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ABSTRACT

In this paper, we derive refined generalization bounds for the Deep Ritz Method
(DRM) and Physics-Informed Neural Networks (PINNs). For the DRM, we focus
on two prototype elliptic partial differential equations (PDEs): Poisson equation
and static Schrödinger equation on the d-dimensional unit hypercube with the
Neumann boundary condition. Furthermore, sharper generalization bounds are
derived based on the localization techniques under the assumptions that the exact
solutions of the PDEs lie in the Barron spaces or the general Sobolev spaces.
For the PINNs, we investigate the general linear second order elliptic PDEs with
Dirichlet boundary condition using the local Rademacher complexity in the multi-
task learning setting. Finally, we discuss the generalization error in the setting of
over-parameterization when solutions of PDEs belong to Barron space.

1 INTRODUCTION

Partial Differential Equations (PDEs) play a pivotal role in modeling phenomena across physics,
biology and engineering. However, solving PDEs numerically has been a longstanding challenge
in scientific computing. Classical numerical methods like finite difference, finite element, finite
volume and spectral methods may suffer from the curse of dimensionality when dealing with high-
dimensional PDEs. Recent years, the remarkable successes of deep learning in diverse fields like
computer vision, natural language processing and reinforcement learning have sparked interest in
applying machine learning techniques to solve various types of PDEs. In fact, the idea of using
machine learning to solve PDEs dates back to the last century (Lagaris et al., 1998), but it has
recently gained renewed attention due to the significant advancements in hardware technology and
the algorithm development.

There are numerous methods proposed to solve PDEs using neural networks. One popular method,
known as PINNs (Raissi et al., 2019), utilizes neural network to represent the solution and enforces
the neural network to satisfy the PDE constraints, initial conditions and boundary conditions by
encoding these conditions into the loss function. The flexibility and scalability of the PINNs make
it a widely used framework for addressing PDE-related problems. The Deep Ritz method (Yu et al.,
2018), on the other hand, incorporates the variational formulation into training the neural networks
due to the widespread use of the variational formulation in traditional methods. In comparison to
PINNs, the form of DRM has a lower derivative order, but the fact that not all PDEs have variational
forms limits its applications. Both methods hinge on the approximation ability of the deep neural
networks.

The approximation power of feed-forward neural networks (FNNs) with diverse activation func-
tions has been studied for different types of functions, including smooth functions (Lu et al., 2021a),
continuous functions (Shen et al., 2022), Sobolev functions (Belomestny et al., 2023; Yang et al.,
2023b;a; Yarotsky, 2017), Barron functions (Barron, 1993). It was proven in the last century that
a sufficiently large neural network can approximate a target function in a certain function class
with any given tolerance. Specifically, it has been shown in Hornik (1991) that the two-layer neu-
ral network with ReLU activation function is a universal approximator for continuous functions.
More recently, specific approximate rate of neural networks has been shown for different func-
tion classes in terms of depth and width. Lu et al. (2021a) showed that a ReLU FNN with width
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O(N logN) and depth O(L logL) can achieve approximation rate O(N−2s/dL−2s/d) for the func-
tion class Cs([0, 1]d) in the L∞ norm, which is nearly optimal. In the context of applying neural
networks to solve PDEs, the focus shifts to the approximation rates in the Sobolev norms. Be-
lomestny et al. (2023) utilized multivariate spline to derive the required depth, width, and sparsity
of a ReLU2 deep neural network to approximate any Hölder smooth function in Hölder norms with
the given approximation error. And the weights of the neural network are also controlled, which
is essential to derive generalization error. Yang et al. (2023b) derived the nearly optimal approxi-
mation results of deep neural networks in Sobolev spaces with Sobolev norms. Specifically, deep
ReLU neural networks with width O(N logN) and depth O(L logL) can achieve approximation
rate O(N−2(n−1)/dL−2(n−1)/d) for functions in Wn,∞((0, 1)d) with W 1,∞ norm. For higher or-
der approximation in Sobolev spaces, Yang et al. (2023a) introduced deep super ReLU networks for
approximating functions in Sobolev spaces under Sobolev norms Wm,p for m ∈ N with m ≥ 2.
The optimality was also established by estimating the VC-dimension of the function class consisting
of higher-order derivatives of deep super ReLU networks.

In this work, we focus on the DRM and PINNs, aiming to derive sharper generalization bounds.
Compared to Jiao et al. (2021); Duan et al. (2021b), the localized analysis utilized in this paper
leads to improved generalization bounds. We believe that this study provides a unified framework
for deriving generalization bounds for methods that solve PDEs involving machine learning.

1.1 RELATED WORKS

Deep learning based PDE solvers: Solving high-dimensional PDEs has been a long-standing chal-
lenge in scientific computing due to the curse of dimensionality. Inspired by the ability and flexibility
of neural networks for representing high dimensional functions, numerous studies have focused on
developing efficient deep learning-based PDE solvers. In recent years, the PINNs have emerged as
a flexible framework for addressing problems related to PDEs and have achieved impressive results
in numerous tasks. Despite their success, there are areas where further improvements can be made,
such as developing better optimization targets (Chiu et al., 2022) and neural network architectures
(Ren et al., 2022; Zhang et al., 2020). Inspired by the use of weak formulation in traditional solvers,
Zang et al. (2020) proposed to solve the weak formulation of PDEs via an adversarial network and
the DRM (Yu et al., 2018) trains a neural network to minimize the variational formulations of PDEs.

Fast rates in machine learning: In statistical learning, the excess risk is expressed as the form
(COMPn(F)

n )α, where n is the sample size, COMPn(F) measures the complexity of the function
class F and α ∈ [ 12 , 1] represents the learning rate. The slow learning rate 1√

n
(α = 1

2 ) can be easily
derived by invoking Rademacher complexity (Bartlett & Mendelson, 2002), but achieving the fast
rate 1

n (α = 1) is much more challenging. Based on localization techniques, the local Rademacher
complexity (Bartlett et al., 2005; Koltchinskii, 2006) was introduced to statistical learning and has
become a popular tool to derive fast rates. It has been successfully applied across a variety of tasks,
like clustering (Li & Liu, 2021), learning kernels (Cortes et al., 2013), multi-task learning (Yousefi
et al., 2018), empirical variance minimization (Belomestny et al., 2017), among others. Variants of
Rademacher complexity, such as shifted Rademacher complexity (Zhivotovskiy & Hanneke, 2018)
and offset Rademacher complexity (Liang et al., 2015), also offer a potential direction for achieving
the fast rates (Duan et al., 2023; Kanade et al., 2022; Yang et al., 2019). In this paper, our results are
based on the localized analysis in Bartlett et al. (2005); Koltchinskii (2006; 2011).

Generalization bounds for machine learning based PDE solvers: Based on the probabilistic
space filling arguments (Calder, 2019), Shin et al. (2020) demonstrated the consistency of PINNs
for the linear second order elliptic and parabolic type PDEs. An abstract framework was introduced
in Mishra & Molinaro (2022) and stability properties of the underlying PDEs were leveraged to
derive upper bounds on the generalization error of PINNs. Following similar methods widely used
in machine learning for deriving generalization bounds, the convergence rate of PINNs was derived
in Jiao et al. (2021) by decomposing the error and estimating related Rademacher complexity. For
the DRM, when the solutions are in the spectral Barron space, Lu et al. (2021c) demonstrated the
generalization error bounds of two-layer neural networks for solving the Poisson equation and static
Schrödinger equation, but in expectation and with the slow rates. When solutions of the PDEs fall in
general Sobolev spaces, Duan et al. (2021b) established non-asymptotic convergence rate for DRM
using a method similar to Jiao et al. (2021). The most relevant work to ours is Lu et al. (2021b),
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which used peeling methods to derive sharper generalization bounds of the DRM and PINNs for the
Schrödinger equation on a hypercube with zero Dirichlet boundary condition. However, Lu et al.
(2021b) assumed that the function class of neural networks is a subset of H1

0 , which is challenging
to achieve. For the DRM, the peeling method in Lu et al. (2021b) cannot be applied to derive
the generalization error of the Poisson equation, as in this scenario, the population loss isn’t the
expectation of the empirical loss. For the PINNs, Lu et al. (2021b) required the strong convexity
and only considered the static Schrödinger equation with zero Dirichlet boundary condition, but our
approach does not need this condition and works for general linear second order elliptic PDEs.

1.2 CONTRIBUTIONS

• For the aspect of approximation via neural networks, we show that the functions in B2(Ω)
can be well approximated in the H1 norm by two-layer ReLU neural networks with con-
trolled weights, and similar results are also presented for functions in B3(Ω) in the H2

norm. Compared to the results in Lu et al. (2021c), our approximation rate is faster and
the Barron space in our setting is larger than the spectral Barron space in Lu et al. (2021c).
Compared with other approximation results for Barron functions (Siegel & Xu, 2022a;
Siegel, 2023), the constant in our result is independent of the dimension.

• For the DRM, we derive sharper generalization bounds for the Poisson equation and
Schrödinger equation with Neumann boundary condition, regardless of whether the so-
lutions fall in Barron spaces or Sobolev spaces. Our methods rely on the strongly convex
property of the variational form and the localized analysis of Bartlett et al. (2005); Koltchin-
skii (2006). However, these methods cannot be applied directly, as for the Poisson equation,
the expectation of empirical loss is not equal to the variational formulation. Additionally,
for the static Schrödinger equation, the strongly convex property cannot be simply regarded
as the Bernstein condition in Bartlett et al. (2005), as the solutions of the PDEs often do
not belong to the function class of neural networks in our setting.

• For the PINNs, we regard this framework as a scenario within multi-task learning (MTL).
At this time, there are two key points: one is that the loss functions are non-negative and the
other one is that a non-exact oracle inequality suffices. To achieve our goal, we extend the
entropy method to derive a Talagrand-type concentration inequality for MTL, which offers
better constants than those provided by Theorem 1 in Yousefi et al. (2018). Consequently,
similar results to those in single-task setting can be established, yielding a non-exact or-
acle inequality tailored for PINNs. Unlike Lu et al. (2021b), which required the strong
convexity, our approach does not impose this requirement. While we have only presented
results for the linear second order elliptic equations with Dirichlet boundary conditions,
our method can serve as a framework for PINNs for a wide range of PDEs, as well as other
methods that share similar forms with PINNs.

• In the Discussion section, we investigate the complexity of over-parameterized two-layer
neural networks when approximating functions in Barron space, and demonstrate meaning-
ful generalization errors in the setting of over-parameterization. Additionally, we discuss
other boundary conditions for Deep Ritz Method.

1.3 NOTATION

For x ∈ Rd, |x|p denotes its p-norm and we use |x| as shorthand for |x|2. We denote the inner
product of vectors x, y ∈ Rd by x · y. For the d-dimensional ball with radius r in the p-norm
and the boundary of this ball, we denote them by Bdp(r) and ∂Bdp(r) respectively. For a set F
that is a subset of a metric space with metric d, we use N (F , d, ϵ) to denote its covering number
with given radius ϵ and the metric d. For given probability measure P and a sequence of random
variables {Xi}ni=1 distributed according to P , we denote the empirical measure of P by Pn, i.e.
Pn = 1

n

∑n
i=1 δXi . For the activation functions, we write σk(x) for the ReLUk activation function,

i.e., σk(x) := (max(0, x))k. And we use σ for σ1 for simplicity. Given a domain Ω ⊂ Rd, we
denote |Ω| and |∂Ω| the measure of Ω and its boundary ∂Ω, respectively.
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2 DEEP RITZ METHOD

2.1 SET UP

Let Ω = (0, 1)d be the unit hypercube on Rd and ∂Ω be the boundary of Ω. We consider the Poisson
equation and static Schrödinger equation on Ω with Neumann boundary condition.

Poisson equation:

−∆u = f in Ω,
∂u

∂ν
= 0 on ∂Ω. (1)

Static Schrödinger equation:

−∆u+ V u = f in Ω,
∂u

∂ν
= 0 on ∂Ω. (2)

In this section, we follow the framework established in Lu et al. (2021c), which characterizes the
solutions through variational formulations. For completeness, the detailed results are presented as
follows.

Proposition 1 (Proposition 1 in Lu et al. (2021c) ). (1) Assume that f ∈ L2(Ω) with
∫
Ω
fdx = 0.

Then there exists a unique weak solution u∗P ∈ H1
∗ (Ω) := {u ∈ H1(Ω) :

∫
Ω
udx = 0} to the

Poisson equation. Moreover, we have that

u∗P = argmin
u∈H1(Ω)

EP (u) := argmin
u∈H1(Ω)

{∫
Ω

|∇u|2dx+

(∫
Ω

udx

)2

− 2

∫
Ω

fudx

}
, (3)

and that for any u ∈ H1(Ω),

EP (u)− EP (u∗P ) ≤ ∥u− u∗P ∥2H1(Ω) ≤ max{2cP + 1, 2}(EP (u)− EP (u∗P )), (4)

where cP is the Poincaré constant on the domain Ω.

(2) Assume that f, V ∈ L∞(Ω) and that 0 < Vmin ≤ V (x) ≤ Vmax < ∞ for all x ∈ Ω and
some constants Vmin and Vmax. Then there exists a unique weak solution u∗S ∈ H1(Ω) to the static
Schrödinger equation. Moreover, we have that

u∗S = argmin
u∈H1(Ω)

ES(u) := argmin
u∈H1(Ω)

{∫
Ω

|∇u|2 + V |u|2dx− 2

∫
Ω

fudx

}
, (5)

and that for any u ∈ H1(Ω),

1

max(1, Vmax)
(ES(u)− ES(u∗S)) ≤ ∥u− u∗S∥2H1(Ω) ≤

1

min(1, Vmin)
(ES(u)− ES(u∗S)). (6)

Throughout the paper, we assume that f ∈ L∞(Ω) and V ∈ L∞(Ω) with 0 < Vmin ≤ V (x) ≤
Vmax < ∞. The boundedness is essential in our method for deriving fast rates and it also leads to
the strongly convex property in Proposition 1(2). There are also some methods for deriving gener-
alization error beyond boundedness, as discussed in Mendelson (2015; 2018); Lecué & Mendelson
(2013). However, these approaches often require additional assumptions, such as specific properties
of the data distributions or function classes, which can be difficult to verify in practice.

The core concept of DRM involves substituting the function class of neural networks for Sobolev
spaces and then training the neural networks to minimize the variational formulations. Subse-
quently, we can employ Monte-Carlo method to compute the high-dimensional integrals, as tra-
ditional quadrature methods are constrained by the curse of dimensionality in this context.

Let {Xi}ni=1 be an i.i.d. sequence of random variables distributed uniformly in Ω. As in our setting,
the volume of Ω is 1, thus the empirical losses can be written directly as

En,P (u) =
1

n

n∑
i=1

(|∇u(Xi)|2 − 2f(Xi)u(Xi)) + (
1

n

n∑
i=1

u(Xi))
2 (7)
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and

En,S(u) =
1

n

n∑
i=1

(|∇u(Xi)|2 + V (Xi)|u(Xi)|2 − 2f(Xi)u(Xi)), (8)

where we write En,P and En,S for the empirical losses of the Poisson equation and static Schrödinger
equation respectively. Note that the expectation of En,P (u) is not equal to EP (u), which limits most
methods for deriving a fast rate for the Poisson equation.

2.2 MAIN RESULTS

The aim of this section is to establish a framework for deriving improved generalization bounds
for the DRM. In the setting where the solutions lie in the Barron space B2(Ω), we demonstrate
that the generalization error between the empirical solutions from minimizing the empirical losses
and the exact solutions grows polynomially with the underlying dimension, enabling the DRM to
overcome the curse of dimensionality in this context. Furthermore, when the solutions fall in the
general Sobolev spaces, we provide tight generalization bounds through the localization analysis.

We begin by presenting the definition of the Barron space, as introduced in Barron (1993).

Bs(Ω) := {f : Ω → C : ∥f∥Bs(Ω) := inf
fe|Ω=f

∫
Rd

(1 + |ω|1)s|f̂e(ω)|dω <∞}, (9)

where the infimum is over extensions fe ∈ L1(Rd) and f̂e is the Fourier transform of fe. Note that
we choose 1-norm for ω in the definition just for simplicity.

There are also several different definitions of Barron space (Ma et al., 2022) and the relationships
between them have been studied in Siegel & Xu (2023). The most important property of functions in
the Barron space is that those functions can be efficiently approximated by two-layer neural networks
without the curse of dimensionality. It has been shown in Barron (1993) that two-layer neural
networks with sigmoidal activation functions can achieve approximation rate O(1/

√
m) under the

L2 norm, where m is the number of neurons. And the results have been extended to the Sobolev
norms (Siegel & Xu, 2022a;b). However, some constants in these extensions implicitly depend
on the dimension and there is a possibility that the weights may be unbounded. To address these
concerns, we demonstrate the approximation results for functions in the Barron space under the H1

norm. Additionally, for completeness, the approximation result in W k,∞(Ω) with W 1,∞ norm is
also presented, which was originally derived in Yang et al. (2023b).
Proposition 2 (Approximation results in the H1 norm).

(1) Barron space: For any f ∈ B2(Ω), there exists a two-layer neural network fm ∈
Fm,1(5∥f∥B2(Ω)) such that

∥f − fm∥H1(Ω) ≤ c∥f∥B2(Ω)m
−( 1

2+
1
3d ), (10)

where Fm,1(B) := {
m∑
i=1

γiσ(ωi · x + ti) : |ωi|1 = 1, ti ∈ [−1, 1),
m∑
i=1

|γi| ≤ B} for any positive

constant B and c is a universal constant.

(2) Sobolev space: For any f ∈ Wk,∞(Ω) with k ∈ N, k ≥ 2 and ∥f∥Wk,∞(Ω) ≤ 1, any N,L ∈
N+, there exists a ReLU neural network ϕ with the width (34 + d)2dkd+1(N + 1) log2(8N) and
depth 56d2k2(L+ 1) log2(4L) such that

∥f(x)− ϕ(x)∥W1,∞(Ω) ≤ C(k, d)N−2(k−1)/dL−2(k−1)/d, (11)

where C(k, d) is the constant independent with N,L.

Remark 1. When approximation functions in B2(Ω), our derived bound exhibits a faster rate
than the bound of m− 1

2 presented in Xu (2020). Although our bound is slower than the bound
m−( 1

2+
1

2(d+1) ) shown in Siegel & Xu (2022a), it is important to note that the constant within the
approximation rate of Siegel & Xu (2022a) may depend exponentially on the dimension and the
weights of two-layer neural network could potentially be unbounded. In contrast, the constant in
our approximation is dimension-independent and the weights are controlled.
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For the convenience of expression, we write Φ(N,L,B) for the function class of ReLU neural
networks in Proposition 2(2) with width (34 + d)2dkd+1(N + 1) log2(8N), depth 56d2k2(L +
1) log2(4L) and W 1,∞ norm bounded by B such that the approximation result in Proposition 2(2)
holds for any f ∈ Wk,∞(Ω) with ∥f∥Wk,∞(Ω) ≤ 1.

With the approximation results above, we can derive the generalization error for the Poisson equation
and the static Schrödinger equation through the localized analysis.

Theorem 3 (Generalization error for the Poisson equation).

Let u∗P ∈ H1
∗ (Ω) solve the Poisson equation and un,P be the minimizer of the empirical loss En,P

in the function class F .

(1) For u∗P ∈ B2(Ω), taking F = Fm,1(5∥u∗P ∥B2(Ω)), then with probability as least 1− e−t

EP (un,P )− EP (u∗P ) ≤ CM2 logM

(
md log n

n
+

(
1

m

)1+ 2
3d

+
t

n

)
, (12)

where C is a universal constant and M is the upper bound for ∥f∥L∞ , ∥u∗P ∥B2(Ω).

By taking m =
(
n
d

) 3d
2(3d+1) , we have

EP (un,P )− EP (u∗P ) ≤ CM2 logM

((
d

n

) 3d+2
2(3d+1)

log n+
t

n

)
. (13)

(2) For u∗P ∈ Wk,∞(Ω), taking F = Φ(N,L,B∥u∗P ∥Wk,∞(Ω)), then with probability at least
1− e−t

EP (un,P )− EP (u∗P ) ≤ C

(
(NL)2(logN logL)3

n
+ (NL)−4(k−1)/d +

t

n

)
, (14)

where n ≥ C(NL)2(logN logL)3 and C is a constant independent of N,L, n.

By taking N = L = n
d

4(d+2(k−1)) , we have

EP (un,P )− EP (u∗P ) ≤ C

(
n−

2k−2
d+2k−2 (log n)6 +

t

n

)
. (15)

The generalization error for the static Schrödinger equation shares similar form with that in Theorem
3. For readability and brevity, we put it in Appendix (see Theorem 9).

Remark 2. By utilizing the strong convexity of the Ritz functional and localized analysis, we improve
the convergence rate n−

2k−2
d+4k−4 as shown in Duan et al. (2021b) to n−

2k−2
d+2k−2 . Furthermore, when

the solution belongs to B2(Ω), our convergence rate ( dn )
3d+2

2(3d+1) is faster than n−
1
3 in Lu et al.

(2021c) and explicitly demonstrates its dependency on the dimension.

Remark 3. Due to the equivalence between H1-error and the energy excess as shown in Proposi-
tion 1, we are able to deduce the generalization error for both the Poisson equation and the static
Schrödinger equation under the H1 norm. For example, one can derive that for the Poisson equa-
tion, if u∗P ∈ B2(Ω), then

∥un,P − u∗P ∥2H1(Ω) ≤ CM2 logM

((
d

n

) 3d+2
2(3d+1)

log n+
t

n

)
. (16)

In the setting of over-parameterization, the generalization bound in (12) becomes meaningless. For-
tunately, the function class F in Theorem 3(1) has constraints on the weights of the two-layer neural
networks, thus we can obtain width-independent upper bounds on their covering number. See Dis-
cuss section D.1 in the appendix for more details.
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3 PHYSICS-INFORMED NEURAL NETWORKS

3.1 SET UP

In this section, we will consider the following linear second order elliptic equation with Dirichlet
boundary condition. 

−
d∑

i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu = f, in Ω,

u = g, on ∂Ω,

(17)

where aij ∈ C(Ω̄), bi, c, f ∈ L∞(Ω), g ∈ L∞(∂Ω) and Ω ⊂ (0, 1)d is an open bounded domain
with properly smooth boundary. Additionally, we assume that the strictly elliptic condition holds,
i.e., there exists a constant λ > 0 such that

∑d
i,j=1 aijξiξj ≥ λ|ξ|2 for ∀ x ∈ Ω, ξ ∈ Rd.

In the framework of PINNs, we train the neural network u with the following loss function.

L(u) :=
∫
Ω

−
d∑

i,j=1

aij(x)∂iju(x) +

d∑
i=1

bi(x)∂iu(x) + c(x)u(x)− f(x)

2

dx+

∫
∂Ω

(u(y)−g(y))2dy.

(18)

By employing the Monte Carlo method, the empirical version of L can be written as

LN (u) :=
|Ω|
N1

N1∑
k=1

−
d∑

i,j=1

aij(Xk)∂iju(Xk) +

d∑
i=1

bi(Xk)∂iu(Xk) + c(Xk)u(Xk)− f(Xk)

2

+
|∂Ω|
N2

N2∑
k=1

(u(Yk)− g(Yk))
2
,

(19)
where N = (N1, N2), {Xk}N1

k=1 and {Yk}N2

k=1 are i.i.d. random variables distributed according to
the uniform distribution U(Ω) on Ω and U(∂Ω) on ∂Ω, respectively.

Given the empirical loss LN , the empirical minimization algorithm aims to seek uN which mini-
mizes LN , that is:

uN ∈ argmin
u∈F

LN (u),

where F is a parameterized hypothesis function class.

3.2 MAIN RESULTS

We begin by presenting the approximation results in the H2 norm.
Proposition 4 (Approximation results in the H2 norm).

(1) Barron space: For any f ∈ B3(Ω), there exists a two-layer neural network fm ∈
Fm,2(c∥f∥B3(Ω)) such that

∥f − fm∥H2(Ω) ≤ c∥f∥B3(Ω)m
−( 1

2+
1
3d ), (20)

where Fm,2(B) := {
m∑
i=1

γiσ2(ωi · x + ti) : |ωi|1 = 1, ti ∈ [−1, 1),
m∑
i=1

|γi| ≤ B} for any positive

constant B and c is a universal constant.

(2) Sobolev space: For any f ∈ Wk,∞(Ω) with k > 3 and any integer K ≥ 2, there exists
some sparse ReLU3 neural network ϕ ∈ Φ(L,W, S,B;H) with L = O(1),W = O(Kd), S =
O(Kd), B = 1, H = O(1), such that

∥f(x)− ϕ(x)∥H2(Ω) ≤
C

Kk−2
, (21)
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where C is a constant independent of K, Φ(L,W,S,B;H) denote the function class of ReLU3

neural networks with depth L, width W and at most S non-zero weights taking their values in
[−B,B]. Moreover, the W 2,∞ norms of functions in Φ(L,W, S,B;H) have the upper bound H .

The framework of PINNs can be regarded as a form of multi-task learning (MTL), as a single
neural network is designed to simultaneously learn multiple related tasks, involving the enforcement
of physical laws and constraints within the learning process. In contrast to traditional single-task
learning, MTL encompasses T supervised learning tasks sampled from the input-output space X1 ×
Y1, · · · ,XT ×YT respectively. Each task t is represented by an independent random vector (Xt, Yt)
distributed according to a probability distribution µt.

Before presenting our results, we first introduce some notations. Let (Xi
t , Y

i
t )
Nt
i=1 be a sequence

of i.i.d. random samples drawn from the distribution µt for t = 1, · · · , T . For any vector-valued
function f = (f1, · · · , fT ), we denote its expectation and its empirical part as

Pf :=
1

T

T∑
t=1

Pft, PNf :=
1

T

T∑
t=1

PNt
ft, (22)

where N = (N1, · · · , NT ), Pft := E[ft(Xt)] and PNtft := 1
Nt

∑Nt

i=1 ft(X
i
t). We denote the

component-wise exponentiation of f as fα = (fα1 , · · · , fαT ) for any α ∈ R. In the following, we
use bold lowercase letters to represent vector-valued functions and bold uppercase letters to indicate
the class of functions consisting of vector-valued functions.

To derive sharper generalization bounds for the PINNs, we require results from the field of MTL,
with a core component being the Talagrand-type concentration inequality. Yousefi et al. (2018) has
established a Talagrand-type inequality for MTL, which is based on so-called Logarithmic Sobolev
inequality on log-moment generating function. Of independent interest, we provide a proof using
the entropy method. This not only demonstrates the entropy method’s capability in proving results
for the single-task scenario but also shows that it can be readily adapted to the multi-task scenario.
Additionally, the concentration inequality yields better constants compared to those offered by The-
orem 1 in Yousefi et al. (2018).

Theorem 5. Let F = {f := (f1, · · · , fT )} be a class of vector-valued functions satisfying
max
1≤t≤T

sup
x∈Xt

|ft(x)| ≤ b. Also assume that X := (Xi
t)

(T,Nt)
(t,i)=(1,1) is a vector of

∑T
t=1Nt inde-

pendent random variables. Let {σit}t,i be a sequence of independent Rademacher variables. If

1
T sup

f∈F

T∑
t=1

V ar(ft(X
1
t )) ≤ r, then for every x > 0, with probability at least 1− e−x,

sup
f∈F

(Pf − PNf) ≤ inf
α>0

(
2(1 + α)R(F) + 2

√
xr

nT
+

(
1 +

4

α

)
bx

nT

)
, (23)

where n = min1≤t≤T Nt and the multi-task Rademacher complexity of function class F is defined
as

R(F) := EX,σ

[
sup
f∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

σitft(X
i
t)

]
. (24)

Moreover, the same bound also holds for supf∈F (PNf − Pf).

Remark 4. In comparison with the concentration inequality provided in Yousefi et al. (2018), which
is stated as

sup
f∈F

(Pf − PNf) ≤ 4R(F) +

√
8xr

nT
+

12bx

nT
, (25)

our result exhibits improved constants by taking α = 1.

Note that the loss functions of the PINNs are all non-negative, which facilitates the derivation of
analogous results to those obtained in the single-task context. With the results in MTL, the general-
ization error for the PINNs can be established.

Theorem 6 (Generalization error for PINN loss of the linear second order elliptic equation).

8
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Let u∗ be the solution of the linear second order elliptic equation and n = min(N1, N2).

(1) If u∗ ∈ B3(Ω), taking F = Fm,2(c∥u∗∥B3(Ω)), then with probability at least 1− e−t,

L(uN ) ≤ cC1(Ω,M)

(
m log n

n
+

(
1

m

)1+ 2
3d

+
t

n

)
, (26)

where c is a universal constant and C1(Ω,M) := max{d2M2, C(Tr,Ω), |Ω|d2M4 + |∂Ω|M2},
C(Tr,Ω) is the constant in the Trace theorem for Ω.

By taking m = n
3d

2(3d+1) , we have

L(uN ) ≤ cC1(Ω,M)

((
1

n

) 3d+2
2(3d+1)

log n+
t

n

)
. (27)

(2) If u∗ ∈ Wk,∞(Ω) for k > 3, taking F = Φ(L,W,S,B;H) with L = O(1),W = O(Kd), S =
O(Kd), B = 1, H = O(1), then with probability at least 1− e−t,

L(uN ) ≤ C

(
Kd(logK + log n)

n
+

(
1

K

)2k−4

+
t

n

)
, (28)

where C is a constant independent of K,N .

By taking K = n
1

d+2k−4 , we have

L(uN ) ≤ C

(
n−

2k−4
d+2k−4 log n+

t

n

)
. (29)

Remark 5. The convergence rate n−
2k−4

d+2k−4 is faster than n−
2k−4

d+2k−8 presented in Jiao et al. (2021)
and is same as that in Lu et al. (2021b) for the static Schrödinger equation with zero Dirichlet
boundary condition. However, our result does not require the strong convexity of the objective
function. Furthermore, the objective function in Lu et al. (2021b) only involves one task.

Note that in certain cases, for instance, when Ω = (0, 1)d, the constant C(Tr,Ω) is at most d, at this
time, L(uN ) in Theorem 6(1) only depends polynomially with the underlying dimension.

Although Theorem 6 provides a generalization error for the loss function of PINNs, it is often
necessary to measure the generalization error between the empirical solution and the true solution
under a certain norm. Fortunately, from Lemma 17, we can deduce that

∥uN − u∗∥2
H

1
2 (Ω)

≤ CΩ(∥LuN − f∥2L2(Ω) + ∥uN − g∥2L2(∂Ω)) = CΩL(uN ). (30)

Therefore, under the settings of Theorem 6, we can obtain the generalization error for the linear
second order elliptic equation in the H

1
2 norm.

For the PINNs, we only focus on the L2 loss, as considered in the original study (Raissi et al., 2019).
Actually, the design of the loss function should incorporate some priori estimation, which serves as
a form of stability property (Wang et al., 2022). Specifically, the design of the loss function should
follow the principle that if the loss of PINNs L(u) is small for some function u, then u should be
close to the true solution under some appropriate norm. For instance, Theorem 1.2.19 in Garroni
& Menaldi (2002) demonstrates that, under some suitable conditions for domain Ω and related
functions aij , bi, c, f, g, the solution u∗ of the linear second order elliptic equation satisfies that

∥u∗∥H2(Ω) ≤ C(∥f∥L2(Ω) + ∥g∥
H

3
2 (∂Ω)

). (31)

Thus, if we apply the loss
L(u) = ∥Lu− f∥2L2(Ω) + ∥u− g∥2

H
3
2 (∂Ω)

, (32)

we may obtain the generalization error in the H2 norm. However, this term ∥g∥
H

3
2 (∂Ω)

is challeng-
ing to compute because it also requires ensuring Lipschitz continuity with respect to the parameters,
which is essential for estimating the covering number. We leave this as a direction for future work.

On the other hand, some variants of PINNs do not fit the standard MTL framework. For instance,
within the extended physics-informed neural networks (XPINNs) framework, to ensure continu-
ity, samples from adjacent regions have cross-correlations. The detailed theoretical framework for
XPINNs remains an area for future research.
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4 CONCLUSION

In this paper, we have refined the generalization bounds for the DRM and PINNs through the local-
ization techniques. For the DRM, our attention was centered on the Poisson equation and the static
Schrödinger equation on the d-dimensional unit hypercube with Neumann boundary condition. As
for the PINNs, our focus shifted to the general linear second elliptic PDEs with Dirichlet boundary
condition. Additionally, in both neural networks based approaches for solving PDEs, we considered
two scenarios: when the solutions of the PDEs belong to the Barron spaces and when they belong
to the Sobolev spaces. Furthermore, we believe that the methodologies established in this paper can
be extended to a variety of other methods involving machine learning for solving PDEs.

REFERENCES

Shmuel Agmon, Avron Douglis, and Louis Nirenberg. Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions. i. Communications
on pure and applied mathematics, 12(4):623–727, 1959.

Martin Anthony, Peter L Bartlett, Peter L Bartlett, et al. Neural network learning: Theoretical
foundations, volume 9. cambridge university press Cambridge, 1999.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39(3):930–945, 1993.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Peter L Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher complexities. 2005.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine
Learning Research, 20(1):2285–2301, 2019.

Denis Belomestny, Leonid Iosipoi, Quentin Paris, and Nikita Zhivotovskiy. Empirical vari-
ance minimization with applications in variance reduction and optimal control. arXiv preprint
arXiv:1712.04667, 2017.

Denis Belomestny, Alexey Naumov, Nikita Puchkin, and Sergey Samsonov. Simultaneous ap-
proximation of a smooth function and its derivatives by deep neural networks with piecewise-
polynomial activations. Neural Networks, 161:242–253, 2023.

Denis Belomestny, Artur Goldman, Alexey Naumov, and Sergey Samsonov. Theoretical guarantees
for neural control variates in mcmc. Mathematics and Computers in Simulation, 2024.

Jeff Calder. Consistency of lipschitz learning with infinite unlabeled data and finite labeled data.
SIAM Journal on Mathematics of Data Science, 1(4):780–812, 2019.

Mo Chen, Yuling Jiao, Xiliang Lu, Pengcheng Song, Fengru Wang, and Jerry Zhijian Yang. Analysis
of deep ritz methods for semilinear elliptic equations. NUMERICAL MATHEMATICS-THEORY
METHODS AND APPLICATIONS, 17(1):181–209, 2024.

Ziang Chen, Jianfeng Lu, Yulong Lu, and Shengxuan Zhou. A regularity theory for static
schrödinger equations on d in spectral barron spaces. SIAM Journal on Mathematical Analysis,
55(1):557–570, 2023.

Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, and Yew-Soon Ong. Can-pinn:
A fast physics-informed neural network based on coupled-automatic–numerical differentiation
method. Computer Methods in Applied Mechanics and Engineering, 395:114909, 2022.

Corinna Cortes, Marius Kloft, and Mehryar Mohri. Learning kernels using local rademacher com-
plexity. Advances in neural information processing systems, 26, 2013.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chenguang Duan, Yuling Jiao, Yanming Lai, Xiliang Lu, Qimeng Quan, and Jerry Zhijian Yang.
Analysis of deep ritz methods for laplace equations with dirichlet boundary conditions. arXiv
preprint arXiv:2111.02009, 2021a.

Chenguang Duan, Yuling Jiao, Yanming Lai, Xiliang Lu, and Zhijian Yang. Convergence rate
analysis for deep ritz method. arXiv preprint arXiv:2103.13330, 2021b.

Chenguang Duan, Yuling Jiao, Lican Kang, Xiliang Lu, and Jerry Zhijian Yang. Fast excess risk
rates via offset rademacher complexity. In International Conference on Machine Learning, pp.
8697–8716. PMLR, 2023.

Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements, volume 159.
Springer, 2004.

Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation and infer-
ence. Econometrica, 89(1):181–213, 2021.

Yihang Gao, Yiqi Gu, and Michael Ng. Gradient descent finds the global optima of two-layer
physics-informed neural networks. In International Conference on Machine Learning, pp. 10676–
10707. PMLR, 2023.

Maria Giovanna Garroni and Jose Luis Menaldi. Second order elliptic integro-differential problems.
CRC Press, 2002.

Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. Relu deep neural networks and linear finite
elements. arXiv preprint arXiv:1807.03973, 2018.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Yuling Jiao, Yanming Lai, Dingwei Li, Xiliang Lu, Fengru Wang, Yang Wang, and Jerry Zhijian
Yang. A rate of convergence of physics informed neural networks for the linear second order
elliptic pdes. arXiv preprint arXiv:2109.01780, 2021.

Varun Kanade, Patrick Rebeschini, and Tomas Vaskevicius. Exponential tail local rademacher com-
plexity risk bounds without the bernstein condition. arXiv preprint arXiv:2202.11461, 2022.

Jason M Klusowski and Andrew R Barron. Approximation by combinations of relu and squared
relu ridge functions with l1 and l0 controls. IEEE Transactions on Information Theory, 64(12):
7649–7656, 2018.

Vladimir Koltchinskii. Local rademacher complexities and oracle inequalities in risk minimization.
2006.

Vladimir Koltchinskii. Oracle inequalities in empirical risk minimization and sparse recovery prob-
lems, 2011.

Michael R Kosorok. Introduction to empirical processes and semiparametric inference, volume 61.
Springer, 2008.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.
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APPENDIX

The Appendix is organized into four parts: Proof of Section 2, Proof of Section 3, Auxiliary Lem-
mas, and Discussion.

A PROOF OF SECTION 2

A.1 PROOF OF PROPOSITION 2

The proof follows a similar procedure to that in Barron (1993), but the method in Barron (1993)
can only yield a slow rate of approximation. We start with a sketch of the proof. For any function
in the Barron space, we first prove that it belongs to the H1(Ω) closure of the convex hull of some
set. Then estimating the metric entropy of the set and applying Theorem 1 in Makovoz (1996) (see
Lemma 10) leads to the fast rate of approximation.

For the function f ∈ B2(Ω), according to the definition of Barron space, we can assume that the
infimum can be attained at the function fe. To simplify the notation, we write fe as f , since fe|Ω =
f . From the formula of Fourier inverse transform and the fact that f is real-valued,

f(x) = Re

∫
Rd

eiω·xf̂(ω)dω

= Re

∫
Rd

eiω·xeiθ(ω)|f̂(ω)|dω

=

∫
Rd

cos(ω · x+ θ(ω))|f̂(ω)|dω

=

∫
Rd

B cos(ω · x+ θ(ω))

(1 + |ω|1)2
Λ(dω)

=

∫
Rd

g(x, ω)Λ(dω),

(33)

where B =
∫
Rd(1 + |ω|1)2|f̂(ω)|dω, Λ(dω) = (1+|ω|1)2|f̂(ω)|dω

B is a probability measure , eiθ(ω) is
the phase of f̂(ω) and

g(x, ω) =
B cos(ω · x+ θ(ω))

(1 + |ω|1)2
. (34)

From the integral representation of f and the form of g, i.e. (33) and (34), we can deduce that f is
in the H1(Ω) closure of the convex hull of the function class

Gcos(B) :=

{
B cos(ω · x+ t)

(1 + |ω|1)2
: ω ∈ Rd, t ∈ R

}
. (35)

It could be easily verified via the probabilistic method. Assume that {ωi}ni=1 is a sequence of i.i.d.
random variables distributed according to Λ, then

E

[
∥f(x)− 1

n

n∑
i=1

g(x, ωi)∥2H1(Ω)

]

=

∫
Ω

E

[
|f(x)− 1

n

n∑
i=1

g(x, ωi)|2 + |∇f(x)− 1

n

n∑
i=1

∇g(x, ωi)|2
]
dx

=
1

n

∫
Ω

V ar(g(x, ω))dx+
1

n

∫
Ω

Tr(Cov[∇g(x, ω)])dx

≤
E[∥g(x, ω)∥2H1(Ω)]

n

≤ 2B2

n
,
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where the first equality follows from Fubini’s theorem and the last inequality holds due to the facts
that |g(x, ω)| ≤ B and |∇g(x, ω)| ≤ B for any x, ω.

Then, for any given tolerance ϵ > 0, by Markov’s inequality,

P

(
∥f(x)− 1

n

n∑
i=1

g(x, ωi)∥H1(Ω) > ϵ

)
≤ 1

ϵ2
E

[
∥f(x)− 1

n

n∑
i=1

g(x, ωi)∥2H1(Ω)

]
≤ 2B2

nϵ2
.

By choosing a large enough n such that 2B2

nϵ2 < 1, we have

P

(
∥f(x)− 1

n

n∑
i=1

g(x, ωi)∥H1(Ω) ≤ ϵ

)
> 0,

which implies that there exist realizations of the random variables {ωi}ni=1 such that ∥f(x) −
1
n

n∑
i=1

g(x, ωi)∥H1(Ω) ≤ ϵ. Therefore, the conclusion holds.

Next, we are going to show that those functions in Gcos(B) are in the H1(Ω) closure of the convex
hull of the function class Fσ(5B) ∪ Fσ(−5B) ∪ {0}, where

Fσ(b) := {bσ(ω · x+ t) : |ω|1 = 1, t ∈ [−1, 1]} (36)

for any constant b ∈ R.

Note that although Gcos(B) consists of high-dimensional functions, those functions depend only
on the projection of multivariate variable x. Specifically, each function g(x, ω) = B cos(ω·x+t)

(1+|ω|1)2 ∈
Gcos(B) is the composition of a one-dimensional function g(z) = B cos(|ω|1z+t)

(1+|ω|1)2 and a linear func-
tion z = ω

|ω|1 · x with value in [−1, 1]. Therefore, it suffices to prove that the conclusion holds
for g(z) on [−1, 1], i.e., to prove that for each ω, g is in the H1([−1, 1]) closure of convex hull of
F1
σ(5B) ∪ F1

σ(−5B) ∪ {0}, where

F1
σ(b) := {bσ(ϵz + t) : ϵ = −1 or 1, t ∈ [−1, 1]} (37)

for any constant b ∈ R. Then applying the variable substitution leads to the conclusion for g(x, ω).

In fact, it is easier to handle that in one-dimension due to the relationship between the ReLU func-
tions and the basis function in the finite element method (FEM) (He et al., 2018), specifically the
basis functions in the FEM can be represented by ReLU functions. To make it more precise, let us
consider the uniform mesh of interval [−1, 1] by taking m+ 1 points

−1 = x0 < x1 < · · · < xm = 1,

and set h = 2
m , x−1 = −1−h, xm+1 = 1+h. For 0 ≤ i ≤ m, introduce the function φi(z), which

is defined as follows:

φi(z) =


1

h
(z − zi−1), if z ∈ [zi−1,, zi],

1

h
(zi+1 − z), if z ∈ [zi, zi+1],

0, otherwise.

(38)

Clearly, the set {φ0, · · · , φm} is a basis of P1
h, which is a vector space of continuous, piece-wise

linear functions (P1 Lagrange finite element, see Chapter 1 of Ern & Guermond (2004) for more
details). And φi can be written as

φi(z) =
σ(z − zi−1)− 2σ(z − zi) + σ(z − zi+1)

h
. (39)

Now, we are ready to present the definition of interpolation operator and the estimation of interpo-
lation error (Ern & Guermond, 2004) (Proposition 1.5 in Ern & Guermond (2004)).

Consider the so-called interpolation operator

I1
h : v ∈ C([−1, 1]) →

m∑
i=0

v(zi)φi ∈ P 1
h . (40)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then for all h and v ∈ H2([−1, 1]), the interpolation error can be bounded as

∥v − I1
hv∥L2([−1,1]) ≤ h2∥v

′′
∥L2([−1,1]) and ∥v

′
− (I1

hv)
′
∥L2([−1,1]) ≤ h∥v

′′
∥L2([−1,1]). (41)

By invoking the interpolation operator and the connection between the ReLU functions and the basis
functions, we can establish the following conclusion for one-dimensional functions.

Lemma 1. Let g ∈ C2([−1, 1]) with ∥g(s)∥L∞ ≤ B for s = 0, 1, 2. Then there exists a two-layer
ReLU network gm of the form

gm(z) =

6m−1∑
i=1

aiσ(ϵiz + ti), (42)

with |ai| ≤ 2B
m ,

6m−1∑
i=1

|ai| ≤ 5B, |ti| ≤ 1, ϵi ∈ {−1, 1}, 1 ≤ i ≤ 6m− 1 such that

∥g − gm∥H1([−1,1]) ≤
4
√
2B

m
. (43)

Therefore, g is in the H1([−1, 1]) closure of the convex hull of F1
σ(5B) ∪ F1

σ(−5B) ∪ {0}.

Proof. Note that from (39) and (40), the interpolant of g can be written as a combination of ReLU
functions as follows

I1
h(g) =

m∑
i=0

g(zi)φi(z)

=

m∑
i=0

g(zi)
σ(z − zi−1)− 2σ(z − zi) + σ(z − zi+1)

h

=
g(z0)(σ(z − z−1)− 2σ(z − z0))

h
+
g(z1)σ(z − z0)

h
+

m−1∑
i=1

g(zi−1)− 2g(zi) + g(zi+1)

h
σ(z − zi)

= g(z0) +
g(z1)− g(z0)

h
σ(z − z0) +

m−1∑
i=1

g(zi−1)− 2g(zi) + g(zi+1)

h
σ(z − zi).

(44)

By the mean value theorem, there exist ξ0 ∈ [z0, z1] and ξi ∈ [zi−1, zi+1] for 1 ≤ i ≤ m − 1 such
that g(z1)− g(z0) = g

′
(ξ0)h and g(zi−1)− 2g(zi) + g(zi+1) = g

′′
(ξi)h

2 for 1 ≤ i ≤ m− 1.

Therefore, I1
h(g) can be rewritten as

I1
h(g) = g(z0) + g

′
(ξ0)σ(z − z0) +

m−1∑
i=1

g
′′
(ξi)σ(z − zi)h. (45)

On the other hand, the constant can also be represented as a combination of ReLU functions on
[−1, 1]. By the observation that σ(z) + σ(−z) = |z|, we have that for any z ∈ [−1, 1]

1 =
|1 + z|+ |1− z|

2
=
σ(z + 1) + σ(−z − 1) + σ(−z + 1) + σ(z − 1)

2
. (46)

Plugging (46) into (45) yields that

I1
h(g) =

m∑
i=1

g(z0)(σ(z + 1) + σ(−z − 1) + σ(−z + 1) + σ(z − 1))

2m
+

m∑
i=1

g
′
(ξ0)σ(z − z0)

m

+

m−1∑
i=1

2g
′′
(ξi)σ(z − zi)

m
.

(47)
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Combining the expression of I1
h(g) and the estimation for interpolation error, i.e. (47) and (41),

leads to that there exists a two-layer neural network gm of the form

gm(z) = I1
h(g) =

6m−1∑
i=1

aiσ(ϵiz + ti),

with |ai| ≤ 2B
m ,

6m−1∑
i=1

|ai| ≤ 5B, |ti| ≤ 1, ϵi ∈ {−1, 1}, 1 ≤ i ≤ 6m− 1 such that

∥g − gm∥H1([−1,1]) ≤
4
√
2B

m
.

Although the interpolation operator can be view as a piece-wise linear interpolation of g, which is
similar to Lemma 18 in Lu et al. (2021c), our result does not require g

′
(0) = 0 and the value of g

at the certain point is also expressed as a combination of ReLU functions. Specifically, the gm in
Lemma 18 of Lu et al. (2021c) has the form gm(z) = c+

∑2m
i=1 aiσ(ϵiz + ti), where c = g(0) and

they partition [−1, 1] by 2m points with z0 = −1, zm = 0, z2m = 1. And our result can also be
extended in W 1,∞([−1, 1]) norm like Lemma 18 of Lu et al. (2021c). Note that on [zi−1, zi]

I1
h(g)(z) = g(zi−1)

zi − z

h
+ g(zi)

z − zi−1

h
,

which is the piece-wise linear interpolation of g. Then by bounding the remainder in Lagrange
interpolation formula, we have ∥Ih(g)− g∥L∞[zi−1,zi] ≤ h2

8 ∥g′′∥L∞[zi−1,zi] and

|(I1
h(g))

′
(z)− g

′
(z)| = |g(zi)− g(zi−1)

h
− g

′′
(z)|

≤ |g
′
(ξi)− g

′
(zi)|

≤ h∥g
′′
∥L∞[zi−1,zi],

(48)

where the first inequality follows from the mean value theorem.

Therefore, ∥I1
h(g)− g∥W 1,∞([−1,1]) ≤ 2B

m .

Lemma 1 implies that for any ω, the one-dimension function g(z) = B cos(|ω|1z+t)
(1+|ω|1)2 is in the

H1([−1, 1]) closure of convex hull of F1
σ(5B) ∪ F1

σ(−5B) ∪ {0}. Then applying the variable
substitution yields that those functions in Gcos(B) are in the H1(Ω) closure of the convex hull of
the function class Fσ(5B)∪Fσ(−5B)∪{0}. Specifically, for any function h : R → R and ω ∈ Rd
with |ω|1 = 1, without loss of generality, we can assume that ω1 > 0. Then for the integral∫

Ω

|h(ω · x)|2dx =

∫
[0,1]d

|h(ω · x)|2dx,

let y1 = ω · x, y2 = x2, · · · , yd = xd, we have∫
[0,1]d

|h(ω · x)|2dx =
1

ω1

∫ 1

0

· · ·
∫ ω2·y2+···ωd·yd+ω1

ω2·y2+···ωd·yd
|h(y1)|2dy1 · · · dyd ≤

1

ω1

∫ 1

−1

|h(y1)|2dy1.

Therefore, the conclusion holds for Gcos(B). Recall that f is in the H1(Ω) closure of the convex
hull of Gcos(B), thus we have the following conclusion.
Proposition 7. For any given function f in B2(Ω), f is in the H1(Ω) closure of the convex hull of
Fσ(5∥f∥B2(Ω)) ∪ Fσ(−5∥f∥B2(Ω)) ∪ {0}, i.e., for any ϵ > 0, there exist m ∈ N and ωi, ti, ai, 1 ≤
i ≤ m such that

∥f(x)−
m∑
i=1

aiσ(ωi · x+ ti)∥H1(Ω) ≤ ϵ, (49)

where |ωi|1 = 1, ti ∈ [−1, 1], 1 ≤ i ≤ m and
m∑
i=1

|ai| ≤ 5∥f∥B2(Ω).
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Proposition 7 implies that functions in B2(Ω) can be approximated by a linear combination of func-
tions in Fσ(1).
Recall that Fσ(1) = {σ(ω · x+ t) : |ω|1 = 1, t ∈ [−1, 1]}. For simplicity, we write Fσ for Fσ(1).
Then to invoke Theorem 1 in Makovoz (1996) (see Lemma 10), it remains to estimate the metric
entropy of the function class Fσ , which is defined as

ϵn(Fσ) := inf{ϵ : Fσ can be covered by at most n sets of diameter ≤ ϵ under the H1 norm}.
(50)

By Lemma 12, we just need to estimate the covering number of Fσ , which is easier to handle.

Proposition 8 (Estimation of the metric entropy). For any n ∈ N,

ϵn(Fσ) ≤ cn−
1
3d ,

where c is a universal constant.

Proof. For (ω1, t1), (ω2, t2) ∈ ∂Bd1 (1)× [−1, 1], we have

∥σ(ω1 · x+ t1)− σ(ω2 · x+ t2)∥2H1(Ω)

=

∫
Ω

|σ(ω1 · x+ t1)− σ(ω2 · x+ t2)|2dx+

∫
Ω

|∇σ(ω1 · x+ t1)−∇σ(ω2 · x+ t2)|2dx

≤
∫
Ω

|(ω1 − ω2) · x+ (t1 − t2)|2dx+

∫
Ω

|ω1I{ω1·x+t1≥0} − ω2I{ω2·x+t2≥0}|2dx

≤ 2(|ω1 − ω2|21 + |t1 − t2|2) +
∫
Ω

|(ω1 − ω2)I{ω1·x+t1≥0} + ω2(I{ω1·x+t1≥0} − I{ω2·x+t2≥0})|2dx

≤ 2(|ω1 − ω2|21 + |t1 − t2|2) + 2|ω1 − ω2|21 + 2

∫
Ω

|I{ω1·x+t1≥0} − I{ω2·x+t2≥0}|2dx

≤ 4(|ω1 − ω2|21 + |t1 − t2|2) + 2

∫
Ω

|I{ω1·x+t1≥0} − I{ω2·x+t2≥0}|2dx,
(51)

where the first inequality is due to that σ is 1-Lipschitz continuous, the second and the third in-
equalities follow the from the mean inequality and the fact that the 2-norm is dominated by the 1-
norm.

It is challenging to handle the first and second terms simultaneously due to the discontinuity of
indicator functions, thus we turn to handle two terms separately. Note that the first term is related
to the covering of ∂Bd1 (1)× [−1, 1] and the second term is related to the covering of a VC-class of
functions (see Chapter 2.6 of Vaart & Wellner (2023) or Chapter 9 of Kosorok (2008)). Therefore,
we consider a new space G1 defined as

G1 := {
(
(ω, t), I{ω·x+t≥0}

)
: ω ∈ ∂Bd1 (1), t ∈ [−1, 1]}.

Obviously, it is a subset of the metric space

G2 := {
(
(ω1, t1), I{ω2·x+t2≥0}

)
: ω1, ω2 ∈ ∂Bd1 (1), t1, t2 ∈ [−1, 1]}

with the metric d that for b1 =
(
(ω1

1 , t
1
1), I{ω1

2 ·x+t12≥0}

)
, b2 =

(
(ω2

1 , t
2
1), I{ω2

2 ·x+t22≥0}

)
,

d(b1, b2) :=
√

2(|ω1
1 − ω2

1 |21 + |t11 − t21|2) + ∥I{ω1
2 ·x+t12≥0} − I{ω2

2 ·x+t22≥0}∥L2(Ω).

The key point is that G2 can be seen as a product space of ∂Bd1 (1) × [−1, 1] and the function class
F1 := {I{ω·x+t≥0} : (ω, t) ∈ ∂Bd1 (1) × [−1, 1]} is a VC-class. Therefore, we can handle the two
terms separately.

By defining the metric d1 in ∂Bd1 (1)× [−1, 1] as

d1
(
(ω1

1 , t
1
1), (ω

2
1 , t

2
1)
)
=
√
2(|ω1

1 − ω2
1 |21 + |t11 − t21|2)
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and the metric d2 in F1 as

d2

(
I{ω1

2 ·x+t12≥0}, I{ω2
2 ·x+t22≥0}

)
= ∥I{ω1

2 ·x+t12≥0} − I{ω2
2 ·x+t22≥0}∥L2(Ω),

the covering number of G2 can be bounded as

N (G2, d, ϵ) ≤ N (∂Bd1 (1)× [−1, 1], d1,
ϵ

2
) · N (F1, d2,

ϵ

2
).

As F1 is a subset of the collection of all indicator functions of sets in a class with finite VC-
dimension, then Theorem 2.6.4 in Vaart & Wellner (2023) implies

N (F1, d2, ϵ) ≤ K(d+ 1)(4e)d+1

(
2

ϵ

)2d

with a universal constant K, since the collection of all half-spaces in Rd is a VC-class of dimension
d+ 1 (see Lemma 9.12(i) in Kosorok (2008)).

By the inequality
√
|a|+ |b| ≤

√
|a|+

√
|b|, we have√

2|ω1
1 − ω2

1 |21 + |t11 − t21|2 ≤
√
2(|ω1

1 − ω2
1 |1 + |t11 − t21|),

therefore

N (∂Bd1 (1)× [−1, 1], d1, ϵ) ≤ N (∂Bd1 (1), | · |1,
√
2

2
ϵ) · N ([−1, 1], | · |,

√
2

2
ϵ).

Combining all results above and Lemma 11, we can compute an upper bound for the covering
number of G1.

N (G1, d, ϵ) ≤ N (G2, d,
ϵ

2
)

≤ N (∂Bd1 (1)× [−1, 1], d1,
ϵ

4
) · N (F1, d2,

ϵ

4
)

≤ N (∂Bd1 (1), | · |1,
√
2

8
ϵ) · N ([−1, 1], | · |,

√
2

8
ϵ) · N (F1, d2,

ϵ

4
)

≤ K(d+ 1)(4e)d+1
(c
ϵ

)3d
,

where c is a universal constant.

Therefore, applying Lemma 12 yields the desired conclusion.

Note that in Proposition 2(1), we require ti ∈ [−1, 1) instead of ti ∈ [−1, 1] due to the measurability
(see Remark 6). At this time, the approximation result does not change. In fact, for any ω ∈ Rd,
taking a sequence {tn}n∈N that is monotonically increasing and tends to 1, we can deduce that
∥σ(ω · x+ tn)∥H1(Ω) → ∥σ(ω · x+ 1)∥H1(Ω). It suffices to prove that∫

Ω

|I{ω·x+tn≥0} − I{ω·x+1≥0}|2dx =

∫
Ω

|I{ω·x+tn>0} − I{ω·x+1>0}|2dx→ 0.

Since the function t 7→ I{u<t} is left-continuous for any u ∈ R, so that I{ω·x+tn>0} → I{ω·x+1>0}
for all x ∈ Ω. Then, applying the dominated convergence theorem leads to the conclusion.

A.2 PROOF OF THEOREM 3

The proof is based on a new error decomposition and the peeling method. The key point is the fact
that

∫
Ω
u∗(x)dx = 0, thus for any u ∈ H1(Ω),(∫

Ω

u(x)dx

)2

=

(∫
Ω

(u(x)− u∗(x))dx

)2

≤
∫
Ω

(u(x)− u∗(x))2dx ≤ ∥u− u∗∥2H1(Ω), (52)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

which implies that if u is close enough to u∗ in the H1 norm, then
(∫

Ω
u(x)dx

)2
is also proportion-

ately small. Furthermore, if u is bounded, we can also prove that the empirical part of
(∫

Ω
u(x)dx

)2
,

i.e.,
(

1
n

n∑
i=1

u(Xi)

)2

is also small in high probability via the Hoeffding inequality.

In the proof, we omit the notation for the Poisson equation, i.e., we write E and En for the population
loss EP and empirical loss En,P respectively. Additionally, we assume that there is a constant M
such that |u∗|, |∇u∗|, |f | ≤M .

Assume that un is the minimal solution obtained by minimizing the empirical loss En in the function
class F , here we just take F as a parameterized hypothesis function class. When considering the
specific setting, we can choose F to be the function class of two-layer neural networks or deep
neural networks. Additionally, we assume that those functions in F and their gradients are bounded
by M in absolute value and 2-norm.

Recall that the population loss and its empirical part are

E(u) =
∫
Ω

|∇u(x)|2dx−
∫
Ω

2f(x)u(x)dx+

(∫
Ω

u(x)dx

)2

(53)

and

En(u) =
1

n

n∑
i=1

|∇u(Xi)|2 −
2

n

n∑
i=1

f(Xi)u(Xi) +

(
1

n

n∑
i=1

u(Xi)

)2

. (54)

By taking uF ∈ argminu∈F ∥u− u∗∥H1(Ω), we have the following error decomposition:

E(un)− E(u∗) = E(un)− λEn(un) + λ(En(un)− En(uF )) + λEn(uF )− E(u∗)
≤ E(un)− λEn(un) + λEn(uF )− E(u∗)
= E(un)− λEn(un) + λ(En(uF )− En(u∗)) + λEn(u∗)− E(u∗)
= (E(un)− E(u∗))− λ(En(un)− En(u∗)) + λ(En(uF )− En(u∗))
≤ sup
u∈F

[(E(u)− E(u∗))− λ(En(u)− En(u∗))] + λ(En(uF )− En(u∗)),

(55)

where the first inequality follows from the definition of un and λ is a constant to be determined.

In the following, we estimate the two terms separately.

Rearranging the term En(uF )− En(u∗) yields

En(uF )− En(u∗)

=
1

n

n∑
i=1

|∇uF (Xi)|2 +

(
1

n

n∑
i=1

uF (Xi)

)2

− 2

n

n∑
i=1

f(Xi)uF (Xi)

−

[
1

n

n∑
i=1

|∇u∗(Xi)|2 + (
1

n

n∑
i=1

u∗(Xi))
2 − 2

n

n∑
i=1

f(Xi)u
∗(Xi)

]

=
1

n

n∑
i=1

[
(|∇uF (Xi)|2 − 2f(Xi)uF (Xi))− (|∇u∗(Xi)|2 − 2f(Xi)u

∗(Xi))
]

+

( 1

n

n∑
i=1

uF (Xi)

)2

−

(
1

n

n∑
i=1

u∗(Xi)

)2


:= ϕ1n + ϕ2n,

(56)

where in the last equality, we denote the right two terms in the second equality as ϕ1n and ϕ2n respec-
tively.

Define
h(x) = (|∇uF (x)|2 − 2f(x)uF (x))− (|∇u∗(x)|2 − 2f(x)u∗(x)),
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then by the boundedness of uF , |∇uF |, u∗, |∇u∗| and f , we can deduce that

V ar(h) ≤ P (h2) ≤ 8M2∥uF −u∗∥2H1(Ω) = 8M2ϵ2app and |h−E[h]| ≤ 2 sup |h| ≤ 12M2, (57)

where ϵapp denotes the approximation error in the H1(Ω) norm, i.e., ϵapp = ∥uF − u∗∥H1(Ω).

Therefore, from Bernstein inequality (see Lemma 7) and (57), we have that with probability at least
1− e−t,

ϕ1n =
1

n

n∑
i=1

[(|∇uF (Xi)|2 − 2f(Xi)uF (Xi))− (|∇u∗(Xi)|2 − 2f(Xi)u
∗(Xi))]

≤ E[h(X)] +

√
24M2t

n
ϵ2app +

4M2t

n

= E(uF )− E(u∗)−
(∫

Ω

uFdx

)2

+

√
24M2t

n
ϵ2app +

4M2t

n

≤ C

(
ϵ2app +

M2t

n

)
,

(58)

where the last inequality follows by the basic inequality 2
√
ab ≤ a + b for any a, b > 0 and

Proposition 1(1).

For ϕ2n, the Hoeffding inequality (see Lemma 8) implies

P

(∣∣∣∣∣ 1n
n∑
i=1

uF (Xi)−
∫
Ω

uF (x)dx

∣∣∣∣∣ ≥ 2M

√
2t

n

)
≤ 2e−t.

Therefore with probability at least 1− 2e−t,

ϕ2n =

(
1

n

n∑
i=1

uF (Xi)

)2

−

(
1

n

n∑
i=1

u∗(Xi)

)2

≤

(
1

n

n∑
i=1

uF (Xi)

)2

≤ 2

∣∣∣∣∣ 1n
n∑
i=1

uF (xi)−
∫
Ω

uF (x)dx

∣∣∣∣∣
2

+

∣∣∣∣∫
Ω

uF (x)dx

∣∣∣∣2


≤ C

(
ϵ2app +

M2t

n

)
.

(59)

Combining the upper bounds for ϕ1n and ϕ2n, i.e. (58) and (59), we can deduce that with probability
as least 1− 3e−t,

En(uF )− En(u∗) ≤ C

(
ϵ2app +

M2t

n

)
. (60)

Plugging this into the error decomposition (55) yields that with probability as least 1− 3e−t,

E(un)− E(u∗) ≤ sup
u∈F

[(E(u)− E(u∗))− λ(En(u)− En(u∗))] + λC

(
ϵ2app +

M2t

n

)
. (61)

For the first term in the right of (61), we employ the peeling technique to establish an upper bound
for it.

Let ρ0 be a positive constant to be determined and ρk = 2ρk−1 for k ≥ 1.

Consider the sets Fk := {u ∈ F : ρk−1 < ∥u − u∗∥2H1(Ω) ≤ ρk} for k ≥ 1 and F0 = {u ∈ F :

∥u− u∗∥2H1(Ω) ≤ ρ0} for k = 0.
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The boundedness of the functions in F , u∗ and their respective gradients implies that

K := max k ≤ C log
M2

ρ0
,

since ρK = 2Kρ0 and supu∈F ∥u− u∗∥2H1(Ω) ≤ 4M2.

Then for the fixed constant δ ∈ (0, 1), set δk = δ
K+1 for 0 ≤ k ≤ K.

From Lemma 14, we know that with probability at least 1− δk

sup
u∈Fk

(E(u)− E(u∗))− (En(u)− En(u∗))

≤ C(
αM2 log(2β

√
n)

n
+

√
M2ρkα log(2β

√
n)

n
+

√
M2ρk log

1
δk

n

+
M2 log 1

δk

n
+

√
aM2ρk
n

log
4b

M
),

(62)

where α, β, a, b are constants depending on the complexity of F (see the definitions in Lemma 14).

Note that
ρk ≤ max{ρ0, 2ρk−1}

≤ max{ρ0, 2∥u− u∗∥2H1(Ω)}
≤ max{ρ0, 2CP (E(u)− E(u∗))}
≤ ρ0 + 2CP (E(u)− E(u∗))

(63)

holds for any u ∈ Fk and

log
1

δk
= log

K + 1

δ
≤ log

1

δ
+ C log log

M2

ρ0
. (64)

Therefore, setting ρ0 = 1/n, then with (63) for ρk, for the right terms in (62), we can deduce that
the following inequality holds for all u ∈ Fk.

C

√
M2ρkα log(2β

√
n)

n

≤ C

√
M2(ρ0 + 2CP (E(u)− E(u∗)))α log(2β

√
n)

n

≤ C

√
M2ρ0α log(2β

√
n)

n
+ C

√
2M2CP (E(u)− E(u∗))α log(2β

√
n)

n

≤ C

√
M2ρ0α log(2β

√
n)

n
+ C(

E(u)− E(u∗)
4C

+
2CM2CPα log(2β

√
n)

n
)

=
E(u)− E(u∗)

4
+ C(

√
M2ρ0α log(2β

√
n)

n
+
M2CPα log(2β

√
n)

n
)

≤ E(u)− E(u∗)
4

+
CM2CPα log(2β

√
n)

n
,

(65)

where the third inequality follows from the basic inequality 2
√
ab ≤ a+ b for any a, b ≥ 0.

Similarly, with the upper bound for log 1
δk

(64), we can deduce that

C

√
M2ρk log

1
δk

n
≤ E(u)− E(u∗)

4
+
CCPM

2(log 1
δ + log log(nM2))

n
, (66)

M2 log 1
δk

n
≤
M2(log 1

δ + log log(nM2))

n
(67)
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and

C

√
aM2ρk
n

log
4b

M
≤ E(u)− E(u∗)

4
+
CM2CPa log

4b
M

n
. (68)

Combining (65), (66), (67), (68) and (62) yields that with probability at least 1− δk for all u ∈ Fk,

(E(u)− E(u∗))− 4(En(u)− En(u∗))

≤ C

(
M2CPα log(2β

√
n)

n
+
CCPM

2(log 1
δ + log log(nM2))

n
+
M2CPa log

4b
M

n

)
.

(69)

Note that
∑K
k=0 δk = δ, therefore the above inequality (69) holds with probability at least 1 − δ

uniformly for all u ∈ F , i.e.,

sup
u∈F

(E(u)− E(u∗))− 4(En(u)− En(u∗))

≤ C

(
M2CPα log(2β

√
n)

n
+
CPM

2(log 1
δ + log log(nM2))

n
+
M2CPa log

4b
M

n

)
.

(70)

By taking λ = 4 and δ = e−t in (70), together with the error decomposition (55), we have that with
probability at least 1− 4e−t,

E(un)− E(u∗)

≤ C

(
M2CPα log(2β

√
n)

n
+
CPM

2(t+ log log(nM2))

n
+
M2CPa log

4b
M

n
+ ϵ2app +

M2t

n

)
.

(71)
From Lemma 15, we know that

(1) when F = Fm,1(5∥u∗P ∥B2(Ω)),

b = cM, a = cmd, β = cM2, α = cmd,

where c is a universal constant.

(2) when F = Φ(N,L,B∥u∗P ∥Wk,∞(Ω)),

b = Cn, a = CN2L2(logN logL)3, β = Cn,α = CN2L2(logN logL)3,

where n ≥ CN2L2(logN logL)3 and C is a constant independent of N,L.

Finally, recall the tensorization of variance:

V ar[f(X1, · · · , Xn)] ≤ E

[
n∑
i=1

V arif(X1, · · · , Xn)

]
whenever X1, · · · , Xn are independent, where

V arif(x1, · · · , xn) := V ar[f(x1, · · · , xi−1, Xi, xi+1, · · · , xn)].
Combining this fact and the observation of the product structure of [0, 1]d yields that the Poincaré
constant is a universal constant.

Hence, the conclusion follows.
Remark 6. In the proof of Theorem 3, we have made an implicit assumption that the empirical pro-
cesses are measurable. Typically, when considering some empirical process, corresponding func-
tions are Lipschitz continuous with respect to the parameters and the parameter space is separable,
thus the measurability holds directly. However, in our setting where ReLU neural networks are
used in the DRM, the functions fail to satisfy the Lipschitz continuity with respect to the parameters.
Thus, it’s necessary to discuss the measurability of the empirical processes. For simplicity, we only
consider the two-layer neural networks.

Here, we require the concept of pointwise measurability. Recall that a function class F of measur-
able functions in X is pointwise measurable if there exists a countable subset G ⊂ F such that for
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every f ∈ F , there exists a sequence {gm} ∈ G with gm(x) → f(x) for every x ∈ X (see Chapter
2.3 in Vaart & Wellner (2023) or Chapter 8.2 in Kosorok (2008)).

Note that when applying two-layer neural networks in the DRM, the term I{ω·x+t≥0} is not Lipschitz
continuous with respect to ω and t. Fortunately, we can adapt the proof of Lemma 8.12 in Kosorok
(2008) to show that the function class is pointwise measurable. Specifically, consider the function
class

G = {I{−ω·x≤t} : ω ∈ ∂Bd1 (1) ∩Qd, t ∈ [−1, 1) ∩Q},
where Q is the set consisting of all rationals.

Fix ω and t, we can construct {(ωm, tm)} as follows: pick ωm ∈ ∂Bd1 (1)∩Qd such that |ωm−ω|1 ≤
1/(2m) and pick tm ∈ (t+ 1/(2m), t+ 1/m]. Now, for any x ∈ [0, 1]d, we have that

I{−ωm·x≤tm} = I{−ω·x≤tm+(ωm−ω)·x}.

Since |(ωm − ω) · x| ≤ |ωm − ω|1 ≤ 1/(2m), we have that rm := tm + (ωm − ω) · x − t > 0
for all m and rm → 0 as m → ∞. Note that the function t 7→ I{u≤t} is right-continuous for any
u ∈ R, so that I{−ωm·x≤tm} → I{−ω·x≤t} for all x ∈ [0, 1]d. Thus, the pointwise measurability is
established.

Therefore, for the function class of two-layer neural networks Fm,1(B),

Fm,1(B) =

{
m∑
i=1

γiσ(ωi · x+ ti) : |ωi|1 = 1, ti ∈ [−1, 1),

m∑
i=1

|γi| ≤ B

}
,

we can pick γi, ωi, ti to be rationals. To prove the measurability for the empirical processes of the
form supu∈F (E(u)−λEn(u)), where F is related to ReLU functions and their gradients, it remains
to focus on the term Pf .

Note that for u, û ∈ Fm,1(B) with the forms

u(x) =

m∑
i=1

γiσ(ωi · x+ ti), û(x) =

m∑
i=1

γ̂iσ(ω̂i · x+ t̂i),

we have that

|P (|∇u|2 − 2fu)− P (|∇û|2 − 2fû)|
≤ C(P |∇u−∇û|+ P |u− û|)

≤ C

(
m∑
i=1

|γi − γ̂i|+ |ωi − ω̂i|1 + |ti − t̂i|+ P |I{ωi·x+ti≥0} − I{ω̂i·x+t̂i≥0}|

)
.

The dominated convergence theorem implies that

P |I{ω·x+t≥0} − I{ωm·x+tm≥0}| → 0.

Therefore, with a little abuse of notation, we have supu∈F (E(u) − λEn(u)) = supu∈G(E(u) −
λEn(u)), which implies that the empirical processes in the proof of Theorem 3 are measurable, as
the parameters in F can be replaced by rationals.

A.3 PROOF OF THEOREM 9

Theorem 9. Let u∗S solve the static Schrödinger and un,S be the minimizer of the empirical loss
En,S in the function class F .

(1) For u∗S ∈ B2(Ω), taking F = Fm,1(5∥u∗S∥B2(Ω)), then with probability as least 1− e−t

ES(un,S)− ES(u∗S) ≤ CM2

(
md log n

n
+

(
1

m

)1+ 2
3d

+
t

n

)
, (72)

where C is a universal constant and M is the upper bound for ∥f∥L∞ , ∥u∗S∥B2(Ω), ∥V ∥L∞ .
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By taking m = (nd )
3d

2(3d+1) , we have

ES(un,S)− ES(u∗S) ≤ CM2

(
(
d

n
)

3d+2
2(3d+1) log n+

t

n

)
. (73)

(2) For u∗S ∈ Wk,∞(Ω), taking F = Φ(N,L,B∥u∗S∥Wk,∞(Ω)), then with probability at least 1−e−t

ES(un,S)− ES(u∗S) ≤ C

(
(NL)2(logN logL)3

n
+ (NL)−4(k−1)/d +

t

n

)
, (74)

where n ≥ C(NL)2(logN logL)3 and C is a constant independent of N,L, n.

By taking N = L = n
1

4(d+2(k−1)) , we have

ES(un,S)− ES(u∗S) ≤ C

(
n−

2k−2
d+2k−2 (log n)6 +

t

n

)
. (75)

Proof. For the static Schrödinger equation, we can also use the method in the proof of Theorem 3 or
other methods in Lu et al. (2021b) and Farrell et al. (2021), due to the similarity between the problem
and the generalization error of L2 regression with bounded noise. However, the methods mentioned
above are quite complex. Here, we provide a simple proof through a different error decomposition
and LRC, which can be easily adapted for other problems with similar strongly convex structures.

As before, in the proof, we write E and En for the population loss ES and empirical loss En,S
respectively. Additionally, we assume that |u∗|, |∇u∗|, |V |, |f | ≤M for some positive constant M .

Recall that
u∗ = argmin

u∈H1(Ω)

E(u) :=
∫
Ω

|∇u|2 + V |u|2dx− 2

∫
Ω

fudx (76)

and un is the minimal solution to the empirical loss En in the function class F . We also assume that
supu∈F |u|, supu∈F |∇u| ≤M .

Through an error decomposition, the same as that for the Poisson equation (55), we have

E(un)− E(u∗) = E(un)− λEn(un) + λ(En(un)− En(uF )) + λEn(uF )− E(u∗)
≤ E(un)− λEn(un) + λEn(uF )− E(u∗)
= E(un)− λEn(un) + λ(En(uF )− En(u∗)) + λEn(u∗)− E(u∗)
= (E(un)− E(u∗))− λ(En(un)− En(u∗)) + λ(En(uF )− En(u∗))
≤ sup
u∈F

[(E(u)− E(u∗))− λ(En(u)− En(u∗))] + λ(En(uF )− En(u∗)),

(77)

where the first inequality follows from the definition of un and λ is a constant to be determined.

Let ϵapp := ∥uF − u∗∥H1(Ω) be the approximation error.

From the Bernstein inequality, we can deduce that with probability at least 1− e−t

(En(uF )− En(u∗))− (E(uF )− E(u∗)) ≤
√

2tV ar(g)

n
+
t∥g∥L∞

3n
, (78)

where

g(x) := (|∇uF |2 + V (x)|uF (x)|2 − 2f(x)uF (x))− (|∇u∗(x)|2 + V (x)|u∗(x)|2 − 2f(x)u∗(x)).

From the boundedness of uF , u∗,∇uF ,∇u∗, f and V , we can deduce that |g| ≤ 8M2 and

V ar(g) ≤ Pg2 ≤ cM2∥uF − u∗∥2H1(Ω) = cM2ϵ2app. (79)

Therefore, plugging (79) into (78) yields that with probability at least 1− e−t

En(uF )− En(u∗) ≤ cϵ2app +

√
2tcM2ϵ2app

n
+

8tM2

3n

≤ c

(
ϵ2app +

tM2

n

)
,

(80)
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where the first inequality follows from Proposition 1(2) and the second inequality follows from the
mean inequality.

Plugging (80) into the error decomposition (77) yields that

E(un)− E(u∗) ≤ sup
u∈F

[(E(u)− E(u∗))− λ(En(u)− En(u∗))] + λc

(
ϵ2app +

M2t

n

)
(81)

holds with probability at least 1− e−t.

Note that (E(u)− E(u∗))− λ(En(u)− En(u∗)) can be rewritten as

(E(u)− E(u∗))− λ(En(u)− En(u∗)) = Ph− λPnh, (82)

where h(x) := (|∇u(x)|2+V (x)|u(x)|2−2f(x)u(x))−(|∇u∗(x)|2+V (x)|u∗(x)|2−2f(x)u∗(x)).
And the form (82) motivates the use of LRC.

To invoke the LRC, we begin by defining the function class

H := {(|∇u(x)|2+V (x)|u(x)|2−2f(x)u(x))−(|∇u∗(x)|2+V (x)|u∗(x)|2−2f(x)u∗(x)) : u ∈ F}

and a functional on H as T (h) := Ph2. It is easy to check that

V ar(h) ≤ T (h) ≤ cM2Ph, (83)

as Ph2 ≤ cM2∥u− u∗∥2H1(Ω) ≤ cM2(E(u)− E(u∗)) = cM2Ph. It implies that the functional T
satisfies the condition of Theorem 3.3 in Bartlett et al. (2005).

Following the procedure of Theorem 3.3 in Bartlett et al. (2005), we are going to seek a sub-root
function and compute its fixed point.

Define the sub-root function

ψ(r) := 80M2ERn(h ∈ star(H, 0) : Ph2 ≤ r) + 704
M4 log n

n
, (84)

where star(H, 0) := {αh : α ∈ [0, 1], h ∈ H} and invoking the star-hull of H around 0 is to make
ψ to be a sub-root function.

Next, our goal is to bound the fixed point of ψ.

If r ≥ ψ(r), then Corollary 2.2 in Bartlett et al. (2005) implies that with probability at least 1− 1
n ,

{h ∈ star(H, 0) : Ph2 ≤ r} ⊂ {h ∈ star(H, 0) : Pnh2 ≤ 2r},

and thus

ERn(h ∈ star(H, 0) : Ph2 ≤ r) ≤ ERn(h ∈ star(H, 0) : Pnh2 ≤ 2r) +
8M2

n
. (85)

Assume that r∗ is the fixed point of ψ, then

r∗ = ψ(r∗) ≤ cM2ERn(h ∈ star(H, 0) : Pnh2 ≤ 2r∗) + c
M4 log n

n
, (86)

where we use a universal constant c to represent the upper bound for the constants in the definition
of ψ(r), i.e. (84).

To estimate the first term in (86), we need the assumption about the empirical covering number of
H.

Assumption 1. For any ϵ > 0, assume that

N (H, L2(Pn), ϵ) ≤
(
β

ϵ

)α
a.s.,

for some constant β > suph∈H |h|.
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Then by Dudley’s theorem,

ERn(h ∈ star(H, 0) : Pnh2 ≤ 2r∗)

≤ c√
n
E
∫ √

2r∗

0

√
logN (ϵ, star(H, 0), L2(Pn))dϵ

≤ c√
n
E
∫ √

2r∗

0

√
logN (

ϵ

2
,H, L2(Pn))

(
2

ϵ
+ 1

)
dϵ

≤ c

√
α

n

∫ √
2r∗

0

√
log

(
β

ϵ

)
dϵ

= cβ

√
α

n

∫ √
2r∗
β

0

√
log

(
1

ϵ

)
dϵ

≤ c

√
α

n

√
r∗ log

(
β√
r∗

)

≤ c

√
α

n

√
r∗ log

(√
nβ

M2

)
,

where the fourth inequality follows from Lemma 13 and the last inequality follows by the fact that
r∗ = ψ(r∗) ≥ cM

4 logn
n .

Therefore,

r∗ ≤ cM2

√
α

n

√
r∗ log

(√
nβ

M2

)
+ c

M4 log n

n
,

which implies

r∗ ≤ cM4

(
α

n
log

(√
nβ

M2

)
+

log n

n

)
.

The final step is to estimate the empirical covering numbers of the function classes of two-layer
neural networks and deep neural networks, i.e., to determine α and β for F = Fm(5∥u∗S∥B2(Ω))
and F = Φ(N,L,B∥u∗S∥W 1,∞(Ω)).

(1) When F = Fm,1(5∥u∗S∥B2(Ω)), estimation of the covering number of H is almost same as the
estimation of G for the two-layer neural networks in Lemma 15(1). It is not difficult to deduce that
α = cmd, β = cM2. For simplicity, we omit the proof.

(2) When F = Φ(N,L,B∥u∗S∥Wk,∞(Ω)), we can also deduce that α = CN2L2(logN logL)3, β =
Cn by a similar method as that in Lemma 15(2).

As a result, given the upper bound for r∗, applying Theorem 3.3 in Bartlett et al. (2005) with λ = 2
allows us to reach the conclusion.

B PROOF OF SECTION 3

B.1 PROOF OF PROPOSITION 4

Proof. (1) The proof mainly follows the procedure in the proof the Proposition 2(1), but the tools
from the FEM may not work for ReLU2 functions. Therefore, we turn to use Taylor’s theorem
with integral remainder, which enables us to establish a connection between the one-dimensional
C2 functions and the ReLU2 functions. And the method has been also used in Klusowski & Barron
(2018); Xu (2020).

Recall that Taylor’s theorem with integral remainder states that for f : R → R that has k + 1
continuous derivatives in some neighborhood U of x = a, then for x ∈ U

f(x) = f(a) + f
′
(a)(x− a) + · · ·+ f (k)(a)

k!
(x− a)k +

∫ x

a

f (k+1)(t)
(x− t)k

k!
dt.
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Similar as the proof of Proposition 2(1), for any f ∈ B3(Ω), we have

f(x) =

∫
Rd

g(x, ω)Λ(dω),

where B =
∫
Rd(1 + |ω|1)3|f̂(ω)|dω, Λ(dω) = (1 + |ω|1)3|f̂(ω)|/B and

g(x, ω) =
B cos(ω · x+ θ(ω))

(1 + |ω|1)3
.

Therefore, f is in the H2(Ω) closure of the convex hull of the function class

Gcos(B) :=

{
B cos(ω · x+ t)

(1 + |ω|1)3
: ω ∈ Rd, t ∈ R

}
.

Note that any function g(x, ω) = B cos(ω·x+t)
(1+|ω|1)3 is a composition of a one-dimensional func-

tion g(z) = B cos(|ω|1z+t)
(1+|ω|1)3 and a linear function z = ω

|ω|1 · x with value in [−1, 1]. There-
fore, in order to prove that f is in the H2(Ω) closure of the convex hull of the function class
Fσ2

(cB) ∪ Fσ2
(−cB) ∪ {0}, it suffices to prove that g is in the H2([−1, 1]) closure of the convex

hull of the function class F1
σ2
(cB) ∪ F1

σ2
(−cB) ∪ {0}, where

Fσ2
(b) := {bσ2(ω·x+t) : |ω|1 = 1, t ∈ [−1, 1]} andF1

σ2
(b) := {bσ2(ϵz+t) : ϵ = +1 or1, t ∈ [−1, 1]}

for any constant b ∈ R.

For

g(z) =
B cos(|ω|1z + t)

(1 + |ω|1)3
=
B(cos(|ω|1z) cos t− sin(|ω|1z) sin t)

(1 + |ω|1)3

with z ∈ [−1, 1], applying Taylor’s theorem with integral remainder for cos(|ω|1z) and sin(|ω|1z)
at the point 0, we have

cos(|ω|1z) = 1− |ω|21
2
z2 +

∫ z

0

|ω|31 sin(|ω|1s)
(z − s)2

2
ds

and

sin(|ω|1z) = |ω|1z −
∫ z

0

|ω|31 cos(|ω|1s)
(z − s)2

2
ds.

Note that z2, z, 1 can be represented by combinations of ReLU2 functions, specifically

z2 = σ2(z) + σ2(−z), z =
(z + 1)2 − (z − 1)2

4
, 1 =

(z + 1)2 + (z − 1)2

2
− z2.

Therefore, we only need to prove that the integral remainders are in the H2([−1, 1]) closure of the
convex hull of the function class F1

σ2
(cB)∪F1

σ2
(−cB)∪ {0}. In the following, the constant c may

change line by line, but it is still a universal constant, so we still denote it by c.

Due to the form of the integral remainder, we consider the general form h(z) =
∫ z
0
φ(s)(z − s)2ds

with φ ∈ C([−1, 1]). By the fact that (z − s)2 = (z − s)2+ + (−z + s)2+, we have∫ z

0

φ(s)(z − s)2ds =

∫ z

0

φ(s)(z − s)2+ds+

∫ z

0

φ(s)(−z + s)2+ds := A1 +A2

In the following, we aim to prove that

A1 +A2 =

∫ 1

0

φ(s)(z − s)2+ds−
∫ 1

0

φ(−s)(−z − s)2+ds := B1 +B2,

which enables the method used in the proof of Proposition 2(1) to be feasible.

(1) When z ≥ 0, it is easy to obtain that

A1 =

∫ z

0

φ(s)(z − s)2+ds =

∫ 1

0

φ(s)(z − s)2+ds = B1, and A2 = 0, B2 = 0. (87)
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Therefore, A1 +A2 = B1 +B2.

(2) When z < 0, it is easy to check that A1 = B1 = 0. Therefore, it remains only to check that
A2 = B2.

For A2, we can deduce that

A2 =

∫ z

0

φ(s)(−z + s)2+ds

= −
∫ 0

z

φ(s)(−z + s)2+ds

= −
[∫ 0

z

φ(s)(−z + s)2+ds+

∫ z

−1

φ(s)(−z + s)2+ds

]
= −

∫ 0

−1

φ(s)(−z + s)2+ds

= −
∫ 1

0

φ(−y)(−z − y)2+dy = B2,

(88)

where the third equality follows by that
∫ z
−1
φ(s)(−z + s)2+ds=0 and the fifth equality is due to the

variable substitution s = −y.

Combining (87) and (88), we can deduce that

h(z) =

∫ z

0

φ(s)(z − s)2ds =

∫ 1

0

φ(s)(z − s)2+ds−
∫ 1

0

φ(−s)(−z − s)2+ds. (89)

The next step is to prove that h is theH2([−1, 1]) closure of convex hull of F1
σ2
(cB)∪F1

σ2
(−cB)∪

{0}.

Let h1(z) =
∫ 1

0
φ(s)(z − s)2+ds, h2(z) =

∫ 1

0
φ(−s)(−z − s)2+ds, then h(z) = h1(z)− h2(z).

Note that h
′

1(z) =
∫ 1

0
2φ(s)(z − s)+ds and h

′′

1 (z) =
∫ 1

0
2φ(s)I{z−s≥0}ds a.e., since (z − s)+ is

differentiable for s a.e. .

Let {si}ni=1 be an i.i.d. sequence of random variables distributed according the uniform distribution
of the interval [0, 1], then by Fubini’s theorem

E

∥∥∥∥∥h1(z)−
n∑
i=1

φ(si)(z − si)
2
+

n

∥∥∥∥∥
2

H2([−1,1])

=

∫ 1

−1

E

[
|h1(z)−

n∑
i=1

φ(si)(z − si)
2
+

n
|2 + |h

′

1(z)−
n∑
i=1

2φ(si)(z − si)+
n

|2 ++|h
′′

1 (z)−
n∑
i=1

2φ(si)I{z−si≥0}

n
|2
]
dz

=

∫ 1

−1

V ar(φ(·)(z − ·)2+) + V ar(2φ(·)(z − ·)+) + V ar(2φ(·)I{z−·≥0})

n
dz

≤ C

n
,

where the last inequality follows from the boundedness of φ. And the same conclusion also holds
for h2(z) and h(z). Therefore, we can deduce that h is in the H2([−1, 1]) closure of convex hull of
the function class F1

σ2
(cB) ∪ F1

σ2
(−cB) ∪ {0}.

Then applying the variable substitution yields that for any f ∈ B3(Ω) and ϵ > 0, there exists a
two-layer σ2 neural network such that

∥f(x)−
m∑
i=1

aiσ2(ωi · x+ ti)∥H2(Ω) ≤ ϵ, (90)

where |ωi|1 = 1, |ti| ≤ 1,
m∑
i=1

|ai| ≤ c∥f∥B3(Ω) and c is a universal constant.
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Just as the proof of Proposition 2(1), it remains only to estimate the metric entropy of the function
class

F2 := {σ2(ω · x+ t) : |ω|1 = 1, t ∈ [−1, 1]}
under the H2 norm.

For (ω1, t1), (ω2, t2) ∈ ∂Bd1 (1)× [−1, 1], we have

∥σ2(ω1 · x+ t1)− σ2(ω2 · x+ t2)∥2H2(Ω)

= ∥σ2(ω1 · x+ t1)− σ2(ω2 · x+ t2)∥2L2(Ω) + ∥|2ω1σ(ω1 · x+ t1)− 2ω2σ(ω2 · x+ t2)|∥2L2(Ω)

+

d∑
i=1

d∑
j=1

∥2ω1iω1jI{ω1·x+t1≥0} − 2ω2iω2jI{ω2·x+t2≥0}∥2L2(Ω)

:= (i) + (ii) + (iii),

where we denote the i-th element of the vector ωk by ωki for k = 1, 2, 1 ≤ i ≤ d.

For (i), since σ2 is 4-Lipschitz in [−2, 2],

(i) = ∥σ2(ω1 · x+ t1)− σ2(ω2 · x+ t2)∥2L2(Ω)

≤ 16∥(ω1 − ω2) · x+ (t1 − t2)∥2L2(Ω)

≤ 32(|ω1 − ω2|21 + |t1 − t2|2).

(91)

For (ii),

(ii) = ∥|2ω1σ(ω1 · x+ t1)− 2ω2σ(ω2 · x+ t2)|∥2L2(Ω)

= 2∥|(ω1 − ω2)σ(ω1 · x+ t1) + ω2(σ(ω1 · x+ t1)− σ(ω2 · x+ t2))|∥∥2L2(Ω)

≤ 4∥|(ω1 − ω2)σ(ω1 · x+ t1)|∥2L2(Ω) + 4∥|ω2(σ(ω1 · x+ t1)− σ(ω2 · x+ t2))|∥2L2(Ω)

≤ 16|ω1 − ω2|21 + 8(|ω1 − ω2|21 + |t1 − t2|2),

(92)

where the first inequality follows from the mean inequality and the boundedness of σ.

For (iii),

(iii) =

d∑
i=1

d∑
j=1

∥2ω1iω1jI{ω1·x+t1≥0} − 2ω2iω2jI{ω2·x+t2≥0}∥2L2(Ω)

= 4

d∑
i=1

d∑
j=1

∥(ω1iω1j − ω2iω2j)I{ω1·x+t1≥0} + ω2iω2j(I{ω1·x+t1≥0} − I{ω2·x+t2≥0})∥2L2(Ω)

≤ 8

d∑
i=1

d∑
j=1

|ω1iω1j − ω2iω2j |2 + (ω2iω2j)
2∥I{ω1·x+t1≥0} − I{ω2·x+t2≥0}∥2L2(Ω)

≤ 8

d∑
i=1

d∑
j=1

|ω1i − ω2i|2|ω1j |2 + |ω1j − ω2j |2|ω2i|2 + (ω2iω2j)
2∥I{ω1·x+t1≥0} − I{ω2·x+t2≥0}∥2L2(Ω)

≤ 16|ω1 − ω2|21 + 8∥I{ω1·x+t1≥0} − I{ω2·x+t2≥0}∥2L2(Ω),
(93)

where the last inequality follows from the fact that |ω1| ≤ |ω1|1 = 1, |ω2| ≤ |ω2|1 = 1.

Combining the upper bounds for (i), (ii), (iii), we obtain that

∥σ2(ω1·x+t1)−σ2(ω2·x+t2)∥2H2(Ω) ≤ 72(|ω1−ω2|21+|t1−t2|2)+8∥I{ω1·x+t1≥0}−I{ω2·x+t2≥0}∥2L2(Ω).
(94)

Therefore, based on the same method used in the proof of Proposition 8, we can deduce that

ϵn(F2) ≤ cn− 1
3d .
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Finally, applying Theorem 1 in Makovoz (1996) (Lemma 10) yields the conclusion for f in B3(Ω).

(2) Recall that based on the spline theory, Belomestny et al. (2023) has demonstrated the approxima-
tion rates for Hölder continuous functions with sparse ReLU2 neural networks. Then Belomestny
et al. (2024) extended these results for sparse ReLU3 neural networks. In fact, the approximation
results also hold for Sobolev functions, we only need to replace the Theorem 3 in Belomestny et al.
(2023) with the results from Schumaker (2007) on approximating Sobolev functions with multivari-
ate splines. For simplicity, we omit the proof.

B.2 PROOF OF THEOREM 5

Before the proof, we first provide some preliminaries about the entropy method, which is a common
method to derive concentration inequalities. For Ω =

∏n
k=1 Ωk, µ =

∏n
k=1 µk, where µk is a

probability measure, let (Ω,Σ) be a measurable space and A(Ω) denote the algebra of bounded,
measurable real valued function on Ω. For f ∈ A, β ∈ R, define the expectation functional as

Eβf [g] =
E[geβf ]
E[eβf ]

= Z−1
βf E[ge

βf ], for g ∈ A,

where Zβf = E[eβf ] is the normalizing quantity. Then, we can define the entropy as

Entf (β) := βEβf [f ]− logZβf .

The connection between the entropy and the exponential moment makes the entropy method popular
for deriving concentration inequalities, i.e.,

logE[eβ(f−Ef)] ≤ β

∫ β

0

Entf (γ)

γ2
dγ (95)

holds for any f ∈ A and β ≥ 0.

For any real-valued function F on Ω and y ∈ Ωk for k ∈ {1, · · · , n}, define the substitution operator
Sky on F as

Sky (F )(x1, · · · , xn) := F (x1, · · · , xk−1, y, xk+1, · · · , xn), (96)

i.e., the k-th argument is simply replaced by y. And define the operator V 2
+ : A → A by

V 2
+F (x) :=

n∑
k=1

Ey∼µk

[(
(F (x)− SkyF (x))+

)2]
. (97)

Proof. Assume that sup
1≤t≤T

sup
x∈Xt

|ft(x)| ≤ b and 1
T sup

f∈F

T∑
t=1

V ar(ft(X
1
t )) ≤ r.

Let

Z := sup
f∈F

1

T

T∑
t=1

(Pn − P )ft = sup
f∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

ft(X
i
t)− Eft(Xi

t) (98)

and

F (x) :=
1

2b
sup
f∈F

T∑
t=1

n

Nt

Nt∑
i=1

ft(x
i
t)− Eft(Xi

t), (99)

where n = min1≤i≤T Nt and x = (x11, · · · , xit, · · · , x
Nt

T ).

Define

W (x) :=
1

4b2
sup
f∈F

T∑
t=1

n2

N2
t

Nt∑
i=1

(ft(x
i
t)− Eft(Xi

t))
2 + E(ft(Xi

t)− Eft(Xi
t))

2. (100)

Similar to Theorem 38 in Maurer (2021) for the single task, fix (xt,i)1≤t≤T,1≤i≤n and assume that
the maximum in the definition of F is achieved at f̂ = (f̂1, · · · , f̂T ) ∈ F .
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Then for any y, (F (x)− St,iy F (x))+ ≤ n
2bNt

(f̂t(xt,i)− f̂t(y))+, therefore

V 2
+F (x) =

T∑
t=1

Nt∑
i=1

Ey∼µt,i

[(
(F − St,iy F )+

)2]
≤ 1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

Ey∼µt,i

[(
(f̂t(x

i
t)− f̂t(y))+

)2]

≤ 1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

Ey∼µt,i

[
(f̂t(x

i
t)− f̂t(y))

2
]

=
1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

Ey∼µt,i

[(
f̂t(x

i
t)− Ef̂t(Xi

t)− (f̂t(y)− Ef̂t(Xi
t))
)2]

=
1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

(f̂t(x
i
t)− Ef̂t(Xi

t))
2 + E(f̂t(Xi

t)− Ef̂t(Xi
t))

2

≤W,

(101)

where Xi
t follows the distribution µit, i.e., µit = µt.

Therefore, V 2
+F ≤W . Then equation (26) in Maurer (2021) yields that for 0 < γ ≤ β < 2,

EntF (γ) ≤
γ

2− γ
logEeγV

2
+F ≤ γ

2− γ
logEeγW . (102)

Next, we are going the prove that W is self-bounding, so that Lemma 32 (i) in Maurer (2021)
can be applied to bound EeγW . Assume that the maximum in the definition of W is achieved at
f̄ = (f̄1, · · · , f̄T ) ∈ F , then for any y,

(W−St,iy W )+ ≤ n2

4b2N2
t

((f̄t(x
i
t)−Ef̄t(Xi

t))
2−(f̄t(y)−Ef̄t(Xi

t))
2)+ ≤ n2

4b2N2
t

(f̄t(x
i
t)−Ef̄t(Xi

t))
2,

therefore

V 2
+W (x) =

T∑
t=1

Nt∑
i=1

Ey∼µt,i
(W (x)− St,iy W (x))2+

≤ 1

16b4

T∑
t=1

n4

N4
t

Nt∑
i=1

Ey∼µt,i

[
((f̄t(x

i
t)− Ef̄t(Xi

t))
2 − (f̄t(y)− Ef̄t(Xi

t))
2)2+
]

≤ 1

16b4

T∑
t=1

n4

N4
t

Nt∑
i=1

(f̄t(x
i
t)− Ef̄t(Xi

t))
4

≤ 1

4b2

T∑
t=1

n2

N2
t

Nt∑
i=1

(f̄t(x
i
t)− Ef̄t(Xi

t))
2

≤W.

(103)

Combining (103) with Lemma 32(i) in Maurer (2021), we have

logE[eγW ] ≤ γ2E[W ]

2− γ
+ γE[W ] =

γE[W ]

1− γ/2
. (104)

Plugging (104) into (102) yields that

EntF (γ) ≤
γ

2− γ
logE[eγW ] ≤ γ

2− γ
(
γE[W ]

1− γ/2
) =

γ2

(1− γ/2)2
E[W ]

2
. (105)
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Combining (95) and (105), we can conclude that

logEeβ(F−EF ) ≤ β

∫ β

0

EntF (γ)

γ2
dγ

≤ β
E[W ]

2

∫ β

0

1

(1− γ/2)2
dγ

=
β2

1− β/2

E[W ]

2
.

(106)

In fact, the above inequality implies that F is a sub-gamma random variable. Thus with the following
lemma, we can derive the concentration inequality for F .

Lemma 2. Let Z be a random variable, A,B > 0 be some constants. If for any λ ∈ (0, 1/B) it
holds

logE[eλ(Z−EZ)] ≤ Aλ2

2(1−Bλ)
,

then for all x ≥ 0,

P (Z ≥ EZ +
√
2Ax+Bx) ≤ e−x.

Applying Lemma 2 with A = E[W ], B = 1/2 for F , we can deduce that with probability at least
1− e−x

F ≤ EF +
√
2xEW +

x

2
. (107)

From the definitions of F and Z, i.e. (99) and (98), we have Z = 2bF
nT , then with probability at least

1− e−x

Z ≤ EZ +
2b

nT

√
2xEW +

bx

nT
. (108)

Note that EZ ≤ 2R(F) and

EW =
1

4b2
E sup

f∈F

T∑
t=1

n2

N2
t

Nt∑
i=1

(ft(X
i
t)− Eft(Xi

t))
2 + E(ft(Xi

t)− Eft(Xi
t))

2

=
1

4b2
E sup

f∈F

T∑
t=1

n2

N2
t

Nt∑
i=1

[
[(ft(X

i
t)− Eft(Xi

t))
2 − E(ft(Xi

t)− Eft(Xi
t))

2] + 2E(ft(Xi
t)− Eft(Xi

t))
2
]

≤ 1

4b2

(
2E sup

f∈F

T∑
t=1

n2

N2
t

Nt∑
i=1

σit(ft(X
i
t)− Eft(Xi

t))
2 + sup

f∈F
2

T∑
t=1

n2

Nt
E(ft(X1

t )− Eft(X1
t ))

2

)

≤ 1

4b2
(8bE sup

f∈F

T∑
t=1

n

Nt

Nt∑
i=1

σit(ft(X
i
t)− Eft(Xi

t)) + 2nTr)

≤ 1

4b2
(16bnTR(F) + 2nTr)

≤ 4nTR(F)

b
+
nTr

2b2
,

(109)
where the first inequality follows from the standard symmetrization technique and the second in-
equality follows from the contraction property of the Rademacher complexity.
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Plugging (109) into the concentration inequality for Z, i.e. (108), we have

Z ≤ EZ +
2b

nT

√
2xEW +

bx

nT

≤ 2R(F) +
2b

nT

√
2x(

4nTR(F)

b
+
nTr

2b2
) +

bx

nT

= 2R(F) + 2

√
8bxR(F)

nT
+
xr

nT
+
bx

nT

≤ 2R(F) + 2

√
8bxR(F)

nT
+ 2

√
xr

nT
+
bx

nT

≤ 2(1 + α)R(F) + 2

√
xr

nT
+

(
1 +

4

α

)
bx

nT
,

(110)

where the last inequality follows from the inequality 2
√
ab ≤ αa + b

α for any α > 0, a > 0, b >
0.

B.3 PROOF OF THEOREM 6

In the following, we assume that for any f = (f1, · · · , fT ) ∈ F , 0 ≤ ft ≤ b (1 ≤ t ≤ T ).

Define
UN (F) := sup

f∈F
(Pf − PNf).

Lemma 3. For normalized function class Fr,

Fr :=

{
r

Pf2 ∨ r
f : f ∈ F

}
(111)

and assume that for some fixed constants K > 1 and r > 0,

UN (Fr) ≤
r

bK
(112)

Then for any f ∈ F the following inequality holds:

Pf ≤ K

K − 1
PNf +

r

bK
. (113)

Proof. Let us consider two cases:

1: Pf2 ≤ r,

2: Pf2 > r.

For the first case, f = r
Pf2∨rf ∈ Fr, therefore

Pf ≤ PNf + UN (Fr) ≤ PNf +
r

K
≤ K

K − 1
PNf +

r

bK
.

For the second case, r
Pf2∨rf = r

Pf2f ∈ Fr, thus

P
r

Pf2
f ≤ PN

r

Pf2
f + UN (Fr) ≤ PN

r

Pf2
f +

r

bK
.

Basic algebraic transformation yields that

Pf ≤ PNf +
Pf2

bK
≤ PNf +

Pf

K
,

which implies

Pf ≤ K

K − 1
PNf ≤ K

K − 1
PNf +

r

bK
.
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Lemma 4. Let us consider a sub-root function ψ(r) with fixed point r∗ and suppose that ∀r > r∗,

ψ(r) ≥ bR(Fr). (114)
Then for any K > 1, we have that, with probability at least 1− e−x, for ∀f ∈ F

Pf ≤ K

K − 1
PNf +

32Kr∗

b
+

(10b+ 8bK)x

nT
. (115)

Proof. The aim is to find some r such that UN (Fr) ≤ r
bK , then applying Lemma 3 yields the

conclusion.

Note that the variance of functions in Fr is at most r. For any f ∈ Fr, we consider two cases:

1: Pf2 ≤ r,

2: Pf2 > r.

For the first case, f = r
Pf2∨rf ∈ Fr, thus V ar

(
r

Pf2∨rf
)
= V ar(f) ≤ Pf2 ≤ r.

For the second case,

V ar

(
r

Pf2 ∨ r
f

)
= V ar

(
r

Pf2
f

)
≤ P

(
r

Pf2
f

)2

=
r2

Pf2
< r.

Then applying Theorem 5 for UN (Fr) with α = 1, we have that with probability at least 1− e−x,

UN (Fr) ≤ 4R(Fr) + 2

√
xr

nT
+

5bx

nT

≤ 4
ψ(r)

b
+ 2

√
xr

nT
+

5bx

nT

≤ 4

√
rr∗

b
+ 2

√
xr

nT
+

5bx

nT

:= A
√
r +B,

where the third inequality follows from the property of the sub-root function, i.e., ψ(r)/
√
r ≤

ψ(r∗)/
√
r∗ =

√
r∗ for any r > r∗ and A = 4

√
r∗

b + 2
√

x
nT , B = 5bx

nT .

Solving the equation
A
√
r +B =

r

bK
yields that

√
r =

bKA+
√
b2K2A2 + 4bKB

2
.

Thus

r ≥ b2K2A2

2
> r∗

and

r ≤ b2K2A2 + 2bKB.

Therefore by Lemma 3, we have

Pf ≤ K

K − 1
PNf +

r

bK

≤ K

K − 1
PNf + bKA2 + 2B

≤ K

K − 1
PNf + 2bK(

16r∗

b2
+

4x

nT
) +

10bx

nT

=
K

K − 1
PNf +

32Kr∗

b
+

(10b+ 8bK)x

nT
.

(116)

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

There remain some problems regarding the selection of the sub-root function ψ and the computation
of its fixed point. Just as in the single-task scenario, we can take ψ as the local Rademacher averages
of the star-hull of F around 0.

Specifically, let

ψ(r) := 16bERN{f : f ∈ star(F , 0), Pf2 ≤ r}+ 14b2 log(nT )

nT
, (117)

where star(F , 0) := {αf : f ∈ F , α ∈ [0, 1]}.

Note that the normalized function class Fr defined in the Lemma 3 is a subset of the function class
{f : f ∈ star(F , 0), Pf2 ≤ r}, thus ψ(r) ≥ bR(Fr).

For the first term in the definition of ψ(r), i.e. (117), with the following lemma, we can translate the
ball in L2(P ) into the ball in L2(PN ), so that Dudley’s theorem can be applied.
Lemma 5. Let G be a class of vector-valued functions that map X into [−b, b]T with b > 0. For
every x > 0 and r satisfy

r ≥ 16bERN{g : g ∈ G, Pg2 ≤ r}+ 14b2x

nT
, (118)

then with probability at least 1− e−x

{g ∈ G : Pg2 ≤ r} ⊂ {g ∈ G : PNg2 ≤ 2r}. (119)

Proof. Define Gr := {g2 : g ∈ G, Pg2 ≤ r}.

Note that ∥g2∥∞ ≤ b2, V ar(g2) ≤ Pg4 ≤ b2Pg2 ≤ b2r. Then applying the Theorem 5 for Gr
with α = 1 yields that with probability at least 1− e−x, for any g ∈ G such that g2 ∈ Gr,

PNg2 ≤ Pg2 + 4ERN{g2 : g ∈ G, Pg2 ≤ r}+ 2

√
b2xr

nT
+

5b2x

nT

≤ r + 8bERN{g : g ∈ G, Pg2 ≤ r}+ r

2
+

7b2x

nT
≤ 2r,

where the second inequality follows from the contraction property of the Rademacher complexity
and the mean inequality.

Remark 7. Although the contraction property used in the proof of Lemma 5 is slightly different from
the standard form (see Lemma 5.7 in Mohri et al. (2018)), it is just an adaptation of the standard
one.

Specifically, let Φi be li-Lipschitz functions from R to R for i = 1, · · · ,m and σ1, · · · , σm be
Rademacher random variables. Then for any set A ⊂ Rm, the following inequality holds.

Eσ sup
a∈A

m∑
i=1

σiΦi(ai) ≤ Eσ sup
a∈A

m∑
i=1

σiliai.

For completeness, we give a brief proof.

By the Fubini’s theorem, we have

Eσ sup
a∈A

m∑
i=1

σiΦi(ai) = Eσ1,··· ,σm−1Eσm [sup
a∈A

um−1(a) + σmΦm(am)],

where um−1(a) =
m−1∑
i=1

σiΦi(ai).

From the proof of Lemma 5.7 in Mohri et al. (2018), we know

Eσm
[sup
a∈A

um−1(a) + σmΦm(am)] ≤ Eσm
[sup
a∈A

um−1(a) + σmlmam].

Proceeding in the same way for all other σi(i ̸= m) leads to the conclusion. In fact, we have used
the conclusion with Φt,i(x) =

x2

Nt
in the proof of Lemma 5.
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With Lemma 5, we can bound r∗ as follows.
Lemma 6.

r∗ ≤ 16bERN{f : f ∈ star(F , 0), PNf2 ≤ 2r∗}+ 16b2 + 14b2 log(nT )

nT
. (120)

Proof. From Lemma 5 and the fact that

r∗ = ψ(r∗) = 16bERN{f : f ∈ star(F , 0), Pf2 ≤ r∗}+ 14b2 log(nT )

nT
,

we can deduce that with probability at least 1− 1
nT ,

{f : f ∈ star(F , 0), Pf2 ≤ r∗} ⊂ {f : f ∈ star(F , 0), PNf2 ≤ 2r∗}.
Therefore,

r∗ ≤ 16b

[
ERN{f : f ∈ star(F , 0), PNf2 ≤ 2r∗}+ b

nT

]
+

14b2 log(nT )

nT

= 16bERN{f : f ∈ star(F , 0), PNf2 ≤ 2r∗}+ 16b2 + 14b2 log(nT )

nT
.

Now, we are ready to use the Dudley’s theorem to bound the first term in the right.

Specifically, define Fs,r := {f : f ∈ star(F , 0), PNf2 ≤ 2r}, with the samples (Xi
t)

(T,Nt)
(t,i)=(1,1)

fixed, define a random process (Xf )f∈Fs,r
as

Xf :=
1

T

T∑
t=1

1

Nt

Nt∑
i=1

σitft(X
i
t) for f = (f1, · · · , fT ) ∈ Fs,r. (121)

From the fact that σit is sub-gaussian, we can deduce that for any λ ∈ R and f
′
= (f

′

1, · · · , f
′

T ) ∈
Fs,r

Eeλ(Xf−Xf
′ ) = Ee

λ
T

T∑
t=1

1
Nt

Nt∑
i=1

σi
t(ft(X

i
t)−f

′
t (X

i
t))

≤ e
λ2

2T2

T∑
t=1

1

N2
t

Nt∑
i=1

(ft(X
i
t)−f

′
t (X

i
t))

2

≤ e
λ2

2 K
2d2(f ,f

′
),

where K = 1√
nT

and

d(f ,f
′
) :=

√√√√ 1

T

T∑
t=1

1

Nt

Nt∑
i=1

(ft(Xi
t)− f

′
t (X

i
t))

2. (122)

It implies that ∥Xf −Xf ′∥ψ2
≤ CKd(f ,f

′
) with a universal constant C.

Then using Dudley’s theorem yields that

E sup
f∈Fs,r

Xf ≤ CK

∫ diam(Fs,r)

0

√
logN (Fs,r, d, ϵ)dϵ ≤ CK

∫ 2
√
r

0

√
logN (Fs,r, d, ϵ)dϵ,

(123)
where diam(Fs,r) := supf ,f ′∈Fs,r

d(f ,f
′
).

Proof of Theorem 6: In the following, we assume that F is a parameterized hypothesis function
class to be determined. When considering the framework of PINNs for the linear second order
elliptic equation as MTL, the function class in MTL associated with F is defined as

F := {u =
(
|Ω|(Lu(x)− f(x))2, |∂Ω|(u(y)− g(y))2

)
: u ∈ F}. (124)
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Note that here we use notation u to represent a function in F and u to denote the corresponding
vector-valued function associated with u.

Then the empirical loss can be written as

LN (u) =
|Ω|
N1

N1∑
k=1

−
d∑

i,j=1

aij(Xk)∂iju(Xk) +

d∑
i=1

bi(Xk)∂iu(Xk) + c(Xk)u(Xk)− f(Xk)

2

+
|∂Ω|
N2

N2∑
k=1

(u(Yk)− g(Yk))
2

= 2PNu,

where N = (N1, N2) and n = min(N1, N2).

The aim is to seek uN ∈ F which minimizes LN . It is equivalent to seek uN ∈ F which minimizes
PNu i.e.,

uN ∈ argmin
u∈F

PNu. (125)

Assume that u∗ is the solution of the linear second order elliptic PDE and there is a constant M
such that |aij |, |bi|, |c|, |g|, |u∗|, |∂iu∗|, |∂iju∗| ≤ M and |u|, |∂iu|, |∂iju| ≤ M for any u ∈ F ,
1 ≤ i, j ≤ d.

Then supu∈F max(|Ω|(Lu − f)2, |∂Ω|(u − g)2) ≤ c(|Ω|d2M4 + |∂Ω|M2) := b with a universal
constant c.

Therefore, with probability at least 1− e−t

PNuN ≤ PNuF ≤ PuF + 2

√
tV ar(uF )

2n
+

2bt

2n

≤ PuF + 2

√
tbPuF

2n
+
bt

n

≤ 3

2
PuF +

2bt

n
,

(126)

where uF =
(
|Ω|(LuF − f)2, |∂Ω|(uF − g)2

)
, uF ∈ argminu∈F ∥u− u∗∥2H2(Ω) and the second

inequality follows from Theorem 5 by taking F = {uF} and α = 4, T = 2, which can be seen
as a vector version of the Bernstein inequality. Here, we define the approximation error as ϵapp :=
∥uF − u∗∥H2(Ω).

Then applying Lemma 4 with K = 2 yields that with probability at least 1− 2e−t

PuN ≤ 2PNuN +
64r∗

b
+

13bt

n

≤ 3PuF +
64r∗

b
+

17bt

n
,

(127)

which implies that

L(uN ) = 2PNuN ≤ 3L(uF ) +
128r∗

b
+

34bt

n
. (128)
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Note that L(uF ) can be bounded by the approximation error, since for any u ∈ H2(Ω)

L(u) =
∫
Ω

(Lu− f)2dx+

∫
∂Ω

(u− g)2dy

=

∫
Ω

−
d∑

i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu− f

2

dx+

∫
∂Ω

(u− g)2dy

=

∫
Ω

−
d∑

i,j=1

aij∂ij(u− u∗) +

d∑
i=1

bi∂i(u− u∗) + c(u− u∗)

2

dx+

∫
∂Ω

(u− u∗)2dy

≤ 3

∫
Ω

−
d∑

i,j=1

aij∂ij(u− u∗)

2

+

(
d∑
i=1

bi∂i(u− u∗)

)2

+ (c(u− u∗))2dx+

∫
∂Ω

(u− u∗)2dy

≤ 3d2M2∥u− u∗∥2H2(Ω) + C(Tr,Ω)2∥u− u∗∥2H1(Ω)

≤ (3d2M2 + C(Tr,Ω)2)∥u− u∗∥2H2(Ω),
(129)

where in the last inequality, we use the boundedness of aij , bi, c and the Sobolev trace theorem with
the constant C(Tr,Ω) that depends only on the domain Ω.

Thus,
L(uF ) ≤ (3d2M2 + C(Tr,Ω)2)ϵ2app (130)

and with probability at least 1− 2e−t

L(uN ) = 2PNuN ≤ 3(3d2M2 + C(Tr,Ω)2)ϵ2app +
128r∗

b
+

34bt

n
. (131)

It remains only to bound the fixed point r∗. With Lemma 6, it suffices to bound the covering number
of F under d, which is done in the Lemma 16. Thus, we have the following results.

(1) For the two-layer neural networks, we know

logN (F , d, ϵ) ≤ cmd log

(
b

ϵ

)
, (132)

where c is a universal constant.

Therefore

r∗ ≤ cb

√
md

n

∫ 2
√
r∗

0

√
log

(
b

ϵ

)
dϵ+

cb2 log n

n

= cb2
√
md

n

∫ 2
√

r∗
b2

0

√
log

(
1

ϵ

)
dϵ+

cb2 log n

n

≤ cb

√
mdr∗

n

√
log

(
2b√
r∗

)
+ c

cb2 log n

n

≤ cb

√
mdr∗

n

√
log n+

cb2 log n

n
,

(133)

where second inequality follows from Lemma 13.

It implies that

r∗ ≤ cb2md log n

n
. (134)

(2) For the deep neural networks, we know

logN (F , d, ϵ) ≤ CKd log

(
K

ϵ

)
, (135)
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where C is a constant independent of K.

Similar to that in (1), we have

r∗ ≤ CKd(logK + log n)

n
(136)

with a constant C independent of K,N, n.

C AUXILIARY LEMMAS

Lemma 7 (Bernstein inequality). LetXi, 1 ≤ i ≤ n be i.i.d. centred random variables a.s. bounded

by b <∞ in absolute value. Set σ2 = EX2
1 and Sn = 1

n

n∑
i=1

Xi. Then, for all t > 0,

P

(
Sn ≥

√
2σ2t

n
+
bt

3n

)
≤ e−t.

Lemma 8 (Hoeffding inequality). Let Xi, 1 ≤ i ≤ n be i.i.d. centred random variables a.s.

bounded by b <∞ in absolute value. Set Sn = 1
n

n∑
i=1

Xi, then for all t > 0,

P

(
|Sn| ≥ b

√
2t

n

)
≤ 2e−t.

Lemma 9 (Bounded difference inequality). Let X1, · · · , Xm ∈ Xm be a set of m ≥ 1 independent
random variables and assume that there exists c1, · · · , cm such that f : Xm → R satisfies the
following conditions:

|f(x1, · · · , xi, · · · , xm)− f(x1, · · · , x
′

i, · · · , xm)| ≤ ci,

for all i ∈ [m] and any points x1, · · · , xm, x
′

i ∈ X . Let f(S) denote f(X1, · · · , Xm), then, for all
ϵ > 0, the following inequalities hold:

P (f(S)− E(f(S)) ≥ ϵ) ≤ exp

(
−2ϵ2∑m
i=1 c

2
i

)
,

P (f(S)− E(f(S)) ≤ −ϵ) ≤ exp

(
−2ϵ2∑m
i=1 c

2
i

)
Lemma 10 (Theorem 1 in Makovoz (1996)). Let Φ := {ϕ1, ϕ2, · · · } be an arbitrary bounded
sequence of elements of the Hilbert space H . For every f ∈ H of the form

f =
∑
i

ciϕi,
∑
i

|ci| <∞,

and for every natural number n, there is a g =
∑
i aiϕi with at most n non-zero coefficients ai and

with
∑
i |ai| ≤

∑
i |ci|, for which

∥f − g∥ ≤ 2ϵn(Φ)n
−1/2

∑
i

|ci|.

The definition of metric entropy ϵn is given in Proposition 8.
Lemma 11 (Covering number of ∂Bd1 (1) in the L1 norm). For any ϵ > 0,

N (∂Bd1 (1), | · |1, ϵ) ≤ 2

(
12

ϵ

)d−1

.

Proof. By the symmetry of ∂Bd1 (1), it suffices to consider the set

S := {(x1, · · · , xd) ∈ ∂Bd1 (1), xi ≥ 0, 1 ≤ i ≤ d}, (137)
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as N (∂Bd1 (1), | · |1, ϵ) ≤ 2dN (S, | · |1, ϵ).
Note that for (x1, · · · , xd) ∈ ∂Bd1 (1), xd is determined by x1, · · · , xd−1. Thus the problem of
estimating the covering number of ∂Bd1 (1) can be reduced to estimating the covering number of

S1 := {(x1, · · · , xd−1) : x1 + · · ·+ xd−1 ≤ 1, xi ≥ 0, 1 ≤ i ≤ d− 1}, (138)

which is a subset of Bd−1
1 (1).

By Lemma 5.7 in Wainwright (2019), we know N (Bd−1
1 (1), | · |1, ϵ) ≤ ( 2ϵ +1)d−1 ≤ ( 3ϵ )

d−1. Thus,
there exists a ϵ

2 - cover of Bd−1
1 (1) with cardinality ( 6ϵ )

d−1 which we denote by C. Although C is
also a ϵ

2 - cover of S1, the elements in C may not belong to S1. To fix this issue, we can transform
C to a subset of S1 and the transformation doesn’t change the property that C is a ϵ

2 - cover of S1.
Specifically, for (y1, · · · , yd−1) ∈ C, we do the transformation as follows

(y1, · · · , yd−1) → (y1I{y1≥0}, · · · , yd−1I{yd−1≥0}).

Note that
y1I{y1≥0} + · · ·+ yd−1I{yd−1≥0} ≤ |y1|+ · · ·+ |yd−1| ≤ 1, (139)

and for any (x1, · · · , xd−1) ∈ S1

|x1 − y1I{y1≥0}|+ · · · |xd−1 − yd−1I{yd−1≥0}| ≤ |x1 − y1|+ · · ·+ |xd−1 − yd−1|, (140)

which imply that after transformation, it is a subset of S1 and also a ϵ
2 - cover of S1. For simplicity,

we still denote it by C.

Now we are ready to give a ϵ-cover of S via extending C to a subset of ∂Bd1 (1). Define Ce :=
{(y1, · · · , yd) : (y1, · · · , yd−1) ∈ C, yd = 1− (y1 + · · ·+ yd−1)}.

Thus for any (x1, · · · , xd) ∈ S, since (x1, · · · , xd−1) ∈ S1 and C is a ϵ
2 -cover of S1, there exists a

element of C, we denote it by (z1, · · · , zd−1), such that

|x1 − z1|+ · · ·+ |xd−1 − zd−1| ≤
ϵ

2
. (141)

Note that for zd = 1− (z1 + · · ·+ zd−1), (z1, · · · , zd) ∈ Ce and

|x1 − z1|+ · · ·+ |xd−1 − zd−1|+ |xd − zd|
= |x1 − z1|+ · · ·+ |xd−1 − zd−1|+ |x1 − z1 + · · ·+ xd−1 − zd−1|
≤ 2(|x1 − z1|+ · · ·+ |xd−1 − zd−1|)
≤ ϵ,

which implies that Ce is a ϵ-cover of S.

Recall that |Ce| = |C| = ( 6ϵ )
d−1, then N (∂B1(1), | · |1, ϵ) ≤ 2d

(
6
ϵ

)d−1
= 2

(
12
ϵ

)d−1
.

Note that in this lemma, our goal is not to investigate the optimal upper bound, but to give an upper
bound with explicit dependence on the dimension.

Lemma 12 (Equivalence between metric entropy and covering number). Let (T, d) be a metric
space and there is a continuous and strictly increasing function f : R+ → R+ such that for any
ϵ > 0,

N (T, d, ϵ) ≤ f(ϵ),

Then for any ϵ > 0,
ϵn(T ) ≤ f−1(n),

where f−1 represents the inverse of f .

Proof. It’s obvious, since N (T, d, f−1(n)) ≤ f(f−1(n)) = n.

Lemma 13. For any 0 < x ≤ 1, we have∫ x

0

√
log

1

ϵ
dϵ ≤ 2x

√
log

4

x
.
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Proof. For 0 < x ≤ 1, let f(x) =
√
x log 1

x , g(x) =
√
x, h(x) = x log 1

x , then f(x) = g(h(x)).
Note that g is increasing, concave and h is concave, thus

f(λx+ (1− λ)y) = g(h(λx+ (1− λ)y))

≥ g(λh(x) + (1− λ)h(y))

≥ λg(h(x)) + (1− λ)g(h(y))

= λf(x) + (1− λ)f(y),

which means f is concave in [0, 1].

Let ϵ = y
3
2 , then

∫ x

0

√
log

1

ϵ
dϵ = (

3

2
)

3
2

∫ x
2
3

0

√
y log

1

y
dy

≤ (
3

2
)

3
2x

2
3

√
x

2
3

2
log

2

x
2
3

= (
3

2
)

3
2x

√
1

3
log

2
3
2

x

≤ 2x

√
log

4

x
,

where the first inequality follows from Jensen’s inequality.

Lemma 14 (The remaining part of the proof of Theorem 3). For the function class F and

G := {(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x)) : u ∈ F},

we assume that for any ϵ > 0,

N (F , ∥ · ∥L2(Pn), ϵ) ≤
(
b

ϵ

)a
a.s. and N (G, ∥ · ∥L2(Pn), ϵ) ≤

(
β

ϵ

)α
a.s.

for some positive constants a, b, α, β with b > supf∈F |f |, β > supg∈G |g|.

Then we have that with probability at least 1− e−t

sup
u∈Fδ

(E(u)− E(u∗))− (En(u)− En(u∗))

≤ C(
αM2 log(2β

√
n)

n
+

√
M2δα log(2β

√
n)

n
+

√
M2δt

n

+
M2t

n
+

√
aM2δ

n
log

4b

M
),

(142)

where

Fδ := {u ∈ F : ∥u− u∗∥2H1(Ω) ≤ δ}

and C is a universal constant.
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Proof. As before, rearranging supu∈Fδ
(E(u)− E(u∗))− (En(u)− En(u∗)) yields that

sup
u∈Fδ

(E(u)− E(u∗))− (En(u)− En(u∗))

= sup
u∈F(δ)

[∫
Ω

[
(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x))

]
dx

− 1

n

n∑
i=1

[
(|∇u(Xi)|2 − 2f(Xi)u(Xi))− (|∇u∗(Xi)|2 − 2f(Xi)u

∗(Xi))
]

+

(∫
Ω

u(x)dx

)2

−

(
1

n

n∑
i=1

u(Xi)

)2

+

(
1

n

n∑
i=1

u∗(Xi)

)2


≤ sup
g∈G(δ)

(P − Pn)g + sup
u∈F(δ)

(∫
Ω

u(x)dx

)2

−

(
1

n

n∑
i=1

u(Xi)

)2
+

(
1

n

n∑
i=1

u∗(Xi)

)2

:= ψ(1)
n (δ) + ψ(2)

n (δ) + ψ(3)
n (δ),

(143)
where
G(δ) := {(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x)) : u ∈ F , ∥u− u∗∥2H1(Ω) ≤ δ}.

Applying the Hoeffding inequality for ψ(3)
n (δ), we can obtain that with probability at least 1− e−t

ψ(3)
n (δ) =

(
1

n

n∑
i=1

u∗(Xi)

)2

≤ 2M2t

n
. (144)

For ψ(2)
n (δ), we can deduce that

ψ(2)
n (δ) = sup

u∈F(δ)

(∫
Ω

u(x)dx

)2

−

(
1

n

n∑
i=1

u(Xi)

)2


= sup
u∈F(δ)

[(Pu)2 − (Pnu)
2]

= sup
u∈F(δ)

[(Pu)2 − ((Pnu− Pu) + Pu)2]

= sup
u∈F(δ)

[2(Pu)((P − Pn)u)− (Pnu− Pu)2]

≤
√
δ sup
u∈F(δ)

|(P − Pn)u|,

(145)

where the last inequality follows from the fact that for any u ∈ F(δ),

|Pu| =
∣∣∣∣∫

Ω

udx

∣∣∣∣ = ∣∣∣∣∫
Ω

(u− u∗)dx

∣∣∣∣ ≤ (∫
Ω

(u− u∗)2dx

) 1
2

≤
√
δ.

Therefore, to bound ψ(2)
n (δ), it suffices to bound the empirical process sup

u∈F(δ)

|(P − Pn)u|. By

applying the bounded difference inequality and the symmetrization technique, we can deduce that
with probability at least 1− e−t

sup
u∈F(δ)

|(P − Pn)u| ≤ E sup
u∈F(δ)

|(P − Pn)u|+M

√
2t

n

≤ 2E sup
u∈F(δ)

∣∣∣∣∣ 1n
n∑
i=1

ϵiu(Xi)

∣∣∣∣∣+M

√
2t

n

≤ 2E sup
u∈F

∣∣∣∣∣ 1n
n∑
i=1

ϵiu(Xi)

∣∣∣∣∣+M

√
2t

n
.

(146)
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The first term is the expectation of the empirical process and it can be easily bounded by using
Dudley’s theorem.

Specifically,

E sup
u∈F

∣∣∣∣∣ 1n
n∑
i=1

ϵiu(Xi)

∣∣∣∣∣ = EXEϵ sup
u∈F∪(−F)

1

n

n∑
i=1

ϵiu(Xi)

≤ EX

[
12√
n

∫ M

0

√
logN (F ∪ (−F), ∥ · ∥L2(Pn), u)du

]

≤ EX

[
12√
n

∫ M

0

√
log 2N (F , ∥ · ∥L2(Pn), u)du

]

≤ 12√
n

∫ M

0

√
log 2 + a log

b

u
du

≤ 12√
n

(√
log 2M +

√
ab

∫ M
b

0

√
log

1

u
du

)

≤ 12√
n

(√
log 2M + 2

√
aM

√
log

4b

M

)

≤ C

√
aM2

n
log

4b

M
,

(147)

where the fifth inequality follows by the fact that b > M and Lemma 13.

Now, it remains only to bound ψ1
n(δ).

Recall that

G(δ) = {(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x)) : u ∈ F , ∥u− u∗∥2H1(Ω) ≤ δ}.

Therefore, we can deduce that |g| ≤ 6M2 and V ar(g) ≤ P (g2) ≤ 4M2δ for any g ∈ G(δ).
Then, from Talagrand’s inequality for empirical processes (Theorem 2.1 in Bartlett et al. (2005)
with α = 1), we obtain that with probability at least 1− e−t

sup
g∈G(δ)

(P − Pn)g ≤ 4ERn(G(δ)) +
√

8M2tδ

n
+

16M2t

n
. (148)

Note that Pg2 ≤ 4M2δ for any g ∈ G(δ), therefore

ERn(G(δ)) ≤ ERn(g ∈ G : Pg2 ≤ 4M2δ).

The right term frequently appears in the articles related to the LRC and can be more easily handled
than the term on the left.

By applying Corollary 2.1 in Lei et al. (2016) under the assumption for the empirical covering
number of G, we know

ERn(g ∈ G : Pg2 ≤ 4M2δ) ≤ C

(
αM2 log(2β

√
n)

n
+

√
M2δα log(2β

√
n)

n

)
, (149)

where C is a universal constant.

Combining the upper bounds for ψ(1)
n (δ), ψ

(2)
n (δ) and ψ(3)

n (δ), i.e. (144), (145), (147) and (149),
the conclusion holds.

Lemma 15. For the empirical covering number of F and G defined in the Lemma 14, we can deduce
that
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(1) when F = Fm,1(B), we have

N (F , L2(Pn), ϵ) ≤
(
cB

ϵ

)m(d+1)

and N (G, L2(Pn), ϵ) ≤
(
cmax(MB,B2)

ϵ

)cmd
, (150)

where M is a upper bound for |f | and c is a universal constant.

(2) when F = Φ(N,L,B), we have

N (F , L2(Pn), ϵ) ≤
(
Cn

ϵ

)CN2L2(logN logL)3

andN (G, L2(Pn), ϵ) ≤
(
Cn

ϵ

)CN2L2(logN logL)3

,

(151)
where C is a constant independent of N,L and n ≥ CN2L2(logN logL)3.

Proof. (1) For the function class of two-layer neural networks, recall that

Fm,1(B) =

{
m∑
i=1

γiσ(ωi · x+ ti) :

m∑
i=1

|γi| ≤ B, |ωi|1 = 1, ti ∈ [−1, 1)

}
.

Due to the Lipschitz continuity of σ, we can just consider the covering number in the L∞ norm.

Without loss of generality, we can assume that B = 1. Then for

uk(x) =

m∑
i=1

γki σ(ω
k
i · x+ tki ) ∈ Fm,1(1), k = 1, 2,

we have

|u1(x)− u2(x)| = |
m∑
i=1

γ1i σ(ω
1
i · x+ t1i )− γ2i σ(ω

2
i · x+ t2i )|

≤
m∑
i=1

|γ1i σ(ω1
i · x+ t1i )− γ2i σ(ω

2
i · x+ t2i )|

=

m∑
i=1

|(γ1i − γ2i )σ(ω
1
i · x+ t1i ) + γ2i (σ(ω

1
i · x+ t1i )− σ(ω2

i · x+ t2i ))|

≤
m∑
i=1

2|γ1i − γ2i |+ |γ2i |(|ω1
i − ω2

i |1 + |t1i − t2i |),

where the last inequality follows from that σ is bounded by 2 in absolute value and is 1-Lipschitz
continuous.

Therefore, when
m∑
i=1

|γ1i − γ2i | ≤
ϵ

4
and |ω1

i − ω2
i |1 ≤ ϵ

4
, |t1i − t2i | ≤

ϵ

4
, 1 ≤ i ≤ m,

we have that supx∈Ω |u1(x)− u2(x)| ≤ ϵ, which implies

N (Fm,1(1), L2(Pn), ϵ) ≤ N (Fm,1(1), L∞, ϵ) ≤
(c
ϵ

)m (c
ϵ

)m(d−1) (c
ϵ

)m
=
(c
ϵ

)m(d+1)

,

where c is a universal constant.

Therefore, N (Fm,1(B), L2(Pn), ϵ) ≤
(
cB
ϵ

)m(d+1)
, where we assume that B ≥ 1.

Recall that

G = {(|∇u(x)|2 − 2f(x)u(x))− (|∇u∗(x)|2 − 2f(x)u∗(x)) : u ∈ F}.

Since u∗ is fixed, the estimation for the term f(x)u(x) can be conducted in the same manner as for
F . Therefore, we only need to estimate the first term.

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

For

uk =

m∑
i=1

γki σ(ω
k
i · x+ tki ) ∈ Fm(1), k = 1, 2

we have

∥|∇u1|2 − |∇u2|2∥L2(Pn)

≤ 2∥|∇u1 −∇u2|∥L2(Pn)

≤ 2∥
m∑
i=1

|γ1i ω1
i I{ω1

i ·x+t1i≥0} − γ2i ω
2
i I{ω2

i ·x+t2i≥0}|∥L2(Pn)

≤ 2

m∑
i=1

∥|γ1i ω1
i I{ω1

i ·x+t1i≥0} − γ2i ω
2
i I{ω2

i ·x+t2i≥0}|∥L2(Pn)

= 2

m∑
i=1

∥|(γ1i − γ2i )ω
1
i I{ω1

i ·x+t1i≥0} + γ2i (ω
1
i I{ω1

i ·x+t1i≥0} − ω2
i I{ω2

i ·x+t2i≥0})|∥L2(Pn)

≤ 2

m∑
i=1

|γ1i − γ2i |+ 2

m∑
i=1

|γ2i |∥|ω1
i I{ω1

i ·x+t1i≥0} − ω2
i I{ω2

i ·x+t2i≥0}|∥L2(Pn)

≤ 2

m∑
i=1

|γ1i − γ2i |+ 2

m∑
i=1

|γ2i |(|ω1
i − ω2

i |1 + ∥I{ω1
i ·x+t1i≥0} − I{ω2

i ·x+t2i≥0}∥L2(Pn)),

where the first inequality follows from that |∇uk| ≤ |∇uk|1 ≤ 1 for k = 1, 2 and the second, third,
fourth and the last inequalities follow from the triangle inequality.

Thus if
m∑
i=1

|γ1i − γ2i | ≤
ϵ

4
and |ω1

i − ω2
i |1 + ∥I{ω1

i ·x+t1i≥0} − I{ω2
i ·x+t2i≥0}∥L2(Pn) ≤

ϵ

4
, 1 ≤ i ≤ m,

we can deduce that ∥|∇u1|2 − |∇u2|2∥L2(Pn) ≤ ϵ.

Based on same method in the proof of Proposition 8, the L2(Pn) covering number of the function
class {|∇u|2 : u ∈ F} can be bounded as(c

ϵ

)m (c
ϵ

)(d−1+2d)m

=
(c
ϵ

)3md
.

Combining the result for F , we obtain that

N (G, L2(Pn), ϵ) ≤
(
cmax(MB,B2)

ϵ

)cmd
,

where M is a upper bound for |f | and c is a universal constant.

(2) Note that the empirical covering number N (F , L2(Pn), ϵ) can be bounded by the uniform cov-
ering number N (F , n, ϵ), which is defined as

N (F , n, ϵ) := sup
Zn∈Xn

N (F|Zn
, ϵ, ∥ · ∥∞),

where Zn = (z1, · · · , zn) and F|Zn
:= {(f(z1), · · · , f(zn)) : f ∈ F}.

As for the uniform covering number, it can be estimated using the pseudo-dimension Pdim(F).
Specifically, let F be a class of function from X to [−B,B]. Then for any ϵ > 0, we have

N (F , n, ϵ) ≤
(

2enB

ϵPdim(F)

)Pdim(F)

for n ≥ Pdim(F) (See Theorem 12.2 in Anthony et al. (1999)).
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From Bartlett et al. (2019) and Yang et al. (2023b), we know that

Pdim(Ψ) ≤ CN2L2 logL logN and Pdim(DΨ) ≤ CN2L2 logL logN

with a constant C independent with N,L, where Ψ is the function class of ReLU neural networks
with width N and depth L.

Therefore, we can deduce that for F = Φ(N,L,B), we have

N (F , L2(Pn), ϵ) ≤
(
Cn

ϵ

)CN2L2(logN logL)3

and

N (G, L2(Pn), ϵ) ≤
(
Cn

ϵ

)CN2L2(logN logL)3

with a constant C independent of N,L and n ≥ CN2L2(logN logL)3, as the width and depth of
Φ(N,L,B) are O(N logN) and O(L logL) respectively.

Lemma 16 (Estimation of the covering numbers for PINNs).

(1) For F = Fm,2(B) with B = O(M), we have

logN (F , d, ϵ) ≤ cmd log

(
b

ϵ

)
with a universal constant c.

(2) For F = Φ(L,W, S,B;H) with L = O(1),W = O(Kd), S = O(Kd), B = 1, H = O(1), we
have

logN (F , d, ϵ) ≤ CKd log

(
K

ϵ

)
,

where C is a constant independent of K.

Proof. Recall that

(Lu− f)2 =

−
d∑

i,j=1

aij(x)∂i,ju(x) +

d∑
i=1

bi(x)∂iu(x) + c(x)u(x)− f(x)

2

and
F = {u = (|Ω|(Lu(x)− f(x))2, |∂Ω|(u(y)− g(y))2) : u ∈ F}.

(1) For the two functions u = (|Ω|(Lu−f)2, |∂Ω|(u−g)2), ū = (|Ω|(Lū−f)2, |∂Ω|(ū−g)2) ∈ F ,
where u, ū belong to Fm,2(B) and are of the form

u(x) =

m∑
k=1

γkσ2(ωk · x+ tk), ū(x) =

m∑
k=1

γ̄kσ2(ω̄k · x+ t̄k)

respectively. We write u, ū as (u1, u2) and (ū1, ū2) for simplicity.

As for the samples from Ω and ∂Ω, we denote their empirical measure as

PN1 :=
1

N1

N1∑
i=1

δXi and PN2 :=
1

N2

N2∑
i=1

δYi ,

respectively.

Now, we are ready to estimate d(u, ū), recall that

d(u, ū) =

√
1

2

√
∥u1 − ū1∥2L2(PN1

) + ∥u2 − ū2∥2L2(PN2
)

≤
√

1

2
(∥u1 − ū1∥L2(PN1

) + ∥u2 − ū2∥L2(PN2
)),
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which allows us to estimate these two terms separately.

From the boundedness of related functions, we have

∥u1 − ū1∥L2(PN1
) = ∥|Ω|(Lu− f)2 − |Ω|(Lū− f)2∥L2(PN1

)

≤ cd2M2|Ω|∥L(u− ū)∥L2(PN1
)

and

∥u2 − ū2∥L2(PN2
) = ∥|∂Ω|(u− g)2 − |∂Ω|(ū− g)2∥L2(PN2

)

≤ cM |∂Ω|∥u− ū∥L2(PN2
).

Therefore, it can be turned to bound ∥L(u− ū)∥L2(PN1
) and ∥u− ū∥L2(PN2

).

For ∥L(u− ū)∥L2(PN1
), applying the triangle inequality yields

∥L(u− ū)∥L2(PN1
) = ∥ −

d∑
i,j=1

aij∂i,j(u− ū) +

d∑
i=1

bi∂i(u− ū) + c(u− ū)∥L2(PN1
)

≤ ∥
d∑

i,j=1

aij∂i,j(u− ū)∥L2(PN1
) + ∥

d∑
i=1

bi∂i(u− ū)∥L2(PN1
) + ∥c(u− ū)∥L2(PN1

)

:= A1 +A2 +A3.

Note that ∂iu, u are Lipschitz continuous with respect to the parameters, thus for A2, we have

A2 = ∥
d∑
i=1

bi∂i(u− ū)∥L2(PN1
)

≤ ∥
d∑
i=1

bi∂i(u− ū)∥L∞(Ω)

= ∥
d∑
i=1

2bi

(
m∑
k=1

γkω
i
kσ(ωk · x+ tk)− γ̄kω̄

i
kσ(ω̄k · x+ t̄k)

)
∥L∞(Ω)

= ∥
d∑
i=1

2bi

(
m∑
k=1

(γk − γ̄k)ω
i
kσ(ωk · x+ tk) + γ̄kω

i
kσ(ωk · x+ tk)− γ̄kω̄

i
kσ(ω̄k · x+ t̄k)

)
∥L∞(Ω)

≤ 4M

m∑
k=1

|γk − γ̄k|+ 2M

d∑
i=1

∥
m∑
k=1

γ̄kω
i
kσ(ωk · x+ tk)− γ̄kω̄

i
kσ(ω̄k · x+ t̄k)∥L∞(Ω),

where the last inequality follows from the facts that |bi| ≤ M, 1 ≤ i ≤ d and ωk = (ω1
k, · · · , ωdk),∑d

i=1 |ωik| = 1. And we denote the second term by A22, then

A22 = 2M

d∑
i=1

∥
m∑
k=1

γ̄kω
i
kσ(ωk · x+ tk)− γ̄kω̄

i
kσ(ω̄k · x+ t̄k)∥L∞(Ω)

= 2M

d∑
i=1

∥
m∑
k=1

γ̄k(ω
i
k − ω̄ik)σ(ωk · x+ tk) + γ̄kω̄

i
k(σ(ωk · x+ tk)− σ(ω̄k · x+ t̄k))∥L∞(Ω)

≤ 4M

d∑
i=1

m∑
k=1

|γ̄k||ωik − ω̄ik|+ 2M

d∑
i=1

m∑
k=1

|γ̄k||ω̄ik|(|ωk − ω̄k|1 + |tk − t̄k|)

= 4M

m∑
k=1

|γ̄k||ωk − ω̄k|1 + 2M

m∑
k=1

|γ̄k|(|ωk − ω̄k|1 + |tk − t̄k|),

where the inequality follows from the triangle inequality and the facts that σ is 1-Lipschitz continu-
ous and ∥σ∥L∞([−2,2]) ≤ 2.
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Combining the results for A2, we have

A2 ≤ 4M

m∑
k=1

|γk − γ̄k|+ 4M

m∑
k=1

|γ̄k||ωk − ω̄k|1 + 2M

m∑
k=1

|γ̄k|(|ωk − ω̄k|1 + |tk − t̄k|).

Similarly, we have

A3 = ∥c(u− ū)∥L2(PN1
)

≤ 4M

m∑
k=1

|γk − γ̄k|+ 4M

m∑
k=1

|γ̄k|(|ωk − ω̄k|1 + |tk − t̄k|)

and

∥u− ū∥L2(PN2
) ≤ 4

m∑
k=1

|γk − γ̄k|+ 4

m∑
k=1

|γ̄k|(|ωk − ω̄k|1 + |tk − t̄k|).

AsA1 involves the second derivative of σ2, the method described above cannot be applied. However,
we can borrow the idea from the proof of Proposition 8.

A1 = ∥
d∑

i,j=1

aij∂i,j(u− ū)∥L2(PN1
)

= 2∥
m∑
k=1

γkωk
TAωkI{ωk·x+tk≥0} − γ̄kω̄

T
k Aω̄kI{ω̄k·x+t̄k≥0}∥L2(PN1

)

= 2∥
m∑
k=1

(γkωk
TAωk − γ̄kω̄

T
k Aω̄k)I{ωk·x+tk≥0} + γ̄kω̄

T
k Aω̄k(I{ωk·x+tk≥0} − I{ω̄k·x+t̄k≥0})∥L2(PN1

)

≤ 2

m∑
k=1

|γkωkTAωk − γ̄kω̄
T
k Aω̄k|+ 2

m∑
k=1

|γ̄kω̄Tk Aω̄k|∥I{ωk·x+tk≥0} − I{ω̄k·x+t̄k≥0}∥L2(PN1
).

For the first term, we have
m∑
k=1

|γkωkTAωk − γ̄kω̄
T
k Aω̄k| ≤

m∑
k=1

|(γk − γ̄k)ωk
TAωk|+ |γ̄k(ωkTAωk − ω̄Tk Aω̄k)|

≤
m∑
k=1

M |γk − γ̄k|+ |γ̄k||ωkTA(ωk − ω̄k) + ω̄Tk A(ωk − ω̄k)|

≤M

(
m∑
k=1

|γk − γ̄k|+ 2|γ̄k||ωk − ω̄k|1

)
,

where the inequalities follow from the triangle inequality and the fact that for any x ∈ ∂Bd1 (1), y ∈
Rd and matrix A ∈ Rd×d with |A(i, j)| ≤ M(1 ≤ i, j ≤ d), we have |xTAy| = |(ATx)T y| ≤
|ATx|∞|y|1 ≤M |y|1.

Thus we obtain the final upper bound for A1.

A1 ≤ 2M

m∑
k=1

(|γk− γ̄k|+2|γ̄k||ωk− ω̄k|1)+2M

m∑
k=1

|γ̄k|∥I{ωk·x+tk≥0}− I{ω̄k·x+t̄k≥0}∥L2(PN1
).

Combining all results above, we can deduce that

d(u, û) ≤ c(d2M3|Ω|+M |∂Ω|)(
m∑
k=1

(|γk − γ̄k|+ |γ̄k||ωk − ω̄k|1)

+

m∑
k=1

|γ̄k|∥I{ωk·x+tk≥0} − I{ω̄k·x+t̄k≥0}∥L2(PN1
)).
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Similar to bounding the empirical covering number of G for the two-layer neural networks in Lemma
15(1), the covering number of F under d is(

c(d2M3|Ω|+M |∂Ω|)B
ϵ

)cmd
≤
(
c(d2M4|Ω|+M2|∂Ω|)

ϵ

)cmd
≤
(
cb

ϵ

)cmd
,

where c is a universal constant.

(2) Note that d(u, ū) ≤ C∥u− ū∥C2(Ω̄), then Proposition 1 Belomestny et al. (2024) implies that

logN (F , ∥ · ∥C2(Ω̄), ϵ) ≤ CKd log

(
K

ϵ

)
,

where C is a constant independent of K.

Therefore, the conclusion holds.

Lemma 17 (Agmon et al. (1959)). For u ∈ H
1
2 (Ω) ∩ L2(∂Ω),

∥u∥2
H

1
2 (Ω)

≤ C

∥∥∥∥∥∥−
d∑

i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu

∥∥∥∥∥∥
2

H− 3
2 (Ω)

+ C∥u∥2L2(∂Ω)

≤ CΩ

∥ −
d∑

i,j=1

aij∂iju+

d∑
i=1

bi∂iu+ cu∥2L2(Ω) + ∥u∥2L2(∂Ω)

 ,

(152)

where CΩ is a constant that depends only on Ω.

D DISCUSSION

D.1 OVER-PARAMETERIZED SETTING

In the context of over-parameterization, the generalization bounds for two-layer neural networks
may become less meaningful due to the term m/n. However, fortunately, the function class of two-
layer neural networks in Proposition 2 and Proposition 4 forms a convex hull of a function class
with a covering number similar to that of VC-classes. Consequently, we can extend the convex hull
entropy theorem (Theorem 2.6.9 in Vaart & Wellner (2023)) to the H1 norm, allowing us to derive
generalization bounds that are independent of the network’s width. Theorem 10 is a modification of
Theorem 2.6.9 in Vaart & Wellner (2023) to obtain explicit dependence on the dimension.
Lemma 18. Let F be arbitrary set consisting of n measurable function f : Ω → R of finiteH1(Q)-
diameter diam(F). Then for every ϵ > 0, we have

N (ϵdiam(F), conv(F), H1(Q)) ≤
(
e+

enϵ2

2

) 2
ϵ2

.

Proof. Assume that F = {f1, · · · , fn}. For given λ in the n-dimensional simplex. Let Y1, · · · , Yk
be i.i.d. random elements such that P (Y1 = fj) = λi for j = 1, · · · , k and k is natural number to
be determined. Then we have

EYi =
n∑
j=1

λjfj and ∇EYi = E∇Yi =
n∑
j=1

λj∇fj .

Let Ȳk = 1
k

∑k
i=1 Yi, then the independence implies

E∥Ȳk − EY1∥2H1(Q) =
1

k2

k∑
i=1

E∥Yi − EY1∥2H1(Q) ≤
1

k
(diam(F))2.

Therefore, Markov inequality implies that there is at least one realization of Ȳk that have H1(Q)-
distance at most k−1/2diam(F) to the convex combination

∑n
j=1 λjfj . Note that every realization
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has the form k−1
∑k
i=1 fik , where some functions fj in the set F may be used multiple times. As

such forms are at most Ckn+k−1, we can deduce that

N (k−1/2diam(F), conv(F), H1(Q)) ≤ Ckn+k−1 ≤ ek(1 +
n

k
)k,

where the last inequality follows from Stirling’s inequality.

For 0 < ϵ < 1, we can take k = ⌈ 1
ϵ2 ⌉, then the monotonicity of the function ek(1+ n

k )
k and the fact

k ≤ 1
ϵ2 + 1 ≤ 2

ϵ2 imply that

ek
(
1 +

n

k

)k
≤
(
e+

enϵ2

2

) 2
ϵ2

. (153)

For ϵ > 1, the right term in (153) is larger than 1, thus the conclusion holds directly.

Theorem 10. Let Q be a probability on Ω, and let F be a class of measurable functions with
∥F∥Q,2 := sup

f∈F
∥f∥H1(Q) <∞ and

N (ϵ∥F∥Q,2,F , H1(Q)) ≤ C

(
1

ϵ

)V
, 0 < ϵ < 1

for some V ≥ 1. Then we have

logN (ϵ∥F∥Q,2, conv(F), H1(Q)) ≤ KV (C
1
V + 2)

2V
V +2

(
1

ϵ

) 2V
V +2

,

where K is a universal constant.

Proof. Note that every element in the convex hull of F has distance ϵ to the convex hull of an ϵ-net
over F . Accordingly, given a fixed ϵ, it suffices to consider scenarios where the set F is finite.

Set W = 1
2 + 1

V and L = C1/V ∥F∥Q,2. Then the assumption implies that F can be covered by n
balls of radius at most Ln−1/V for every natural number n. Form sets F1 ⊂ F2 ⊂ · · · ⊂ F such
that for each n, the set Fn is a maximal, Ln−1/V -separated net over F . Thus Fn has at most n
elements. We will show by induction that there exist constant Ck and Dk depending only on C and
V such that supk Cj ∨Dk <∞ and for q ≥ 3V ,

logN (CkLn
−W , conv(Fnkq ), H1(Q)) ≤ Dkn, n, k ≥ 1.

The proof consists of a nested induction argument. The outer layer is induction on k and the inner
layer is induction on n.

First, we apply induction for n, i.e., for k = 1, we will prove the conclusion for each n. For fixed
n0 = 10, it suffices to choose C1Ln0

−W = C1L10
−W ≥ ∥F∥Q,2 so that the statement is trivially

ture for n ≤ n0 = 10, i.e., C1 ≥ 10WC−1/V . For 10 < n ≤ 100, set m = ⌊ n10⌋, thus 1 ≤ m ≤ 10.
By the definition of Fm, each f ∈ Fn − Fm has distance at most Lm−1/V of some element πmf
of Fm. Thus each element of conv(F) can be written as∑

f∈Fn

λff =
∑
f∈Fm

µff +
∑

f∈Fn−Fm

λf (f − πmf),

where µf ≥ 0 and
∑
µf =

∑
λf = 1. Taking G as the set of function f−πmf with f ranging over

Fn − Fm, thus conv(Fn) ⊂ conv(Fm) + conv(Gn) for a set Gn consisting of at most n elements,
each of norm smaller than Lm−1/V , then diam(Gn) ≤ 2Lm−1/V . Applying Lemma 17 for Gn with
ϵ defined by m−1/V ϵ = 1

4C1n
−W , i.e., ϵdiam(Gn) ≤ 1

2C1Ln
−W , we can find a 1

2C1Ln
−W -net

over conv(Gn) consisting of at most

(e+
enϵ2

2
)2/ϵ

2

=

(
e+

eC2
1

32
(
m

n
)

2
V

) 32n

C2
1
( n
m )

2
V

≤
(
e+

eC2
1

32
(
1

20
)

2
V

) 32n

C2
1
20

2
V
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elements, where the inequality follows from the facts that (e + enx)
1
x is increasing with respect to

x > 0 and ⌊ n10⌋ ≥
1
2
n
10 for n ≥ 10. Applying the induction hypothesis to Fm to find a C1Lm

−W -
net over conv(Fm) consisting of at most em elements, where we choose D1 = 1. This defines
a partition of conv(Fm) into m-dimensional sets of radius at most C1Lm

−W . Without loss of
generality, we can assume that Fm = {fi1 , fi2 , · · · , fim}. For any fixed element h in theC1Lm

−W -
net over conv(Fm), assume that h = λ1fi1 + · · ·λmfim for λ = (λ1, · · · , λm) ∈ Rm. And we
denote the ball centered at h with H1(Q) radius C1Lm

−W by

H := {λ̄ = (λ̄1, · · · , λ̄m) ∈ A : h̄ = λ̄1fi1 + · · ·+ λ̄mfim , ∥h̄− h∥H1(Q) ≤ C1Lm
−W },

where A is a subset of Rm.

Note that

∥h− h̄∥H1(Q) = ∥λ1fi1 + · · ·λmfim − λ̄1fi1 − · · · − λ̄mfim∥H1(Q)

≤ |λ1 − λ̄1|∥fi1∥H1(Q) + · · ·+ |λm − λ̄m|∥fim∥H1(Q)

≤ (|λ1 − λ̄1|+ · · ·+ |λm − λ̄m|)∥F∥Q,2.

Thus if ∥λ− λ̄∥1 ≤ C1C
1/Vm−W , then ∥h− h̄∥H1(Q) ≤ C1Lm

−W . Therefore, A ⊂ {λ̄ ∈ Rm :

∥λ̄− λ∥1 ≤ C1C
1/Vm−W }. By Lemma 5.7 in Wainwright (2019), we can find a 1

2C1C
1/V n−W -

net of A under the distance ∥ · ∥1 consisting of at most(
6C1C

1/Vm−W

1
2C1C1/V n−W

)m
= (12(

n

m
)W )m ≤

(
12(20)W

) n
10

elements. Moreover, it yields a 1
2C1Ln

−W -net of H under H1(Q). Select a function from each of
the given sets. Then, construct all possible combinations of the sums f + g by preceding procedure,
where f is associated with conv(Fm) and g is associated with conv(Gn). These form aC1Ln

−W -net
over conv(Fn) of cardinality bounded by

en/10(12(20)W )n/10

(
e+

eC2
1

32

(
1

20

) 2
V

) 32(20)
2
V n

C2
1

.

This is bounded by en for some suitable choice of C1. Specifically, note that for V ≥ 1, the term
attains the maximum at V = 1, thus it is bounded by

en/10(12(20)
3
2 )n/10

(
e+

eC2
1

32 · 400

) 32·400n
C2
1

.

We can just take C1 = 1000. This concludes the proof for k = 1 and 10 < n ≤ 100. Proceeding in
the same way yields that the conclusion holds for every n.

We continue by induction on k. By a similar construction as before, conv(Fnkq ) ⊂
conv(Fn(k−1)q ) + conv(Gn,k) for a set conv(Gn,k) containing at most nkq elements, each of norm
smaller than L(n(k − 1)q)−1/V , so that conv(Gn,k) ≤ 2Ln−1/V k−q/V 2q/V . Applying Lemma 17
to conv(Gn,k) with ϵ = 2−1kq/V−22−q/V n−1/2, we can find an Lk−2n−W -net over conv(Gn,k)
consisting of at most

(e+
enkqϵ2

2
)

2
ϵ2 =

(
e+

ekq+
2q
V −4

2
2q
V +3

)n2 2q
V

+3k4−
2q
V

elements. Apply the induction hypothesis to obtain a Ck−1Ln
−W -net over the set conv(Fn(k−1)q )

with respect to H1(Q) consisting at most eDk−1n elements. Combine the nets as before to obtain a
Ck−1Ln

−W -net over conv(Fnkq ) consisting of at most eDkn elements, for

Ck = Ck−1 +
1

k2
,

Dk = Dk−1 + 2
2q
V +3 1 + log(1 + 2−

2q
V −3kq+

2q
V −4)

k2(
q
V −2)

.
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For 2( qV − 2) ≥ 2, the resulting sequences Ck and Dk are bounded. By setting q = 3V , i.e.,
2( qV − 2) = 2, we have

Dk = Dk−1 + 29
1 + log(1 + 2−9k3V+2)

k2
.

Therefore, for any k, we can deduce that Ck ≤ C1+2 and Dk ≤ D1+KV , where K is a universal
constant. Recall that C1 = max(10WC−1/V , 1000), thus supk Ck ≤ max(10WC−1/V , 1000) + 2.

Finally,

logN (ϵ∥F∥Q,2, conv(F), H1(Q)) ≤ sup
k
Dk

(
CkC

1
V

ϵ

) 2V
V +2

≤ KV (C
1
V + 2)

2V
V +2

(
1

ϵ

) 2V
V +2

,

where K is a universal constant.

For the function class of two-layer neural networks considered in the DRM, i.e.,

F = {σ(ω · x+ t),−σ(ω · x+ t), 0 : |ω|1 = 1, t ∈ [−1, 1)},

thus for any probability measure Q on [0, 1]d, we have ∥F∥Q,2 ≤ 3 and

N (ϵ∥F∥Q,2,F , H1(Q)) ≤ C(d+ 1)(4e)d+1

(
C

ϵ

)3d

,

where C is a universal constant.

Then, applying Theorem 10 yields that

logN (ϵ∥F∥Q,2, conv(F), H1(Q)) ≤ Kd

(
1

ϵ

) 6d
3d+2

,

where K is a universal constant.

As a result, in Theorem 9 for deriving the generalization error for the static Schrödinger equation,
we can deduce that the fixed point r∗ satisfies

r∗ ≲ d
3
2

(
1

n

) 1
2+

1
2(3d+1)

,

which yields a meaningful generalization bound in the setting of over-parameterization.

D.2 OTHER BOUNDARY CONDITIONS FOR DEEP RITZ METHOD

Let Ω ⊂ [0, 1]d be a convex bounded open set and ∂Ω be the boundary of Ω. Consider the elliptic
equation on Ω with Neumann boundary condition:

−∆u+ wu = h on Ω,
∂u

∂n
= g on ∂Ω, (154)

where
h ∈ L∞(Ω), g ∈ H

1
2 (∂Ω), w ∈ L∞(Ω). (155)

From the variation method, the Ritz functional can be defined by

E(u) =
∫
Ω

(
1

2
∥∇u∥22 +

1

2
w|u|2 − hu

)
dx−

∫
∂Ω

(gTu)ds, (156)

where T is the trace operator.

Then we can deduce that then unique weak solution u∗ ∈ H1(Ω) of (154) is the unique minimizer
of E over H1(Ω). Moreover, the Ritz functional possesses similar strongly convex property as
described in Proposition 1. Specifically, for any u ∈ H1(Ω),

∥u− u∗∥2H1(Ω) ≲ E(u)− E(u∗) ≲ ∥u− u∗∥2H1(Ω). (157)
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At this point, to derive the fast rate for equation (156), we can employ the LRC from the multi-task
learning setting. This is due to the strongly convex property of the Ritz functional (156), which
is similar to the approach used to derive faster generalization bounds for the static Schrödinger
equation. Specifically, Theorem B.3 in Yousefi et al. (2018) can be seen as a generalization of
Theorem 3.3 in Bartlett et al. (2005), thus combining it with the error decomposition in (77) can
lead to the conclusion for the Ritz functional (156). For the sake of brevity, we omit the proof here.

For other boundary conditions, such as the Dirichlet and Robin conditions, see Duan et al. (2021a)
and Chen et al. (2024) for discussions on the similarly strong convexity of the Ritz functional, as in
equation (157).

D.3 LIMITATIONS AND FUTURE WORK

• In the paper, we have made the assumption that all related functions are bounded, as re-
quired for the localization analysis. However, these assumptions can sometimes be strict.
Therefore, it is crucial to investigate settings where the boundedness is not imposed.

• Utilizing ReLU neural networks in the DRM presents optimization challenges due to the
non-differentiability of the ReLU function’s derivative. One potential approach is to em-
ploy randomized methods to tackle the objective functions, like using random neural net-
works. Despite this, methods for deriving improved generalization error remain valid under
stronger assumptions. For instance, when the solutions belong to B3(Ω), employing ReLU2

neural networks allows us to leverage gradient descent or stochastic gradient descent meth-
ods.

• For the PINNs, the loss functions play a crucial role for solving PDEs. It is worth paying
more attention to the design of loss functions for different PDEs. Moreover, extending the
results in Section 3 to other types of PDEs and other PDE solvers involving neural networks
is also a topic for future research.

• The optimization error is beyond the scope of this paper. Gao et al. (2023); Luo & Yang
(2020) have considered the optimization error of the two-layer neural networks for the
PINNs inspired by the work Du et al. (2018). However, it remains open of the optimization
aspect for the DRM.

• The requirements of the function class of deep neural networks may be impractical.
Achieving these requirements in practice might be accomplished by restricting the weights
of the networks, but doing so can make optimization more difficult. Thus, it is worth ex-
ploring whether there are more efficient methods.

• The solution theory of PDEs in the Barron spaces remains unclear. Lu et al. (2021c) has
addressed the problem for the Poisson and static Schrödinger equations in the Spectral
Barron spaces, yielding a priori estimates similar to the standard Sobolev regularity esti-
mate. As for the Barron spaces, Chen et al. (2023) has studied the regularity of solutions
to the whole-space static Schrödinger equation in Bs(Rd). However, the results of Lu et al.
(2021c) and Chen et al. (2023) do not work for Bs(Ω). Despite this, at least, there exists
solutions in the Bs(Ω), as H

d
2+s+ϵ(Ω) ⊂ Bs(Ω) for any ϵ > 0.
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