this lemma, our goal is not to investigate the optimal upper bound, but to give an upper
bound with explicit dependence on the dimension.

Lemma 12 (Equivalence between metric entropy and covering number). Let (T,d) be a metric
space and there is a continuous and strictly increasing function f : Ry — Ry such that for any
€>0,

N(T,d,e) < f(e),

Then for any € > 0,
en(T) < f7H(n),
where [~ represents the inverse of f.
Proof. 1t’s obvious, since (T, d, f~1(n)) < f(f~1(n)) = n. O

Lemma 13. Forany 0 < x < 1, we have

¢ 1 4
/ 1/log —de < 2z /log —.
0 € X
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Proof. For0 < z < 1,let f(z) = \/xzlog 2, g(x) = /z, h(z) = zlog L, then f(z) = g(h(z)).
Note that g is increasing, concave and h is concave, thus

fOz+ (1= XNy) =g(h(Az + (1 - Ny))
> g(Ah(z) + (1 = N)h(y))
> Ag(h(x)) + (1 = Ng(h(y))
= Af(z) + (1 =N f(y),

which means f is concave in [0, 1].

Lete = y%, then

where the first inequality follows from Jensen’s inequality. O

Lemma 14 (The remaining part of the proof of Theorem 3). For the function class F and
G == {([Vu(@)]” - 2f(z)u(z)) - (|Vu*(2)* — 2f(2)u*(z)) : ue F},
we assume that for any € > 0,

«

b a
N(F |- L2 ey, €) < (6) a.s.and N (G, - | z2(p,), €) < (f) a.s.

for some positive constants a,b, v, B with b > supsc » |f

. B> supyeg lgl-

Then we have that with probability at least 1 — ¢!

sup (£(u) — E(u”)) = (En(u) = En(u))

uEFs

SC(QMQIOi(Qﬁ\/ﬁ) +\/M25a105(25\/ﬁ) Jr\/MZ(St

(142)
M?*  [aMZ25  4b
+— 4

where
Fs={ueF: |lu— u*||?{1(9) <}

and C'is a universal constant.
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Proof. As before, rearranging sup,,¢ r, (£(u) — E(u*)) — (En(u) — &, (u*)) yields that
sup (£(u) = E(u")) = (Enlu) = En(u?))

ueFs

= sup [/ [(IVu(@)? = 2f(@)u(@)) — (IVu* (@)]* - 2f (2)u"(2))] do
Q

ueF(8)
- %Z [(IVu(Xo)* = 2f(Xi)u(Xy)) — (V" (Xo)* — 2f (Xi)u* (X3))]
5 Lo 2 Lo 2
+ (/Q u(x)dx) - <n Zu(XJ) + (n;u*(Xz)>
5 Lo 2 Lo 2
< gzgg)(P - Pn)g—l—u:l;}()&) (/Q u(x)dx) - (n Zu(XJ) + (n ;u (Xl)>
=R (0) + 02 (9) + 0 (9),

where

G(6) = {(|Vu(@)]* = 2f (2)u(2)) = (V" (@) = 2f (@)u"(2)) : w € F, [u—u*|[3p o) <0}

(143)

Applying the Hoeffding inequality for 1/15{9’) (6), we can obtain that with probability at least 1 — e~

n 2 2
4P (6) = (;Zu*(m) <2 (144)
=1

n

For w,(?) (0), we can deduce that

0= | ([ o) (1 3000)

= sup [(Pu)?® — (Pyu)?]

ueF(9)
= sup [(Pu)? — ((Pyu — Pu) + Pu)?| (145)
uweF(5)
= sup [2(Pu)((P — Pp)u) — (Pyu — Pu)z]
ueF(5)
<5 sup |[(P — Pp)ul,
ueF(8)

where the last inequality follows from the fact that for any u € F(9),

|Pu| = ‘/Qudx /Q(ufu*)dx < (/Q(uu*)zdx>% < V0.

Therefore, to bound z/)y(f)(é), it suffices to bound the empirical process sup |(P — P,)u|. By
ueF(8)

applying the bounded difference inequality and the symmetrization technique, we can deduce that

with probability at least 1 — e~*

/2t
sup |(P7P7L)U|SE sup |(P7Pn)u|+M o
n

uEF(9) uEF ()
2t
+ My — (146)
n

/2t
+ My —.
n

1 ; cou( X,

< 2E sup
ueF(4)

n

=1

< 2E sup
ueF
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The first term is the expectation of the empirical process and it can be easily bounded by using
Dudley’s theorem.

Specifically,
E Ly (X;)| =ExE, ! i
sup |— eu(X;)| =Ex sup —
ueF M= u€FU(-F) "

12
S ]EX ~ / \/IOgN(]:U (—f), H . ||L2(pn),u)du]

<Ex \/logQN Foll - le2cpy, wd ]

£
/

12 / 147)
— 10g2—|—a10g du (
‘\/7

]W
— log M—i—fb/ log du
< i (v [

12 4b
— [ v/log2M + 2v/aM log—

‘\/7
2
<C alM log %,

where the fifth inequality follows by the fact that b > M and
Now, it remains only to bound 1. (6).

Recall that
G(8) = {(IVu(@)[* = 2f (z)u(x)) = (IVu*(2)* = 2f (x)u*(2)) : w € F, |lu—u*|3q) <6}

Therefore, we can deduce that |g| < 6M? and Var(g) < P(g?) < 4M?§ for any g € G(6).
Then, from Talagrand’s inequality for empirical processes (Theorem 2.1 in Bartlett et al.| (2005)
with @ = 1), we obtain that with probability at least 1 — e™*

8M?2t6  16M32¢
sup (P — P,)g < 4ER,(G(5)) + + ) (148)
gEG () n n

Note that Pg? < 4M?§ for any g € G(J), therefore
ER,(G(5)) <ER,(g € G : Pg® < 4M?9).

The right term frequently appears in the articles related to the LRC and can be more easily handled
than the term on the left.

By applying Corollary 2.1 in |Lei1 et al.|(2016) under the assumption for the empirical covering
number of G, we know

2
ER,(g€G: Pg? < AM26) < C (C“M loim\/ﬁ) n \/M%‘ IOS(Q”WE)> . (149)

where C is a universal constant.

Combining the upper bounds for 1" (8), % (5) and ) (6), i.e. (144), (145), (147) and (149),
the conclusion holds. O

Lemma 15. For the empirical covering number of F and G defined in the[Lemma 14} we can deduce
that
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(1) when F = Fp, 1(B), we have
B m(d+1) MB B2 cmd
N(F,L2(P,),€) < <C> and N (G, L*(P,),€) < (Cmax()> . (150)
€ €
where M is a upper bound for | f| and c is a universal constant.
(2) when F = ®(N, L, B), we have

)

€

Cn CN2?L?(log N log L)?
) €

Nvmmm@<(

Cn CN?L?(log N log L)?
and N'(G, L*(P,),¢) < ()

(151)
where C'is a constant independent of N, L and n > CN?L?(log N log L)3.

Proof. (1) For the function class of two-layer neural networks, recall that

m m
Fmal {Z% o(w; -z +t;) Z%|§B,|wi1:1,ti€[—1,1)}.

i=1
Due to the Lipschitz continuity of o, we can just consider the covering number in the L*° norm.

Without loss of generality, we can assume that B = 1. Then for
= Wolwf-z+tf) € Fua(1),k=1,2,
we have

Jur () — ua(z I—\Z% wztt]) —Alo(w? a+ 1))

< Z Nio(wi -z +t)) — oW -z +17)]

m

—ZI = )o(wi et ) + 7 (0(wp et t) —o(w] - a + 1))

< ZQHQ =7+ 1 (wi — @i+ 1t = E)),
i=1

where the last inequality follows from that o is bounded by 2 in absolute value and is 1-Lipschitz
continuous.

Therefore, when
i € €
i =72 < = and |wi —wi < -, |t -
7 7 4 7 (2 4 7 (2
i=1

we have that sup,cq |u1(2) — ua(x)| < €, which implies

NFna(D. (P € NFna(D). L% < () (6)™77 (6)" = (&)™,

€ € € €
where c is a universal constant.

Therefore, N'(Fpn1(B), L2(P,),€) < (£ )m(d+1) where we assume that B > 1.
Recall that

G = {(IVu(@)P - 2f(z)u(z)) — (IVu* (@) = 2f (2)u"(2)) - u € F}.

Since u* is fixed, the estimation for the term f(z)u(xz) can be conducted in the same manner as for
F. Therefore, we only need to estimate the first term.
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For
m

Up = Z’yfa(wf cx+th) e Fo(l),k=1,2
i=1

we have

|||VU1|2 - |Vu2|2||L2(Pn)

< 2|[|Vur — Vugl||r2(p,)

m
<2 I wi Tt e s0p — Wwi Tz aresop| | L2p,)
=1

m
<2 Z |||’Yilwz'1[{w}-z+tgzo} - ’YEW?I{wf-ertfzo}|||L2(Pn,)
i=1

m
=2 (v = D) Twrarerzoy + 7 @ ot ot 30y — Wi Tw2orezzop) |l L2 (py)
1=1

m m
<2 I =7+ 2> ] W Tt wre 0y — Wilgwzaresoy |2,

i=1 i=1
<2 I =R+ 2> (W) = Wl A et a0y — TiozearezsoylL2cpa)s
i=1 i=1
where the first inequality follows from that |Vug| < [Vug|; < 1for k = 1,2 and the second, third,

fourth and the last inequalities follow from the triangle inequality.

Thus if

1<i<m

= € €

Z lvi =7 < 1 and |w; — w1 + ||I{w3~x+t320} - I{w?‘m-i-thO}HLQ(Pn) < 1 )
i=1

we can deduce that ||| Vuy|? — [Vuz?||12(p,) < e

Based on same method in the proof of [Proposition 8|, the L2(P,) covering number of the function

class {|Vu|? : u € F} can be bounded as

m (d—142d)m md
O =0

Combining the result for F, we obtain that

cmax(M B, B?) > emd
€ )

NG 0 < (
where M is a upper bound for | f| and ¢ is a universal constant.

(2) Note that the empirical covering number N (F, L?(P,), €) can be bounded by the uniform cov-
ering number N (F, n, €), which is defined as

N(F,n,e) = sup N(Flz. 6l o),

ZnEX™

where Z,, = (21, ,2n) and Flz, = {(f(z1), -+, f(zn)): f € F}

As for the uniform covering number, it can be estimated using the pseudo-dimension Pdim(F).
Specifically, let F be a class of function from X to [— B, B]. Then for any € > 0, we have

9enp O\ Fdim(F)
ePdim(F)

for n > Pdim(F) (See Theorem 12.2 in|/Anthony et al.[(1999)).

N(f,n,e)g<
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From [Bartlett et al.|(2019) and |Yang et al.| (2023b)), we know that
Pdim(¥) < CN?L?log Llog N and Pdim(DV) < CN?L?log Llog N

with a constant C' independent with N, L, where V is the function class of ReLU neural networks
with width N and depth L.

Therefore, we can deduce that for 7 = ®(N, L, B), we have

Cn CN?L?(log N log L)®
6 >

N(F,L3(P,),e) < (

and

Cn CNZ?L?%(log N log L)
6 )

N(G.IA(P,).e) < (

with a constant C' independent of N, L and n > CN2L?(log N log L)3, as the width and depth of
®(N, L, B) are O(N log N) and O(L log L) respectively. O

Lemma 16 (Estimation of the covering numbers for PINNs).

(1) For F = Fy, 2(B) with B = O(M), we have

b
log N (F,d,€) < cmdlog ()
€
with a universal constant c.
(2) For F = ®(L,W, S, B; H) with L = O(1),W = O(K%),S = O(K%),B=1,H = O(1), we
have %
log N (F,d,e) < CK%log () ,
€
where C'is a constant independent of K.

Proof. Recall that

d d
(Lu—f)*= | - Z a;;j(2)0; ju(r) + Zbl(x)alu(x) + c(z)u(z) — f()
ij=1 i=1

and
F = {u=(|Q/(Lu(z) - f(x))* 109 (uly) — 9(y))*) : v € F}.

(1) For the two functions w = (|Q|(Lu— f)?,|0Q|(u—g)?),u = (|Q|(La— f)?,]09|(i—g)?) € F,
where wu, u belong to F.,, 2(B) and are of the form

m

u(z) = Z'YkJQ(Wk x4 ty), u(x) = Zﬁkg?(@k cx+ )
k=1 —

respectively. We write u, u as (u1,ug) and (41, @g) for simplicity.

As for the samples from €2 and 052, we denote their empirical measure as

1 1 X
Py, = — dx., and Py, := — oy,
Ny N1 ; X; an No N2 ; Y

respectively.

Now, we are ready to estimate d(u, @), recall that

_ 1 - -
d(u,u) = \/g\/Hm - u1||2L2(le) + fluz — u2||2L2(pN2)

1 . )
</ gUlur = @allza(py,) + lluz = G2l z2(pyy)),
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which allows us to estimate these two terms separately.

From the boundedness of related functions, we have

s = L2y = (L — £)? = Q1L — £2] 22y,
< e MO L(u — @) 2y, )

and
[luz — ﬂzHLz(PNz) = [[|0€(u — 9)2 —09(u — g)2||L2(PN2)
< cM|0Q|||u -l r2(py,)-
Therefore, it can be turned to bound || L(u — @)|[2(py, ) and ||u — @[l 2(py, )-

For || L(u — u)||2(py, )» applying the triangle inequality yields

d
IL(u—@)llr2(py,) = Il — Z aij0i;( )+ > bidi(u— 1) + c(u— )| L2(py,)
1,0=1 =1
d d
<UD ai0i(u—)llL2pyy) + 1> bidi(w — @) L2(py, ) + lle(w = 1) L2(py, )
ij=1 i=1

= A1 —|—A2 +A3

Note that 0;u, u are Lipschitz continuous with respect to the parameters, thus for As, we have

Az—HZb@ W)lz2(py,)
< Zb Oi(u —u)| L= (o)
m )
= HZ% <Z%wk0 W T+ tg) — “kaiff(wk'x-ﬁ-tk)) [P
= | Z 2b; <Z Yo — Ve )who (Wi - T + tr) + Fpwho(wy - © + ty) — Frwho (O - T + tk)> | o= ()

k=1

<4MZ|%—%|+2MZHZ%%U Wi - @+ ) = k@0 @k - @ + )| Lo o),

= =1 k=1
where the last inequality follows from the facts that |b;| < M,1 < i < d and wy, = (w,ﬁ, e 7(,ufcl),
Z?:l |wi| = 1. And we denote the second term by As, then
d m
Agy =2M Y |1 Arwho(wr - @ + t) — T@ho @k - @ + k)| ()
i=1 k=1
—2MZHZ’7]€ —wk (wk-x—l—tk)—&—ﬁkw};(a(wk-x—i—tk)—a(wk-x—i—t_k))HLoe(Q)
=1 k=1

d m
< 4MZZ|%H% —wp| +2M D Y el@pl (lwe — @kl + [t — )

=1 k=1 =1 k=1
m m

=AM [l — @kl +2M > 1kl (Jwr — @kl1 + [tk — Tel),
k=1 P

where the inequality follows from the triangle inequality and the facts that ¢ is 1-Lipschitz continu-
ous and ||7 || e ([—2,2)) < 2.
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Combining the results for Ao, we have

Ap < 4MZ e — V| +4MZ Ve llwr — @k 1 +2MZ Vel (lwk — @rlr + [tk — tx])-
k=1 k=1 k=1

Similarly, we have

Az = |le(u — a)||L2(py,)

m m

<AM Yy — Bl +4M Y [l (lwn — @kl + [t — Tl)
k=1 k=1

and

m m
lu =l 2(pyy) <A Ik — Tl + 4> el (Jwk — @xlr + [tk — Ti]).
k=1 k=1

As Aj involves the second derivative of o9, the method described above cannot be applied. However,

we can borrow the idea from the proof of

d
A=Y a0 i(u—a) L2y, )
ij—1
m
=2 > wewr" AT (a1, 20) — Wik Akl (g, >0 22(Pay)
k=1
= 2| Z(%wkTAwk — ki, Ak) Loy -+, 203 + Th0F Ak Ly o400} — Loy -atinz0y) |22 (Pyy)
k=1

m m
<2 Z [ykwr " Awy, — 0 Adg| + 2 Z 60k Ak || a4t 20y — Lop-oriiz0} L2(Py, )-
k=1 k=1

For the first term, we have

|(ve — A )wi " Awg| + [T (wi " Awg — @] Awy,)|

NE

m
D Iywwn " Awy — i Awy| <
k=1

>
Il
—

My, — 3] + el lwe T Awr, — @x) + @ A(wy, — @)

NE

<

=~
Il
—

m
=M (Z vk = Al + 23kl lwr —Wk|1> ;
k=1

where the inequalities follow from the triangle inequality and the fact that for any x € B{(1),y
R? and matrix A € R¥*? with |A(i,j)| < M(1 < 4,5 < d), we have |27 Ay| = |(ATx)Ty|
| ATz olylr < Mlyl.

Thus we obtain the final upper bound for A;.

€
<

m m
Ay <2M> (e =Tl + 203k fwr = @k1) +2M Y 9kl 1 Tt 200 — Tan-atizoy L2y )-
k=1 k=1

Combining all results above, we can deduce that

d(u, @) < e(d® M|+ MO (Y (v — Al + e llwn — @)
k=1

+ Z |:Yk|||1{wk'$+tk20} - I{J)k~m+fk,20} ||L2(PN1))'
k=1
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Similar to bounding the empirical covering number of G for the two-layer neural networks in
15(1)} the covering number of  under d is

<c(d2M39| +M|8Q|)B>cmd _ (c(d2M4|Q + M2|agz|)>‘””d _ (cb)cmd

€ € €

where c is a universal constant.

(2) Note that d(u, @) < Cl|u — |2 (g), then Proposition 1 Belomestny et al.| (2024) implies that
0B N, |- s ) < O log ().

where C'is a constant independent of K.

Therefore, the conclusion holds. O]

Lemma 17 (Agmon et al[(1959)). Foru € Hz(Q) N L2(05),

2

d d
HUHE%(Q) <C|- Z aij&;ju+2bi8iu+cu | +C||UH%2(OQ)
4,j=1 i=1 H_%(Q) (152)
d d
<Co |l = aydyu+ Y bidiu+culzi) + ulliz@n | -
ij=1 i=1

where Cq is a constant that depends only on ).

D DISCUSSION

D.1 OVER-PARAMETERIZED SETTING

In the context of over-parameterization, the generalization bounds for two-layer neural networks
may become less meaningful due to the term m/n. However, fortunately, the function class of two-
layer neural networks in Proposition 2 and Proposition 4 forms a convex hull of a function class
with a covering number similar to that of VC-classes. Consequently, we can extend the convex hull
entropy theorem (Theorem 2.6.9 in|Vaart & Wellner (2023)) to the H' norm, allowing us to derive
generalization bounds that are independent of the network’s width. Theorem 10 is a modification of
Theorem 2.6.9 in |Vaart & Wellner| (2023) to obtain explicit dependence on the dimension.

Lemma 18. Let F be arbitrary set consisting of n measurable function f : Q — R of finite H'(Q)-
diameter diam(F). Then for every ¢ > 0, we have

2

ene? <
N (ediam(F), conv(F), H(Q)) < (e—l— 5 > .

Proof. Assume that F = {fy,---, fn}. For given )\ in the n-dimensional simplex. Let Y7,--- ,Y}
be i.i.d. random elements such that P(Y; = f;) = A; for j = 1,--- , k and k is natural number to
be determined. Then we have

EY; = Y A fj and VEY; = EVY; = Y A,V f;.
j=1 j=1
LetY) = % Zle Y;, then the independence implies

k

_ 1
E|Yy — EY:l5n ) = 72 > E[Y; - EYi)3h ) <
=1

%(diam(]—'))Q.

Therefore, Markov inequality implies that there is at least one realization of Y}, that have H'(Q)-
distance at most £~ '/2diam(F) to the convex combination >i—1 Aj fj. Note that every realization
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has the form £~* Zle fir.» where some functions f; in the set 7 may be used multiple times. As
such forms are at most C}j +k_1- WECan deduce that

N (k~2diam(F), conv(F), H'(Q)) < Cpi oy < €"(1+ %)k’

where the last inequality follows from Stirling’s inequality.

For 0 < e < 1, we can take k = [ %, then the monotonicity of the function *(1+ %)* and the fact
k< e%—i—l < e%implythat

2

2\ 2
& n) k ene\ «
1+-) < . 153
e ( +o) < (e + =5 ) (153)
For € > 1, the right term in (153) is larger than 1, thus the conclusion holds directly. O

Theorem 10. Let QQ be a probability on ), and let F be a class of measurable functions with
[FllQ.2 = ;ggllfllm@ < oo and

\4
NelIFloa 7. @) <€ (1) L 0<e<t

for some V' > 1. Then we have

1 1 2V 1\ v+
log N'(¢]| F| .0, com(F), H'(Q)) < KV(CV +2) % <) ,
where K is a universal constant.

Proof. Note that every element in the convex hull of F has distance ¢ to the convex hull of an e-net
over F. Accordingly, given a fixed e, it suffices to consider scenarios where the set F is finite.

SetW =1+ and L = CYV||F||g.2- Then the assumption implies that F can be covered by n
balls of radius at most Ln~%/V for every natural number n. Form sets /1 C Fo C --- C F such
that for each n, the set F,, is a maximal, Ln~Y/ V-separated net over F. Thus F,, has at most n

elements. We will show by induction that there exist constant C and Dj, depending only on C' and
V such that sup,, C; V Dy, < oo and for ¢ > 3V,

log N (Cr L=, conv(Fppa), HY(Q)) < Dgn, n, k > 1.

The proof consists of a nested induction argument. The outer layer is induction on %k and the inner
layer is induction on n.

First, we apply induction for n, i.e., for £ = 1, we will prove the conclusion for each n. For fixed
ng = 10, it suffices to choose Cy Lng~™" = C1L10~" > ||F||q 2 so that the statement is trivially

ture for n < ng = 10, i.e., C; > 10V C~/V. For 10 < n < 100, set m = L%J, thus 1 < m < 10.
By the definition of F,,,, each f € F,, — F,, has distance at most Lm~YV of some element 7, f
of F,,,. Thus each element of conv(F) can be written as

ZAff: Zﬂff+ Z )‘f(f_ﬂ'mf)v

fEFn fE€EFm FEFn—Fm

where 1y > 0and ) 1y = > Ay = 1. Taking G as the set of function f — m,, f with f ranging over
Fn — Fm, thus conv(F,,) C conv(F,,) + conv(G,,) for a set G,, consisting of at most n elements,
each of norm smaller than Lm /Y, then diam(G,,) < 2Lm~ YV, Applying Lemma 17 for G,, with
¢ defined by m™/Ve = 1C1n=W, ie., ediam(G,) < 3C1Ln~", we can find a $C; Ln~" -net
over conv(G,,) consisting of at most

32n ﬁ)%

(e Sy ( + Oy ) o
2

<
<

32 'n

32n 20%
< i 6012( 1 )2 c3
=\°7" 32 ‘20
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elements, where the inequality follows from the facts that (e + enm)% is increasing with respect to
x> 0and [{5] > 14 for n > 10. Applying the induction hypothesis to F,,, to find a C; Lm ="V~
net over conv(F,,) consisting of at most ¢ elements, where we choose Dy = 1. This defines
a partition of conv(F,,) into m-dimensional sets of radius at most C; Lm~". Without loss of
generality, we can assume that F,,, = {f;,, fi,, - , fi,, }. For any fixed element / in the C; Lm~" -
net over conv(Fy,), assume that h = Ay f;;, + - A fi,, for A = (Ar,--+ , An) € R™. And we
denote the ball centered at h with H*(Q) radius Cy Lm~W by
H = {5‘ = (5‘17 T aj‘m) €A: }_l = j\lfil et S\mfimv ||}_l - hHHl(Q) < Cleiw}v
where A is a subset of R™.,
Note that
Ih = Al = A fi + - Amfin = Aufis — -+ = A fin |10
<A = Mlllifillzr@) + -+ A = Amlll fi 2 @)
< (A=Al =+ 4 A = A Fl Q.2

Thus if |[A — A||; < C1CYV'm=W, then ||h — hllg (@) < C1Lm~". Therefore, A C {A € R™ :
A=A < Clcl/Vm*W}. By Lemma 5.7 in|Wainwright| (2019), we can find a %Clcl/Vn*W-
net of A under the distance || - ||; consisting of at most

60,0/ V=W n.w
- = — m o< W1
<§C101/Vn—” > (12(m) )" < (12(20) )

|2

S

elements. Moreover, it yields a %Cl Ln=" -net of H under H'(Q). Select a function from each of
the given sets. Then, construct all possible combinations of the sums f + g by preceding procedure,
where f is associated with conv(F,,) and g is associated with conv(G,,). These form a C; Ln~" -net
over conv(F,,) of cardinality bounded by

2
32(20) V n
— oz

<k

1

2
n/10 Wy\n/10 eCy 1
e (12(20)") <e+ TN (2())

This is bounded by €™ for some suitable choice of C. Specifically, note that for V' > 1, the term
attains the maximum at V' = 1, thus it is bounded by
C2 32-4(2)071,
n/10(19(20)% )2/ 10 eCq 1
e (12(20)2) “* 33400
We can just take C; = 1000. This concludes the proof for £ = 1 and 10 < n < 100. Proceeding in
the same way yields that the conclusion holds for every n.

We continue by induction on k. By a similar construction as before, conv(F,re) C
conv(F,(x—1)a) + conv(Gy 1) for a set conv(G,, ) containing at most nk elements, each of norm

smaller than L(n(k — 1)?)~*/V, so that conv(G,, ;) < 2Ln~ YV Ek=9/V24/V Applying Lemma 17
to conv(G,, 1) with ¢ = 271k9/V=2279/Vn=1/2 we can find an Lk~2n~" -net over conv(G,, 1)
consisting of at most

29 _2q
n2V ATV

enkie? z ekat 3 —4
(€+ 9 )‘* = €+W

elements. Apply the induction hypothesis to obtain a Cj,_; Ln~" -net over the set conv(Fp (k—1)a)
with respect to H'(Q) consisting at most eP*~1" elements. Combine the nets as before to obtain a

Cr_1Ln=" -net over conv(F,kq) consisting of at most ePr" elements, for
1
Cp=Cr_1+ 72
2 51 +log(1 + 27V 3Tt —4)

Dy =Dy +27V

k2(5-2)
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99 1+ log(1 +2 %3V +2)

k2 '
Therefore, for any k, we can deduce that C, < C7 +2 and Dy, < D1+ KV, where K is a universal
constant. Recall that C; = max (10" C~'/V1000), thus sup;, Cj < max(10" C~/V 1000) 4 2.

Dy =Dy +

Finally,

1 Ck0% o 1 2v (1) V+?
log N (€| F||g,2, conv(F), H (Q)) < sup Dy, ; < KV(CV +2)vz | = ,
E

where K is a universal constant. O

For the function class of two-layer neural networks considered in the DRM, i.e.,
F={ow-z+1t),—oc(w-z+1),0: |w=1,te[-1,1)},
thus for any probability measure @ on [0, 1]%, we have ||F||g.2 < 3 and
o
NelFllga. 7 1'(@) < Cla+ Do+ (£
where C is a universal constant.
Then, applying Theorem 10 yields that
_6d_
1 3d+2
log (e Fllgcom(F). 1(@) < K (1)
where K is a universal constant.

As a result, in Theorem 9 for deriving the generalization error for the static Schrédinger equation,
we can deduce that the fixed point r* satisfies
1 %me

which yields a meaningful generalization bound in the setting of over-parameterization.

(MY

r* <d

D.2 OTHER BOUNDARY CONDITIONS FOR DEEP Ri1TZ METHOD

Let 2 C [0, 1]¢ be a convex bounded open set and 02 be the boundary of Q2. Consider the elliptic
equation on {2 with Neumann boundary condition:

—Au 4+ wu = hon§, ? = g on 09, (154)
n
where X
heL>*(Q), ge Hz(0), weL*). (155)
From the variation method, the Ritz functional can be defined by
1 1
E(u) = / <||Vu||§ + —wluf?* - hu) dx —/ (9Tu)ds, (156)
o \2 2 a9

where 7' is the trace operator.

Then we can deduce that then unique weak solution u* € H'(Q) of (154) is the unique minimizer
of & over H(€). Moreover, the Ritz functional possesses similar strongly convex property as
described in Proposition 1. Specifically, for any u € H'(Q),

lu = w3 @) S E) = W) S llu—ulip q)- (157)
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At this point, to derive the fast rate for equation (156), we can employ the LRC from the multi-task
learning setting. This is due to the strongly convex property of the Ritz functional (156), which
is similar to the approach used to derive faster generalization bounds for the static Schrodinger
equation. Specifically, Theorem B.3 in [Yousefi et al.| (2018) can be seen as a generalization of
Theorem 3.3 in Bartlett et al. (2005)), thus combining it with the error decomposition in (77) can
lead to the conclusion for the Ritz functional (156). For the sake of brevity, we omit the proof here.

For other boundary conditions, such as the Dirichlet and Robin conditions, see Duan et al.| (2021a)
and |Chen et al.| (2024) for discussions on the similarly strong convexity of the Ritz functional, as in
equation (157).

D.3 LIMITATIONS AND FUTURE WORK

In the paper, we have made the assumption that all related functions are bounded, as re-
quired for the localization analysis. However, these assumptions can sometimes be strict.
Therefore, it is crucial to investigate settings where the boundedness is not imposed.

Utilizing ReLU neural networks in the DRM presents optimization challenges due to the
non-differentiability of the ReLU function’s derivative. One potential approach is to em-
ploy randomized methods to tackle the objective functions, like using random neural net-
works. Despite this, methods for deriving improved generalization error remain valid under
stronger assumptions. For instance, when the solutions belong to %(£2), employing ReLU?
neural networks allows us to leverage gradient descent or stochastic gradient descent meth-
ods.

For the PINNS, the loss functions play a crucial role for solving PDEs. It is worth paying
more attention to the design of loss functions for different PDEs. Moreover, extending the
results in Section 3 to other types of PDEs and other PDE solvers involving neural networks
is also a topic for future research.

The optimization error is beyond the scope of this paper. |Gao et al.|(2023); Luo & Yang
(2020) have considered the optimization error of the two-layer neural networks for the
PINNSs inspired by the work |Du et al.| (2018)). However, it remains open of the optimization
aspect for the DRM.

The requirements of the function class of deep neural networks may be impractical.
Achieving these requirements in practice might be accomplished by restricting the weights
of the networks, but doing so can make optimization more difficult. Thus, it is worth ex-
ploring whether there are more efficient methods.

The solution theory of PDEs in the Barron spaces remains unclear. [Lu et al.| (2021c) has
addressed the problem for the Poisson and static Schrodinger equations in the Spectral
Barron spaces, yielding a priori estimates similar to the standard Sobolev regularity esti-
mate. As for the Barron spaces, Chen et al.| (2023) has studied the regularity of solutions
to the whole-space static Schrodinger equation in B%(R¢). However, the results of Lu et al.
(2021c) and |Chen et al.| (2023) do not work for B°(£2). Despite this, at least, there exists

solutions in the B%(9), as H 2 t+¢(Q) C B*(€) for any € > 0.
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