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Abstract

Time series forecasting has become a critical task due to its high practicality in
real-world applications such as traffic, energy consumption, economics and fi-
nance, and disease analysis. Recent deep-learning-based approaches have shown
remarkable success in time series forecasting. Nonetheless, due to the dynamics of
time series data, deep networks still suffer from unstable training and overfitting.
Inconsistent patterns appearing in real-world data lead the model to be biased to a
particular pattern, thus limiting the generalization. In this work, we introduce the
dynamic error bounds on training loss to address the overfitting issue in time series
forecasting. Consequently, we propose a regularization method called WaveBound
which estimates the adequate error bounds of training loss for each time step and
feature at each iteration. By allowing the model to focus less on unpredictable data,
WaveBound stabilizes the training process, thus significantly improving general-
ization. With the extensive experiments, we show that WaveBound consistently
improves upon the existing models in large margins, including the state-of-the-art
model.

1 Introduction

Time series forecasting has gained a lot of attention due to its high practicality in real-world applica-
tions such as traffic [1], energy consumption [2], economics and finance [3], and disease analysis [4].
Recent deep-learning-based approaches, particularly transformer-based methods [5, 6, 7, 8, 9], have
shown remarkable success in time series forecasting. Nevertheless, inconsistent patterns and unpre-
dictable behaviors in real data enforce the models to fit in patterns, even for the cases of unpredictable
incident, and induce the unstable training. In unpredictable cases, the model does not neglect them in
training, but rather receives a huge penalty (i.e., training loss). Ideally, small magnitudes of training
loss should be presented for unpredictable patterns. This implies the need for proper regularization of
the forecasting models in time series forecasting.

Recently, Ishida et al. [10] claimed that zero training loss introduces a high bias in training, hence
leading to an overconfident model and a decrease in generalization. To remedy this issue, they propose
a simple regularization called flooding and explicitly prevent the training loss from decreasing below
a small constant threshold called the flood level. In this work, we also focus on the drawbacks of zero
training loss in time series forecasting. In time series forecasting, the model is enforced to fit to an
inevitably appearing unpredictable pattern which mostly generates a tremendous error. However, the
original flooding is not applicable to time series forecasting mainly due to the following two main
reasons. (i) Unlike image classification, time series forecasting requires the vector output of the size
of the prediction length times the number of features. In this case, the original flooding considers the
average training loss without dealing with each time step and feature individually. (ii) In time series
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(a) Flooding (original) (b) Flooding (modified) (c) WaveBound (ours)

Figure 1: The conceptual examples for different methods. (a) The original flooding provides the
lower bound of the average loss, rather than considering each time step and feature individually. (b)
Even if the lower bounds of training loss are provided for each time step and feature, the bound of
constant value cannot reflect the nature of time series forecasting. (c) Our proposed WaveBound
method provides the lower bound of the training loss for each time step and feature. This lower bound
is dynamically adjusted to give a tighter error bound during the training process.

data, error bounds should be dynamically changed for different patterns. Intuitively, a higher error
should be tolerated for unpredictable patterns.

To properly address the overfitting issue in time series forecasting, the difficulty of prediction, i.e.,
how unpredictable the current label is, should be measured in the training procedure. To this end, we
introduce the target network updated with an exponential moving average of the original network,
i.e., source network. At each iteration, the target network can guide a reasonable level of training
loss to the source network — the larger the error of the target network, the more unpredictable the
pattern. In current studies, a slow-moving average target network is commonly used to produce
stable targets in the self-supervised setting [11, 12]. By using the training loss of the target network
for our lower bound, we derive a novel regularization method called WaveBound which faithfully
estimates the error bounds for each time step and feature. By dynamically adjusting the error bounds,
our regularization prevents the model from overly fitting to a certain pattern and further improves
generalization. Figure 1 shows the conceptual difference between the original flooding and our
WaveBound method. The originally proposed flooding determines the direction of the update step for
all points by comparing the average loss and its flood level. In contrast, WaveBound individually
decides the direction of the update step for each point by using the dynamic error bound of the
training loss. The difference between these methods is further discussed in Section 3. Our main
contributions are threefold:

• We propose a simple yet effective regularization method called WaveBound that dynamically
provides the error bounds of training loss in time series forecasting.

• We show that our proposed regularization method consistently improves upon the existing
state-of-the-art time series forecasting model on six real-world benchmarks.

• By conducting extensive experiments, we verify the significance of adjusting the error bounds
for each time step, feature, and pattern, thus addressing the overfitting issue in time series
forecasting.

2 Preliminary

2.1 Time Series Forecasting

We consider the rolling forecasting setting with a fixed window size [5, 6, 7]. The aim of time
series forecasting is to learn a forecaster g : RL×K → RM×K which predicts the future series yt =
{zt+1, zt+2, ..., zt+M : zi ∈ RK} given the past series xt = {zt−L+1, zt−L+2, ..., zt : zi ∈ RK}
at time t where K is the feature dimension and L and M are the input length and output length,
respectively. We mainly address the error bounding in the multivariate regression problem where the
input series x and output series y jointly come from the underlying density p(x, y). For a given loss
function ℓ, the risk of g is R(g) := E(x,y)∼p(x,y) [ℓ(g(x), y)]. Since we cannot directly access the
distribution p, we instead minimize its empirical version R̂(g) := 1

N

∑N
i=1 ℓ(g(xi), yi) using training

data X := {(xi, yi)}Ni=1. In the analysis, we assume that the errors are independent and identically
distributed. We mainly consider using the mean squared error (MSE) loss, which is widely used as an
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objective function in recent time series forecasting models [5, 6, 7]. Then, the risk can be rewritten as
the sum of the risk at each prediction step and feature:

R(g) =E(u,v)∼p(u,v)

[
1

MK
||g(u)− v||2

]
=

1

MK

∑
j,k

Rjk(g),

R̂(g) =
1

NMK

N∑
i=1

||g(xi)− yi||2 =
1

MK

∑
j,k

R̂jk(g),

(1)

where Rjk(g) := E(u,v)∼p(u,v)

[
||gjk(u)− vjk||2

]
and R̂jk(g) :=

1
N

∑N
i=1 ||gjk(xi)− (yi)jk||2.

2.2 Flooding

To address the overfitting problem, Ishida et al. [10] suggested flooding, which restricts the training
loss to stay above a certain constant. Given the empirical risk R̂ and the manually searched lower
bound b, called the flood level, we instead minimize the flooded empirical risk, which is defined as

R̂fl(g) = |R̂(g)− b|+ b.1 (2)
The gradient update of the flooded empirical risk with respect to the model parameters is performed
as that of the empirical risk if R̂(g) > b and is otherwise performed in the opposite direction. The
flooded empirical risk estimator is known to provide a better approximation of the risk than the
empirical risk estimator in terms of MSE if the risk is greater than b.

For the mini-batched optimization, a gradient update of the flooded empirical risk is performed with
respect to the mini-batch. Let R̂t(g) denote the empirical risk with respect to the t-th mini-batch for
t ∈ {1, 2, ..., T}. Then, by Jensen’s inequality,

R̂fl(g) ≤ 1

T

T∑
t=1

(|R̂t(g)− b|+ b). (3)

Therefore, the mini-batched optimization minimizes the upper bound of the flooded empirical risk.

3 Method

In this section, we propose a novel regularization called WaveBound which is specially-designed for
time series forecasting. We first deal with the drawbacks of applying original flooding to time series
forecasting and then introduce a more desirable form of regularization.

3.1 Flooding in Time Series Forecasting

We first discuss how the original flooding may not effectively work for the time series forecasting
problem. We start with rewriting Equation (2) using the risks at each prediction step and feature:

R̂fl(g) =
∣∣∣R̂(g)− b

∣∣∣+ b =

∣∣∣∣∣∣
 1

MK

∑
j,k

R̂jk(g)

− b

∣∣∣∣∣∣+ b. (4)

Flooded empirical risk constrains the lower bound of the average of the empirical risk for all prediction
steps and features by a constant value of b. However, for the multivariate regression model, this
regularization does not independently bound each R̂jk(g). As a result, the regularization effect is
concentrated on output variables where R̂jk(g) greatly varies in training.

In this circumstance, the modified version of flooding can be explored by considering the individual
training loss for each time step and feature. This can be done by subtracting the flood level b for each
time step and feature as follows:

R̂const(g) =
1

MK

∑
j,k

(
|R̂jk(g)− b|+ b

)
. (5)

1The constant b outside of absolute value brackets does not affect the gradient update, but make sure
R̃fl(g) = R̂(g) if R̂(g) > b. This property is especially useful in the analysis of estimation error.
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Figure 2: Our proposed WaveBound method provides the dynamic error bounds of the training loss
for each time step and feature using the target network. The target network gτ is updated with the
EMA of the source network gθ. At j-th time step and k-th feature, the training loss is bounded by
our estimated error bound R̂jk(gτ )− ϵ, i.e., the gradient ascent is performed instead of the gradient
descent when the training loss is below the error bound.

For the remainder of this study, we denote this version of flooding as constant flooding. Compared
to the original flooding that considers the average of the whole training loss, constant flooding
individually constrains the lower bound of the training loss at each time step and feature by the value
of b.

Nonetheless, it still fails to consider different difficulties of predictions for different mini-batches.
For constant flooding, it is challenging to properly minimize the variants of empirical risk in the
batch-wise training process. As in Equation 3, the mini-batched optimization minimizes the upper
bound of the flooded empirical risk. The problem is that the inequality becomes less tight as each
flooded risk term R̂t(g) − b for t ∈ {1, 2, ..., T} differs significantly. Since the time series data
typically contains lots of unpredictable noise, this happens frequently as the loss of each batch highly
varies. To ensure the tightness of the inequality, the bound for R̂t(g) should be adaptively chosen for
each batch.

3.2 WaveBound

As previously mentioned, to properly bound the empirical risk in time series forecasting, the regular-
ization method should be considered with the following conditions: (i) The regularization should
consider the empirical risk for each time step and feature individually. (ii) For different patterns,
i.e., mini-batches, different error bounds should be searched in the batch-wise training process. To
handle this, we find the error bound for each time step and feature and dynamically adjust it at each
iteration. Since manually searching different bounds for each time step and feature at every iteration
is impractical, we estimate the error bounds for different predictions using the exponential moving
average (EMA) model [13].

Concretely, two networks are employed throughout the training phase: the source network gθ and
target network gτ which have the same architecture, but different weights θ and τ , respectively. The
target network estimates the proper lower bounds of errors for the predictions of the source network,
and its weights are updated with the exponential moving average of the weights of the source network:

τ ← ατ + (1− α)θ, (6)

where α ∈ [0, 1] is a target decay rate. On the other hands, the source network updates their weights
θ using the gradient descent update in the direction of the gradient of wave empirical risk R̂wb(gθ)
which is defined as

R̂wb(gθ) =
1

MK

∑
j,k

R̂wb
jk (gθ),

R̂wb
jk (gθ) =

∣∣∣R̂jk(gθ)− (R̂jk(gτ )− ϵ)
∣∣∣+ (R̂jk(gτ )− ϵ),

(7)

where ϵ is a hyperparameter indicating how far the error bound of the source network can be from
the error of the target network. Intuitively, the target network guides the lower bound of the training
loss for each time step and feature to prevent the source network from training towards a loss lower
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than that bound, i.e., overfitting to a certain pattern. As the exponential moving average model is
known to have the effect of ensembling the source networks and memorizing training data visible in
earlier iterations [13], the target network can robustly estimate the error bound of the source network
against the instability mostly caused by noisy input data. Figure 2 shows how the source network and
the target network perform in our WaveBound method. A summary of WaveBound is provided in
Appendix B.

Mini-batched optimization. For t ∈ {1, 2, ..., T}, let (R̂wb
t )jk(g) and (R̂t)jk(g) denote the wave

empirical risk and the empirical risk at j-th step and k-th feature relative to the t-th mini-batch,
respectively. Given the target network g∗, by Jensen’s inequality,

R̂wb
jk (g) ≤

1

T

T∑
t=1

(∣∣∣(R̂t)jk(g)− (R̂t)jk(g
∗) + ϵ

∣∣∣+ (R̂t)jk(g
∗)− ϵ

)
=

1

T

T∑
t=1

(R̂wb
t )jk(g). (8)

Therefore, the mini-batched optimization minimizes the upper bound of wave empirical risk. Note
that if g is close to g∗, the values of (R̂t)jk(g)−(R̂t)jk(g

∗)+ϵ are similar across mini-batches, which
gives a tight bound in Jensen’s inequality. We expect the EMA update to work so that this condition
is met, giving a tight upper bound for the wave empirical risk in the mini-batched optimization.

MSE reduction. We show that the MSE of our suggested wave empirical risk estimator can be
smaller than that of the empirical risk estimator given an appropriate ϵ.
Theorem 1. Fix measurable functions g and g∗. Let I := {(i, j) : i = 1, 2, ...,M, j = 1, 2, ...,K},
and let J(X ) := {(i, j) ∈ I : R̂ij(g) < R̂ij(g

∗)− ϵ}. If the following two conditions hold:

(a) ∀(i, j), (k, l) ∈ I such that (i, j) ̸= (k, l), R̂ij(g)− R̂ij(g
∗) ⊥ R̂kl(g)

(b) R̂ij(g
∗) < Rij(g) + ϵ for all (i, j) ∈ J(X ) almost surely,

then MSE(R̂(g)) ≥ MSE(R̂wb(g)). Given the condition (a), if we have 0 < α such that α <

Rij(g)− R̂ij(g
∗) + ϵ for all (i, j) ∈ J(X ) almost surely, then

MSE(R̂(g))−MSE(R̂wb(g)) ≥ 4α2
∑

(i,j)∈I

Pr[α < R̂ij(g
∗)− R̂ij(g)− ϵ]. (9)

Proof. Please see Appendix A.

Intuitively, Theorem 1 states that the MSE of the empirical risk estimator can be reduced when
the following conditions hold: (i) The network g∗ has sufficient expressive power so that the loss
difference between g and g∗ at each output variable is unrelated to the loss at the other output variables
in g. (ii) R̂ij(g

∗) − ϵ likely lies in between R̂ij(g) and Rij(g). It is preferable to have g∗ as the
EMA model of g since the training loss of the EMA model cannot be readily below the test loss of
the model. Then, ϵ can be chosen as a fixed small value so that the training loss of the source model
at each output variable can be closely bounded below by the test loss at that variable.

4 Experiments

4.1 WaveBound with Forecasting Models

In this section, we evaluate our WaveBound method on real-world benchmarks using various time
series forecasting models, including the state-of-the-art models.

Baselines. Since our method can be easily applied to deep-learning-based forecasting models, we
evaluate our regularization adopted by several baselines including the state-of-the-art method. For
the multivariate setting, we select Autoformer [5], Pyraformer [6], Informer [7], LSTNet [14], and
TCN [16]. For the univariate setting, we additionally include N-BEATS [15] for the baseline.

Datasets. We examine the performance of forecasting models in six real-world benchmarks. (1) The
Electricity Transformer Temperature (ETT) [7] dataset contains two years of data from two separate
counties in China with intervals of 1-hour level (ETTh1, ETTh2) and 15 minutes level (ETTm1,
ETTm2) collected from electricity transformers. Each time step contains an oil temperature and
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Table 1: The results of WaveBound in the multivariate setting. All results are averaged over 3 trials.

Models Autoformer [5] Pyraformer [6] Informer [7] LSTNet [14]
Origin w/ Ours Origin w/ Ours Origin w/ Ours Origin w/ Ours

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

m
2 96 0.262 0.326 0.204 0.285 0.363 0.451 0.281 0.386 0.376 0.477 0.334 0.429 0.455 0.511 0.268 0.368

192 0.284 0.342 0.265 0.322 0.708 0.648 0.624 0.599 0.751 0.672 0.698 0.631 0.706 0.660 0.464 0.508
336 0.338 0.374 0.320 0.356 1.130 0.846 1.072 0.829 1.440 0.917 1.087 0.845 1.161 0.868 0.781 0.695
720 0.446 0.435 0.413 0.408 2.995 1.386 1.917 1.119 3.897 1.498 2.984 1.411 3.288 1.494 2.312 1.239

E
C

L

96 0.202 0.317 0.176 0.288 0.256 0.360 0.241 0.345 0.335 0.417 0.289 0.378 0.268 0.366 0.185 0.291
192 0.235 0.340 0.205 0.317 0.272 0.378 0.256 0.360 0.341 0.426 0.298 0.388 0.277 0.375 0.197 0.304
336 0.247 0.351 0.217 0.327 0.278 0.383 0.269 0.371 0.369 0.448 0.305 0.394 0.284 0.382 0.217 0.326
720 0.270 0.371 0.260 0.359 0.291 0.385 0.283 0.377 0.396 0.457 0.311 0.398 0.316 0.404 0.250 0.350

E
xc

ha
ng

e 96 0.153 0.285 0.146 0.274 0.604 0.624 0.615 0.627 0.979 0.791 0.878 0.765 0.483 0.518 0.357 0.432
192 0.297 0.397 0.262 0.373 0.982 0.806 0.953 0.797 1.147 0.854 1.136 0.859 0.706 0.646 0.621 0.593
336 0.438 0.490 0.425 0.483 1.264 0.934 1.263 0.944 1.592 1.014 1.461 0.992 1.055 0.800 0.837 0.691
720 1.207 0.860 1.088 0.810 1.663 1.051 1.562 1.016 2.540 1.306 2.496 1.294 2.198 1.127 1.374 0.894

Tr
af

fic

96 0.645 0.399 0.596 0.352 0.635 0.364 0.622 0.341 0.731 0.412 0.671 0.364 0.735 0.446 0.587 0.356
192 0.644 0.407 0.607 0.370 0.658 0.376 0.646 0.355 0.751 0.422 0.666 0.360 0.750 0.446 0.595 0.365
336 0.625 0.390 0.603 0.361 0.668 0.377 0.653 0.355 0.822 0.465 0.709 0.387 0.778 0.455 0.623 0.378
720 0.650 0.398 0.642 0.383 0.698 0.390 0.672 0.364 0.957 0.539 0.764 0.421 0.815 0.470 0.648 0.383

W
ea

th
er

96 0.294 0.355 0.227 0.296 0.235 0.321 0.193 0.272 0.378 0.428 0.355 0.415 0.237 0.310 0.202 0.275
192 0.308 0.368 0.283 0.340 0.340 0.415 0.306 0.372 0.462 0.467 0.424 0.448 0.277 0.343 0.254 0.316
336 0.364 0.396 0.335 0.370 0.453 0.484 0.403 0.441 0.575 0.535 0.506 0.484 0.326 0.378 0.309 0.358
720 0.426 0.433 0.401 0.411 0.599 0.563 0.535 0.519 1.024 0.751 0.972 0.712 0.412 0.431 0.398 0.415

IL
I

24 3.468 1.299 3.118 1.200 4.822 1.489 4.679 1.459 5.356 1.590 4.947 1.494 7.934 2.091 6.331 1.816
36 3.441 1.273 3.310 1.240 4.831 1.479 4.763 1.483 5.131 1.569 5.027 1.537 8.793 2.214 6.560 1.848
48 3.086 1.184 2.927 1.128 4.789 1.465 4.524 1.439 5.150 1.564 4.920 1.514 7.968 2.068 6.154 1.779
60 2.843 1.136 2.785 1.116 4.876 1.495 4.573 1.465 5.407 1.604 5.013 1.528 7.387 1.984 6.119 1.758

Table 2: The results of WaveBound in the univariate setting. All results are averaged over 3 trials.

Models Autoformer [5] Pyraformer [6] Informer [7] N-BEATS [15]
Origin w/ Ours Origin w/ Ours Origin w/ Ours Origin w/ Ours

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.098 0.239 0.085 0.221 0.078 0.209 0.070 0.197 0.085 0.224 0.081 0.218 0.073 0.198 0.067 0.188
192 0.130 0.277 0.116 0.262 0.114 0.257 0.110 0.256 0.122 0.273 0.118 0.270 0.107 0.246 0.103 0.241
336 0.162 0.311 0.143 0.293 0.178 0.325 0.153 0.306 0.153 0.304 0.148 0.305 0.163 0.310 0.135 0.284
720 0.194 0.344 0.188 0.338 0.198 0.351 0.169 0.329 0.196 0.351 0.189 0.349 0.263 0.402 0.188 0.340

E
C

L

96 0.462 0.502 0.447 0.496 0.240 0.351 0.229 0.347 0.266 0.371 0.261 0.369 0.304 0.382 0.298 0.378
192 0.557 0.565 0.515 0.538 0.262 0.367 0.253 0.365 0.283 0.385 0.281 0.383 0.323 0.396 0.322 0.395
336 0.613 0.593 0.531 0.543 0.285 0.386 0.283 0.386 0.338 0.428 0.332 0.426 0.385 0.430 0.369 0.422
720 0.691 0.632 0.604 0.591 0.309 0.411 0.307 0.415 0.631 0.612 0.378 0.463 0.462 0.487 0.433 0.473

6 additional features. (2) The Electricity (ECL) 2 dataset comprises 2 years of hourly electricity
consumption of 321 clients. (3) The Exchange [14] dataset provides a collection of eight distinct
countries on a daily basis. (4) The Traffic 3 dataset contains hourly statistics of various sensors
in San Francisco Bay provided by the California Department of Transportation. Road occupancy
rate is expressed as a real number between 0 and 1. (5) The Weather 4 dataset records 4 years of
data (2010-2013) of 21 meteorological indicators collected at around 1,600 landmarks in the United
States. (6) The ILI 5 dataset contains data from the Centers for Disease Control and Prevention’s
weekly reported influenza-like illness patients from 2002 to 2021, which describes the ratio of
patients seen with ILI to the overall number of patients. As in Autoformer [5], we set L = 36 and
M ∈ {24, 36, 48, 60} for the ILI dataset, and set L = 96 and M ∈ {96, 192, 336, 720} for the other
datasets. We split each dataset into train/validation/test as follows: 6:2:2 ratio for the ETT dataset
and 7:1:2 ratio for the rest.

Multivariate Results. Table 1 shows the performance of our method in terms of mean squared
error (MSE) and mean absolute error (MAE) in the multivariate setting. We can observe that our

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3http://pems.dot.ca.gov
4https://www.ncei.noaa.gov/data/local-climatological-data/
5https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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(a) Autoformer (b) Informer

Train Test Train Test

Figure 3: The training curves of models with and without WaveBound on the ETTm2 dataset. Without
WaveBound, the training loss of both models decreases, but the test loss increases (See black lines),
which indicates that both models tend to overfit at the training data. In contrast, the test loss of models
with WaveBound continue to decrease after learning for even more epochs.

(a) Autoformer
Forecast step

M
SE

M
SE

M
SE

M
SE

Forecast step Forecast step Forecast step

(b) Pyraformer (c) Informer (d) LSTNet

Figure 4: The test error of models trained with different regularization methods on the ECL dataset.
Compared with original flooding and constant flooding, the test error of WaveBound is consis-
tently lower at all time steps, which indicates that our method successfully improves generalization
regardless of the range of predictions.

method consistently shows improvements for various forecasting models including the state-of-the-
art methods. Notably, WaveBound improves both MAE and MSE of Autoformer on the ETTm2
dataset by 22.13% (0.262→ 0.204) in MSE and 12.57% (0.326→ 0.285) in MAE when M = 96.
In particular, the performance is improved by 41.10% (0.455 → 0.268) in MSE and 27.98%
(0.511 → 0.368) in MAE for LSTNet. For long-term ETTm2 forecasting settings (M = 720),
WaveBound improves the performance of Autoformer by 7.39% (0.446 → 0.413) in MSE and
6.20% (0.435→ 0.408) in MAE. In all experiments, our method consistently shows performance
improvements with various forecasting models. The results of full baselines and benchmarks are
reported in Appendix D.

Univariate Results. WaveBound also shows superior results in the univariate setting, as reported in
Table 2. In particular, for N-BEATS, which is designed especially for univariate time series forecasting,
our method improves the performance on the ETTm2 dataset by 8.22% (0.073→ 0.067) in MSE and
5.05% (0.198→ 0.188) in MAE, when M = 96. For the ECL dataset, Informer with WaveBound
shows improvements of 40.10% (0.631→ 0.378) in MSE and 24.35% (0.612→ 0.463) in MAE
when M = 720. The results of the full baselines and benchmarks are reported in Appendix D.

Generalization Gaps. To identify overfitting, the generalization gap, which is the difference between
the training loss and the test loss, can be examined. To verify that our regularization truly prevents
overfitting, we depict both the training loss and test loss for models with and without WaveBound in
Figure 3. Without WaveBound, the test loss starts to increase abruptly, showing a high generalization
gap. In contrast, when using WaveBound, we can observe that the test loss continued to decrease,
which indicates that WaveBound successfully addresses overfitting in time series forecasting.

4.2 Significance of Dynamically Adjusting Error Bounds

In WaveBound, the error bound is dynamically adjusted at each iteration for each time step and feature.
To validate the significance of such dynamics, we compare our WaveBound with the original flooding
and constant flooding which use the constant values for flood levels, as introduced in Section 3.

Table 3 compares the performance of variants of flooding regularization with different surrogates to
empirical risk. The original flooding bounds the empirical risk by a constant while constant flooding
bounds the risk at each feature and time step independently. We searched the flood level b for the
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Table 3: The results of variants of flooding regularization on the ECL dataset. We compare the forecast-
ing accuracy when training the source network using different surrogates to empirical risk. All results
are averaged over 3 trials and the constant value b is faithfully searched in {0.00, 0.02, 0.04, ...0.40}.

Method Estimated risk (w/o constant) Autoformer Pyraformer Informer LSTNet

96 336 96 336 96 336 96 336

Base model R̂(g)
MSE 0.202 0.247 0.256 0.278 0.335 0.369 0.268 0.284
MAE 0.317 0.351 0.360 0.383 0.417 0.448 0.366 0.382

Flooding [10] |R̂(g) − b| MSE 0.194 0.247 0.257 0.277 0.335 0.368 0.268 0.284
MAE 0.309 0.351 0.360 0.382 0.416 0.447 0.366 0.381

Constant flooding
1

MK

∑
j,k

|R̂jk(g) − b| MSE 0.198 0.247 0.257 0.277 0.333 0.369 0.268 0.284
MAE 0.314 0.351 0.360 0.382 0.415 0.448 0.366 0.382

WaveBound (Avg.) |R̂(g) − R̂(g∗) + ϵ| MSE 0.194 0.221 0.248 0.288 0.302 0.322 0.208 0.246
MAE 0.309 0.331 0.352 0.388 0.388 0.407 0.314 0.356

WaveBound (Indiv.)
1

MK

∑
j,k

|R̂jk(g) − R̂jk(g
∗) + ϵ| MSE 0.176 0.217 0.241 0.269 0.289 0.305 0.185 0.217

MAE 0.288 0.327 0.345 0.371 0.378 0.394 0.291 0.326

A
ut

of
or

m
er

OriginalInformer Informer w/ WaveBound w/ WaveBound

In
fo

rm
er

Figure 5: The loss landscapes of Autoformer and Informer trained with and without our WaveBound
on the ETTh1 dataset. WaveBound flattens the loss landscapes for both models, improving the
generalization of models.

regularization methods with constant value b in space of {0.00, 0.02, 0.04, ...0.40}. As we expected,
we cannot achieve the improvements when using a fixed constant value. The models trained by
individually bounding the error in each output variable outperform other baselines by a large margin,
which concretely shows the effectiveness of our proposed WaveBound method. The test error of
different methods for each time step is depicted in Figure 4. For all time steps, WaveBound shows an
improved generalization compared to original flooding and constant flooding, which highlights the
significance of adjusting the error bounds in time series forecasting.

4.3 Flatness of Loss Landscapes

The visualization of loss landscapes [17] is introduced to evaluate how the model adequately gen-
eralizes. It is known that the flatter the loss landscapes of the model, the better the robustness and
generalization [18, 19]. In this section, we depict the loss landscapes of models trained with and
without WaveBound. Figure 5 shows the loss landscapes of Autoformer and Informer. We visualize
the loss landscapes using filter normalization [17] and evaluate the MSE for every model for a fair
comparison. We can observe that the model with WaveBound shows smoother loss landscapes
compared to that of the original model. In other words, WaveBound flattens the loss landscapes of
time series forecasting models and stabilizes the training.

5 Related Work

Time series forecasting. For time series forecasting tasks, various approaches have been proposed
based on different principles. Statistical approaches can provide interpretability as well as a theo-
retical guarantee. Auto-regressive Integrated Moving Average [20] and Prophet [21] are the most
representative methods for statistical approaches. Another important class of time series forecasting
is the state space models [22, 23] (SSMs). SSMs incorporate structural assumptions into the model
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and learn latent dynamics of the time series data. However, due to its superior results in long-range
forecasting, deep-learning-based approaches are mainly considered as the prominent solution for time
series forecasting. To model the temporal dependencies in time series data, recurrent neural networks
(RNN) [24, 25, 26, 1] and convolutional neural networks (CNN) [14, 27] are introduced in time series
forecasting. Temporal convolutional networks (TCN) [28, 16, 29] are also considered for modeling
temporal causality. Approaches combining SSMs and neural networks have also been proposed.
DeepSSM [30] estimates state space parameters using RNN. Linear latent dynamics have been effi-
ciently modeled using a Kalman filter [31, 32], and methodologies to model non-linear state variables
have been proposed [33]. Other recent approaches include using SSMs with Rao-blackwellised
particle filters [34] or SSMs with a duration switching mechanism [35].

Recently, transformer-based models have been introduced in time series forecasting due to their ability
to capture the long-range dependencies. However, applying a self-attention mechanism increases
the complexity of sequence length L from O(L) to O(L2). To alleviate the computational burden,
several attempts such as LogTrans [8], Reformer [9], and Informer [7] re-designed the self-attention
mechanism to a sparse version and reduced the complexity of the transformer. Haixu et al. [5]
proposed the decomposition architecture with an auto-correlation mechanism called Autoformer to
provide the series-wise connections. To model the temporal dependencies of different ranges, the
pyramidal attention module is proposed in Pyraformer [6]. However, we observe that these models
still fail to generalize due to the training strategy that enforces models to fit to all inconsistent patterns
appearing in real data. In this work, we mainly focus on providing the adequate error bounds to
prevent models from being overfitted to a certain pattern in the training procedure.

Regularization methods. Overfitting is one of the critical concerns for the over-parameterized deep
networks. This can be identified by the generalization gap, which is the gap between the training loss
and the test loss. To prevent overfitting and improve generalization, several regularization methods
have been proposed. Decaying weight parameters [36], early stopping [37], and Dropout [38]
have been commonly applied to avoid the high bias of deep networks. In addition to these methods,
regularization methods specially designed for time series forecasting have also been proposed [39, 40].

Recently, the flooding [10] has been introduced to explicitly prevent zero training loss. By providing
the lower bound of training loss, called the flood level, flooding allows the model not to completely
fit to the training data, thus improving the generalization capacity of the model. In this work, we also
attempt to tackle the zero training loss in time series forecasting. However, we find that bounding the
average loss in time series forecasting does not perform as well as expected. In time series forecasting,
an appropriate error bound for each feature and time step should be carefully chosen. In addition, a
constant flood level may not be suitable to time series forecasting where the difficulty of prediction
changes for every iteration in the mini-batch training process. To handle such issues, we suggest a
novel regularization which fully considers the nature of time series forecasting.

6 Conclusion

In this work, we propose a simple yet effective regularization method called WaveBound for time
series forecasting. WaveBound provides dynamic error bounds for each time step and feature using
the slow-moving average model. With the extensive experiments on real-world benchmarks, we show
that our regularization scheme consistently improves the existing models including the state-of-the-art
model, addressing overfitting in time series forecasting. We also examine the generalization gaps and
loss landscapes to discuss the effect of WaveBound in the training of over-parameterized networks.
We believe that the significant performance improvements of our method indicate that regularization
should be designed specifically for time series forecasting. We believe that our work will provide a
meaningful insight into future research.
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