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ABSTRACT

Unlike conventional grid and mesh based methods for solving partial differen-
tial equations (PDEs), neural networks have the potential to break the curse of
dimensionality, providing approximate solutions to problems where using clas-
sical solvers is difficult or impossible. While global minimization of the PDE
residual over the network parameters works well for boundary value problems,
catastrophic forgetting impairs applicability to initial value problems (IVPs). In
an alternative local-in-time approach, the optimization problem can be converted
into an ordinary differential equation (ODE) on the network parameters and the
solution propagated forward in time; however, we demonstrate that current meth-
ods based on this approach suffer from two key issues. First, following the ODE
produces an uncontrolled growth in the conditioning of the problem, ultimately
leading to unacceptably large numerical errors. Second, as the ODE methods
scale cubically with the number of model parameters, they are restricted to small
neural networks, significantly limiting their ability to represent intricate PDE ini-
tial conditions and solutions. Building on these insights, we develop Neural-IVP,
an ODE based IVP solver which prevents the network from getting ill-conditioned
and runs in time linear in the number of parameters, enabling us to evolve the dy-
namics of challenging PDEs with neural networks.

1 INTRODUCTION

Partial differential equations (PDEs) are needed to describe many phenomena in the natural sciences.
PDEs that model complex phenomena cannot be solved analytically and many numerical techniques
are used to computer their solutions. Classical techniques such as finite differences rely on grids
and provide efficient and accurate solutions when the dimensionality is low (d = 1,2). Yet, the
computational and memory costs of using grids or meshes scales exponentially with the dimension,
making it extremely challenging to solve PDEs accurately in more than 3 dimensions.

Neural networks have shown considerable success in modeling and reconstructing functions on high-
dimensional structured data such as images or text, but also for unstructured tabular data and spatial
functions. Neural networks sidestep the “curse of dimensionality” by learning representations of the
data that enables them to perform efficiently. In this respect, neural networks have similar benefits
and drawbacks as Monte Carlo methods. The approximation error € converges at a rate € < 1//n
from statistical fluctuations where n is the number of data points or Monte Carlo samples. Expressed
inversely, we would need: n o e2!°81/¢ samples to get error €, a compute grows exponentially in
the number of significant digits instead of exponential in the dimension as it is for grids. For many
problems this tradeoff is favorable and an approximate solution is much better than no solution.

Thus, it is natural to consider neural networks for solving PDEs whose dimensionality makes stan-
dard approaches intractable. While first investigated in |Dissanayake & Phan-Thien| (1994) and |La-
garis et al.| (1998), recent developments by |Yu et al.| (2018) and |Sirignano & Spiliopoulos| (2018])
have shown that neural networks can successfully approximate the solution by forcing them to sat-
isfy the dynamics of the PDE on collocation points in the spatio-temporal domain. In particular,
the global collocation approaches have proven effective for solving boundary value problems where
the neural network can successfully approximate the solution. However, for initial value problems
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(IVPs), treating time as merely another spatial dimension results in complications for the neural
network like catastrophic forgetting. Some heuristics have been developed to ameliorate this latter
problem, such as increasing the collocation points as time progresses, but then the computational
cost of training the neural network becomes impractical.

Recently, |Du & Zaki|(2021) and |Bruna et al.| (2022) have provided two methods that follow a novel
local-in-time approach for training neural networks to solve IVPs by updating the network param-
eters sequentially through time rather than by having some fixed set of parameters to model the
whole spatio-temporal domain. These methods have proven successful for a variety of PDEs, but
they currently suffer from two shortcomings. First, the conditioning of the linear systems required
to follow the ODE on the network parameters degrades over time, leading to longer solving times
and ultimately to a complete breakdown of the solution. Second, the current methodologies lack the
capacity to represent difficult initial conditions and solutions as their runtime scales cubically in the
number of network parameters, limiting their ability to use large neural networks. In this work we
provide a local-in-time IVP solver (Neural-IVP) that circumvents the shortcomings of |Du & Zaki
(2021) and Bruna et al.|(2022) and thus enable us to solve challenging PDEs. In particular:

* Leveraging fast matrix vector multiplies and preconditioned conjugate gradients, we develop an
approach that scales only linearly in the number of parameters, allowing us to use considerably
larger neural networks and more data.

* We further improve the representational power and quality of the fit to initial conditions through
the use of last layer linear solves and sinusoidal embeddings.

* We show how following the parameter ODE leads the network parameters to an increasingly
poorly conditioned region of the parameter space, and we show how this relates to exact and
approximate parameter symmetries in the network.

 Using regularization, restarts, and last layer finetuning, we are able to prevent the parameters
from reaching these poorly conditioned regions, thereby stabilizing the method.

We provide a code implementation at https://github.com/mfinzi/neural-ivp.

2 BACKGROUND

Given a spatial domain X C RP, we will consider the evolution of a time-dependent function
u: X x [0,T] — R* which at all times belongs to some functional space &/ and with dynamics
governed by

Opu (x,t) = L[u] (z,t) for (z,t) € X x [0,T]
u(z,0) =up (x) forr e X
u(z,t) = h(z,t) forx € 0X x [0,T)

where ug € U is the initial condition, % is spatial boundary condition, and £ is the (possibly non-
linear) operator containing spatial derivatives. We can represent PDEs with higher order derivatives
in time, such as the wave equation 97¢ = A, by reducing them to a system of first order in time
equations u := [¢, 0;¢], where in this example L[ug, u1] = [u1, Aug.

Global Collocation Methods The first approaches for solving PDEs via neural networks are
based on the idea of sampling uniformly on the whole spatio-temporal domain and ensuring that the
neural network obeys the PDE by minimizing the PDE residual (or a proxy for it). This approach
was initially proposed by |Dissanayake & Phan-Thien| (1994)) and Lagaris et al.| (1998)), which used
neural networks as approximate solutions. However, recent advances in automatic differentiation,
compute, and neural network architecture have enabled successful applications such as the Deep
Galerkin Method (Sirignano & Spiliopoulos, [2018), Deep Ritz Method (Yu et al., 2018)), and PINN
(Raissi et al., |2019), which have revitalized interest in using neural networks to solve PDEs.

Learning From Simulations  Not all approaches use neural networks as a basis function to repre-
sent the PDE solution. Some approaches focus on directly learning the PDE operator as in|Lu et al.
(2019) or |[Kovachki et al.[(2021)), where the operator can be learned from simulation. However, as
these methods typically use grids, their purpose is to accelerate existing solvers rather than tackling
new problems. Other approaches that do not rely on collocation points exploit specific information
of elliptic and semi-linear parabolic PDEs, such as E. et al.|(2017) and |Han et al.| (2018]).
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2.1 GLOBAL PDE RESIDUAL MINIMIZATION

The most straightforward method for producing a neural network solution to initial values PDEs
is similar to the approach used for boundary value problems of treating the temporal dimensions
as if they were spatial dimensions and parameterizing the solution simultaneously for all times
u(x,t) = Ny(z,t). The initial and boundary conditions can be enforced through appropriate pa-
rameterization of the network architecture (Berg & Nystrom, 2018), whereas the PDE is enforced
through minimization of the training objective:

5(0) = / o, 1) dpa()dt = / (Ovuo (1) — L [ug) (2, 1)) dpa(a) e
X x[0,T] X x[0,T7]

where the expectation is estimated via Monte Carlo samples over a chosen distribution of p and
times t.

Initial value PDEs have a local temporal structure where only values on the previous spatial slice are
necessary to compute the next; however, global minimization ignores this property. Moreover, as
the weights of the neural network must be used to represent the solution simultaneously at all times,
then we must ensure that the neural network approximation does not forget the PDE solution learnt
at earlier times (catastrophic forgetting). While |Sirignano & Spiliopoulos| (2018)) and [Sitzmann
et al.| (2020) take this approach, the downsides of avoiding catastrophic forgetting is to increase the
computation spent by ensuring the presence of data from previous times.

2.2 LOCAL-IN-TIME METHODS

To circumvent the inherent inefficiency of the global methods, Du & Zaki (2021) and Bruna et al.
(2022) propose a local-in-time method whereby the minimization problem gets converted into an
ODE that the parameters satisfy at each point in time. In this approach, the PDE solution is given by
u(x,t) = N(z,0(t)) for a neural network N, where the time dependence comes from the parameter
vector 6(t) rather than as an input to the network. Thus, the network only represents the solution
at a single time, rather than simultaneously at all times, and subsequently 6(t) can be recorded
and no representational power or computational cost is incurred from preserving previous solutions.
Assuming the PDE is one-dimensional, the PDE residual at a single time can be written as,

L(0,1) = /X (. t)2du(x) = /X (6TVoN(, 0(t)) — LIN)(z, 0(1))dp(z), (1)

since the time derivative is dyu(x,t) = 87 VoN(z, 6).

Choosing the dynamics 6 of the parameters to minimize the instantaneous PDE residual error L(é, t)
yields the (implicitly defined) differential equation

M(#)0=F(0) and 6, =arg min/ (N(z,0) — u(x,0))*du(z), ()
6 x

where M(0) = [, VoN(z,0)VyN(z,0) du(x) and F(0) = [, VoN(z,0)L[N](z,0)dp(z).

Once we find 6y to fit the initial conditions, we have a fully specified system of differential equations,

where we can advance the parameters (and therefore the solution u(z, 6(t))) forward in time.

Since both M (6) and F'(¢) involve integrals over space, we can estimate them with n Monte Carlo
samples, yielding M (6) and F'(0). We then proceed to solve the linear system M (0)0 = F(f) at
each timestep for the dynamics 0 and feed that into an ODE integrator such as RK45 (Dormand
& Prince, [1980). For systems of PDEs such as the Navier-Stokes equations, the method can be
extended in a straightforward manner by replacing the outer product of gradients with the Jacobians
of the multi-output network N: M (0) = [,, DgN(z,0) " DgN(z,0)dp(x) and likewise for F', which
results from minimizing the norm of the PDE residual [, ||r(x, t)||*du(z).

Introducing some additional notation, we can write the Monte Carlo estimates M and F' in a more
illuminating way. Defining the Jacobian matrix of the network for different input points J;;, =
%N(zi,ﬁ), and defining f as f; = L[N](x;,0), the PDE residual estimated via the n-sample
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Monte Carlo estimator is just the least squares objective L(6,t) = Lyg 0 — f||>. The matrices
M(0) = LJ7.J and F(#) = 2J7 f reveal that the ODE dynamics is just the familiar least squares

T n T n

solution § = Jtf = (JT.J)~1JTf.

3 DIAGNOSING LOCAL-IN-TIME NEURAL PDE SOLVERS

The success of local-in-time methods hinges on making the PDE residual L(Q.7 t) close to 0 as we
follow the dynamics of § = M (0)~LF(0). The lower the local error, the lower the global PDE
residual S(0) = [ L(6,t)dt and the more faithfully the PDE is satisfied.

Even though 6 directly minimizes L(é, t), the PDE residual is not necessarily small and instead the
value of r(z,t) depends nontrivially on the network architecture and the values of the parameters
themselves. While local-in-time methods have been applied successfully in several cases, there are
harder problems where they fail unexpectedly. For example, they fail with unacceptably large errors
in second-order PDEs or problems with complex initial conditions. In the following section, we
identify the reasons for these failures.

3.1 REPRESENTATIONAL POWER

The simplest reason why local-in-time methods fail is because the neural networks do not have
enough representational power. Having enough degrees of freedom and inductive biases in the
network matters for being able to find a 0 in the span of J which can match the spatial derivatives.
The spatial derivatives L[N](x, 6) of the PDE must be able to be expressed (or nearly expressed)
as a linear combination of the derivative with respect to each parameter: a%kN (z,6), which is a
different task than a neural network is typically designed for. The easiest intervention is to simply

increase the number of parameters p, yielding additional degrees of freedom.

Increasing the number of parameters also improves the ability of the network to reconstruct the initial
conditions, which can have knock-on effects with the evolution later in time. However, increasing
the number of parameters and evolving through time following |Du & Zaki| (2021) and |Bruna et al.
(2022) quickly leads to intractable computations. The linear solves used to define the ODE dynam-
ics require time O(p? + p?n) and use O(p? + pn) memory, where p represents the neural network
parameters and n is the number of Monte Carlo samples used to estimate the linear system. There-
fore the networks with more than around p = 5, 000 parameters cannot be used. Neural networks
of these sizes are extremely small compared to modern networks which often have millions or even
billions of parameters. In section[4.1} we show how our Neural-IVP method resolves this limitation,
allowing us to use large neural networks with many parameters.

3.2 STABILITY AND CONDITIONING

In addition to lacking sufficient representational power, there are more subtle reasons why the local-
in-time methods fail.

Even when the solution is exactly representable, a continuous path 6*(¢) between the solutions
may not exist. Even if a network is able to faithfully express the solution at a given time u(z,t) =
N (x, 6*) for some value of §* in the parameter space, there may not exist a continuous path between
these 0* for different times. This fact is related to the implicit function theorem. With the multi-
output function H;(0) = N(x;,0) — u(x,,t), even if we wish to satisfy H; = 0 only at a finite
collection of points x;, the existence of a continuous path 8*(¢t) = g(t) in general requires that the
Jacobian matrix DgH = J is invertible. Unfortunately the Jacobian is not invertible because there
exist singular directions and nearly singular directions in the parameter space, as we now argue.

There exist singular directions of J and M as a result of symmetries in the network. Each
continuous symmetry of the network will produce a right singular vector of .J, regardless of how
many points n are used in the Monte Carlo estimate. Here we define a continuous symmetry as
a parameterized transformation of the parameters 7, : R? — RP? defined for & € (—¢,€), in a
neighborhood of the identity 7, = Id, and 7}, has a nonzero derivative with respect to « at the
identity. For convenience, consider reparametrizing « to be unit speed so that ||0, T4 (0)|| = 1.
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Figure 1: The conditioning of the linear systems needed to solve the ODE on the network param-
eters increases for challenging PDEs like the wave equation, but not for others like the advection
equation. (Left): Eigenvalue spectrum of M (6) matrix at initialization. (Middle): Growth of largest
eigenvalue of M () over time. (Right): Number of preconditioned CG iterations required to solve
the linear system to a specified tolerance of € = 1077,

Theorem 1. Suppose the network N(x, 0) has a continuous parameter symmetry T,, which preserves
the outputs of the function: Y0,z : N(x, T, (0)) = N(z, 0), then

v(0) = 0uTa(9)|,_, (3)
is a singular vector of both J and M.

Proof: Taking the derivative with respect to a at 0, from the chain rule we have: 0 =
5‘a’ON(x,Ta(9)) = VyN(x, 0)T8QTQ(0)’u:0. As this expression holds for all x, J(0)v(0) = 0
and M (0)v(0) = 0.

As|Dinh et al.|(2017) demonstrated, multilayer perceptrons using ReLU nonlinearities have a high-
dimensional group of exact parameter symmetries corresponding to a rescaling of weights in alter-
nate layers. Furthermore even replacing ReLUs with alternate activation functions such as Swish
(Ramachandran et al.,2017) does not solve the problem, as these will have approximate symmetries
which will produce highly ill-conditioned M and J matrices.

Theorem 2. An approximate symmetry Va : ||N(z, T (0)) — N(z,0)||? < ea? will produce nearly
singular vectors v(0) = 0,T,(0) |a:0 Sfor which

v Mv < €, €]

and therefore the smallest eigenvalue of M is less than e.
Proof: See

Additionally, the rank of the Monte Carlo estimate M = %J T.J using n samples is at most n, and
there is a p — n dimensional manifold of parameters which match the function values at the sample
points Vi = 1, ...,n : N(z;,6) = N, rather than over the whole domain. In (left), we show

empirically that the eigenspectrum of M is indeed deficient and highly ill-conditioned, with a long
tail of small eigenvalues.

Hence some form of regularization such as [M () + 1I] 6 is necessary to have a bounded condition
number, x (M (6) + pl) = (A1 + p) / (0+ p).

Furthermore, as seen in Figure |1| (middle) the conditioning of the linear system (equation [2) dete-
riorates over time. This deterioration worsens in more challenging PDEs like second-order wave
equation in contrast to the easier advection equation. Even when using a dense solver, the quality of
the solves will degrade over time, leading to increased error in the solution. When using an iterative
method like CG shown in [Figure I (right), the runtime of the method will increase during the evo-
lution and eventually not be able to meet the desired error tolerance. In contrast, if we instead take
snapshots of the solution at different times and fit it directly with SGD, we find that the conditioning

is much better as shown by the green curve in

Making sense of this observation, we can learn from the ways that neural networks are typically
used: in conjunction with stochastic gradient descent. In general when training neural networks with
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SGD, we must chose carefully the initialization to make the problem well-conditioned (Mishkin &
Matas, [2015). Many initializations, such as setting the scale of the parameters with drastically dif-
ferent values between layers, will lead either to diverging solutions or no progress on the objective.
With the right initialization and a good choice of hyperparameters, the optimization trajectory will
stay in a well-conditioned region of the parameter space. However, many bad regions of the pa-
rameter space exist, and a number of architectural improvements in deep learning such as batch
normalization (Ioffe & Szegedy, |2015) and skip connections (He et al., 2016) were designed with
the express purpose of improving the conditioning of optimization while leaving the expressive
power unchanged. Unfortunately, while SGD optimizers stay in a well-conditioned regions of the
parameter space, equation () does not.

To see this, consider a singular vector v of J which has a very small singular value o, (due to
an approximate symmetry or otherwise). Analyzing the solution, we see that the projection of the
parameters along the singular vector evolves like: v 6 = v JTf = o u] f, where Jv = oy u,.
A small singular value leads to a large change in that subspace according to the evolution of the
ODE. Considering the approximate rescaling symmetry for swish networks, this points the dynamics
directly into amplifying the difference between size of weights in neighboring layers and worsening
the conditioning, precisely what was identified as sharp minima from|Dinh et al.[(2017). We describe
how this problem can be circumvented by our method as described in section 4.2]

4 NEURALIVP

Drawing on these observations, we introduce Neural IVP, a method for solving initial value PDEs
that resolves the scalability and numerical stability issues limiting current local-in-time methods. We
also enhance the Neural IVP, through projections to different regions of the parameter space, fine-
tuning procedures, and mechanisms to increase the representation power of the neural networks.

4.1 IMPROVING REPRESENTATIONAL POWER AND SCALABILITY

To evaluate the representational power of the network, we examine fitting a complex initial condi-
tion typically present in the later evolution of an entangled system, and which will contain com-
ponents at many different frequencies. We fit a sum of two Gaussians of different sizes mod-
ulated by frequencies pointing in different directions in 3-dimensions within the cube [—1,1]3,
with the slice through z = 0 shown in (left). The function is defined as the sum of
two Gaussian like wave packets, modulated by spatial frequencies pointing in different directions:

ug () = 30 (27rs%)71 e~ II0I13/(257) cos (2nfzThn) + 24 (2773%)71 e I1wll3/(253) ¢og (27 faTim).
where v = = — 0.5(22 + 23), w = @ + (&1 + &2 + 23)/6 also 1 = (&1 + #2) /v/2 and
m = 2_1 (.’2‘2 + .’Elfil/?))

By changing the frequency parameter f, we can investigate how well the network is able to fit
fine-scale details. We introduce three substantial improvements to the models over those used in
Evolutional Deep Neural Networks (EDNN) of |Du & Zaki| (2021)) in order to improve their repre-
sentational power, and we evaluate the impact of these changes in (middle), starting with
the exact 4-layer 30 hidden unit tanh nonlinearity MLP architecture used in EDNN.

Increasing Number of Parameters and Scalability As shown in (right), the number of
network parameters has a large impact on its representational power, not just for solving the initial
conditions but also for finding a 6 that achieves a low PDE residual. Increasing the number of
parameters substantially reduces the approximation error, especially at high frequencies which are
challenging for the model. While dense solves prohibit scaling past 5,000 parameters, we show that
our solves can be performed much faster making use of the structure of M. Matrix vector multiplies
with the matrix M 0) = %J TJ can be implemented much more efficiently than using the dense
matrix. Making use of Jacobian-vector-products implemented using automatic differentiation (such
as in JAX (Bradbury et al., 2018))), we can implement a matrix vector multiply using 2 Jacobian-
vector-products:

M (0)v = 5=V, Jv[?, (5)

which takes O(n + p) time and memory for a single matrix-vector product, sidestepping memory
bottlenecks that are usually the limiting factor. Then, with these efficient matrix-vector products,
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Figure 2: (Left): Example wave packet initial condition with varying levels of fine details param-
eterized by the frequency f. (Middle): Impact of Neural-IVP improvements in the model on the
initial condition fit relative error across different levels of difficulty of the solution as parameterized
by the frequency f, yielding an improvement of 1 — 2 orders of magnitude. (Right): Initial condition
fit with all Neural-IVP interventions but with varying number of parameters in the model (shown by
the colors). Note that the largest networks which can be used by the dense method are only 5000
parameters.

we can use a scalable Krylov subspace routine of conjugate gradients (CG). To further accelerate
the method, we construct a Nystrom preconditioner (Frangella et al., [2021), drastically reducing
the number of CG iterations. Using this approach, each solve takes time O((n + p)+/x) where

#(P~1M) is the condition number of the preconditioned matrix M, rather than O(p® + p*n) time

of dense solves. These improvements to the runtime using the structure of M mirror the sparse and
Kronecker structures used by finite difference methods.

Sinusoidal Embedding We make several architectural enhancements to the networks used in
Du & Zaki| (2021) and Bruna et al.| (2022), which improve the quality of the initial condition fit
and the error when evolving forward in time. Notably, we find that using the sinusoidal embed-
ding (Mildenhall et al} [2021) substantially improves the ability of the network to represent higher
frequency details in the solution. In contrast to the original form, we use the featurization

7(2) = [sin(2*25)27 )5y + [cos(2"2 5)27 )i, (6)

which scales the magnitude of the high frequency (large w) components down by 1/w®. While
a = 0 (the original sinusoidal embedding) works the best for fitting an initial signal (the only
requirement needed for Neural Radiance Fields (Mildenhall et al.,|2021)), the derivatives of vy will
not be well behaved as the magnitude of the largest components of 7/(z) will scale like 27 and
4" (x) will scale like 22F. We find setting o = 1 to be the most effective for both first order and 2nd
order PDEs. (middle) shows the sinusoidal embedding helps the model represent complex
functions.

Last Layer Linear Solves  To further improve the quality of the initial condition fit, after training
the network on the initial condition, we recast the fitting of the last layer of the network as solving
a linear least squares problem. The network up until the last layer can be considered as features
N(x) = w" ¢g(x) + bover a fixed set of collocation points X . We can then solve the minimization
problem with respect to the final layer weights w, b

min [[w ¢p(X) + b — uo(X)]*, )

which can be solved to a higher level of precision and achieve a lower error when compared to the
values of the last layer obtained without tuning from the full nonlinear and stochastic problem.

Combining these three improvements of scalability, sinusoidal embeddings, and last layer linear
solves (head tuning), we are able to reduce the representation error of the networks by 1-2 orders of
magnitude across different difficulties of this challenging 3 dimensional problem.

4.2 STABILITY AND CONDITIONING

Preconditioning In section we discussed how even for easier PDEs, the symmetries in the
neural networks generate badly conditioned linear systems for the ODE on the parameters. To
counteract this negative effect on our CG solver, we use the highly effective and scalable ran-
domized Nystrom preconditioner (Frangella et al., [2021)). As discussed in [Frangella et al.| (2021)),
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Figure 3: (Left): Restarts improve the condition of the linear systems. Here we cap the number
of CG iterations at 1000, but without restarts the number required to reach a desired error tolerance
will only continue to increase. Neural-IVP achieves an order of magnitude better PDE residual than
EDNN on the Fokker-Plank equation (middle) and on the Vlasov equation (right).

this preconditioner is close to the optimal truncated SVD preconditioner and it is empirically
impressive. To use this preconditioner, we first construct a Nystrdm approximation of M (9):

My (0) = (M (6)Q) (2T M (6) Q)_l (M (6)Q)" using a Gaussian random subspace projec-
tion Q € RP*¢, where ¢ denotes the subspace rank. Then, using the SVD of the approximation
M,ys () = UAU T we can construct a preconditioner (where v is a small regularization) as follows:

— _1 A T T
P=sUM+v) U +(I-UU").

This preconditioner closely approximates the optimal truncated SVD preconditioner when the eigen-
spectrum A resembles that of the original problem. The cost of using this preconditoner are ¢
matrix-vector-multiplies (MVMs) and a Cholesky decomposition of O (E?’), where in our problems
¢ € {100,200, 300}.

Projection to SGD-like regions Following the ODE on the parameters leads to linear systems
whose condition worsens over time as seen on the middle panel of Figure [I] In that plot it is
also visible how the conditioning of the systems is much lower and does not increase as rapidly
when the neural network is trained to fit the PDE solution using SGD. In principle we would opt
for the SGD behavior but we do not have access to fitting the ground truth PDE solution directly.
Instead, when the condition number grows too large, we can refit against our neural predictions
using SGD and thus start from another location in the parameter space. That is, every so often, we
solve §59P (t) = argminy [, (N (0,z) — N (0(t),x))” du () where § () is our current parameters
at time ¢. Performing restarts in this way considerably improves the conditioning. As seen in Figure
[3] (left) the number of CG iterations increases substantially slower when using the SGD restarts.

4.3  VALIDATING OUR METHOD

We validate our method with three different PDEs: the wave equation (3+1), the Vlasov equation
(6+1) and the Fokker-Planck equation (8+1). For more details on these equations, see
For the wave equation we make comparisons against its analytic solution, while for the remaining
equations we compare using the PDE residual (evaluated on different samples from training), addi-
tional details about the experiment setup can be found in appendix [B] For the wave equation, Neural-
IVP achieves the lowest error beating EDNN and finite differences evaluated on a 100 x 100 x 100
grid as seen in Figure [f] For the remaining equations Neural-IVP achives an order of magnitude
lower PDE residual compared to EDN as seen in the middle and right panels of Figure

"While we would like to benefit from the improved sampling distribution proposed by Bruna et al.| (2022),
unfortunately since the solution is not a probability distribution there is no clear measure to sample from.
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Figure 4: (Left): Neural-IVP’s PDE residual over time for wave maps compared to EDNN. (Mid-
dle): Neural-IVP solution for the wave maps at t = 0.36 at a x = 0 slice. (Right): Finite difference
solution for the wave maps at the same slice.

5 SOLVING CHALLENGING HYPERBOLIC PDES

We now turn to a challenging PDE: the wave maps equation. This equation is a second-order hy-
perbolic PDE that often arises in general relativity and that describes the evolution of a scalar field
in a curved (3+1) dimensional spacetime. Following Einstein’s tensor notation from differential
geometry, the wave maps equation can be expressed as

9"V VLo = g 0,0,¢ — ¢"'T},0,6 =0, (8)
where g is the metric tensor expressing the curvature of the space, I'),, are the Christoffel symbols,
combinations of the derivatives of the metric, and 0,, are derivatives with respect to components of

both space and time. For the metric, we choose the metric from a Schwarzschild black hole located
at coordinate value ¢ = —2% in a Cartesian-like coordinate system:

A A O

where 7. = ||z —¢|| = /> ,;(xi —¢;)? and vy = 2M is the radius of the event horizon of the
black hole, and we choose the mass M = 1/2 so that r, = 1. We choose a wave packet initial
condition and evolve the solution for time 7" = .5 = 1M inside the box [—1, 1], with the artificial
Dirichlet boundary conditions on the boundary 9[—1, 1]3. Here the event horizon of the black hole
lies just outside the computational domain and boundary conditions meaning that we need not worry
about complications on and inside the horizon, and instead the scalar field only feels the effect of
the gravity and is integrated for a time short enough that it is not yet pulled inside.

While we do not have an analytic solution to compare to, we plot the relative error of the PDE
residual averaged over the spatial domain in [Figure 4 which is consistently small. We also compare
the solution at the time 7" = 0.36 of our solver solution against the finite difference solution run at
a spatial grid size of 150 x 150 x 150 which is the largest we were able to run with our optimized
sparse finite difference solver before running out of memory. Despite the challenging nature of the
problem, Neural-IVP is able to produce a consistent solution for this task. Finally, we present an
ablation study in Figure [] showing the gains of using the sinusoidal embedding and of scaling the
neural network size and grid for this experiment.

6 DISCUSSION

There are many PDEs of interest that are massively complex to simulate using classical methods
due to the scalability limitations of using grids and meshes. At the same time, neural networks have
shown promise for solving boundary value problems but the current methods for solving initial value
problems can be unstable, deficient in scale and in representation power. To ameliorate these defi-
ciencies, we presented Neural-IVP, a local-in-time method for approximating the solution to initial
value PDEs. Neural-IVP is a compelling option for problems that are computationally challenging
for classical methods like the (3+1) dimensional wave maps equation in section[5] Continuous effort
on this front will empower researchers and engineers to simulate physical PDEs which lie at the
boundary of what is currently possible to solve, allowing prototyping and experimentation without
the massive complexity of modern large scale grid-based solvers involving mesh generation, mesh
refinement, boundaries, excision, parallelization, and communication.
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A APPROXIMATE SYMMETRIES YIELD SMALL EIGENVALUES

Suppose that the network N has an approximate symmetry in the parameters, meaning that there
exists a value ¢ for which

Va0 : |[N(2, To () — N(z,0)||> < ea?. )

holds for « in a neighborhood of 0. If this is the case, we can rearrange the inequality and take the
limitas o — O:

lim [N(z, Ta (6)) — N(z,0)||?/a® <e. (10)
a—
As the limit lim,_sg w = %N(w, T, (0)) exists, we can interchange the limit and
norm to get

[VoNTv||? = vVgNVyNTv <, (11)
since 2N(z,T,(0)) = VeN'v for v(f) = 0aTa(f)| _, Recalling that M(f) =

J VoNVyNTdu(z), we can take the expectation of both sides of the inequality with respect to
1, producing

v Mv < e. (12)

B EXTENDED EXPERIMENTAL RESULTS

In this section we expose additional experimental details that were not fully covered in section[4.3]

B.1 WAVE EQUATION

For this experiment we use the 3 dimensional wave equation 97u = Aw, that has a few well known
analytic solutions. Even this equation is computationally taxing for finite difference and finite ele-
ment methods. We use the radially symmetric outgoing wave solution u(z,t) = f(t — ||z|)/||z||
with f(s) = 25%e2005" and integrate the initial condition forward in time by T' = .5 seconds. In
we compare to the analytic solution each of the solutions produced by Neural-IVP, EDNN
(Du & Zaki, [2021)), and finite differences evaluated on a 100 x 100 x 100 grid with RK45 set to
a 10~* tolerance. Despite the fact that this initial condition does not contain fine scale detail that
Neural-IVP excels at, Neural-IVP performs the best among the three solvers, and faithfully repro-

duces the solution as shown in[Figure 6| (left).
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B.2 VLASOV EQUATION

The Vlasov equation is a PDE that describes the evolution of the density of collisionless but charged
particles in an electric field, expressed both as a function of position and velocity. This equation has
spatial dimension 6 and takes the following form

Opu (z,v,t) + v Vyu(z,0,t) + LE(z,t) " Vyu (z,0,t) =0

where the vector 2 € R? represents the position of the particles and v € R represents the velocity,
and u represents a normalized probability density over z, v. Here ¢ is the charge of the particles and
m is their mass (both of which we set to 1). In a self contained treatment of the Vlasov equation, the
electric field E'(x, t) is itself induced by the density of charged particles: E(x,t) = —V ¢(z,t) and
the potential ¢ is the solution to the Poisson equation A¢ = —p where p(z,t) = [ qu(z,v,t)dv.
However, to simplify the setting to a pure IVP, we assume that F(x,t) is some known and fixed
electric field.

For this particular example, we choose E (z) = V,exp(— ||x|\3) and the initial condition is a
product of two Gaussians

ug (x,v) = N(x;0,.321)N (v;0,.3%1),

corresponding to the Maxwell-Boltzmann distribution over velocities and a standard Gaussian dis-
tribution over position, and we solve the problem on the cube [—1, 1]°.

B.3 FOKKER-PLANCK

For the Fokker-Planck equation, we choose the harmonic trap for a collection of d = 8 interacting
particles from Bruna et al.[(2022), giving rise to the equation

Opu (z,t) = DAu(z,t) — V - (hu),
where h(x) = (a — x) + a(11" /d — I)z. We choose a = (0.2)1 along with constants D = .01
and o = 1/4.

We solve this equation in d = 8 dimensions with the initial condition
— (3\%d 2
ug () = (z) I (1= a7)

which is a normalized probability distribution on [—1,1]%. We use the same Dirichlet boundary
conditions for this problem.

Additionally, since we can naturally increase the dimensionality of the Fokker-Planck equation, we
explore up to what dimension Neural-IVP can give reasonable PDE residuals. As seen in Figure [5}
Neural-IVP can still give solutions for d = 20. For dimensions higher that 20, the linear system
solvers cannot converge to the desire tolerance needed to evolve the parameters. We warn that
these higher dimensional solutions are not guaranteed to be of high quality since the PDE residual
estimation also worsens as we increase the spatial dimension.

C HYPERPARAMETERS

For our experiments we used the following hyperparameters for Neural-IVP in our experiments
unless otherwise specified:

1. RK45 Integrator with rtol: le-4 (for all equations except wave maps, which uses RK23)
2. Number of Monte Carlo samples: 50K for wave maps and 10-20K for all other PDEs

3. Maximum CG iterations: 1,000

4. CG tolerance: le-8

5. Nystrom preconditioner rank: 200-350

6. Linear system regularization: le-6

7. Initial fit iterations, optimizer and learning rate: S0K, ADAM, le-3

12
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Figure 5: (Left): Neural-IVP is able to provide solutions up to dimension 20 + 1 for the Fokker-
Planck equation. Higher dimensions break-down the linear systems to evolve the PDE parameters.
(Right): Interventions to transform EDNN to Neural-IVP. (I1) First, add a sinusoidal embedding
before the MLP. (I2) Second, use head finetuning (in this case there is no notable improvement as
the initial condition does not posses finer details). Finally, scale the neural network and the grid size.
Note that this is only possible due to our scalable and efficient construction.
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Figure 6: (Left): Neural-IVP fit of the wave equation through time. (Right): Neural-IVP performs
slightly better than a finite difference method on the 3D wave equation.

8. Floating point precision: double
9. Number of restarts: 10

The neural network architecture we use is a simple MLP with 3 hidden layers, each with 100 hidden
units, L = 5 for the highest frequency power in the sinusoidal embedding, and the network uses
swish nonlinearities. The initial sinusoidal embedding values -y(p) are scaled by 1.5 before feeding
into the network.
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Algorithm 1 NEURAL-IVP

1: Input:

1. IVP: Initial condition ug (x), PDE rhs operator L[u](x, t), integration time T'
2. Design Choices: neural network architecture N (x, 8), sampling distribution y
3. Hyperparameters: n number of Monte Carlo samples, ODE_TOL, CG_TOL, regularization

1, preconditioner rank r

2: Output: Solution u(x,t) at specified times ty,...txy < T

3: function NEURAL-IVP

4:

11

Y 2w

0 «+ FitFunction(up)

At < 20TODE_TOL

while ¢ < T do
if Sufficient time since last restart then

0 + FitFunction(N(-,0))
0, At + Adaptive RK23_Step(Dynamics,6, A¢,ODE_TOL)
t+t+ At
return [N(-,0;,),...,N(-,0;,)]

: function FITFUNCTION(u)

122 0 =argmingE,.,||N (2,0) — u(x)||?> minimized with Adam
13: Separate last layer weights W from N(z, ) = W T ®4(x) (including bias)
14: Solve for W from regularized least squares over samples X:
15: W (®(X)T®(X) + M) 1o(X) Tu(X)
16: Assemble 6 « [0._y, W
return ¢
17: function DYNAMICS(0)
18: Let the Jacobian vector product of N (x;, §) with v taken with respect to 6 be DN (x;, 0)v
19:  Construct efficient MVM M () v := V5 3% | | DN(a;, 0)v|?
20:  Construct RHS F (0) = V5= 37 | L[N](2;,0) T DN(z;,0)v
21: Construct rank-r Nystrom predonditioner P using M (0) MVMs
22: Solve (M (0) + pI)0 = I (0) for 6 using conjugate gradients with preconditioner P
23: return ¢
D NEURAL-IVP PSEUDO-CODE

The pseudo-code for Neural-IVP is present in Algorithm [T} For reduced clutter, have omitted the
logic for setting step sizes so that § will be output by the integrator at the specified times ¢1, to, ...t .
Sampling RNG state is updated outside the RK23 step but inside the time evolution while loop.
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