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Abstract

In this paper, we examine the long-run distribution
of stochastic gradient descent (SGD) in general,
non-convex problems. Specifically, we seek to
understand which regions of the problem’s state
space are more likely to be visited by SGD, and
by how much. Using an approach based on the
theory of large deviations and randomly perturbed
dynamical systems, we show that the long-run dis-
tribution of SGD resembles the Boltzmann–Gibbs
distribution of equilibrium thermodynamics with
temperature equal to the method’s step-size and
energy levels determined by the problem’s objec-
tive and the statistics of the noise. In particular,
we show that, in the long run, (a) the problem’s
critical region is visited exponentially more often
than any non-critical region; (b) the iterates of
SGD are exponentially concentrated around the
problem’s minimum energy state (which does not
always coincide with the global minimum of the
objective); (c) all other connected components of
critical points are visited with frequency that is ex-
ponentially proportional to their energy level; and,
finally (d) any component of local maximizers or
saddle points is “dominated” by a component of
local minimizers which is visited exponentially
more often.

1 Introduction
Even though stochastic gradient descent (SGD) has been
around for more than 70 years [56], it is still the method of
choice for training a wide array of modern machine learning
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architectures – from large language models to reinforce-
ment learning and recommender systems. This phenomenal
success is largely owed to the method’s simplicity: given a
smooth function 𝑓 : ℝ𝑑 → ℝ and the associated optimiza-
tion problem

min𝑥∈ℝ𝑑 𝑓 (𝑥) (Opt)

the SGD algorithm is given by the simple update rule

𝑥𝑛+1 = 𝑥𝑛 − 𝜂𝑔𝑛 (SGD)

where 𝜂 > 0 is the method’s step-size, and 𝑔𝑛, 𝑛 = 0, 1, . . .
is a stochastic gradient of 𝑓 at 𝑥𝑛.

By virtue of its wide applicability, (SGD) and its variants
have been studied extensively in the literature, for both
convex and non-convex objectives. In the non-convex case
(which is the most relevant setting for machine learning), the
basic, no-frills guarantees of (SGD) boil down to bounds of
the form 𝔼

[∑𝑛
𝑘=0∥∇ 𝑓 (𝑥𝑘)∥

2] = O(
√
𝑛) provided that 𝜂 has

been chosen accordingly [34]. This guarantee suggests that
the sequence 𝑥𝑛 eventually spends all but a vanishing frac-
tion of time near regions where ∇ 𝑓 is small, but it does not
answer where (SGD) ultimately settles down. In particular,
the following crucial question remains open:

Which critical points of 𝑓 (or components thereof ) are more
likely to be observed in the long run – and by how much?

This question is notoriously difficult because the loss land-
scape of 𝑓 can be exceedingly complicated – especially in
deep learning problems with hundreds of millions (or even
billions) of parameters. Starting with the negative, 𝑓 may
contain a number of spurious saddle points that is exponen-
tially larger than the number of local minima, and the func-
tion values associated with worst-case saddle points may be
considerably worse than those associated with worst-case
local minima [8]. On the flip side, a more positive answer is
provided by the literature on the avoidance of saddle-points
where, under different assumptions for the method’s step-
size and the structure of 𝑓 , it has been shown that the time
spent by 𝑥𝑛 in the vicinity of strict saddle points is (vanish-
ingly) small; for a representative – but, by necessity, incom-
plete – list of results, cf. [2, 3, 19, 24, 25, 29, 36, 48, 53, 64]
and references therein.

1



What is the Long-Run Distribution of SGD? A Large Deviations Analysis

K1

K2

K3

K4

K5

K6

K7

K8

K9

-4 -2 0 2 4

-4

-2

0

2

4

Figure 1: Graphical illustration of Theorems 1–4 for the Himmelblau test function 𝑓 (𝑥1, 𝑥2) = (𝑥2
1 + 𝑥2 − 11)2 + (𝑥1 + 𝑥2

2 − 7)2. The
figure to the left depicts the loss landscape of 𝑓 with several (deterministic) orbits of the gradient flow of 𝑓 superimposed for visual
convenience. The figure in the middle highlights the 9 critical components of 𝑓 as well as the “most likely” transitions between them: K1,
K3, K7 and K9 are minimizers (light blue), K5 is a global maximum (light purple), and the rest are saddle points (light red). The figure to
the right illustrates the long-run distribution of 1000 samples of (SGD) run with 𝜂 = 0.01 over a horizon of 2 × 104 iterations: the density
landscape represents the observed distribution, while the superimposed wireframe indicates our theoretical prediction.

Now, even though the above justifies the informal mantra
that “SGD avoids saddle points”, it does not answer which
critical regions of 𝑓 are most likely to be observed in the
long run, and by how much. This question has attracted sig-
nificant interest in deep learning, but the matter remains
poorly understood: on the one hand, some works have
shown that, in certain stylized deep net models, most lo-
cal minimizers are concentrated in an exponentially narrow
band of the problem’s global minimum [6, 31]; on the other
hand, empirical studies suggest that, even in this case, the
long-run distribution of (SGD) may not be adequately cap-
tured by the shape of the problem’s loss function [44].

Our contributions. Our goal in this paper is to quantify
the long-run distribution of (SGD) in the most general man-
ner possible. To do so, we take an approach based on the
theory of large deviations [10] and randomly perturbed dy-
namical systems [18, 32], which enables us to estimate the
probability of “rare events” (such as 𝑥𝑛 moving against the
gradient flow of 𝑓 for a protracted period of time). This
allows us to characterize the events that occur with high
probability and establish the following hierarchy of results
(stated formally as Theorems 1–4 in Section 3):

1. In the long run, the critical region of 𝑓 is visited expo-
nentially more often than any non-critical region.

2. The iterates of (SGD) are concentrated with exponen-
tially high probability in the vicinity of a region that
minimizes a certain “energy functional” which depends
on 𝑓 and the statistics of the noise in (SGD). Importantly,
the ground state of this functional does not necessarily
coincide with the global minimum of 𝑓 .

3. Among the remaining connected components of critical
points, each component is visited with frequency which
is exponentially proportional to its energy, according to
the Boltzmann–Gibbs distribution of statistical physics
with temperature equal to the method’s step-size.

4. Every connected component of non-minimizing critical
points of 𝑓 – i.e., local maximizers or saddle points – is
“dominated” by a component of local minimizers that is
visited exponentially more often.

Finally, we derive an explicit characterization of the invari-
ant measure of (SGD) under Gaussian noise and other noise
models motivated by deep learning considerations.

Taken together, these properties resemble those of a canon-
ical ensemble in statistical physics: in a sense, each con-
nected component of critical points can be seen as a “state”
of a statistical ensemble, and the step-size of (SGD) plays
the role of the system’s (fixed) temperature, which deter-
mines how easy it is to transit from one component to an-
other. We find this analogy particularly appealing as it
provides a way of connecting ideas from equilibrium ther-
modynamics to the long-run behavior of (SGD).

Related work. The main approaches used in the literature
to examine the long-run distribution of (SGD) hinge on the
study of a limiting stochastic differential equation (SDE),
typically associated with (a version of) the discrete Langevin
dynamics or a diffusion approximation of (SGD).

Starting with the former, Raginsky et al. [54] examined the
law of the stochastic gradient Langevin dynamics (SGLD),
a variant of (SGD) with injected Gaussian noise of variance
2𝜂/𝛽 for some inverse temperature parameter 𝛽 > 0 (see
also [16, 37] for some recent follow-ups in this direction).
Raginsky et al. [54] first showed that SGLD closely tracks
an associated diffusion process over finite time intervals;
the law of this diffusion was then shown to converge to the
Gibbs measure exp(−𝛽 𝑓 )/

∫
exp(−𝛽 𝑓 ) at a geometric rate,

fast enough to ensure the convergence of the discrete-time
dynamics to the same measure.

(SGD) can be recovered in the context of SGLD by setting
the inverse temperature parameter to 𝛽 ∝ 1/𝜂. Unfortu-
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nately however, the convergence rate of the SDE to its in-
variant distribution is exponential in 𝛽, so it is too slow to
compensate for the discretization error in this case. As a
result, the bounds between the discrete dynamics and the
invariant measure of the limiting diffusion become vacuous
in the case of (SGD) – and similar considerations apply to
the related work of Majka et al. [47].1

Another potential approach to studying the long-run distri-
bution of (SGD) consists of approximating its trajectories
via the solutions of a limiting SDE. A key contribution here
was provided by the work of Li et al. [39, 40] who showed
that the tracking error between the iterates of (SGD) and
the solution of a certain SDE becomes vanishingly small
in the limit 𝜂 → 0 over any finite time interval. However,
in contrast to the Langevin case, the convergence speed
of the induced stochastic modified equation (SME) to its
invariant measure degrades exponentially as 𝜂 → 0 [15],
rendering this approach moot for a global description of the
invariant measure of (SGD). Though this strategy has been
refined, either in the vicinity of global minimizers [4, 42] or
in regions where 𝑓 is locally strongly convex [17, 38], this
diffusion approach still fails to capture the long run behavior
of (SGD) in general non-convex settings.

Nevertheless, the limiting SDE still provides valuable in-
sights into certain aspects of the dynamics of (SGD). In
particular, a fruitful thread in the literature [26, 28, 51, 63]
has sought to estimate the escape rates of the approximating
diffusion from local minimizers through this approach. Inter-
estingly, these works use some elements of the continuous-
time Freidlin–Wentzell theory [18], which is also the point
of departure of our paper. That being said, even though
these results demonstrate how the structure of the objective
function and of the noise locally affect the dynamics of the
SDE in a basin, they provide no information on the long-run
behavior of the (discrete-time) dynamics of (SGD); for a
more technical discussion, see Appendix A.

One last approach which has gained increased attention in
the literature is that of Dieuleveut et al. [11] and Lu et al.
[45] who study (SGD) as a discrete-time Markov chain.
This allowed [11, 45] to derive conditions under which
(SGD) is (geometrically) ergodic and, in this way, to quan-
tify the bias of the invariant measure under global growth
conditions, i.e., the distance to the global minimum of 𝑓 .
Building further on this perspective, Gurbuzbalaban et al.
[21], Hodgkinson & Mahoney [23] and Pavasovic et al. [52]
showed that, under general conditions, the asymptotic dis-
tribution of the iterates of (SGD) is heavy-tailed; however,

1In more detail, the error term in Raginsky et al. [54, Eq. (3.1)]
can no longer be controlled if 𝜂 is small. Similarly, the constants
in the geometric convergence rate guarantees of Majka et al. [47,
Theorems 2.1 and 2.5] would degrade as exp(−Ω(1/𝜂)); as a
result, the associated discretization errors would be of the order of
exp(Ω(1/𝜂))), which cannot be controlled for small 𝜂.

these results only describe the distribution of (SGD) near
infinity, and they provide no information on which critical
regions of 𝑓 are more likely to be observed. Again, we
provide some more details on this in Appendix A.

Our approach and techniques. The linchpin of our
approach is the theory of large deviations of Freidlin &
Wentzell [18] for Markov processes, originally developed
for diffusion processes in continuous time, and subsequently
extended to subsampling in discrete time by Kifer [32]; see
also [9, 20] and [13, 14] for applications to stochastic ap-
proximation. However, the starting point of all these works
is the study of continuous-time diffusions on closed man-
ifolds; as far as we are aware, our paper provides the first
extension of the theory of Freidlin & Wentzell to discrete-
time systems that evolve over unbounded domains, and with
a general – possibly discrete – noise profile.

One of the key challenges that we need to overcome is
that most of the potentials introduced in [18, 32] become
drastically less regular in our context; we remedy this issue
by refining the analysis and carefully studying the structure
of the attractors of (SGD). This allows us to salvage enough
regularity and show that (SGD) spends most of its time
near its attractors (this is achieved by developing suitable
tail-bounds for the time spent away from critical points)
and, ultimately, to estimate the transition probabilities of
(SGD) between different connected components of critical
points. This involves a series of novel mathematical tools
and techniques, which we detail in Appendix D

2 Preliminaries and blanket assumptions

2.1. Blanket assumptions. In this section, we describe
our assumptions for the objective function 𝑓 of (Opt) and the
black-box oracle providing gradient information for (SGD).
We begin with the former.
Assumption 1. The objective function 𝑓 : ℝ𝑑 → ℝ satisfies
the following conditions:

(a) Coercivity: 𝑓 (𝑥) → ∞ as ∥𝑥∥ → ∞.

(b) Smoothness: 𝑓 is 𝐶2-differentiable and its gradient is
𝛽-Lipschitz continuous, namely

∥∇ 𝑓 (𝑥′) − ∇ 𝑓 (𝑥)∥ ≤ 𝛽∥𝑥′ − 𝑥∥

for all 𝑥, 𝑥′ ∈ ℝ𝑑

(c) Critical set regularity: The critical set

crit( 𝑓 ) := {𝑥 ∈ ℝ𝑑 : ∇ 𝑓 (𝑥) = 0}

of 𝑓 consists of a finite number of smoothly connected
components K𝑖 , 𝑖 = 1, . . . , 𝐾 .

These requirements are fairly standard in the literature: As-
sumption 1(a) guarantees that (Opt) admits a solution and
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rules out infima at infinity (such as 𝑓 (𝑥) = 𝑒−𝑥2 ); Assump-
tion 1(b) is a bare-bones regularity requirement for the anal-
ysis of gradient methods; and, finally, Assumption 1(c)
serves to exclude objectives with anomalous critical sets
(e.g., exhibiting kinks or other non-smooth features), so it is
also quite mild from an operational standpoint.2

Regarding the gradient input to (SGD), we will assume
throughout that the optimizer has access to a stochastic
first-order oracle (SFO), that is, a black-box mechanism
returning a stochastic estimate of the gradient of 𝑓 at the
point of interest. Formally, when queried at 𝑥 ∈ ℝ𝑑 , an SFO
returns a random vector of the form

G(𝑥;𝜔) = ∇ 𝑓 (𝑥) + Z(𝑥;𝜔) (SFO)

where

(a) 𝜔 is a random seed drawn from a compact subset Ω of
ℝ𝑚 based on some (complete) probability measure ℙ.3

(b) Z(𝑥;𝜔) is an umbrella error term capturing all sources
of noise and randomness in the oracle.

This oracle model is sufficiently flexible to account for all
established versions of (SGD) in the literature, including
minibatch SGD (where𝜔 represents the sampled minibatch),
noisy gradient descent (where the optimizer may artificially
inject noise in the process to enhance convergence), and
Langevin Monte Carlo methods.

With all this in mind, we make the following blanket as-
sumptions for (SFO):

Assumption 2. The error term Z : ℝ𝑑 ×Ω→ ℝ𝑑 of (SFO)
satisfies the following properties:

(a) Properness: 𝔼[Z(𝑥;𝜔)] = 0 and cov(Z(𝑥;𝜔)) ≻ 0 for
all 𝑥 ∈ ℝ𝑑 .

(b) Smooth growth: Z(𝑥;𝜔) is 𝐶2-differentiable and satis-
fies the growth condition

sup
𝑥,𝜔

∥Z(𝑥;𝜔)∥
1 + ∥𝑥∥ < +∞ .

(c) Sub-Gaussian tails: The tails of Z are bounded as

𝔼[exp(⟨𝑝, Z(𝑥;𝜔)⟩)] ≤ exp
(
𝜎2
∞∥𝑝∥2

2

)
for some 𝜎∞ > 0 and all 𝑝 ∈ ℝ𝑑 .

2This last requirement can be replaced by positing for example
that 𝑓 is definable in terms of some semi-algebraic / 𝑜-minimal
structure, see e.g., [7, 58] and Remark B.1 in the appendix.

3The specific form of Ω is not important; in practice, random
seeds from a target distribution are often generated by inverse
transform sampling from [0, 1]𝑚.

Assumption 2(a) is standard in the literature and ensures
that the gradient noise in (SGD) has zero mean and does not
vanish identically at any 𝑥 ∈ ℝ𝑑; this requirement in par-
ticular plays a crucial role in several incarnations of noisy
gradient descent that have been proposed to effectively es-
cape saddle points of 𝑓 [3, 19, 29, 53]. Assumption 2(b) is
a bit more technical but otherwise simply serves to impose
a limit on how large the noise may grow as ∥𝑥∥ → ∞. Fi-
nally, Assumption 2(c) is also widely used in the literature:
while not as general as the (possibly fat-tailed) finite vari-
ance assumption 𝔼[∥Z(𝑥;𝜔)∥2] ≤ 𝜎2

∞, it allows much finer
control of the stochastic processes involved, leading in turn
to more explicit and readily interpretable results. We only
note here that Assumption 2(c) can be relaxed further by
allowing the variance proxy 𝜎2

∞ of Z(𝑥;𝜔) to depend on 𝑥,
possibly diverging to infinity as ∥𝑥∥ → ∞. To streamline
our presentation, we defer the general case to the appendix.

Our last blanket requirement is a stability condition ensuring
that the signal-to-noise ratio of (SFO) does not become too
small at infinity. We formalize this as follows:
Assumption 3. The signal-to-noise ratio of G is bounded as

lim inf
∥𝑥 ∥→∞

∥∇ 𝑓 (𝑥)∥2

𝜎2
∞

> 16 log 6 · 𝑑 .

Assumption 3 is a technical requirement needed to establish
a series of concentration bounds later on, and the specific
value of the lower bound serves to facilitate some computa-
tions later on. In practice, ∇ 𝑓 is often norm-coercive – i.e.,
∥∇ 𝑓 (𝑥)∥ → ∞ as ∥𝑥∥ → ∞ – so this assumption is quite
mild. Note also that Assumption 3, as Assumption 2(c), can
be extended to the case where the variance proxy 𝜎2

∞ of G
depends on 𝑥, possibly blowing up at infinity; we postpone
the relevant details to Appendix B.1.

Putting together all of the above, the SGD algorithm can be
written in abstract recursive form as

𝑥+ ← 𝑥 − 𝜂 G(𝑥;𝜔) . (1)

Thus, given a (possibly random) initialization 𝑥0 ∈ ℝ𝑑 and
an i.i.d. sequence of random seeds 𝜔𝑛 ∈ Ω, 𝑛 = 0, 1, . . ., the
iterates 𝑥𝑛 of (SGD) are obtained by taking 𝑔𝑛 ← G(𝑥𝑛;𝜔𝑛)
and iterating 𝑛← 𝑛+1 ad infinitum. To streamline notation,
we will write ℙ𝑥0 for the law of 𝑥𝑛 starting at 𝑥0, and we
will refer to it as the law of (SGD).

2.2. Discussion of the assumptions. To illustrate the gen-
erality of our assumptions, we briefly consider here the
example of the regularized empirical risk minimization prob-
lem

𝑓 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑥; 𝜉𝑖) +
𝜆

2
∥𝑥∥2

where 𝜉𝑖 , 𝑖 = 1, . . . , 𝑛, are the training data of the model,
ℓ(𝑥; 𝜉) represents the loss of the model 𝑥 on the data point
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𝜉, and 𝜆 > 0 is a regularization parameter. In this case, we
have

Z(𝑥;𝜔) = ∇ℓ(𝑥; 𝜉𝜔) −
1
𝑛

𝑛∑︁
𝑖=1
∇ℓ(𝑥; 𝜉𝑖)

where 𝜔 is sampled uniformly at random from {1, . . . , 𝑛}.

If ℓ is 𝐶2-differentiable, Lipschitz continuous and smooth –
see e.g., [48] and references therein – Assumption 1 and (a)
and (b) are satisfied automatically. The error term Z(𝑥;𝜔)
is also uniformly bounded so Assumption 2 and (b) and (c)
are likewise verified (see e.g., Wainwright [60, Ex. 2.4]).
Finally, we have ∥∇ 𝑓 (𝑥)∥ = O(𝜆∥𝑥∥), so Assumption 3
also holds. Thus, this setting covers two wide classes of ex-
amples: linear models with non-convex losses [16, 45] and
smooth neural networks with normalization layers [41].4

3 Analysis and results

3.1. Invariant measures. The overarching objective of
our paper is to understand the statistics of the limiting be-
havior of (SGD). To that end, our point of departure will be
the mean occupation measure of 𝑥𝑛, defined here as

𝜇𝑛 (B) = 𝔼

[
1
𝑛

𝑛−1∑︁
𝑘=0

1{𝑥𝑘 ∈ B}
]

for every Borel B ⊆ ℝ𝑑 . In words, 𝜇𝑛 (B) simply measures
the mean fraction of time that 𝑥𝑛 has spent in B up to time
𝑛, so the long-run statistics of (SGD) can be quantified by
the limiting distribution lim𝑛→∞ 𝜇𝑛.

If 𝑥𝑛 is ergodic, 𝜇𝑛 converges weakly to some measure 𝜇𝜂∞,
known as the invariant measure of 𝑥𝑛. 5 Referring to the
abstract representation (1) of (SGD), “invariance” simply
means here that 𝜇𝜂∞ satisfies the defining property

𝑥 ∼ 𝜇𝜂∞ =⇒ 𝑥+ ∼ 𝜇𝜂∞ (2)

i.e., 𝜇𝜂∞ is stationary under (SGD). Note however that er-
godicity generally requires that the noise has a density part
[45]. More generally, even if 𝑥𝑛 is not ergodic, any (weak)
limit point6 of 𝜇𝑛 must still satisfy the invariance property
(2) [12, 22], so this will be our principal figure of merit.

More precisely, our goal will be to quantify the long-run
concentration of probability mass near the components K𝑖

4Our assumptions can also be linked to the notion of dissipativ-
ity, which is standard in Markov chain and sampling literature, see
e.g., [16, 37, 45, 46, 54]. Considering the gradient oracle obtained
by sampling minibatches of size 𝐵, this setting fits into our frame-
work with the relaxed version of Assumption 2 in Appendix B
provided 𝐵 is chosen large enough, see Appendix B.1.

5Weak convergence means here that lim𝑛→∞
∫
𝜑 𝑑𝜇𝑛 =∫

𝜑 𝑑𝜇
𝜂
∞ for every bounded continuous function 𝜑 : ℝ𝑑 → ℝ.

6These limit points and thus invariant measures always exist in
our setting; see Lemma D.16 in Appendix D.3.

of crit( 𝑓 ): in particular, since each K𝑖 generically has
Lebesgue measure zero, we will seek to estimate the proba-
bility mass 𝜇𝜂∞ (U𝑖) where 𝜇𝜂∞ is invariant under (SGD) and
U𝑖 is a sufficiently small neighborhood of K𝑖 – typically
a 𝛿-neighborhood of the form U𝑖 ≡ U𝑖 (𝛿) := {𝑥 ∈ ℝ𝑑 :
dist(K𝑖 , 𝑥) < 𝛿} in the limit 𝛿 → 0. Doing this will allow
us to determine the probability that (SGD) is concentrated
in the long run near one critical component or another, as
well as the degree of this concentration.

3.2. A large deviation principle for SGD. Our strategy
to achieve this will be to estimate the long-run rates of
transition between different regions of ℝ𝑑 under (SGD).
Our first step in this regard will be to establish a large
deviation principle (LDP) for the process 𝑥𝑛, 𝑛 = 0, 1, . . .,
in the spirit of the general theory of Freidlin & Wentzell
[18]. This will in turn allow us to quantify the probability of
“rare events” in (SGD) – e.g., moving against the gradient
flow of 𝑓 for a protracted period of time – and it will play a
crucial role in the sequel.

Now, since the statistics of (SGD) are determined by those
of (SFO), we begin by considering the cumulant-generating
functions (CGFs) of Z and G, viz.

𝐾Z (𝑥, 𝑝) := log𝔼[exp(⟨𝑝, Z(𝑥;𝜔)⟩)]

𝐾G (𝑥, 𝑝) := log𝔼[exp(⟨𝑝,G(𝑥;𝜔)⟩)]
= 𝐾Z (𝑥, 𝑝) + ⟨∇ 𝑓 (𝑥), 𝑝⟩

where 𝑥 ∈ ℝ𝑑 , 𝑝 ∈ ℝ𝑑 , and ⟨𝑝, 𝑣⟩ denotes the standard
bilinear pairing between 𝑝 ∈ ℝ𝑑 and 𝑣 ∈ ℝ𝑑 . To state our
results, we will also require the associated Lagrangians

LZ (𝑥, 𝑣) := 𝐾∗Z (𝑥,−𝑣)

LG (𝑥, 𝑣) := 𝐾∗G (𝑥,−𝑣) = LZ (𝑥, 𝑣 + ∇ 𝑓 (𝑥))

where “∗” denotes convex conjugation with respect to 𝑝 in
𝐾Z (𝑥, 𝑝) and 𝐾G (𝑥, 𝑝).

The importance of the Lagrangian functions (4) is that they
provide a large deviation principle for Z and G. Namely, to
leading order in 𝑛 (and ignoring boundary effects), we have

ℙ

(
1
𝑛

𝑛∑︁
𝑘=0

G(𝑥;𝜔𝑛) ∈ B
)
∼ exp

(
−𝑛 inf

𝑣∈B
LG (𝑥, 𝑣)

)
(5)

for every Borel B ∈ ℝ𝑑 (and likewise for Z and LZ), so the
long-run statistics of the process 𝑆𝑛 =

∑𝑛−1
𝑘=0 G(𝑥;𝜔𝑘) are

fully determined by LG [10]. In this regard, LG plays the
role of a “rate function” for 𝑆𝑛 and quantifies the rate of
occurrence of “rare events” in this context [10].

Going back to (SGD), we have 𝑥𝑛 = 𝑥0 − 𝜂
∑𝑛−1
𝑘=0 G(𝑥𝑘 ;𝜔𝑘),

so a promising way to understand the occupation measure
of 𝑥𝑛 would be to try to derive a large deviation principle
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for 𝑥𝑛 starting from (5). Unfortunately however, in con-
trast to 𝑆𝑛 =

∑𝑛−1
𝑘=0 G(𝑥;𝜔𝑘), this is not possible because

(5) concerns i.i.d. samples drawn at a fixed point 𝑥 ∈ ℝ𝑑 ,
while the iterates of 𝑥𝑛 are highly auto-correlated. Instead,
inspired by the theory of Freidlin & Wentzell [18] for ran-
domly perturbed dynamical systems, we will encode the
entire trajectory 𝑥𝑛 of (SGD) as a point in some infinite-
dimensional space of curves, and we will derive a large
deviation principle for (SGD) directly in this space.

To make this idea precise, we first require a continuous-time
surrogate for the sequence of iterates of (SGD). Concretely,
writing 𝜏𝑛 = 𝑛𝜂 for the “effective time” that has elapsed up
to the 𝑛-th iteration of (SGD), we define the continuous-time
interpolation of 𝑥𝑛 as the piecewise affine curve

𝑋 (𝑡) = 𝑥𝑛 +
𝑡 − 𝜏𝑛
𝜂
(𝑥𝑛+1 − 𝑥𝑛)

for all 𝑛 = 0, 1, . . ., and all 𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1]. The resulting
curve is continuous by construction, so, for embedding pur-
poses, we will consider the ambient spaces of continuous
curves truncated at some finite 𝑇 ≥ 0:

C𝑇 := C ( [0, 𝑇],ℝ𝑑)
C𝑇 (𝑥) := {𝛾 ∈ C𝑇 : 𝛾(0) = 𝑥}

C𝑇 (𝑥, 𝑥′) := {𝛾 ∈ C𝑇 : 𝛾(0) = 𝑥, 𝛾(𝑇) = 𝑥′}.

With this preliminaries in hand, and in analogy with the
Lagrangian formulation of classical mechanics, we define
the (normalized) “action functional” of LG as

S𝑇 [𝛾] =
∫ 𝑇

0
LG (𝛾(𝑡), ¤𝛾(𝑡)) 𝑑𝑡

for all 𝛾 ∈ C𝑇 and with the convention S𝑇 [𝛾] = ∞ if
𝛾 is not absolutely continuous. In a certain sense (to be
made precise below), the functional S𝑇 [𝛾] is a “measure
of likelihood” for the curve 𝛾, with lower values indicating
higher probabilities. Accordingly, by leveraging the so-
called “least action principle” [10, 18, 33], it is possible to
establish the following large deviation principle for (SGD):

Proposition 1. Fix a time horizon 𝑇 > 0, tolerance margins
𝜀, 𝛿 > 0, and an action level 𝑠 > 0. In addition, write

Γ𝑇 (𝑥0; 𝑠) := {𝛾 ∈ C𝑇 (𝑥0) : S𝑇 [𝛾] ≤ 𝑠}

for the space of continuous curves starting at 𝑥0 and with
action at most 𝑠. Then, for all sufficiently small 𝜂, we have

ℙ𝑥0

(
sup

0≤𝑡≤𝑇
∥𝑋 (𝑡) − 𝛾(𝑡)∥ < 𝛿

)
≥ exp

(
−S𝑇 [𝛾] + 𝜀

𝜂

)
for all 𝛾 ∈ Γ𝑇 (𝑥0; 𝑠)

(7a)

and, in addition,

ℙ𝑥0

(
sup

0≤𝑡≤𝑇
∥𝑋 (𝑡) − 𝛾(𝑡)∥ > 𝛿 for all 𝛾 ∈ Γ𝑇 (𝑥0; 𝑠)

)
≤ exp

(
− 𝑠 − 𝜀

𝜂

)
.

(7b)

In words, Proposition 1 states that (a) the linear interpola-
tion 𝑋 (𝑡) of 𝑥𝑛 stays close to low-action trajectories with
probability that is exponentially large in their action value;
and (b) the probability that 𝑋 (𝑡) strays far from said trajec-
tories is exponentially small in their action value. This is, in
fact, the first rung in a hierarchy of large deviation princi-
ples that ultimately quantify the probability of rare events
in (SGD); because these results are fairly technical to set up
and prove (and not required for stating our main result), we
defer the relevant discussion and proofs to Appendix C.

3.3. Transition costs and the quasi-potential. Now, in
view of the characterization (7a) and (7b) of “rare trajecto-
ries” of (SGD), we will seek to derive below an analogous
characterization for the “typical trajectories” of (SGD) in
terms of S . To do this, we will associate a certain transition
cost to each pair of components K𝑖 , K 𝑗 of crit( 𝑓 ), and we
will use these costs to quantify how likely it is to observe
𝑥𝑛 near a component of critical points of 𝑓 .

These costs are defined as follows: First, following Freidlin
& Wentzell [18], define the quasi-potential between two
points 𝑥, 𝑥′ ∈ ℝ𝑑 as

𝐵(𝑥, 𝑥′) := inf{S𝑇 [𝛾] : 𝛾 ∈ C𝑇 (𝑥, 𝑥′), 𝑇 ∈ ℕ} (8)

and the corresponding quasi-potential between two sets
K,K′ ⊆ ℝ𝑑 as

𝐵(K,K′) := inf{𝐵(𝑥, 𝑥′) : 𝑥 ∈ K, 𝑥′ ∈ K′}.

By construction, 𝐵(𝑥, 𝑥′) is the action value of the “most
probable” path from 𝑥 to 𝑥′, so it can be interpreted as the
“action cost” of moving from 𝑥 to 𝑥′. Accordingly, to capture
the difficulty of 𝑥𝑛 leaving the vicinity of a given component
of crit( 𝑓 ) and wandering off to another, we will consider
the cost matrix

𝐵𝑖 𝑗 := 𝐵(K𝑖 ,K 𝑗 )

where K𝑖 ,K 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝐾, are any two components of
critical points of 𝑓 .

As we mentioned before, the transitions between compo-
nents of crit( 𝑓 ) play a crucial role in our analysis because
this is where 𝑥𝑛 spends most of its time. To characterize
the structure of these transitions more precisely, it will be
convenient to encode them in a complete weighted directed
graph G = (V , E), which we call the transition graph of
(SGD), and which is defined as follows:
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(a) The vertex set of G is V = {1, . . . , 𝐾}, i.e., G has one
vertex per component of critical points of 𝑓 .

(b) The edge set of G is E = {(𝑖, 𝑗) : 𝑖, 𝑗 = 1, . . . , 𝐾, 𝑖≠ 𝑗},
i.e., G has an edge per pair of components of crit( 𝑓 ).

(c) The weight of the directed edge (𝑖, 𝑗) ∈ E is 𝐵𝑖 𝑗 .

To avoid degenerate cases, we will make the following as-
sumption for the problem’s cost matrix:
Assumption 4. 𝐵𝑖 𝑗 < ∞ for all 𝑖, 𝑗 = 1, . . . , 𝐾 .

This assumption is purely technical and mainly serves to
streamline our presentation and avoid complicated state-
ments involving non-communicating classes of the cost ma-
trix 𝐵𝑖 𝑗 ; see Appendix D.5 for a more detailed discussion.

The last element we need for the statement of our results
is the minimum total cost of reaching a component K𝑖 of
crit( 𝑓 ) from any starting point. Since the most likely tra-
jectories of (SGD) are action minimizers, the “path of least
resistance” to reach vertex 𝑖 from vertex 𝑗 may not follow
the edge (𝑖, 𝑗) if the cost 𝐵𝑖 𝑗 is too high; instead, the relevant
notion turns out to be the minimum weight spanning tree
pointing to 𝑖.7 Formally, writing T𝑖 for the set of spanning
trees of G that point to 𝑖, we define the energy of K𝑖 as

𝐸𝑖 = min
𝑇𝑖∈T𝑖

∑︁
𝑗 ,𝑘∈𝑇𝑖

𝐵 𝑗𝑘 . (9)

The terminology “energy” is explained below, where we
show that, to leading order, the long-run distribution of
(SGD) around crit( 𝑓 ) follows the Boltzmann–Gibbs distri-
bution for a canonical ensemble with energy levels 𝐸𝑖 at
temperature 𝜂.

3.4. The long-run distribution of SGD. With all this in
hand, we are finally in a position to state our main results
for the statistics of the asymptotic behavior of (SGD). We
start by showing that, in the long run, the probability of
observing the iterates of (SGD) near a component of crit( 𝑓 )
is exponentially proportional to its energy.
Theorem 1. Suppose that 𝜇𝜂∞ is invariant under (SGD), fix
a tolerance level 𝜀 > 0, and let U𝑖 ≡ U𝑖 (𝛿), 𝑖 = 1, . . . , 𝐾,
be 𝛿-neighborhoods of the components of crit( 𝑓 ). Then, for
all sufficiently small 𝛿, 𝜂 > 0, we have��𝜂 log 𝜇𝜂∞ (U𝑖) + 𝐸𝑖 −min 𝑗 𝐸 𝑗

�� ≤ 𝜀
and ����𝜂 log

𝜇
𝜂
∞ (U𝑖)
𝜇
𝜂
∞ (U 𝑗 )

+ 𝐸𝑖 − 𝐸 𝑗
���� ≤ 𝜀.

More compactly, with notation as above, we have:

𝜇
𝜂
∞ (U𝑖) ∝ exp

(
−𝐸𝑖 +O(𝜀)

𝜂

)
.

7We distinguish here between the notion of an out-tree and that
of an in-tree. In an out-tree, edges point away from the root; in an
in-tree, edges point toward it [57].

Theorem 1 is the formal version of the statement that the
long-run distribution of (SGD) around the components of
crit( 𝑓 ) follows an 𝜀-approximate Boltzmann–Gibbs distri-
bution with energy levels 𝐸𝑖 at temperature 𝜂 [35]. However,
since the critical set of 𝑓 includes both minimizing and non-
minimizing components,8 a natural question that arises is
whether the non-minimizing components of 𝑓 are selected
against under 𝜇𝜂∞. Our next result is a consequence of Theo-
rem 1 and shows that this indeed the case:
Theorem 2. Suppose that 𝜇𝜂∞ is invariant under (SGD),
and let K be a non-minimizing component of 𝑓 . Then, with
notation as in Theorem 1, there exists a minimizing compo-
nent K′ of 𝑓 and a positive constant 𝑐 ≡ 𝑐(K,K′) > 0 such
that

𝜇
𝜂
∞ (U)

𝜇
𝜂
∞ (U ′)

≤ exp
(
−𝑐(K,K

′) + 𝜀
𝜂

)
for all all sufficiently small 𝜂 > 0 and all sufficiently small
neighborhoods U and U ′ of K and K′ respectively. In par-
ticular, in the limit 𝜂→ 0, we have 𝜇𝜂∞ (U) → 0.

This avoidance principle is particularly important because it
shows that (SGD) is far less likely to be observed near a non-
minimizing components of crit( 𝑓 ) relative to a minimizing
one. In this regard, Theorem 2 complements a broad range
of avoidance results in the literature [19, 24, 25, 29, 48, 53]
without requiring any of the “strict saddle” assumptions that
are standard in this context.

That being said, Theorems 1 and 2 leave open the possibility
that the energy landscape of (SGD) contains non-critical
low-energy regions that nonetheless get a significant amount
of probability under (SGD); put differently, Theorems 1
and 2 do not rule out the eventuality that, in the long run,
𝑥𝑛 may still be observed with non-vanishing probability
far from the critical region of 𝑓 . Our next result addresses
precisely this issue and shows that this probability is expo-
nentially small.
Theorem 3. Suppose that 𝜇𝜂∞ is invariant under (SGD), and
let U ≡ U (𝛿) be a 𝛿-neighborhood of crit( 𝑓 ). Then there
exists a constant 𝑐 ≡ 𝑐𝛿 > 0 such that, for all sufficiently
small 𝜂 > 0, we have:

𝜇
𝜂
∞ (U) ≥ 1 − 𝑒−𝑐/𝜂 .

Taken together, Theorems 1–3 show that, in the long run,
the iterates of (SGD) are exponentially more likely to be
observed in the vicinity of crit 𝑓 rather than far from it, and
exponentially more likely to be observed near a minimum
of 𝑓 rather than a saddle-point (or a local maximizer).

Our next result can be seen as joint consequence of Theo-
rems 1 and 3 as it shows that the long-run distribution of

8To remove any ambiguity, a component K of crit( 𝑓 ) is called
(locally) minimizing if K = arg min𝑥∈U 𝑓 (𝑥) for some neighbor-
hood U of K; otherwise, we say that K is non-minimizing.
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(SGD) is exponentially concentrated around the system’s
ground state

K0 =
⋃
𝑖∈arg min 𝑗 𝐸 𝑗 K𝑖

that is, the components of crit( 𝑓 ) with minimal energy. The
precise statement is as follows:
Theorem 4. Suppose that 𝜇𝜂∞ is invariant under (SGD),
and let U0 ≡ U0 (𝛿) be a 𝛿-neighborhood of the system’s
ground state K0. Then there exists a constant 𝑐 ≡ 𝑐𝛿 > 0
such that, for all sufficiently small 𝜂 > 0, we have:

𝜇
𝜂
∞ (U0) ≥ 1 − 𝑒−𝑐/𝜂 .

In words, Theorems 1–4 provide the following quantifica-
tion of the limiting distribution of 𝑥𝑛: in the long run (a) the
critical region of 𝑓 is visited exponentially more often than
any non-critical region of 𝑓 (Theorem 3); (b) in particular,
the iterates of (SGD) are exponentially concentrated around
the problem’s ground state (Theorem 4); (c) among the mass
that remains, every component of 𝑓 gets a fraction that is
exponentially proportional to its energy (Theorem 1); and,
finally (d) every non-minimizing component is “dominated”
by a minimizing component that is visited exponentially
more often (Theorem 2). Importantly, the problem’s energy
landscape is shaped by 𝑓 , but not 𝑓 alone: the statistics
of (SFO) play an equally important role, so we may have
K0 ≠ arg min 𝑓 ; we discuss this issue in detail in Section 4.

The proofs of the above results are quite lengthy and elab-
orate, so we defer them to the appendix and only provide
below a roadmap describing the overall proof strategy, the
main technical challenges encountered, and the way they
can be resolved.

3.5. Outline of the proof. As discussed in Section 3.2,
the first step of the proof consists in establishing a large
deviation principle for (SGD). The LDP of Proposition 1 for
the interpolated process 𝑋 (𝑡) is obtained as a consequence
of [18, Chap. 7] in Appendix C.2. With this result in hand,
our next step (which we carry out in Appendix C.3) is to
deduce an LDP for the “accelerated” SGD process 𝑥𝜂𝑛 , 𝑛 =
0, 1, . . ., defined here as

𝑥
𝜂
𝑛 = 𝑥𝑛⌊1/𝜂⌋

where ⌊1/𝜂⌋ denotes the integer part of 1/𝜂. As 𝑥𝜂𝑛 is a
subsampled version of (SGD), it essentially shares the same
long-run behavior and invariant measures and, in addition,
it has a very important feature: there are sufficiently many
time steps between two of its iterates for an LDP to hold in
the specified subinterval. [Intuitively, this is because it takes
O(1/𝜂) steps of (SGD) to average out random fluctuations
due to the noise.] In view of the above, the rest of our proof
focuses on the accelerated sequence 𝑥𝜂𝑛 .

The main thrust of the proof is contained in Appendix D
and consists in adapting the powerful machinery of [18, 32]

to study the limiting behavior of 𝑥𝜂𝑛 . However, both [18,
32] study continuous-time diffusion processes on closed
manifolds, so there are some key challenges to overcome:

• The unconstrained setting renders many elements of [18,
32] inapplicable. We remedy this by showing that the
time that (SGD) only spends a negligible amount of time
away from crit( 𝑓 ).

• The generality of our assumptions on the noise makes
the Lagrangians LG and LZ non-smooth: more precisely,
they must have bounded domains, on which they may
fail to be continuous. As a consequence, most of the
objects introduced in [18, 32] become drastically less
regular – e.g., 𝐵 defined in (8) – which again renders their
results inapplicable. We remedy this issue by refining the
analysis, carefully studying the structure of the attractors,
and salvaging enough regularity to proceed.

The crux of the proof (Appendix D) is structured as follows:

1. In Appendix D.2, we study the structure of the attractors
of (SGD), as well as the regularity of the Lagrangians
and the quasi-potential near these attractors.

2. In Appendix D.3, we show that (SGD) spends most of its
time near its attractors by deriving a series of tail-bounds
on the time spent away from crit( 𝑓 ). These bounds are
obtained even for unbounded variance proxy through the
construction of a Lyapunov function from 𝑓 and 𝜎2

∞.

3. In Appendix D.5, we estimate the transition probabilities
of the process between attractors: if the iterates of (SGD)
are near K𝑖 , the next component of critical points that
they visit is K 𝑗 with probability exp(−𝐵𝑖 𝑗/𝜂). As such,
low-weight paths in the transition graph G of (SGD) rep-
resent the high-probability transitions of (SGD) between
components. We can then leverage the general theory of
Freidlin & Wentzell [18] to obtain Theorem 1.

4. Finally, in Appendix D.6, we analyze the properties of
minimizing components to establish Theorems 2–4 .

Also note that, since weak limit points of the sequence of
mean occupation measures of (SGD) are invariant measures,
the results of Theorems 1–4 hold for the measures 𝜇𝑛 for
large enough 𝑛. We make this observation precise in Ap-
pendix D.8.

4 Examples and applications
In this last section, we explore the dependency of the tran-
sition costs and the energy levels on the parameters of the
problem in certain special cases.

4.1. Gaussian noise. We begin with the case of (trun-
cated) Gaussian noise, where the problem’s energy levels
admit a particularly simple closed form. To ease notation,
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we present here the computations in the case of Gaussian
noise, and we defer the more intricate case of truncated
Gaussian noise to Appendix E.2.

To that end, assume that the gradient error 𝑍 (𝑥, 𝜔) in (SGD)
follows a centered Gaussian distribution with variance 𝜎2 >
0 for all 𝑥 ∈ ℝ𝑑 . The Lagrangian and the action functional
of the problem then become:

LG (𝑥, 𝑣) =
∥𝑣 + ∇ 𝑓 (𝑥)∥2

2𝜎2

and

S𝑇 [𝛾] =
∫ 𝑇

0

∥ ¤𝛾(𝑡) + ∇ 𝑓 (𝛾(𝑡))∥2
2𝜎2 𝑑𝑡

for all 𝑥, 𝑣 ∈ ℝ𝑑 and all 𝛾 ∈ C𝑇 . This expression shows that
S𝑇 [𝛾] penalizes the deviation of 𝛾 from the gradient flow
of 𝑓 : the closer ¤𝛾(𝑡) is to −∇ 𝑓 (𝛾(𝑡)), the smaller the action.
Then, for the reverse path 𝜑(𝑡) = 𝛾(𝑇 − 𝑡), we get

S𝑇 [𝜑] = S𝑇 [𝛾] − 2[ 𝑓 (𝛾𝑇 ) − 𝑓 (𝛾0)]/𝜎2.

Note that if 𝛾 joins K𝑖 to K 𝑗 , then 𝜑 joins K 𝑗 , so

𝐵 𝑗𝑖 ≤ 𝐵𝑖 𝑗 − 2( 𝑓 𝑗 − 𝑓𝑖)/𝜎2 (10)

where 𝑓𝑖 denotes the value of 𝑓 on K𝑖 , 𝑖 = 1, . . . , 𝐾. Ex-
changing 𝑖 and 𝑗 , we get equality in (10), so the minimum
in the definition (9) of 𝐸𝑖 is reached for the same undirected
tree, namely the minimum-weight spanning tree with sym-
metric weights 𝐵𝑖 𝑗 + 2 𝑓𝑖/𝜎2 for all 𝑖, 𝑗 . As such, up to a
constant, we get

𝐸𝑖 = 2 𝑓𝑖/𝜎2. (11)

Thus, invoking Theorem 1, we conclude that the probabi-
ity distribution of (SGD) over crit( 𝑓 ) is governed by the
Boltzmann–Gibbs measure with energy levels given by (11)

Similarly, in the truncated Gaussian case, we have:

Proposition 2. For any 𝜀 > 0, if 𝑍 (𝑥, 𝜔) follows a centered
Gaussian distribution with variance 𝜎2 > 0 conditioned
on being in a ball with large enough radius depending on
∇ 𝑓 (𝑥) and 𝜀, then, up to a constant,

𝐸𝑖 = 2 𝑓𝑖/𝜎2 +O(𝜀) for all 𝑖 = 1, . . . , 𝐾 .

This proposition is proven in Appendix E.2, where we also
allow 𝜎2 to depend on 𝑥 via 𝑓 (𝑥).

4.2. Local dependencies. The modeling of the noise is
crucial to the understanding of the dynamics of (SGD). This
has been often underlined, especially in the exit-time lit-
erature [26, 28, 51, 63]. In particular, [51] showed experi-
mentally that, in deep learning models, the variance of the
noise scales linearly with the objective function and also
examined the effect of this observation on the exit time from
a local minima.

We explain here how this model of the noise influences the
invariant measure of (SGD). To that end, following Mori
et al. [51], assume there is a positive-definite matrix 𝐻∗ such
that, locally near a minimizing K𝑖 , log 𝑓 is separable in the
eigenbasis of 𝐻∗:9

log 𝑓 (𝑥) =
∑︁

𝜆∈eig𝐻∗
𝑔𝜆 (𝑥𝜆)

where 𝑥𝜆 denotes the projection of 𝑥 on the eigenspace of 𝜆.

Lemma 1. Suppose that 𝑍 (𝑥, 𝜔) satisfies

𝐾Z (𝑥, 𝑣) ≤
𝜎2 𝑓 (𝑥)

2
⟨𝑣, 𝐻∗𝑣⟩ for all 𝑥 near K𝑖 .

Then, for small enough 𝛿 > 0 and all 𝑗 ≠ 𝑖, we have

𝐸 𝑗 ≥ 2 min

{ ∑︁
𝜆∈eig𝐻∗

𝑔𝜆 (𝑥𝜆) − 𝑔𝜆𝑖
𝜆𝜎2 : 𝑥, dist(𝑥,K𝑖) = 𝛿

}
(12)

where 𝑔𝜆
𝑖

is the value of 𝑔𝜆 on K𝑖 .

This result shows that the energy of each component of
crit( 𝑓 ) is lower bounded by the RHS of (12). This quan-
tity scales as the reciprocal of the eigenvalues of 𝐻∗ so, as
the minimum becomes flatter (i.e., the eigenvalues of 𝐻∗

become smaller), the energy levels of all other components
become larger: thus, relative to component K𝑖 , the other
components all become less probable. Moreover, note that
the RHS of (12) only scales logarithmically with the value
of the objective function around K𝑖 , i.e., the depth of the
minimum: this means that the “flatness” of the minimum
plays a greater role in the relative probabilities of the com-
ponents than the depth.

This also shows that deepest minima do not necessarily cor-
respond to the ground state of the problem: if 𝜎2 or the
eigenvalues of 𝐻∗ is small enough compared to the noise
level outside the 𝛿-neighborhood of K𝑖 , then K𝑖 will be the
ground state of the system even if it is not the deepest mini-
mum; we provide a formal proof of this in Appendix E.3.

5 Concluding remarks
Our objective was to quantify the long-run distribution of
SGD in a general, non-convex setting. As far as we are
aware, our paper provides the first description of the invari-
ant measure of (SGD), and in particular, its distribution over
components of critical points. This distribution is governed
by energy levels that depend both on the objective func-
tion and the statistics of the noise. An important challenge
that remains is to estimate these energy levels in different
settings; this would be a major step towards a better under-
standing of the generalization properties of SGD.

9Following [51], 𝐻∗ corresponds to the Hessian of 𝑓 at K𝑖 for
deep learning models.
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A Further related work
Consequences of the diffusion approximation. The SDE approximation of SGD, introduced by Li et al. [39, 40], has
been a fruitful development in the understanding of some aspects of the dynamics of SGD. For instance, Ziyin et al. [65]
provide explicit descriptions for the invariant measure of the diffusion approximation of SGD for diagonal linear neural
networks. Applications of this SDE approximation also include the study the dynamics of SGD close to manifold of
minimizers [4, 42]. Wojtowytsch [62] study the invariant measure of the diffusion approximation: if the set of global
minimizers form a manifold on which the noise vanishes, they show that the invariant measure of the diffusion concentrates
on this manifold and moreover provide a description of the limiting measure on this manifold.

Another line of works focuses on the case where the objective function is scale-invariant [41] and how this impacts the
convergence of the dynamics of SGD: Wang & Wang [61] describes the convergence of the SDE approximation with
anisotropic constant noise to the Gibbs measure, while Li et al. [43] shows that discrete-time SGD dynamics close to a
manifold of minimizers enjoy fast convergence to an invariant measure.

Finally, Mignacco & Urbani [49], Mignacco et al. [50], Veiga et al. [59] leverage dynamic mean-field theory (DMFT)
to study the behavior of the diffusion approximation of SGD. The DMFT, or “path-integral” approach, comes from
statistical physics and bears a close resemblance to the Freidlin-Wentzell theory of large deviations for SDEs. However, this
methodology, as well as Mignacco & Urbani [49], Mignacco et al. [50], Veiga et al. [59], is restricted to the continuous-time
diffusion and remains at heuristic level.

Let us underline two points comparing these works to ours. While these works focus on the learning behavior of the
algorithm by considering specific statistical models and specific losses, we focus on the optimization aspects and on
covering general non-convex objectives. Secondly, these results are either local or concern the asymptotic distribution of
the continuous-time approximation of SGD, which do no provide information of the asymptotic behaviour of the actual
discrete-time dynamics.

On the heavy-tail character of the asymptotic distribution of SGD. A recent line of work has focused on the heavy-tail
character of the asymptotic distribution of SGD [21, 23, 52]. These works show that, under some broad conditions, the
stationary distributions of SGD are heavy-tailed: the tails of the asymptotic distribution of the iterates decay polynomially.
Specifically, it is shown that tail bounds of the form holds for some 𝛼 > 0

ℙ(∥𝑥∞∥ ≥ 𝑧) = Θ(𝑧−𝛼) or ∀𝑢 ∈ ℝ𝑑 , ℙ

(
|𝑢𝑇𝑥∞ | ≥ 𝑧

)
= Θ(𝑧−𝛼)

where 𝑥∞ is shorthand for the stationary distribution of the iterates of SGD. As such, these results concern the probability of
observing the iterates of SGD at very large distances from the origin. This is in contrast with our work, which focuses on
the distribution of the iterates of SGD near critical regions of the objective function. These two types of results are thus
orthogonal and complementary.
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B Setup and Preliminaries

B.1 Setup and assumptions

Before we begin our proof, we restate the assumptions that will be in force throughout the appendix. They are slightly
weaker than the ones presented in the main text and introduce new notations.

We equip ℝ𝑑 with the canonical inner product ⟨·, ·⟩ and the associated Euclidean norm ∥·∥. We denote by 𝔹(𝑥, 𝑟)
(resp. 𝔹(𝑥, 𝑟)) the open (resp. closed) ball of radius 𝑟 centered at 𝑥.

We also also define, for any 𝐴 ⊂ ℝ𝑑 ,

U𝛿 (𝐴) := {𝑥 ∈ X : 𝑑 (𝑥, 𝐴) < 𝛿}
𝐴𝛿 := {𝑥 ∈ X : 𝑑 (𝑥, 𝐴) ≤ 𝛿} .

Let us first restate our blanket assumptions for the objective function 𝑓 .

Assumption 5. The objective function 𝑓 : ℝ𝑑 → ℝ satisfies the following conditions:

(a) Coercivity: 𝑓 (𝑥) → ∞ as ∥𝑥∥ → ∞.

(b) Smoothness: 𝑓 is 𝐶2-differentiable and its gradient is 𝛽-Lipschitz continuous, namely

∥∇ 𝑓 (𝑥′) − ∇ 𝑓 (𝑥)∥ ≤ 𝛽∥𝑥′ − 𝑥∥

for all 𝑥, 𝑥′ ∈ ℝ𝑑

(c) Critical set regularity: The critical set

crit( 𝑓 ) := {𝑥 ∈ ℝ𝑑 : ∇ 𝑓 (𝑥) = 0}

of 𝑓 consists of a finite number of connected components K𝑖 , for 𝑖 ∈ 𝐼 := {1, . . . , 𝐾} that satisfy the following
connectedness condition: for any 𝑖 ∈ 𝐼 and any 𝑥, 𝑥′ ∈ K𝑖 , there exists 𝛾 ∈ C ( [0, 1],K𝑖) such that 𝛾0 = 𝑥, 𝛾1 = 𝑥′

and such that it is piecewise absolutely continuous, i.e., 𝛾 is differentiable almost everywhere and there exists
0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 1 such that ¤𝛾 is integrable on every closed interval of (𝑡𝑛, 𝑡𝑛+1) for 𝑛 = 0, . . . , 𝑁 − 1.

Remark B.1. The connectedness is condition of (c) is satisfied whenever the connected components of crit( 𝑓 ) are smoothly
connected (e.g., smooth manifolds), reduced to isolated critical points or, more generally, when they are definable. Indeed, if
𝑓 is definable, then crit( 𝑓 ) is definable as well and therefore can be connected by piecewise smooth paths [7, 58].

To better match the notations used in stochastic analysis and large deviations theory, we will work with − Z(𝑥;𝜔) instead
of Z(𝑥;𝜔). For the sake of clarity, we thus restate Assumption 2 in terms of the former − Z(𝑥;𝜔) that we will denote by
𝑢(𝑥, 𝜔). Moreover, we allow for the variance proxy to be unbounded: it can depend on 𝑥 through the value of the objective
function 𝑓 (𝑥).
Assumption 6. The error term 𝑢 : ℝ𝑑 ×Ω→ ℝ𝑑 satisfies the following properties:

(a) Properness: 𝔼[𝑢(𝑥, 𝜔)] = 0 and cov(𝑢(𝑥, 𝜔)) ≻ 0 for all 𝑥 ∈ ℝ𝑑 .

(b) Smooth growth: 𝑢(𝑥, 𝜔) is 𝐶2-differentiable and satisfies the growth condition

sup
𝑥,𝜔

∥𝑢(𝑥, 𝜔)∥
1 + ∥𝑥∥ < +∞ .

(c) Sub-Gaussian tails: There is 𝜎2
∞ : ℝ → (0, +∞) continuous, with infℝ𝑑 𝜎2

∞ > 0, such that 𝑢(𝑥, 𝜔) satisfies, for all
𝑝 ∈ ℝ𝑑 ,

log𝔼
[
𝑒⟨𝑝,𝑢(𝑥,𝜔) ⟩

]
≤ 𝜎

2
∞ ( 𝑓 (𝑥))

2
∥𝑝∥2 .

With this more general setting, we augment Assumption 3 with a technical condition that is satisfied trivially when 𝜎2
∞ is

constant.
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Assumption 7. The signal-to-noise ratio of G is bounded as

lim inf
∥𝑥 ∥→∞

∥∇ 𝑓 (𝑥)∥2

𝜎2
∞ ◦ 𝑓 (𝑥)

> 16 log 6 · 𝑑 .

Moreover, 𝜎
2
∞◦ 𝑓 (𝑥 )
∥𝑥 ∥𝑠 is bounded above and below at infinity for 𝑠 ∈ [0, 2], i.e.,

0 < lim inf
∥𝑥 ∥→+∞

𝜎2
∞ ◦ 𝑓 (𝑥)
∥𝑥∥𝑠 and lim sup

∥𝑥 ∥→+∞

𝜎2
∞ ◦ 𝑓 (𝑥)
∥𝑥∥𝑠 < +∞ .

Remark B.2 (Example of Section 2.2 continued). In Section 2.2, we discussed the regularized empirical risk minimization
problem and mentioned that, under a dissipativity condition and with a large enough batch size, it fits our framework. We
now provide more details.

Consider the objective 𝑓 given by

𝑓 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑥; 𝜉𝑖) +
𝜆

2
∥𝑥∥2

where ℓ(𝑥; 𝜉) represents the loss of the model 𝑥 on the data point 𝜉, 𝜉𝑖 , 𝑖 = 1, . . . , 𝑛, are the training data and 𝜆 is the
(positive) regularization parameter.

Let us assume that ℓ is non-negative, 𝐶2-differentiable, 𝛽-Lipschitz smooth and that the resulting objective 𝑓 is dissipative:
there are 𝛼, 𝛽 > 0 such that

⟨∇ 𝑓 (𝑥), 𝑥⟩ ≥ 𝛼∥𝑥∥2 − 𝛽 .

As is usually the case in practice, we consider the SFO obtained by sampling mini-batches of size 𝐵. The noise term 𝑢(𝑥, 𝜔)
is then given by

𝑢(𝑥, 𝜔) = 1
𝐵

𝐵∑︁
𝑏=1
∇ℓ(𝑥; 𝜉𝜔𝑏 ) −

1
𝑛

𝑛∑︁
𝑖=1
∇ℓ(𝑥; 𝜉𝑖)

with 𝜔 = (𝜔1, . . . , 𝜔𝐵) representing 𝐵 indices from {1, . . . , 𝑛}.

All the terms

∇ℓ(𝑥; 𝜉𝜔𝑏 ) −
1
𝑛

𝑛∑︁
𝑖=1
∇ℓ(𝑥; 𝜉𝑖) (B.1)

are uniformly bounded by O(∥𝑥∥) by smoothness of ℓ. In particular, this implies that Assumption 6(b) is satisfied.

Moreover, we also obtain that all the terms of the form Eq. (B.1) are O
(
∥𝑥∥2

)
-sub-Gaussian, and therefore, by independence

we obtain that 𝑢(𝑥, 𝜔) is O
(

1
𝐵
∥𝑥∥2

)
-sub-Gaussian.

Since ℓ is non-negative, 𝑓 is lower-bounded by Ω(∥𝑥∥2). It gives that 𝑢(𝑥, 𝜔) is actually O
(

1
𝐵
𝑓 (𝑥)

)
-sub-Gaussian and

therefore Assumption 6(b) is satisfied with 𝜎2
∞ (𝑡) ∝ 𝑡

𝐵
.

We now show that Assumption 7 can be satisfied by choosing 𝐵 large enough. Indeed, by dissipativity we have that

∥∇ 𝑓 (𝑥)∥2 = ∥∇ 𝑓 (𝑥) − 𝛼𝑥∥2 + 𝛼2∥𝑥∥2 + 2𝛼⟨∇ 𝑓 (𝑥) − 𝛼𝑥, 𝑥⟩
≥ 𝛼2∥𝑥∥2 − 2𝛽 = Ω(∥𝑥∥2) ,

so that
∥∇ 𝑓 (𝑥)∥2

𝜎2
∞ ◦ 𝑓 (𝑥)

≥ Ω

(
∥𝑥∥2
𝑓 (𝑥)/𝐵

)
= Ω(𝐵) .

The second part of Assumption 7 is satisfied by non-negativity and smoothness of ℓ.

In this framework, the iterates of (SGD), started at 𝑥 ∈ ℝ𝑑 , are defined by the following recursion:{
𝑥0 ∈ ℝ𝑑

𝑥𝑛+1 = 𝑥𝑛 − 𝜂∇ 𝑓 (𝑥𝑛) + 𝜂𝑢𝑛 , where 𝑢𝑛 = 𝑢(𝑥𝑛, 𝜔𝑛)
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where (𝜔𝑛)𝑛≥0 is a sequence of random variables in ℝ𝑚. We will denote by ℙ𝑥 the law of the sequence (𝜔𝑛)𝑛≥0 when the
initial point is 𝑥 and by 𝔼𝑥 the expectation with respect to ℙ𝑥 .

Assumptions 5 and 6 imply the following growth condition, that we assume holds with the same constant for the sake of
simplicity. There is 𝑀 > 0 such that, for all 𝑥 ∈ ℝ𝑑 , 𝜔 ∈ Ω,

∥∇ 𝑓 (𝑥)∥ ≤ 𝑀 (1 + ∥𝑥∥) and ∥𝑢(𝑥, 𝜔)∥ ≤ 𝑀 (1 + ∥𝑥∥) .

We introduce the cumulant generating functions of the noise 𝑢(𝑥, 𝜔) and of the drift −∇ 𝑓 (𝑥) + 𝑢(𝑥, 𝜔), that we denote by
H̄, H to avoid confusion. We also define their convex conjugates, that we denote by L̄, L.

Definition 1 (Hamiltonian and Lagrangian). Define, for 𝑥 ∈ ℝ𝑑 , 𝑣 ∈ ℝ𝑑 ,

H̄(𝑥, 𝑣) = log𝔼[exp(⟨𝑣, 𝑢(𝑥, 𝜔)⟩)]
H(𝑥, 𝑣) = −⟨∇ 𝑓 (𝑥), 𝑣⟩ + H̄(𝑥, 𝑣)
L̄(𝑥, 𝑣) = H̄(𝑥, ·)∗ (𝑣)
L(𝑥, 𝑣) = H(𝑥, ·)∗ (𝑣) = L̄(𝑥, 𝑣 + ∇ 𝑓 (𝑥)) . (B.2)

L̄ and L are thus respectively equal to the Lagrangians LZ (·, ·) and LG (·, ·).

Assumption 4 will be reintroduced in Appendix D.5.

B.2 Basic properties

In this section, we derive from our assumptions some basic consequences, which will be useful throughout the proof.

We first state some properties of the Hamiltonian and the Lagrangian, which follow from their definitions.

Lemma B.1 (Properties of H and L).

1. H is C2 and H(𝑥, ·) is convex for any 𝑥 ∈ ℝ𝑑 .

2. L(𝑥, ·) is convex for any 𝑥 ∈ ℝ𝑑 , L is lower semi-continuous (l.s.c.) on ℝ𝑑 ×ℝ𝑑 .

3. For any 𝑥 ∈ ℝ𝑑 , 𝑣 ∈ ℝ𝑑 , H(𝑥, 𝑣) ≤ 2𝑀 (1 + ∥𝑥∥)∥𝑣∥2 and domL(𝑥, ·) ⊂ 𝔹(0, 2𝑀 (1 + ∥𝑥∥)).
4. For any 𝑥 ∈ ℝ𝑑 , 𝑣 ∈ ℝ𝑑 , L(𝑥, 𝑣) ≥ 0 and L(𝑥, 𝑣) = 0 ⇐⇒ 𝑣 = ∇ 𝑓 (𝑥).

Proof. For the last point, since H(𝑥, ·) is convex and differentiable,

L(𝑥, 𝑣) = 0 ⇐⇒ 0 ∈ 𝜕𝑣L(𝑥, 𝑣) ⇐⇒ 𝑣 ∈ 𝜕𝑣H(𝑥, 0) ⇐⇒ 𝑣 = ∇𝑣H(𝑥, 0) ,

and, since the noise has zero mean, ∇𝑣H(𝑥, 0) = ∇ 𝑓 (𝑥). ■

Lemma B.2 (Growth of the iterates). For any 𝑥0 ∈ ℝ𝑑 , 𝜂0 > 0, for every 𝜂 ∈ (0, 𝜂0], for any 𝑁 ≥ 1, 0 ≤ 𝑛 ≤ 𝑁 ⌈𝜂−1⌉,

∥𝑥𝑛∥ ≤ 𝑒2𝑀 (1+𝜂0 )𝑁 (1 + ∥𝑥0∥) .

Proof. By the triangular inequality, for any 𝑛 ≥ 0, we have that

∥𝑥𝑛+1∥ ≤ ∥𝑥𝑛∥ + 𝜂∥∇ 𝑓 (𝑥𝑛)∥ + 𝜂∥𝑢𝑛∥
≤ ∥𝑥𝑛∥ + 2𝜂𝑀 (1 + ∥𝑥𝑛∥)
= (1 + 2𝜂𝑀)∥𝑥𝑛∥ + 2𝜂𝑀 ,

where we used the growth condition on ∇ 𝑓 and 𝑢. One can then solve this recursion to show that, for any 𝑛 ≥ 0,

∥𝑥𝑛∥ ≤ (1 + 2𝜂𝑀)𝑛 (1 + ∥𝑥0∥) .

The result then follows by noticing that, for 0 ≤ 𝑛 ≤ 𝑁 ⌈𝜂−1⌉,

(1 + 2𝜂𝑀)𝑛 ≤ (1 + 2𝜂𝑀)𝑁 ⌈𝜂−1 ⌉
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≤ 𝑒2𝑀𝑁𝜂⌈𝜂−1 ⌉

≤ 𝑒2𝑀𝑁 (1+𝜂) .

■

Lemma B.3. For any 𝑥0 ∈ ℝ𝑑 , for every 𝜂 ∈ (0, (4𝑀)−1], for any 𝑁 ≥ 1, 0 ≤ 𝑛 ≤ 𝑁 ⌈𝜂−1⌉,

∥𝑥𝑛∥ ≥ 𝑒−(4𝑀+1)𝑁 ∥𝑥0∥ − 1 .

Proof. By the triangular inequality, for any 𝑛 ≥ 0, we have that

∥𝑥𝑛+1∥ ≥ ∥𝑥𝑛∥ − 𝜂∥∇ 𝑓 (𝑥𝑛)∥ − 𝜂∥𝑢𝑛∥
≤ ∥𝑥𝑛∥ − 2𝜂𝑀 (1 + ∥𝑥𝑛∥)
= (1 − 2𝜂𝑀)∥𝑥𝑛∥ − 2𝜂𝑀 ,

where we used the growth condition on ∇ 𝑓 and 𝑢. One can then solve this recursion to obtain that, for any 𝑛 ≥ 0,

∥𝑥𝑛∥ ≥ (1 − 2𝜂𝑀)𝑛∥𝑥0∥ − 1 .

The result then follows by noticing that, for 0 ≤ 𝑛 ≤ 𝑁 ⌈𝜂−1⌉,

(1 − 2𝜂𝑀)𝑛 ≥ (1 − 2𝜂𝑀)𝑁 ⌈𝜂−1 ⌉

≥ 𝑒−4𝑀𝑁𝜂⌈𝜂−1 ⌉

≤ 𝑒−4𝑀𝑁 (1+𝜂) ,

where we used that log(1 − 𝑥) ≥ −2𝑥 on [0, 1/2] since 2𝜂𝑀 is smaller or equal to 1/2. ■
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C A large deviation principle for SGD
The goal of this section is to provide large deviations principles for continuous and discrete trajectories related to our
algorithm of interest (SGD). From the sequences (𝑥𝑛)𝑛≥0 and (𝜔𝑛)𝑛≥0, we define three sequences: one discrete (in
lowercase) and two continuous (in uppercase):

i) The discrete “rescaled” trajectory
𝑥
𝜂
𝑛 := 𝑥𝑛⌊1/𝜂⌋ . (C.1)

ii) The continuous “interpolated” trajectory, defined for any 𝑛 ≥ 0, 𝑡 ∈ [𝜂𝑛, 𝜂(𝑛 + 1)] by

𝑋𝑡 = 𝑥𝑛 +
(
𝑡

𝜂
− 𝑛

)
(𝑥𝑛+1 − 𝑥𝑛) (C.2)

iii) The continuous “discretized noise” trajectory, defined by 𝑍0 = 𝑥0 and for any 𝑡 > 0

¤𝑍𝑡 = −∇ 𝑓 (𝑍𝑡 ) + 𝑢(𝑍𝑡 , 𝜔⌊𝑡/𝜂⌋) (C.3)

Note that all three sequences are “accelerated” by a factor 1/𝜂 compared to the original sequences appearing in (SGD). In
this section, we establish a large deviation principle for the discrete rescaled sequence (𝑥𝜂𝑛 )𝑛≥0. To do so, we build upon
Freidlin & Wentzell [18, Chap. 7] to obtain a large deviations principle on (𝑍𝑡 )𝑡≥0 and then transfer it to (𝑋𝑡 )𝑡≥0 which
enables us to obtain a discrete large deviation principle for (𝑥𝜂𝑛 )𝑛≥0.

C.1 Preliminaries

We equip the space of continuous [0, 𝑇] → ℝ𝑑 functions, C ( [0, 𝑇],ℝ𝑑), with the distance induced by the uniform norm

dist0,𝑇 (𝛾, 𝜑) = sup
𝑡∈[0,𝑇 ]

∥𝛾𝑡 − 𝜑𝑡 ∥ .

In order to use it as a proxy later, we will now bound the distance between the (continuous) “interpolated” trajectory and the
“discretized noise” trajectory. To do so, we will first bound the latter.

Lemma C.1 (Growth of the trajectory). For any 𝑥0 ∈ ℝ𝑑 , 𝜂 > 0, 𝑡 ≥ 0, we have ∥𝑍𝑡 ∥ ≤ 𝑒2𝑀𝑡 (∥𝑥0∥ + 2𝑀𝑡) .

Proof. Using the definition of 𝑍𝑡 in (C.3) and the growth condition on ∇ 𝑓 and 𝑢 (Appendix B.1), we have that

∥ ¤𝑍𝑡 ∥ =


−∇ 𝑓 (𝑍𝑡 ) + 𝑢(𝑍𝑡 , 𝜔⌊𝑡/𝜂⌋)

 ≤ 2𝑀 (1 + ∥𝑍𝑡 ∥) .

Hence, for any 𝑡 ≥ 0,

∥𝑍𝑡 ∥ ≤ ∥𝑧0∥ +
∫ 𝑡

0
2𝑀 (1 + ∥𝑍𝑠 ∥) 𝑑𝑠 = ∥𝑧0∥ + 2𝑀𝑡 +

∫ 𝑡

0
2𝑀 ∥𝑍𝑠 ∥ 𝑑𝑠 .

Invoking Grönwall’s lemma then yields the result. ■

The following lemma states that the distance between the “interpolated” and “discretized noise” trajectories is bounded by a
factor proportional to the stepsize 𝜂.

Lemma C.2. Fix K ⊂ ℝ𝑑 compact, 𝜂0 > 0, 𝑇 > 0. Then, there exists some constant 𝑐 = 𝑐(K, 𝜂0, 𝑇, 𝑓 , 𝑢,Ω) < +∞ such
that, for any 𝑥0 ∈ K, 𝜂 ∈ (0, 𝜂0], 𝑡 ∈ [0, 𝑇],

dist0,𝑇 (𝑋, 𝑍) ≤ 𝑐 𝜂 .

Proof. Before starting, notice that Lemmas B.2 and C.1 imply that there is some compact set K′ that depends on K,
𝑇 , 𝜂0 and 𝑀 such that, for any 𝑥0 ∈ K, 𝜂 ∈ (0, 𝜂0], 𝑡 ∈ [0, 𝑇], 𝑋𝑡 and 𝑍𝑡 belong to K′. In particular, 𝑢 is therefore
Lipschitz-continuous on K′ ×Ω so that, for any 𝜔 ∈ Ω, 𝑥 ↦→ −∇ 𝑓 (𝑥) + 𝑢(𝑥, 𝜔) is Lipschitz-continuous on K′ with constant
𝐿 and bounded with constant 𝐵.
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Let us now estimate the derivative of the interpolated trajectory 𝑋𝑡 , which is piecewise differentiable by definition (see
Eq. (C.2)). For any 𝑡 ∈ [0, 𝑇] such that 𝑡 ∈ (𝜂𝑛, 𝜂(𝑛 + 1)) for some 𝑛 ≥ 0, we have that

 ¤𝑋𝑡 − (

−∇ 𝑓 (𝑋𝑡 ) + 𝑢(𝑋𝑡 , 𝜔⌊𝑡/𝜂⌋)
)

 = 



𝑥𝑛+1 − 𝑥𝑛𝜂

−
(
−∇ 𝑓 (𝑋𝑡 ) + 𝑢(𝑋𝑡 , 𝜔⌊𝑡/𝜂⌋)

)




=



(−∇ 𝑓 (𝑋𝜂𝑛) + 𝑢(𝑋𝜂𝑛, 𝜔𝑛)) − (
−∇ 𝑓 (𝑋𝑡 ) + 𝑢(𝑋𝑡 , 𝜔⌊𝑡/𝜂⌋)

)


≤ 𝐿∥𝑋𝜂𝑛 − 𝑋𝑡 ∥ ,

where we used the 𝐿-Lipschitz-continuity of 𝑥 ↦→ −∇ 𝑓 (𝑥) + 𝑢(𝑥, 𝜔) on K′ uniformly in 𝜔 ∈ Ω. Since this map is also
bounded by 𝐵, we have that

 ¤𝑋𝑡 − (

−∇ 𝑓 (𝑋𝑡 ) + 𝑢(𝑋𝑡 , 𝜔⌊𝑡/𝜂⌋)
)

 ≤ 𝐿∥𝑋𝜂𝑛 − 𝑋𝑡 ∥ ≤ 𝐿∥𝑥𝑛 − 𝑥𝑛+1∥ ≤ 𝐿𝐵𝜂 .

Moreover, the 𝐿-Lipschitz-continuity of 𝑥 ↦→ −∇ 𝑓 (𝑥) + 𝑢(𝑥, 𝜔) also gives us that

∥ ¤𝑍𝑡 −
(
−∇ 𝑓 (𝑋𝑡 ) + 𝑢(𝑋𝑡 , 𝜔⌊𝑡/𝜂⌋)

)
∥ = ∥−∇ 𝑓 (𝑍𝑡 ) + 𝑢(𝑍𝑡 , 𝜔⌊𝑡/𝜂⌋) −

(
−∇ 𝑓 (𝑋𝑡 ) + 𝑢(𝑋𝑡 , 𝜔⌊𝑡/𝜂⌋)

)
∥ ≤ 𝐿∥𝑍𝑡 − 𝑋𝑡 ∥ .

Putting everything together and integrating 𝑋𝑡 − 𝑍𝑡 from 0 to 𝑡 yields (since 𝑋𝑡 is absolutely continuous), for any 𝑡 ∈ [0, 𝑇],

∥𝑋𝑡 − 𝑍𝑡 ∥ ≤ ∥𝑋0 − 𝑧0∥ +
∫ 𝑡

0
∥ ¤𝑋𝑠 − ¤𝑍𝑠 ∥ 𝑑𝑠 ≤ 𝐿𝐵𝜂 + 𝐿

∫ 𝑡

0
∥𝑋𝑠 − 𝑍𝑠 ∥ 𝑑𝑠

where we used that 𝑧0 = 𝑋0 = 𝑥0 by definition of the trajectories. Finally, Grönwall’s lemma then yields the result. ■

C.2 Large deviation principle for interpolated trajectories

From the Lagrangian defined in (B.2), we define, on C ( [0, 𝑇],ℝ𝑑), the normalized action functional S0,𝑇 by

S0,𝑇 (𝛾) =
{∫ 𝑇

0 L(𝛾𝑡 , ¤𝛾𝑡 ) 𝑑𝑡 if 𝛾 absolutely continuous
+∞ otherwise

(C.4)

following Freidlin & Wentzell [18, Chap. 3.2], as a manner to quantify how “probable” a trajectory is.

We first show that the set
ΓK

0,𝑇 (𝑠) := {𝛾 ∈ C ( [0, 𝑇],ℝ𝑑) : 𝛾0 ∈ K,S0,𝑇 (𝛾) ≤ 𝑠}

of trajectories with bounded action functional is compact and S0,𝑇 is l.s.c..

Lemma C.3. Fix 𝑇 > 0. For any K ⊂ ℝ𝑑 compact, 𝑠 ≥ 0, the set ΓK
0,𝑇 (𝑠) is compact and S0,𝑇 is l.s.c. on C ( [0, 𝑇],ℝ𝑑).

Proof. Let us first check that S0,𝑇 is l.s.c. on C ( [0, 𝑇],ℝ𝑑) by applying Ioffe et al. [27, §9.1.4, Thm. 3]: (𝑡, 𝑥, 𝑣) ↦→ L(𝑥, 𝑣)
is a normal integrand since (𝑥, 𝑣) ↦→ L(𝑥, 𝑣) is l.s.c. by construction, quasiregular since L(𝑥, ·) is convex for any 𝑥 ∈ ℝ𝑑
and satisfies the growth condition because it is non-negative (see Lemma B.1). Hence, S0,𝑇 is l.s.c. on C ( [0, 𝑇],ℝ𝑑).

The compactness of ΓK
0,𝑇 (𝑠) follows from the idea of proof as Freidlin & Wentzell [18, Chap. 7,Lem. 4.2] but with the added

difficulty that the gradient ∇ 𝑓 and the noise 𝑢 are not uniformly bounded. Take 𝛾 ∈ ΓK
0,𝑇 (𝑠). Since S0,𝑇 (𝛾) ≤ 𝑠 < +∞, it

means that L(𝛾𝑡 , ¤𝛾𝑡 ) < +∞ for almost every 𝑡 so that by Lemma B.1, almost everywhere,

∥ ¤𝛾𝑡 ∥ ≤ 2𝑀 (1 + ∥𝛾𝑡 ∥) . (C.5)

Grönwall’s lemma then yields that, for any 𝑡 ∈ [0, 𝑇],

∥𝛾𝑡 ∥ ≤ 𝑒2𝑀𝑇 (∥𝛾0∥ + 2𝑀𝑇) ,

which is bounded uniformly in 𝛾 ∈ ΓK
0,𝑇 (𝑠) since 𝛾0 is in K compact. Hence, ∥ ¤𝛾𝑡 ∥ is also uniformly bounded by Eq. (C.5).

Therefore, the functions in ΓK
0,𝑇 (𝑠) are equicontinuous and uniformly bounded and, ΓK

0,𝑇 (𝑠) is closed by l.s.c. of S0,𝑇 , so
that, by the Arzela-Ascoli theorem, ΓK

0,𝑇 (𝑠) is compact. ■
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The following result establishes the fact that the functional 𝜂−1S0,𝑇 is the action functional in C ( [0, 𝑇],ℝ𝑑) of the interpolated
process (𝑋𝑡 )𝑡∈[0,𝑇 ] of the algorithm started at 𝑥0, uniformly with respect to the initial point 𝑥0 in any compact set K ⊂ ℝ𝑑 ,
as 𝜂→ 0. This enables to build on Freidlin & Wentzell [18, Chap. 7, Thm. 4.1’] to provide a large deviation principle for
the interpolated trajectory (𝑋𝑡 )𝑡∈[0,𝑇 ] , meaning that for 𝜂 small enough, it will be i) close to probable trajectories with a
probability exponentially big in their action functional; and ii) far from the most probable trajectories with a probability
exponentially small in their action functional.
Proposition C.1. Fix 𝑇 > 0. For any 𝑠, 𝛿, 𝜀 > 0, K ⊂ ℝ𝑑 compact, there exists 𝜂0 > 0 such that, for any 𝜂 ∈ (0, 𝜂0], for
any 𝑥0 ∈ K, we have that

for any 𝛾 ∈ Γ{𝑥0 }
0,𝑇 (𝑠), ℙ𝑥0

(
dist0,𝑇 (𝑋, 𝛾) < 𝛿

)
≥ exp

(
−
S0,𝑇 (𝛾) + 𝜀

𝜂

)
ℙ𝑥0

(
dist0,𝑇 (𝑋, Γ{𝑥0 }

0,𝑇 (𝑠)) > 𝛿
)
≤ exp

(
− 𝑠 − 𝜀

𝜂

)
Proof. Our strategy is to apply Freidlin & Wentzell [18, Chap. 7, Thm. 4.1’] to the process (𝑍𝑡 )𝑡∈[0,𝑇 ] and use Lemma C.2
to transfer the result to (𝑋𝑡 )𝑡∈[0,𝑇 ] (both starting from 𝑥0). However, this theorem requires 𝑏(𝑥, 𝜔) := −∇ 𝑓 (𝑥) + 𝑢(𝑥, 𝜔)
to be uniformly bounded as well as its derivative. To avoid this issue, note that, for a fixed compact set K, 𝑠 > 0, and all
𝜂 ≤ 1, the trajectories of ΓK

0,𝑇 (𝑠) and of the process (𝑍𝑡 )𝑡∈[0,𝑇 ] are contained in a compact set K′ by the compactness of
ΓK

0,𝑇 (𝑠) and Lemma C.1. Now, consider 𝑏′ : ℝ𝑑 ×ℝ𝑚 → ℝ𝑑 twice differentiable that coincides with 𝑏 on K′ ×Ω but that is
uniformly bounded along with its derivative. Define H′ (𝑥, 𝑣) = log𝔼[exp(⟨𝑣, 𝑏′ (𝑥, 𝜔)⟩)] which is still differentiable and
satisfies “Condition F” of Freidlin & Wentzell [18, Chap. 7.4] by Freidlin & Wentzell [18, Chap. 7, Lem. 4.3] and i.i.d.
assumption. Hence, Freidlin & Wentzell [18, Chap. 7, Thm. 4.1’] yields that, with K and 𝑠 fixed above, for any 𝛿, 𝜀 > 0,
there exists 𝜂0 > 0 such that, for any 𝜂 ∈ (0, 𝜂0], for any 𝑥0 ∈ K, 𝛾 ∈ Γ{𝑥0 }

0,𝑇 (𝑠),

ℙ𝑥0

(
dist0,𝑇 (𝑍, 𝛾) < 𝛿

)
≥ exp

(
−
S0,𝑇 (𝛾) + 𝜀

𝜂

)
ℙ𝑥0

(
dist0,𝑇 (𝑍, Γ{𝑥0 }

0,𝑇 (𝑠)) > 𝛿
)
≤ exp

(
− 𝑠 − 𝜀

𝜂

)
.

To obtain the result for the process (𝑋𝑡 )𝑡∈[0,𝑇 ] , fix 𝛿 > 0. By Lemma C.2, there exists 𝜂0 > 0 such that, for any 𝜂 ∈ (0, 𝜂0],
for any initial point 𝑥0 ∈ K, dist0,𝑇 (𝑋, 𝑍) < 𝛿. Combining this with the previous result on (𝑍𝑡 )𝑡∈[0,𝑇 ] yields that, for any
𝛿, 𝜀 > 0, there exists 𝜂0 > 0 such that, for any 𝜂 ∈ (0, 𝜂0], for any 𝑥0 ∈ K, 𝛾 ∈ Γ{𝑥0 }

0,𝑇 (𝑠),

ℙ𝑥0

(
dist0,𝑇 (𝑋, 𝛾) < 2𝛿

)
≥ exp

(
−
S0,𝑇 (𝛾) + 𝜀

𝜂

)
ℙ𝑥0

(
dist0,𝑇 (𝑋, Γ{𝑥0 }

0,𝑇 (𝑠)) > 2𝛿
)
≤ exp

(
− 𝑠 − 𝜀

𝜂

)
,

which concludes the proof. ■

C.3 Large deviation principle for discrete trajectories

We now leverage the previous section to show a LDP for the discrete rescaled trajectories (𝑥𝜂𝑛 )𝑛≥0 defined in Eq. (C.1). To
do so, we will use the results of the previous section by considering a finite number of points (𝑋𝑛)𝑛≥0 from the continuous
interpolation.

For some 𝑁 > 0, we will first equip ℝ𝑑
𝑁 with the distance

dist𝑁 (𝜉, 𝜁) = max
0≤𝑛≤𝑁−1

∥𝜉𝑛 − 𝜁𝑛∥

and bound the difference between the discrete rescaled trajectory and the continuous interpolation.
Lemma C.4. Fix K ⊂ ℝ𝑑 compact, 𝜂0 > 0, 𝑁 ≥ 1. Then, there exists some constant 𝑐 = 𝑐(K, 𝜂0, 𝑁, 𝑓 , 𝑢,Ω) < +∞ such
that, for any 𝑥0 ∈ K, 𝜂 ∈ (0, 𝜂0],

dist𝑁 (𝑥𝜂 , (𝑋𝑛)0≤𝑛≤𝑁−1) = max
0≤𝑛≤𝑁−1

∥𝑥𝜂𝑛 − 𝑋𝑛∥ ≤ 𝑐𝜂 .
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Proof. By Lemma B.2, there is some compact set K′ that depends on K, 𝑁 , 𝜂0 and 𝑀 such that, for any 𝑥0 ∈ K, 𝜂 ∈ (0, 𝜂0],
𝑛 ≤ ⌈1/𝜂⌉𝑁 , 𝑥𝑛 belongs to K′. In particular, for almost every 𝑡 ∈ [0, 𝑁 − 1], we have, that,

¤𝑋𝑡 =
𝑥⌊𝑡/𝜂⌋+1 − 𝑥⌊𝑡/𝜂⌋

𝜂
= −∇ 𝑓 (𝑥⌊𝑡/𝜂⌋) + 𝑢(𝑥⌊𝑡/𝜂⌋ , 𝜔⌊𝑡/𝜂⌋) ,

with 𝑥⌊𝑡/𝜂⌋ belonging to K′ since
⌊
𝑡
𝜂

⌋
≤

⌊
𝑁−1
𝜂

⌋
≤

⌈
𝑁
𝜂

⌉
. Hence, the norm of ¤𝑋𝑡 is bounded by some constant 𝐵 for

almost every 𝑡 ∈ [0, 𝑁 − 1] uniformly in 𝑥0 ∈ K, 𝜂 ∈ (0, 𝜂0] by the growth condition in Appendix B.1. Therefore, for any
0 ≤ 𝑛 ≤ 𝑁 − 1, since 𝑥𝜂𝑛 = 𝑥𝑛⌊1/𝜂⌋ = 𝑋𝑛𝜂⌊1/𝜂⌋ , we have that

∥𝑥𝜂𝑛 − 𝑋𝑛∥ ≤ 𝐵𝑛|1 − 𝜂⌊1/𝜂⌋ | ≤ 𝐵𝑁𝜂 ,

which concludes the proof. ■

Now, for 𝑁 ≥ 0, 𝜉 = (𝜉0, . . . , 𝜉𝑁−1) ∈ ℝ𝑑
𝑁 , let us define the normalized discrete action functional

A𝑁 (𝜉) :=
𝑁−2∑︁
𝑛=0

𝜌(𝜉𝑛, 𝜉𝑛+1)

where the cost of moving from one iteration to the next is defined for any 𝑥, 𝑥′ ∈ ℝ𝑑 from the previous continuous normalized
action functional (cf. Eq. (C.4)) with horizon 1 as

𝜌(𝑥, 𝑥′) := inf{S0,1 (𝛾) : 𝛾 ∈ C ( [0, 1],ℝ𝑑), 𝛾0 = 𝑥, 𝛾1 = 𝑥′} . (C.6)

Again, we show that the set of discrete trajectories with low action functional

ΓK
𝑁 (𝑠) := {𝜉 ∈ ℝ𝑑𝑁 : 𝜉0 ∈ K,A𝑁 (𝜉) ≤ 𝑠}

is compact and A𝑁 is l.s.c..

Lemma C.5. Fix 𝑁 ≥ 0. For any K ⊂ ℝ𝑑 compact, 𝑠 ≥ 0, the set ΓK
𝑁
(𝑠) is compact and A𝑁 is l.s.c. on ℝ𝑑

𝑁 .

Proof. First, let us show that, for 𝑠 ≥ 0, K ⊂ ℝ𝑑 , the set {(𝑥, 𝑥′) ∈ K × ℝ𝑑 : 𝜌(𝑥, 𝑥′) ≤ 𝑠} is compact. Let (𝑥𝑘 , 𝑥′𝑘)𝑘≥0
be a sequence in K × ℝ𝑑 such that 𝜌(𝑥𝑘 , 𝑥′𝑘) ≤ 𝑠 for all 𝑘 ≥ 0. Then, for any 𝑘 ≥ 0, there exists 𝛾𝑘 ∈ C ( [0, 1],ℝ𝑑)
such that 𝛾𝑘0 = 𝑥𝑘 , 𝛾𝑘1 = 𝑥′𝑘 and S0,1 (𝛾𝑘) ≤ 𝜌(𝑥𝑘 , 𝑥′𝑘) + (1 + 𝑘)−1. In particular, for any 𝑘 ≥ 0, 𝛾𝑘 belongs to
{𝛾 ∈ C ( [0, 1],ℝ𝑑) : 𝛾0 ∈ K,S0,1 (𝛾) ≤ 𝑠 + 1} which is compact by Lemma C.3. Hence, there exists a subsequence
that converges uniformly to some 𝛾 ∈ C ( [0, 1],ℝ𝑑). Without loss of generality, assume that 𝛾𝑘 → 𝛾 as 𝑘 → ∞. In
particular, (𝑥𝑘 , 𝑥′𝑘) converges to (𝛾0, 𝛾1) as 𝑘 → ∞ with 𝛾0 belonging to K. Then, by l.s.c. of S0,1, we have that
S0,1 (𝛾) ≤ lim inf𝑘→∞ 𝜌(𝑥𝑘 , 𝑥′𝑘) ≤ 𝑠 so that 𝜌(𝛾0, 𝛾1) ≤ 𝑠. Therefore, we have shown that {(𝑥, 𝑥′) ∈ K×ℝ𝑑 : 𝜌(𝑥, 𝑥′) ≤ 𝑠}
is compact.

As a consequence 𝜌 is l.s.c. on ℝ𝑑 ×ℝ𝑑: indeed, for any 𝑠 ≥ 0, any convergence sequence of points of {(𝑥, 𝑥′) ∈ ℝ𝑑 ×ℝ𝑑 :
𝜌(𝑥, 𝑥′) ≤ 𝑠} must be included in {(𝑥, 𝑥′) ∈ K × ℝ𝑑 : 𝜌(𝑥, 𝑥′) ≤ 𝑠} for some K ⊂ ℝ𝑑 compact, which is closed and
therefore contains the limit point of any such sequences. A𝑁 is then immediately l.s.c. on ℝ𝑑

𝑁 .

Finally, the compactness of ΓK
𝑁
(𝑠) follows by induction on 𝑁 . For 𝑁 = 1, ΓK

1 (𝑠) = {(𝑥, 𝑥
′) ∈ ℝ𝑑 × ℝ𝑑 : 𝜌(𝑥, 𝑥′) ≤ 𝑠}

which is compact by the previous argument for any compact set K. Now, assume that ΓK
𝑁
(𝑠) is compact for some 𝑁 ≥ 1. As

a consequence, the set K′ := {𝑥 ∈ ℝ𝑑 : ∃(𝜉0, . . . , 𝜉𝑁−2) ∈ ℝ𝑑
𝑁−1

, (𝜉0, . . . , 𝜉𝑁−2, 𝑥) ∈ ΓK
𝑁
(𝑠)} is compact as well. Hence,

ΓK
𝑁+1 (𝑠) is included in teh product of compact sets ΓK

𝑁−1 (𝑠) × ΓK′
1 (𝑠) and is therefore bounded. Moreover, ΓK

𝑁+1 (𝑠) is
closed by l.s.c. of A𝑁 and therefore compact. This concludes the proof by induction and the proof of the lemma. ■

We will first provide a discrete analogue of Proposition C.1 for the interpolated trajectory at times 𝑛 = 0, . . . , 𝑁 − 1, with
𝜂−1A𝑁 the action functional in ℝ𝑑

𝑁 of the process (𝑋𝑛)0≤𝑛≤𝑁−1, uniformly with respect to the starting point 𝑥0 in any
compact set K ⊂ ℝ𝑑 , as 𝜂→ 0.
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Proposition C.2. Fix 𝑁 ≥ 0. For any 𝑠, 𝛿, 𝜀 > 0, K ⊂ ℝ𝑑 compact, there exists 𝜂0 > 0 such that, for any 𝜂 ∈ (0, 𝜂0], for
any 𝑥0 ∈ K, 𝜉 ∈ Γ{𝑥0 }

𝑁
(𝑠), we have that

for any 𝜉 ∈ Γ{𝑥0 }
𝑁
(𝑠), ℙ𝑥0 (dist𝑁 ((𝑋𝑛)0≤𝑛≤𝑁−1, 𝜉) < 𝛿) ≥ exp

(
−A𝑁 (𝜉) + 𝜀

𝜂

)
ℙ𝑥0

(
dist𝑁 ((𝑋𝑛)0≤𝑛≤𝑁−1, Γ

{𝑥0 }
𝑁
(𝑠)) > 𝛿

)
≤ exp

(
− 𝑠 − 𝜀

𝜂

)
.

Proof. Invoke the first part of Proposition C.1 with 𝑇 ← 𝑁 − 1 and 𝑠 ← 𝑠 + 𝜀. There exists 𝜂0 > 0 such that, for any
𝜂 ∈ (0, 𝜂0], for any 𝑥0 ∈ K, 𝛾 ∈ Γ{𝑥0 }

0,𝑁 (𝑠 + 𝜀),

ℙ𝑥0

(
dist0,𝑁−1 (𝑋, 𝛾) < 𝛿

)
≥ exp

(
−
S0,𝑁−1 (𝛾) + 𝜀

𝜂

)
.

Take 𝜂 ∈ (0, 𝜂0], 𝑥0 ∈ K, 𝜉 ∈ Γ
{𝑥0 }
𝑁
(𝑠). Then, there exists 𝛾 ∈ Γ

𝑥0
0,𝑁 (𝑠 + 𝜀), for any 0 ≤ 𝑛 ≤ 𝑁 − 1, 𝛾𝑛 = 𝜉𝑛 (see (C.6)).

Hence,

ℙ𝑥0 (dist𝑁 ((𝑋𝑛)0≤𝑛≤𝑁−1, 𝜉) < 𝛿) ≥ ℙ𝑥0

(
dist0,𝑁−1 (𝑋, 𝛾) < 𝛿

)
≥ exp

(
−
S0,𝑁−1 (𝛾) + 𝜀

𝜂

)
≥ exp

(
−A𝑁 (𝜉) + 2𝜀

𝜂

)
which prove the first part of the result.

For the second part, we have similarly from Proposition C.1 with 𝑇 ← 𝑁 − 1 and 𝛿← 𝛿/2 that for any 𝜂 ∈ (0, 𝜂0], for any
𝑥0 ∈ K,

ℙ𝑥0

(
dist0,𝑁−1 (𝑋, Γ{𝑥0 }

0,𝑁−1 (𝑠)) > 𝛿/2
)
≤ exp

(
− 𝑠 − 𝜀

𝜂

)
.

Now, note that if dist0,𝑁−1 (𝑋, Γ{𝑥0 }
0,𝑁−1 (𝑠)) < 𝛿, then there must exists 𝛾 ∈ Γ

{𝑥0 }
0,𝑁−1 (𝑠) such that dist0,𝑁−1 (𝑋, 𝛾) ≤ 𝛿.

Consider the discrete path 𝜉 ∈ ℝ𝑑𝑁 defined by 𝜉𝑛 = 𝛾𝑛 for 0 ≤ 𝑛 ≤ 𝑁 − 1. Then, by construction, A𝑁 (𝜉) ≤ S0,𝑁−1 (𝛾) ≤ 𝑠
and dist𝑁 ((𝑋𝑛)0≤𝑛≤𝑁−1, 𝜉) ≤ 𝛿. Thus,

dist0,𝑁−1 (𝑋, Γ{𝑥0 }
0,𝑁−1 (𝑠)) < 𝛿 =⇒ dist𝑁 ((𝑋𝑛)0≤𝑛≤𝑁−1, Γ

{𝑥0 }
𝑁
(𝑠)) ≤ 𝛿 .

Putting all together, we have that

ℙ𝑥0

(
dist𝑁 ((𝑋𝑛)0≤𝑛≤𝑁−1, Γ

{𝑥0 }
𝑁
(𝑠)) > 𝛿

)
≤ ℙ𝑥0

(
dist0,𝑁−1 (𝑋, Γ{𝑥0 }

0,𝑁−1 (𝑠) ≥ 𝛿)
)

≤ ℙ𝑥0

(
dist0,𝑁−1 (𝑋, Γ{𝑥0 }

0,𝑁−1 (𝑠) > 𝛿/2)
)

≤ exp
(
− 𝑠 − 𝜀

𝜂

)
,

which concludes the proof. ■

Finally, we end up with a large deviation principle on the discrete rescaled iterates (𝑥𝜂𝑛 )0≤𝑛≤𝑁−1 = (𝑥𝑛⌊𝜂−1 ⌋)0≤𝑛 by

leveraging Lemma C.4. In the following result, the functional 𝜂−1A𝑁 is thus the action functional in ℝ𝑑
𝑁 of the process

(𝑥𝜂𝑛 )0≤𝑛≤𝑁−1 uniformly with respect to the starting point 𝑥0 in any compact set K ⊂ ℝ𝑑 , as 𝜂→ 0.
Corollary C.1. Fix 𝑁 ≥ 0. For any 𝑠, 𝛿, 𝜀 > 0, K ⊂ ℝ𝑑 compact, there exists 𝜂0 > 0 such that, for any 𝜂 ∈ (0, 𝜂0], for any
𝑥0 ∈ K, 𝜉 ∈ Γ{𝑥0 }

𝑁
(𝑠), we have that

for any 𝜉 ∈ Γ{𝑥0 }
𝑁
(𝑠), ℙ𝑥0

(
dist𝑁 (𝑥𝜂 , 𝜉) < 𝛿

)
≥ exp

(
−A𝑁 (𝜉) + 𝜀

𝜂

)
ℙ𝑥0

(
dist𝑁 (𝑥𝜂 , Γ{𝑥0 }

𝑁
(𝑠)) > 𝛿

)
≤ exp

(
− 𝑠 − 𝜀

𝜂

)
.
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Proof. Fix 𝛿 > 0. Choose 𝜂0 such that both Proposition C.2 and Lemma C.4 hold with 𝑐𝜂 ≤ 𝛿. Then for any 𝜂 ∈ (0, 𝜂0],
for any 𝑥0 ∈ K, 𝜉 ∈ Γ{𝑥0 }

𝑁
(𝑠), 𝜉 ∈ Γ{𝑥0 }

𝑁
(𝑠), we have that

ℙ𝑥0 (dist𝑁 ((𝑋𝑛)0≤𝑛≤𝑁−1, 𝜉) < 𝛿) ≥ exp
(
−A𝑁 (𝜉) + 𝜀

𝜂

)
.

Now, if dist𝑁 ((𝑋𝑛)0≤𝑛≤𝑁−1, 𝜉) < 𝛿 and dist𝑁 (𝑥𝜂 , (𝑋𝑛)0≤𝑛≤𝑁−1) ≤ 𝛿, then dist𝑁 (𝑥𝜂 , 𝜉) < 2𝛿. Thus,

ℙ𝑥0

(
dist𝑁 (𝑥𝜂 , 𝜉) < 2𝛿

)
≥ ℙ𝑥0 (dist𝑁 ((𝑋𝑛)0≤𝑛≤𝑁−1, 𝜉) < 𝛿) ≥ exp

(
−A𝑁 (𝜉) + 𝜀

𝜂

)
.

The second part can be obtained similarly. ■

To summarize this part on large deviations principles, we state a corollary containing all the results that will be needed in the
following sections.

Corollary C.2. Fix 𝑁 ≥ 0.

• For any 𝑠 > 0, the set
ΓK
𝑁 (𝑠) := {𝜉 ∈ ℝ𝑑𝑁 : 𝜉0 ∈ K,A𝑁 (𝜉) ≤ 𝑠}

is compact and A𝑁 is l.s.c. on ℝ𝑑
𝑁 .

• For any 𝑠, 𝛿, 𝜀 > 0, K ⊂ ℝ𝑑 compact, there exists 𝜂0 > 0 such that, for any 𝜂 ∈ (0, 𝜂0], for any 𝑥0 ∈ K, 𝑛 ≤ 𝑁 ,
𝜉 ∈ Γ{𝑥0 }

𝑛 (𝑠), we have that

ℙ𝑥0

(
dist𝑛 (𝑥𝜂 , 𝜉) < 𝛿

)
≥ exp

(
−A𝑛 (𝜉) + 𝜀

𝜂

)
ℙ𝑥0

(
dist𝑛 (𝑥𝜂 , Γ{𝑥0 }

𝑛 (𝑠)) > 𝛿
)
≤ exp

(
− 𝑠 − 𝜀

𝜂

)
.
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D Attractors and limiting measures via large deviations
We now take inspiration from the framework of Kifer [32] in order to relate the sets of critical points to the sets where points
can move at no cost. Then, we relate the probability of SGD moving to neighborhoods of critical sets to the probability of
being close to well-chosen paths, which enables us to use the results of the previous section. Finally, we build upon these
results to provide bounds on the limiting measure of SGD.

D.1 Setup

We first need to define the gradient flow of 𝑓 .

Definition 2. Define, for 𝑥 ∈ ℝ𝑑 , the flow Θ of −∇ 𝑓 started at 𝑥, i.e.,

Θ0 (𝑥) = 𝑥
¤Θ𝑡 (𝑥) = −∇ 𝑓 (Θ𝑡 (𝑥)) .

and let 𝐹 (𝑥) be the value of this flow at time 1, i.e.,

𝐹 (𝑥) = Θ1 (𝑥) . (D.1)

Lemma D.1 (Properties of the flow). Θ is well-defined and continous in both time and space, and, for any 𝑇 ≥ 0,
𝛾 ∈ C ( [0, 𝑇],ℝ𝑑) such that 𝛾0 = 𝑥,

S0,𝑇 (𝛾) = 0 ⇐⇒ 𝛾𝑡 = Θ𝑡 (𝑥) for all 𝑡 ∈ [0, 𝑇] .

Proof. The well-definition and continuity of Θ are a consequence of 𝑓 being twice continuously differentiable and of the
global Cauchy-Lipschitz (Picard–Lindelöf) theorem for ordinary differential equation (ODE). The equivalence follows from
the uniqueness of the flow and Lemma B.1 since

S0,𝑇 (𝛾) = 0 ⇐⇒ L(𝛾𝑡 , ¤𝛾𝑡 ) = 0 almost everywhere ⇐⇒ ¤𝛾𝑡 = −∇ 𝑓 (𝛾𝑡 ) almost everywhere

and thus, by extending ¤𝛾 by continuity, both 𝛾 and Θ satisfy the same ODE with the same initial condition and are thus
equal for all 𝑡 by uniqueness of the solutions. ■

The following lemma translates this for 𝐹.

Lemma D.2 (Properties of 𝐹). 𝐹 is well-defined and continous and, for any 𝑥, 𝑥′ ∈ ℝ𝑑 ,

𝜌(𝑥, 𝑥′) = 0 ⇐⇒ 𝑥′ = 𝐹 (𝑥) .

Proof. We prove that
𝜌(𝑥, 𝑥′) = 0 ⇐⇒ 𝑥′ = Θ1 (𝑥) .

The implication (⇐) is immediate by deifnition of 𝐹 and Lemma D.1. Now for the reverse, assume that 𝜌(𝑥, 𝑥′) = 0.
Following the proof of Lemma D.1, there exists 𝛾 ∈ C ( [0, 1],ℝ𝑑) such that 𝛾0 = 𝑥, 𝛾1 = 𝑥′ and S0,1 (𝛾) = 0. By Lemma D.1,
𝛾𝑡 = Θ𝑡 (𝑥) for all 𝑡 ∈ [0, 1] and thus 𝑥′ = Θ1 (𝑥) = 𝐹 (𝑥). ■

D.2 Attractors

Let us first formalize the minimum-energy displacement between two points.

Definition 3 (Kifer [32, §1.5]). Define, for 𝑥, 𝑥′ ∈ ℝ𝑑 ,

𝐵(𝑥, 𝑥′) = inf
{
S0,𝑇 (𝛾) : 𝛾 ∈ C ( [0, 𝑇],ℝ𝑑), 𝛾0 = 𝑥, 𝛾𝑇 = 𝑥′, 𝑇 ∈ ℕ, 𝑇 ≥ 1

}
= inf

{
A𝑁 (𝜉) : 𝜉 ∈ X 𝑁 , 𝜉0 = 𝑥 , 𝜉𝑁−1 = 𝑥′, 𝑁 ≥ 1

}
.

The fact that these two expressions coincide directly come from the definition of 𝜌.

This enables us to define an equivalence relation for the critical points of 𝑓 by grouping points connected by a null-energy
path.
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Proposition D.1. The relation ∼ defined for any 𝑥, 𝑥′ ∈ crit( 𝑓 ) as

𝑥 ∼ 𝑥′ ⇐⇒ 𝐵(𝑥, 𝑥′) = 𝐵(𝑥′, 𝑥) = 0

is an equivalence relation on crit( 𝑓 ).

Proof. • Reflexivity: 𝐵(𝑥, 𝑥) = 0 by Lemma D.1 since the flow started at 𝑥 ∈ crit( 𝑓 ) is constant.

• Symmetry: this follows from the definition of ∼.

• Transitivity: for any 𝑥, 𝑥′, 𝑥′′ ∈ crit( 𝑓 ), we have by construction of 𝐵 that

𝐵(𝑥, 𝑥′′) ≤ 𝐵(𝑥, 𝑥′) + 𝐵(𝑥′, 𝑥′′) .

Therefore, if 𝑥 ∼ 𝑥′ and 𝑥′ ∼ 𝑥′′, then 𝐵(𝑥, 𝑥′′) = 0. 𝐵(𝑥′′, 𝑥) = 0 follows with a symmetric argument and thus 𝑥 ∼ 𝑥′′. ■

Near critical points of 𝑓 , the Lagrangian L̄ is actually very regular.

Lemma D.3. For any 𝑥 ∈ ℝ𝑑 , there exists 𝛿 > 0 such that L̄ is finite and jointly Lipschitz conitnuous on 𝔹(𝑥, 𝛿) ×𝔹(0, 𝛿).

Moreover, the following supremum is finite:

sup
{
L(𝑥′, 𝑣)
∥𝑣∥2

: 𝑥′ ∈ 𝔹(𝑥, 𝛿) ∩ crit( 𝑓 ) , 𝑣 ∈ 𝔹(0, 𝛿)
}
< +∞ .

Proof. Take 𝑥 ∈ ℝ𝑑 . We apply the implicit function theorem to the equation

∇𝑣H̄(𝑥′, 𝑤) = 𝑣 , (D.2)

in the variables (𝑥′, 𝑣, 𝑤) ∈ ℝ𝑑 ×ℝ𝑑 ×ℝ𝑑 .

We derive that
∇𝑣H̄(𝑥′, 𝑣) =

𝔼[𝑢(𝑥′, 𝜔) exp(⟨𝑣, 𝑢(𝑥′, 𝜔)⟩)]
𝔼[exp(⟨𝑣, 𝑢(𝑥′, 𝜔)⟩)]

and thus (𝑥, 0, 0) is solution of (D.2) since

∇𝑣H̄(𝑥, 0) = 𝔼[𝑢(𝑥, 𝜔)] = 0 .

Moreover, Hess𝑣 H̄(𝑥, 0) = 𝔼[𝑢(𝑥, 𝜔)𝑢(𝑥, 𝜔)⊤] which is positive definite and thus invertible by the blanket assumptions.

Hence, we can apply the implicit function theorem to get that there exists 𝛿 > 0, 𝑤 : 𝔹(𝑥, 𝛿) ×𝔹(0, 𝛿) → ℝ𝑑 C2 such that,
for any 𝑥′ ∈ 𝔹(𝑥, 𝛿), 𝑣 ∈ 𝔹(0, 𝛿),

∇𝑣H̄(𝑥′, 𝑤(𝑥′, 𝑣)) = 𝑣 .
Therefore, for any 𝑥′ ∈ 𝔹(𝑥, 𝛿), 𝑣 ∈ 𝔹(0, 𝛿), since L̄(𝑥′, 𝑣) = H̄(𝑥′, ·)∗ (𝑣), we have

L̄(𝑥′, 𝑣) = ⟨𝑣, 𝑤(𝑥′, 𝑣)⟩ − H̄(𝑥′, 𝑤(𝑥′, 𝑣)) ,

which is finite and C2 on 𝔹(𝑥, 𝛿) ×𝔹(0, 𝛿). Therefore, L̄ is actually 𝐿-jointly Lipschitz continuous on 𝔹(𝑥, 𝛿/2) ×𝔹(0, 𝛿/2).

For the second part of the lemma, note that the implicit function theorem also ensures that there is V ⊂ ℝ𝑑 a neighborhood
of 0 such that, for any 𝑥′ ∈ 𝔹(𝑥, 𝛿), 𝑣 ∈ 𝔹(0, 𝛿), 𝑤(𝑥′, 𝑣) is the unique solution of Eq. (D.2) in V . But, for any 𝑥′ ∈ 𝔹(𝑥, 𝛿)
and 𝑣 = 0, 𝑤 = 0 is a solution of Eq. (D.2) in V so that necessarily 𝑤(𝑥′, 0) = 0, and, as a consequence, ∇𝑣L̄(𝑥′, 0) = 0.

Hence, for any 𝑥′ ∈ 𝔹(𝑥, 𝛿/2), 𝑣 ∈ 𝔹(0, 𝛿/2),

L̄(𝑥′, 𝑣) = L̄(𝑥′, 𝑣) − L̄(𝑥′, 0) − ⟨𝑣,∇𝑣L̄(𝑥′, 0)⟩

≤ 1
2

sup
𝔹(𝑥, 𝛿/2)×𝔹(0, 𝛿/2)



Hess𝑣 L̄


∥𝑣∥2 .

To conclude, it suffices to note that, for any 𝑥′ ∈ 𝔹(𝑥, 𝛿)∩crit( 𝑓 ), ∇ 𝑓 (𝑥) = 0 and therefore L(𝑥′, ·) and L̄(𝑥′, ·) coincide. ■
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Lemma D.4. There exists an open neighborhood N ⊂ (ℝ𝑑)2 of (crit( 𝑓 ))2 such that 𝜌 is finite and continuous on N .

Proof. Take 𝑥 ∈ ℝ𝑑 such that ∇ 𝑓 (𝑥) = 0. We show that there exists a neighborhood of (𝑥, 𝑥) on which 𝜌 is finite and
continuous.

By Lemma D.3, there exists 𝛿 > 0 such that L̄ is finite and 𝐿-jointly Lipschitz continuous on 𝔹(𝑥, 𝛿) ×𝔹(0, 𝛿). In particular,
for any 𝑥′ ∈ 𝔹(𝑥, 𝛿), 𝑣 ∈ 𝔹(0, 𝛿),

L̄(𝑥′, 𝑣) ≤ 𝐿∥𝑣∥ .
By continuity of ∇ 𝑓 , there is 𝛿′ > 0, 𝛿′ < 𝛿 such that, for every 𝑥′ ∈ 𝔹(𝑥, 𝛿′), ∥∇ 𝑓 (𝑥′)∥ ≤ 𝛿/4. Then, for any 𝑥′ ∈ 𝔹(𝑥, 𝛿′),
𝑣 ∈ 𝔹(0, 𝛿/2),

L(𝑥′, 𝑣) = L̄(𝑥′, 𝑣 + ∇ 𝑓 (𝑥′))
≤ 𝐿 (∥𝑣 + ∇ 𝑓 (𝑥′)∥)
≤ 𝐿 (∥𝑣∥ + 𝛿/4) .

Take 𝑥′𝑖 in 𝔹(𝑥, 𝛿′) for 𝑖 = 1, . . . , 4 and 𝜀 > 0. By definition of 𝜌, there exists 𝛾 ∈ C ( [0, 1],ℝ𝑑) such that 𝛾0 = 𝑥′1,
𝛾1 = 𝑥′2, S0,1 (𝛾) ≤ 𝜌(𝑥′1, 𝑥′2) + 𝜀.

For 0 < 𝑠1 < 1 small enough and 0 < 𝑠2 < 1 close enough to 1, we have that 𝛾𝑡 belongs to 𝔹(𝑥, 𝛿′) for any 𝑡 ∈
[0, 𝑠1] ∪ [𝑠2, 1]. Now we can define 𝜑 ∈ C ( [0, 1],ℝ𝑑) that connects 𝑥′3 to 𝑥′4 by

𝜑𝑡 =


𝑥′3 + (𝑡/𝑠1) (𝛾𝑠1 − 𝑥′3) if 𝑡 ∈ [0, 𝑠1]
𝛾𝑡 if 𝑡 ∈ [𝑠1, 𝑠2]
𝛾𝑠2 + ((𝑡 − 𝑠2)/(1 − 𝑠2)) (𝑥′4 − 𝛾𝑠2 ) if 𝑡 ∈ [𝑠2, 1] .

Since 𝜑 is a continuous path between 𝑥′3 and 𝑥′4, we have that

𝜌(𝑥′3, 𝑥′4) ≤ S0,1 (𝜑) .

For 𝑠1 small enough and 𝑠2 close enough to 1, 𝜑 belongs to 𝔹(𝑥, 𝛿′) on [0, 𝑠1] ∪ [𝑠2, 1] and thus, its cost can be bounded as

S0,1 (𝜑) ≤ 𝐿
(
∥𝛾𝑠1 − 𝑥′3∥ + 𝑠1𝛿/4

)
+ S0,1 (𝛾) + 𝐿

(
∥𝛾𝑠2 − 𝑥′4∥ + (1 − 𝑠2)𝛿/4

)
,

where we used that 𝛾𝑠1 , 𝛾𝑠2 , 𝑥′3, 𝑥′4 all belong to 𝔹(𝑥, 𝛿′).

Now, take (𝑥′3, 𝑥′4) sufficient close to (𝑥′1, 𝑥′2), and 𝑠1 small enough and 𝑠2 close enough to 1, so that
𝐿
(
∥𝛾𝑠1 − 𝑥′3∥ + 𝑠1𝛿/4

)
+ 𝐿

(
∥𝛾𝑠2 − 𝑥′4∥ + (1 − 𝑠2)𝛿/4

)
≤ 𝜀. Putting everything together yields that

𝜌(𝑥′3, 𝑥′4) ≤ S0,1 (𝜑) ≤ S0,1 (𝛾) + 𝜀 ≤ 𝜌(𝑥′1, 𝑥′2) + 2𝜀 .

Exchanging the roles of (𝑥′1, 𝑥′2) and (𝑥′3, 𝑥′4) yields the reverse inequality and thus, 𝜌 is continuous on 𝔹(𝑥, 𝛿)2. ■

The following lemma relates the Lagrangian to the gradient and our noise structure.

Lemma D.5. For any 𝑥 ∈ ℝ𝑑 , 𝑣 ∈ ℝ𝑑 ,

L(𝑥, 𝑣) ≥ ∥𝑣 + ∇ 𝑓 (𝑥)∥
2

2𝜎2
∞ ◦ 𝑓 (𝑥)

.

Proof. For any 𝑥 ∈ ℝ𝑑 , 𝑣 ∈ ℝ𝑑 , we have that

H(𝑥, 𝑣) = −⟨𝑣,∇ 𝑓 (𝑥)⟩ + H̄(𝑥, 𝑣) ≤ −⟨𝑣,∇ 𝑓 (𝑥)⟩ + 1
2
𝜎2
∞ ◦ 𝑓 (𝑥)∥𝑣∥2 .

Taking the conjugate then yields that

L(𝑥, 𝑣) ≥ ∥𝑣 + ∇ 𝑓 (𝑥)∥
2

2𝜎2
∞ ◦ 𝑓 (𝑥)

.

■
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Now, let us define a potential function𝑈∞ on ℝ𝑑 that uses the minimal displacement energy between two points that will be
heavily used in the proofs.

Definition 4 (Potential). Define, for 𝑥 ∈ ℝ𝑑

𝑈∞ (𝑥) = 2𝛼∞ ◦ 𝑓 (𝑥)

where 𝛼∞ : ℝ𝑑 → ℝ is a twice continuously differentiable primitive of 1/𝜎2
∞.

Lemma D.6. For any 𝑥, 𝑥′ ∈ ℝ𝑑 ,
𝑈∞ (𝑥′) −𝑈∞ (𝑥) ≤ 2𝐵(𝑥, 𝑥′) .

Proof. By Definition 3, there exists 𝑇 ≥ 1, 𝛾 ∈ C ( [0, 𝑇],ℝ𝑑) such that 𝛾0 = 𝑥, 𝛾𝑇 = 𝑥′ and S0,𝑇 (𝛾) ≤ 𝐵(𝑥, 𝑥′) + 𝜀. Then,
we have that,

𝑈∞ (𝑥′) −𝑈∞ (𝑥) = 2
∫ 𝑇

0

⟨ ¤𝛾𝑡 ,∇ 𝑓 (𝛾𝑡 )⟩
𝜎2
∞ ◦ 𝑓 (𝛾𝑡 )

𝑑𝑡

≤
∫ 𝑇

0

∥ ¤𝛾𝑡 + ∇ 𝑓 (𝛾𝑡 )∥2

𝜎2
∞ ◦ 𝑓 (𝛾𝑡 )

𝑑𝑡

≤
∫ 𝑇

0
L(𝛾𝑡 , ¤𝛾𝑡 ) 𝑑𝑡 = 2S0,𝑇 (𝛾) ,

where we used Lemma D.5 in the last inequality. Finally, out choice of 𝛾 implies that

𝑈∞ (𝑥′) −𝑈∞ (𝑥) ≤ 2(𝐵(𝑥, 𝑥′) + 𝜀) ,

which concludes the proof. ■

Lemma D.7 (Equivalence classes are closed). Equivalence classes of ∼ are closed in ℝ𝑑 . As a consequence, equivalence
classes are compact.

Proof. Let 𝑥 ∈ crit( 𝑓 ), and take any sequence (𝑥′𝑘)𝑘≥0 in crit( 𝑓 ) such that 𝑥 ∼ 𝑥′𝑘 for every 𝑘 ≥ 0 and which converges to
some 𝑥′ ∈ ℝ𝑑 . To show that the equivalence classes are closed, we need to show that 𝑥 ∼ 𝑥′; then compacity follow directly
since the equivalence classes are subsets of crit( 𝑓 ) which is compact by assumption.

Since crit( 𝑓 ) is closed, it holds that 𝑥′ belongs to crit( 𝑓 ). We now show that both 𝐵(𝑥, 𝑥′) and 𝐵(𝑥′, 𝑥) are null. We only
show that 𝐵(𝑥, 𝑥′) = 0 since the proof for the other equality is symmetric.

As 𝑥′ is a critical point of 𝑓 , we have by Lemma D.4, 𝜌(·, 𝑥′) is finite and continuous on a neighborhood of 𝑥′. Moreover,
since 𝑥′ is a critical point, we have 𝑥′ = 𝐹 (𝑥′) (see Eq. (D.1)) and thus 𝜌(𝑥′, 𝑥′) = 𝜌(𝑥′, 𝐹 (𝑥′)) = 0 by Lemma D.2.
Therefore, for any 𝜀 > 0 there is a neighborhood of 𝑥′ on which 𝜌(·, 𝑥′) ≤ 𝜀. Take 𝑘 large enough so that 𝑥′𝑘 belongs to this
neighborhood. Since 𝑥 ∼ 𝑥′𝑘 , there exists 𝑁 ≥ 1, 𝜉 ∈ (ℝ𝑑)𝑁 such that 𝜉0 = 𝑥, 𝜉𝑁−1 = 𝑥′𝑘 and A𝑁 (𝜉) ≤ 𝜀. Then, the path
𝜁 := (𝜉0, . . . , 𝜉𝑁−1, 𝑥

′) ∈ (ℝ𝑑)𝑁+1 and satisfies 𝜁0 = 𝑥, 𝜁𝑁 = 𝑥′ and

A𝑁+1 (𝜁) ≤ A𝑁 (𝜉) + 𝜌(𝑥′𝑘 , 𝑥′) ≤ 2𝜀 .

Hence, we have shown that, for any 𝜀 > 0, 𝐵(𝑥, 𝑥′) ≤ 2𝜀 so that 𝐵(𝑥, 𝑥′) = 0. ■

Lemma D.8. For any set C ⊂ crit( 𝑓 ), there is 𝑟0 > 0 such that, for any 0 < 𝑟 ≤ 𝑟0,

W𝑟 (C) := {𝑥 ∈ X : 𝜌(𝑥, C) < 𝑟, 𝜌(C, 𝑥) < 𝑟}

is open and contains C.

Proof. For any 𝑥 ∈ C, ∇ 𝑓 (𝑥) = 0 and therefore 𝑥 is a fixed point of Θ. Lemma D.2 then implies that 𝜌(𝑥, 𝑥) = 0. Hence,
W𝑟 (C) indeed contains C. The fact that W𝑟 (C) is open for 𝑟 > 0 small enough follows from the continuity of 𝜌 close to
crit( 𝑓 ) × crit( 𝑓 ) (Lemma D.4), which is compact. ■
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This lemma is adapted and significantly expanded from Kifer [32, §1.5, Lem. 5.2] to handle both the unbounedness of the
space and the fact that 𝐵 is neither l.s.c. nor upper semi-continuous (u.s.c.).

Lemma D.9. Let K be an equivalence class of ∼. Then, for any 𝜀 > 0, there is some 𝑁 ≥ 1 such that, for any 𝑥, 𝑧 ∈ K,
there is 𝜉 ∈ (ℝ𝑑)𝑁 such that 𝜉0 = 𝑥, 𝜉𝑁−1 = 𝑧, A𝑁 (𝜉) < 𝜀 and max0≤𝑛<𝑁 𝑑 (𝜉𝑛,K) < 𝜀.

Proof. By Lemma D.7, K is a compact set. Moreover, K is made of critical points of 𝑓 so that by Lemma D.4, 𝜌 is finite and
continuous on a neighborhood of K ×K. By compactness of K ×K, 𝜌 is actually uniformly continuous on a neighborhood
of K × K so, in particular, for any 𝜀 > 0, there exists 𝛿 > 0 such that, for any 𝑥𝑖 ∈ ℝ𝑑 with 𝑑 (𝑥𝑖 ,K) < 𝛿 for 𝑖 = 1, . . . , 4
such that ∥𝑥1 − 𝑥2∥ < 𝛿, ∥𝑥3 − 𝑥4∥ < 𝛿,

|𝜌(𝑥1, 𝑥3) − 𝜌(𝑥2, 𝑥4) | < 𝜀 .

By compactness of K, there exists a finite number of points 𝑥𝑖 ∈ K, 𝑖 ∈ 𝐼 such that

K ⊂
⋃
𝑖∈𝐼

𝔹(𝑥𝑖 , 𝛿) . (D.3)

We first show that the result holds for the points 𝑥𝑖 before explaining why it actually suffices for the general case.

Fix 𝑖, 𝑗 ∈ 𝐼. Since 𝑥𝑖 ∼ 𝑥 𝑗 , 𝐵(𝑥𝑖 , 𝑥 𝑗 ) = 0 and therefore there exists sequences 𝜉𝑘 ∈ (ℝ𝑑)𝑁𝑘 with 𝜉𝑘0 = 𝑥𝑖 , 𝜉𝑘𝑁𝑘−1 = 𝑥 𝑗 such
that A𝑁𝑘 (𝜉𝑘) → 0 as 𝑘 →∞. For the sake of contradiction, assume that from some 𝑘 , there always exists 0 ≤ 𝑛 < 𝑁𝑘 such
that 𝑑 (𝜉𝑘𝑛 ,K) ≥ 𝜀. Define 𝑛𝑘 as the smallest 𝑛 such that it happens, which is necessarily greater or equal to 1. Note that, by
definition, 𝜉𝑘

𝑛𝑘−1 satisfies 𝑑 (𝜉𝑘
𝑛𝑘−1,K) ≤ 𝜀.

Define K′ := {𝑥 ∈ ℝ𝑑 : 𝑑 (𝑥,K) ≤ 𝜀} which is compact. However, for 𝑘 large enough, 𝜌(𝜉𝑘
𝑛𝑘−1, 𝜉

𝑘
𝑛𝑘
) ≤ A𝑁𝑘 (𝜉𝑘) ≤ 1 so

that (𝜉𝑘
𝑛𝑘−1, 𝜉

𝑘
𝑛𝑘
) belongs to ΓK′

2 (1), which is compact by Corollary C.2. Therefore, one can extract a subsequence from
(𝜉𝑘
𝑛𝑘−1, 𝜉

𝑘
𝑛𝑘
, )𝑘≥1 that converges to some (𝑥, 𝑧) ∈ ℝ𝑑 that satisfies 𝑑 (𝑧,K) ≥ 𝜀. Moreover, by l.s.c. of 𝜌, one has that

𝜌(𝑥, 𝑧) ≤ lim inf
𝑘→∞

𝜌(𝜉𝑘𝑛𝑘−1, 𝜉
𝑘
𝑛𝑘
)

≤ lim inf
𝑘→∞

A𝑁𝑘 (𝜉𝑘) = 0 ,

so that 𝜌(𝑥, 𝑧) = 0. We now show that 𝑥 = 𝑧 and that it is a critical point. By Lemma D.6, we have that

𝑈∞ (𝜉𝑘𝑛𝑘−1) −𝑈∞ (𝑥𝑖) ≤ 2𝐵(𝑥𝑖 , 𝜉𝑘𝑛𝑘−1) ≤ 2A𝑁𝑘 (𝜉𝑘)
𝑈∞ (𝑥 𝑗 ) −𝑈∞ (𝜉𝑘𝑛𝑘 ) ≤ 2𝐵(𝑥 𝑗 , 𝜉𝑘𝑛𝑘 ) ≤ 2A𝑁𝑘 (𝜉𝑘) ,

and taking the limit as 𝑘 →∞ yields that

𝑈∞ (𝑥) −𝑈∞ (𝑥𝑖) ≤ 0
𝑈∞ (𝑥 𝑗 ) −𝑈∞ (𝑧) ≤ 0 .

However, the fact that 𝑥𝑖 and 𝑥 𝑗 are equivalent and Lemma D.6 imply that𝑈∞ (𝑥𝑖) = 𝑈∞ (𝑥 𝑗 ) so that𝑈∞ (𝑥) ≤ 𝑈∞ (𝑧). Since
𝛼∞ is increasing, we have that 𝑓 (𝑥) ≤ 𝑓 (𝑧).

But we have that 𝜌(𝑥, 𝑧) = 0 so that 𝑧 = Θ1 (𝑥). Therefore, if ∇ 𝑓 (𝑥) ≠ 0, we would have

𝑓 (𝑧) − 𝑓 (𝑥) = −
∫ 1

0
∥∇ 𝑓 (Θ𝑡 (𝑥)∥2 𝑑𝑡 < 0 ,

which would be a contradiction. Therefore, ∇ 𝑓 (𝑥) = 0 and 𝑥 = 𝑧. Since 𝑥 is a critical point, to show that it belongs to K, it
suffices to show that 𝑥𝑖 ∼ 𝑥.

Take 𝜂 > 0. By Lemma D.8, for 𝜂 small enough, W𝜂 ({𝑥}) is an open neighborhood of 𝑥. Since 𝜉𝑘𝑛𝑘 converges to 𝑥, for 𝑘
large enough, 𝜉𝑘𝑛𝑘 belongs to W𝜂 ({𝑥}). (𝜉𝑘0 , . . . , 𝜉

𝑘
𝑛𝑘
, 𝑥) and (𝑥, 𝜉𝑘𝑛𝑘 , . . . , 𝜉

𝑘
𝑁𝑘−1) are, respectively, paths from 𝑥𝑖 to 𝑥 and

from 𝑥 to 𝑥 𝑗 with action cost of at most A𝑁𝑘 (𝜉𝑘) + 𝜀 so that, for 𝑘 large enough, 𝐵(𝑥𝑖 , 𝑥) ≤ 2𝜀 and 𝐵(𝑥, 𝑥 𝑗 ) ≤ 2𝜀.
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Hence, we have shown that 𝐵(𝑥𝑖 , 𝑥) = 𝐵(𝑥, 𝑥 𝑗 ) = 0. Then, we also have

0 ≤ 𝐵(𝑥, 𝑥𝑖) ≤ 𝐵(𝑥, 𝑥 𝑗 ) + 𝐵(𝑥 𝑗 , 𝑥𝑖) = 0 ,

and therefore 𝑥 ∼ 𝑥𝑖 and thus 𝑥 belongs to K. This is a contradiction.

Therefore, there must exist some sequence 𝜉𝑖, 𝑗 ∈ (ℝ𝑑)𝑁𝑖, 𝑗 with 𝜉𝑖, 𝑗0 = 𝑥𝑖 , 𝜉
𝑖, 𝑗

𝑁𝑖, 𝑗−1 = 𝑥 𝑗 such that A𝑁𝑖, 𝑗 (𝜉𝑖, 𝑗 ) < 𝜀 and

max0≤𝑛<𝑁𝑖, 𝑗 𝑑 (𝜉
𝑖, 𝑗
𝑛 ,K) < 𝜀.

Finally, for the general class, consider 𝑥, 𝑧 ∈ K. By Eq. (D.3), there exists 𝑖, 𝑗 ∈ 𝐼 such that 𝑥 ∈ 𝔹(𝑥𝑖 , 𝛿), 𝑧 ∈ 𝔹(𝑥 𝑗 , 𝛿).
Consider 𝜉 ∈ (ℝ𝑑)𝑁𝑖, 𝑗 a modification of 𝜉𝑖, 𝑗 defined by

𝜉𝑛 =


𝑥 if 𝑛 = 0
𝜉
𝑖, 𝑗
𝑛 if 0 < 𝑛 < 𝑁𝑖, 𝑗 − 1
𝑧 if 𝑛 = 𝑁𝑖, 𝑗 − 1 ,

that still satisfies max0≤𝑛<𝑁𝑖, 𝑗 𝑑 (𝜉𝑛,K) < 𝜀. Then, by uniform continuity of 𝜌, one has that

A𝑁𝑖, 𝑗 (𝜉) < A𝑁𝑖, 𝑗 (𝜉𝑖, 𝑗 ) + 2𝜀 ≤ 3𝜀 ,

which concludes the proof. ■

The following lemma is inspired by Alongi & Nelson [1, Prop. 3.3.11].

Lemma D.10. Equivalence classes are connected.

Proof. Fix K an equivalence class of ∼.

For the sake of contradiction, assume that there are U , V disjoint open sets of ℝ𝑑 such that both U ∩ K and V ∩ K are
non-empty and K = (U ∪ V) ∩K.

Take 𝑥 ∈ U ∩ K and 𝑥′ ∈ V ∩ K. By Lemma D.9, there exists a sequence of paths 𝜉𝑘 ∈ (ℝ𝑑)𝑁𝑘 with 𝜉𝑘0 = 𝑥, 𝜉𝑘
𝑁𝑘−1 = 𝑥′

for 𝑘 ≥ 0 such that A𝑁𝑘 (𝜉𝑘) → 0 as 𝑘 → ∞ and max0≤𝑛<𝑁𝑘 𝑑 (𝜉𝑘𝑛 ,K) → 0 as 𝑘 → ∞. Define 𝑎𝑘 as the last point of 𝜉𝑘

that belongs to U and 𝑏𝑘 as the successor of 𝑎𝑘 in 𝜉𝑘 . Formally, 𝑎𝑘 and 𝑏𝑘 are defined by 𝑎𝑘 = 𝜉𝑘𝑖𝑘 and 𝑏𝑘 = 𝜉𝑘𝑖𝑘+1 where
𝑖𝑘 = max{𝑖 < 𝑁𝑘 : 𝜉𝑘

𝑖
∈ U }.

By construction, both 𝑑 (𝑎𝑘 ,K) and 𝑑 (𝑏𝑘 ,K) go to zero as 𝑘 →∞. In particular, both sequences lie in U1 (K) from some
point onward, which is relatively compact, so they admit convergent subsequences. Without loss of generality, thus assume
that 𝑎𝑘 → 𝑎 and 𝑏𝑘 → 𝑏 as 𝑘 →∞ and 𝑎, 𝑏 belong to K.

Since 𝑎𝑘 belongs to U for all 𝑘 ≥ 0, 𝑎𝑘 is never in V so that 𝑎 does not belong to V either. Since 𝑎 belongs to K, it must
thus belong to U . Similarly, 𝑏 must belong to V .

However, by construction, we have that 𝜌(𝑎𝑘 , 𝑏𝑘) ≤ A𝑁𝑘 (𝜉𝑘) → 0 as 𝑘 →∞ so that 𝜌(𝑎𝑘 , 𝑏𝑘) converges to 0 as 𝑘 →∞
as well. By l.s.c. of 𝜌 (Corollary C.2 with 𝑁 = 1), 𝜌(𝑎, 𝑏) = 0 so that 𝑏 = 𝐹 (𝑎) by Lemma D.2. But since 𝑎 belongs to K, it
is a critical point of 𝑓 and therefore 𝑎 = 𝐹 (𝑎). Hence 𝑎 = 𝑏 with 𝑎 ∈ U and 𝑏 ∈ V , which is a contradiction. ■

Lemma D.11. Any connected component of crit( 𝑓 ) is included in a single equivalence class.

Proof. Take 𝐶 a connected component of crit( 𝑓 ) and 𝑥, 𝑥′ ∈ 𝐶. Let us first consider a stronger version of our assumption
(c): there exists 𝛾 ∈ C ( [0, 1], 𝐶) absolutely continuous such that 𝛾0 = 𝑥, 𝛾1 = 𝑥′, i.e., such that 𝛾 is differentiable almost
everywhere with

∫ 1
0 ∥ ¤𝛾𝑡 ∥ 𝑑𝑡 < +∞. We show that 𝑥 ∼ 𝑥′, i.e., that 𝐵(𝑥, 𝑥′) = 𝐵(𝑥′, 𝑥) = 0.

Let us begin by showing that 𝐵(𝑥, 𝑥′) = 0.

Since crit( 𝑓 ) is compact and 𝐶 is closed as connected component of a closed set, 𝐶 is compact. By invoking Lemma D.3 at
every point of 𝐶 and extracting a finite covering from the family of balls obtained, we have that, there exists 𝛿 > 0, 𝐿 > 0
such that, for every 𝑥 ∈ 𝐶, 𝑣 ∈ 𝔹(0, 𝛿),

L(𝑥, 𝑣) ≤ 𝐿∥𝑣∥2 .
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Fix 𝜀 ∈ (0, 𝛿) and define, for any 𝑡 ∈ [0, 1],

𝜆𝑡 :=
∫ 𝑡

0

max(∥ ¤𝛾𝑠 ∥, 1)
𝜀

𝑑𝑠 .

We have that 𝜆 is an increasing bijection from [0, 1] to [0, 𝜆1] and is absolutely continuous with ¤𝜆𝑡 = max(∥ ¤𝛾𝑡 ∥, 1)/𝜀 almost
everywhere. Consider 𝜏 : [0, 𝜆1] → [0, 1] the inverse of 𝜆, which is absolutely continuous with ¤𝜏𝑡 = 𝜀/max(∥ ¤𝛾𝜏𝑡 ∥, 1)
almost everywhere. Define 𝜑 ∈ C ( [0, 𝜆1],ℝ𝑑) by 𝜑𝑡 = 𝛾𝜏𝑡 for any 𝑡 ∈ [0, 𝜆1]. Then, 𝜑 is absolutely continuous and, for
any 𝑡 ∈ [0, 𝜆1],

¤𝜑𝑡 = ¤𝛾𝜏𝑡 ¤𝜏𝑡 =
𝜀 ¤𝛾𝜏𝑡

max(∥ ¤𝛾𝜏𝑡 ∥, 1)
which has norm less than 𝜀 < 𝛿.

Therefore, we have that,

S0,𝜆1 (𝜑) =
∫ 𝜆1

0
L(𝜑𝑡 , ¤𝜑𝑡 ) 𝑑𝑡

≤ 𝐿
∫ 𝜆1

0
∥ ¤𝜑𝑡 ∥2 𝑑𝑡

≤ 𝜀𝐿
∫ 𝜆1

0
∥ ¤𝜑𝑡 ∥ 𝑑𝑡

= 𝜀𝐿

∫ 𝜆1

0
¤𝜏𝑡 ∥ ¤𝛾𝜏𝑡 ∥ 𝑑𝑡

= 𝜀𝐿

∫ 1

0
∥ ¤𝛾𝑡 ∥ 𝑑𝑡 ,

where the last equality is obtained by the change of variable 𝑡 ← 𝜏𝑡 . Thus, we have shown that, for any 𝜀 ∈ (0, 𝛿),

𝐵(𝑥, 𝑥′) ≤ 𝜀𝐿
∫ 1

0
∥ ¤𝛾𝑡 ∥ 𝑑𝑡 ,

with
∫ 1

0 ∥ ¤𝛾𝑡 ∥ 𝑑𝑡 < +∞ by construction so that 𝐵(𝑥, 𝑥′) = 0.

Reversing the roles of 𝑥 and 𝑥′ and considering the path (𝛾1−𝑡 )𝑡∈[0,1] then yields that 𝐵(𝑥′, 𝑥) = 0.

Therefore, we have shown that if there exists 𝛾 ∈ C ( [0, 1], 𝐶) absolutely continuous such that 𝛾0 = 𝑥, 𝛾1 = 𝑥′, then 𝑥 ∼ 𝑥′.

We now relax our assumption on the paths from absolute continuity to piecewise absolute continuity (Assumption 5). For
𝑥, 𝑥′ ∈ 𝐶, by assumption, there exists 𝛾 ∈ C ( [0, 1], 𝐶) such that 𝛾0 = 𝑥, 𝛾1 = 𝑥′ and such that it is piecewise absolutely
continuous: 𝛾 is differentiable almost everywhere and there exists 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 1 such that ¤𝛾 is integrable on
every closed interval of (𝑡𝑛, 𝑡𝑛+1) for 𝑛 = 0, . . . , 𝑁 − 1. Take 0 ≤ 𝑛 < 𝑁 − 1 and 𝑡𝑛 < 𝑠 < 𝑡 < 𝑡𝑛+1. 𝛾 restricted to [𝑠, 𝑡] is
absolutely continuous so that, by the previous case, all the points of {𝛾𝑢 : 𝑢 ∈ [𝑠, 𝑡]} are included in a single equivalence
class K. Taking 𝑠 → 𝑡𝑛 and 𝑡 → 𝑡𝑛+1 yields that {𝛾𝑢 : 𝑢 ∈ (𝑡𝑛, 𝑡𝑛+1)} is included in K. Moreover, by continuity of 𝛾, 𝛾𝑡𝑛
and 𝛾𝑡𝑛+1 belong to the closure of K, which is closed by Lemma D.7, so that 𝛾𝑡𝑛 and 𝛾𝑡𝑛+1 belong to K as well. Therefore,
𝛾𝑡𝑛 ∼ 𝛾𝑡𝑛+1 . By transitivity, we obtain that 𝑥 = 𝛾0 ∼ 𝛾𝑡1 ∼ · · · ∼ 𝛾𝑡𝑁−1 ∼ 𝛾1 = 𝑥′ so that 𝑥 ∼ 𝑥′. ■

Combining Lemmas D.10 and D.11, we have shown that any connected component of crit( 𝑓 ) is included in a single
equivalence class and since they are connected, two distinct connected components of crit( 𝑓 ) cannot belong to the same
equivalent class; hence, we have that they coincide.
Corollary D.1. Under the assumptions of Lemma D.11, the equivalence classes of ∼ are exactly connected components of
crit( 𝑓 ).

We end this section by providing a sufficient condition for 𝐵(𝑥, 𝑥′) to be finite.
Lemma D.12. Consider 𝑥, 𝑥′ ∈ ℝ𝑑 and assume that there exists 𝑇 > 0, 𝛾 ∈ C1 ( [0, 𝑇],ℝ𝑑) such that 𝛾0 = 𝑥, 𝛾𝑇 = 𝑥′ and
such that, for every 𝑡 ∈ [0, 𝑇], ∇ 𝑓 (𝛾𝑡 ) is in the interior of the closed convex hull of the support of 𝑢(𝛾𝑡 , 𝜔), i.e.,

∇ 𝑓 (𝛾𝑡 ) ∈ int conv supp 𝑢(𝛾𝑡 , 𝜔) . (D.4)
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Then, 𝐵(𝑥, 𝑥′) < +∞.

Proof. By Brown [5, Thm. 3.6], Eq. (D.4) implies that, for every 𝑡 ∈ [0, 𝑇], ∇ 𝑓 (𝛾𝑡 ) belongs to ∇𝑝H̄(𝛾𝑡 ,ℝ𝑑). Therefore, as
in the proof of Lemma D.3, invoking the impicit function theorem on the equation

∇𝑝H̄(𝑥, 𝑝) = ∇ 𝑓 (𝑥) + 𝑣

we obtain that there exists 𝛿(𝛾𝑡 ) > 0, 𝑝 : 𝔹(𝛾𝑡 , 𝛿(𝛾𝑡 )) ×𝔹(0, 𝛿(𝛾𝑡 )) → ℝ𝑑 such that,

∇𝑝H̄(𝑥, 𝑝(𝑥, 𝑣)) = ∇ 𝑓 (𝑥) + 𝑣 ,

or, equivalently
∇𝑝H(𝑥, 𝑝(𝑥, 𝑣)) = 𝑣 .

Therefore, as in the proof of Lemma D.3, we obtain that L is continuous on 𝔹(𝛾𝑡 , 𝛿(𝛾𝑡 )/2) ×𝔹(0, 𝛿(𝛾𝑡 )/2) and therefore
bounded by 𝑀 (𝛾𝑡 ) > 0. Since 𝛾 is continuous, {𝛾𝑡 : 𝑡 ∈ [0, 𝑇]} is compact and therefore, by extracting a finite covering
from ⋃

𝑡∈[0,𝑇 ]
𝔹(𝛾𝑡 , 𝛿(𝛾𝑡 )/2) ,

we obtain that there exists 𝛿 > 0 and 𝑀 > 0 such that, for every 𝑡 ∈ [0, 𝑇], L(𝛾𝑡 , ·) is finite and bounded by 𝑀 on 𝔹(𝛾𝑡 , 𝛿).
Choosing a 𝜑 reparametrization of 𝛾, which is C1, such that ∥ ¤𝜑𝑡 ∥ < 𝛿 for every 𝑡 ∈ [0, 𝑆], we thus obtain a path such that

S0,𝑆 (𝜑) =
∫ 𝑆

0
L(𝜑𝑡 , ¤𝜑𝑡 ) 𝑑𝑡 ≤ 𝑀𝑆 < +∞ ,

which implies that 𝐵(𝑥, 𝑥′) < +∞. ■

D.3 Lyapunov condition

Definition 5 (Stopping times for the accelerated process). For any set 𝐴 ⊂ ℝ𝑑 , we define the hitting and exit times of 𝐴:

𝜎𝐴 := inf{𝑛 ≥ 1 : 𝑥𝜂𝑛 ∈ 𝐴} ,
𝜏𝐴 := inf{𝑛 ≥ 0 : 𝑥𝜂𝑛 ∉ 𝐴} .

We will need the following concentration lemma and its corollary.
Lemma D.13 (Part of the proof of [55, Th. 1.19]). Let 𝑋 be a random variable in ℝ𝑑 such that, for all 𝑣 ∈ ℝ𝑑 ,

log𝔼[exp(⟨𝑣, 𝑋⟩)] ≤ ∥𝑣∥
2

2
.

Then, for any 𝑡 > 0,

ℙ

(
∥𝑋 ∥2 ≥ 𝑡

)
≤ 6𝑑 exp

(
− 𝑡

8

)
.

Corollary D.2. In the context of Lemma D.13, it holds that

𝔼
[
∥𝑋 ∥2

]
≤ 16𝑑 log 6 .

Proof. Since ∥𝑋 ∥2 is non-negative, its expectation can be written as

𝔼
[
∥𝑋 ∥2

]
=

∫ +∞

0
ℙ

(
∥𝑋 ∥2 > 𝑡

)
𝑑𝑡

≤ 8𝑑 log 6 +
∫ +∞

8𝑑 log 6
ℙ

(
∥𝑋 ∥2 > 𝑡

)
𝑑𝑡 .

Invoking Lemma D.13 then yields that

𝔼
[
∥𝑋 ∥2

]
≤ 8𝑑 log 6 + 6𝑑

∫ +∞

8𝑑 log 6
exp

(
− 𝑡

8

)
𝑑𝑡 ≤ 8𝑑 log 6 + 8 ,

which concludes the proof since 1 ≤ 𝑑 log 6. ■
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Lemma D.14 (Lyapunov condition). Define𝑈∞ as in Lemma D.6. Then, there exists K ⊂ ℝ𝑑 compact, 𝜂0 > 0, 𝑐 > 0 such
that, for any 𝜂 ≤ 𝜂0, 𝑛 ≥ 0, if 𝑥𝑛 ∉ K, then, almost surely,

𝑈∞ (𝑥𝑛+1) −𝑈∞ (𝑥𝑛) ≤ 𝜂
(
∥𝑢(𝑥𝑛, 𝜔𝑛)∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

− ∥∇ 𝑓 (𝑥𝑛)∥
2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

)
≤ 𝜂

(
∥𝑢(𝑥𝑛, 𝜔𝑛)∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

− (16𝑑 log 6 + 𝑐)
)
.

Proof. By Assumption 9, there is 𝑅 ≥ 1
2 , 𝑐 > 0 such that, for any 𝑥 ∈ ℝ𝑑 such that ∥𝑥∥ ≥ 𝑅,

𝑓 (𝑥) ≥ 𝑐
𝑐 ≤ 𝜎2

∞◦ 𝑓 (𝑥 )
∥𝑥 ∥𝑠 ≤ 𝑐−1

∥∇ 𝑓 (𝑥 ) ∥2
𝜎2
∞◦ 𝑓 (𝑥 )

≥ 16𝑑 log 6 + 𝑐 .

Then, define K := 𝔹(0, 2𝑅 + 1).

By definition,𝑈∞ is twice continuously differentiable and, its Hessian satisfies, for any 𝑥 ∈ ℝ𝑑 ,

Hess𝑈∞ (𝑥) ≼
2 Hess 𝑓 (𝑥)
𝜎2
∞ ◦ 𝑓 (𝑥)

≼
2𝛽( 𝑓 )

𝜎2
∞ ◦ 𝑓 (𝑥)

𝐼 . (D.5)

For the sake of clarity, for any 𝑛 ≥ 0, denote by 𝛿𝑥𝑛 the quantity

𝛿𝑥𝑛 =
𝑥𝑛+1 − 𝑥𝑛

𝜂
.

For any 𝑛 ≥ 0, we now have

𝑈∞ (𝑥𝑛+1) −𝑈∞ (𝑥𝑛) ≤ 𝜂⟨∇𝑈∞ (𝑥𝑛), 𝛿𝑥𝑛⟩ +
𝜂2

2
∥𝛿𝑥𝑛∥2 sup

𝑡∈[0,1]

2𝛽( 𝑓 )
𝜎2
∞ ◦ 𝑓 (𝑥𝑛 + 𝑡 (𝑥𝑛+1 − 𝑥𝑛))

.

We first focus on bounding the last term. First note that, by the blanket assumptions, ∥𝑥𝑛+1 − 𝑥𝑛∥ ≤ 2𝜂𝑀 (1 + ∥𝑥𝑛∥) so that,
For any 𝑡 ∈ [0, 1], 𝜂 ≤ (4𝑀)−1,

∥𝑥𝑛 + 𝑡 (𝑥𝑛+1 − 𝑥𝑛)∥ ≥ ∥𝑥𝑛∥ − ∥𝑥𝑛+1 − 𝑥𝑛∥
≥ ∥𝑥𝑛∥ − 2𝜂𝑀 (1 + ∥𝑥𝑛∥)

≥ 1
2
(∥𝑥𝑛∥ − 1) .

If 𝑥𝑛 is outside of K, we have that ∥𝑥𝑛∥ ≥ 2𝑅 + 1 and thus ∥𝑥𝑛 + 𝑡 (𝑥𝑛+1 − 𝑥𝑛)∥ ≥ 𝑅. Moreover, since 𝑅 ≥ 1
2 , 𝑥𝑛 being

outside of K also implies that 1
2 ∥𝑥𝑛∥ ≥ 1 and so ∥𝑥𝑛 + 𝑡 (𝑥𝑛+1 − 𝑥𝑛)∥ ≥ 1

4 ∥𝑥𝑛∥. By the definition of 𝑅, we thus have

𝜎2
∞ ◦ 𝑓 (𝑥𝑛 + 𝑡 (𝑥𝑛+1 − 𝑥𝑛)) ≥ 𝑐∥𝑥𝑛 + 𝑡 (𝑥𝑛+1 − 𝑥𝑛)∥𝑠

≥ 𝑐
(

1
4

)𝑠
∥𝑥𝑛∥𝑠

≥ 𝑐
2

4𝑠
𝜎2
∞ ◦ 𝑓 (𝑥𝑛) .

Thus, if 𝑥𝑛 ∉ K, Eq. (D.5) yields that

𝑈∞ (𝑥𝑛+1) −𝑈∞ (𝑥𝑛) ≤ 𝜂⟨∇𝑈∞ (𝑥𝑛), 𝛿𝑥𝑛⟩ + 𝜂2 4𝑠𝛽( 𝑓 )
𝑐2𝜎2

∞ ◦ 𝑓 (𝑥𝑛)
∥𝛿𝑥𝑛∥2 . (D.6)
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Now, we can rewrite the inner product as

⟨∇𝑈∞ (𝑥𝑛), 𝛿𝑥𝑛⟩ =
2⟨∇ 𝑓 (𝑥𝑛), 𝛿𝑥𝑛⟩
𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

=
∥𝛿𝑥𝑛 + ∇ 𝑓 (𝑥𝑛)∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

− ∥∇ 𝑓 (𝑥𝑛)∥
2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

− ∥𝛿𝑥𝑛∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

.

Plugging this into Eq. (D.6) and assuming that 𝜂 ≤ 𝑐2

4𝑠𝛽 ( 𝑓 ) , we obtain

𝑈∞ (𝑥𝑛+1) −𝑈∞ (𝑥𝑛) ≤ 𝜂
(
∥𝛿𝑥𝑛 + ∇ 𝑓 (𝑥𝑛)∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

− ∥∇ 𝑓 (𝑥𝑛)∥
2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

)
≤ 𝜂

(
∥𝑢(𝑥𝑛, 𝜔𝑛)∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

− ∥∇ 𝑓 (𝑥𝑛)∥
2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

)
,

where we unrolled 𝛿𝑥𝑛 in the last inequality. Using again that 𝑥𝑛 ∉ K, we obtain

𝑈∞ (𝑥𝑛+1) −𝑈∞ (𝑥𝑛) ≤ 𝜂
(
∥𝑢(𝑥𝑛, 𝜔𝑛)∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

− (16𝑑 log 6 + 𝑐)
)
,

which concludes the proof. ■

We will reuse, in later sections, the following fact that we thus state as a lemma: the sequence of iterates of SGD is (weak)
Feller (see e.g., [22, Def. 4.4.2]).

Lemma D.15. The Markov chain (𝑥𝑛)𝑛≥0 is (weak) Feller.

Proof. since both ∇ 𝑓 and 𝑢 are continuous, for any 𝑔 : ℝ𝑑 → ℝ continuous and bounded, the function.

𝑥 ∈ ℝ𝑑 ↦−→ 𝔼𝑥 [𝑔(𝑥1)] = 𝔼𝑥 [𝑔(𝑥 − 𝜂∇ 𝑓 (𝑥) + 𝜂𝑢(𝑥, 𝜔))]

is still continuous and bounded. Therefore, the Markov chain (𝑥𝑛)𝑛≥0 is weak-Feller. ■

Lemma D.16. There is 𝜂0 > 0 such that, for any 𝜂 ≤ 𝜂0, there exists an invariant probability measure for (𝑥𝑛)𝑛≥0.

Proof. We invoke a general result on weak-Feller Markov chains that satisfy a Lyapunov condition, e.g., Hernández-Lerma
& Lasserre [22, Thm. 7.2.4] or Douc et al. [12, Thm. 12.3.6].

First, Lemma D.15 ensure that (𝑥𝑛)𝑛≥0 is weak-Feller.

Moreover, by Lemma D.14, there exists K ⊂ ℝ𝑑 compact, 𝜂0 > 0, 𝑐 > 0 such that, for any 𝜂 ≤ 𝜂0, 𝑥0 = 𝑥 ∉ K,

𝑈∞ (𝑥1) −𝑈∞ (𝑥) ≤ 𝜂
(
∥𝑢(𝑥, 𝜔0)∥2

𝜎2
∞ ◦ 𝑓 (𝑥)

− (16𝑑 log 6 + 𝑐)
)
.

Passing to the expectation yields that, for any 𝑥 ∉ K,

𝔼𝑥 [𝑈∞ (𝑥1)] −𝑈∞ (𝑥) ≤ 𝜂
(
𝔼𝑥

[
∥𝑢(𝑥, 𝜔0)∥2

]
𝜎2
∞ ◦ 𝑓 (𝑥)

− (16𝑑 log 6 + 𝑐)
)
.

Appplying Corollary D.2 with 𝑋 ← 𝑢(𝑥,𝜔0 )√
𝜎2
∞◦ 𝑓 (𝑥 )

(the conditions of application are verified from Assumption 6(c)) yields that

𝔼𝑥 [𝑈∞ (𝑥1)] −𝑈∞ (𝑥) ≤ −𝜂𝑐 .

Hence, for any 𝑥 ∈ ℝ𝑑 , it holds

𝔼𝑥 [𝑈∞ (𝑥1)] −𝑈∞ (𝑥) ≤ −𝜂𝑐 + 1{𝑥 ∈ K}
(

sup
𝑥′∈K

𝔼𝑥′ [𝑈∞ (𝑥′)] − inf
ℝ𝑑
𝑈∞ + 𝜂𝑐

)
,
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with𝑈∞ which is not identically equal to its minimum since 𝑓 is coercive.

Therefore, we can apply Hernández-Lerma & Lasserre [22, Thm. 7.2.4] with 𝑈∞ − infℝ𝑑 𝑈∞, that guarantees that there
exists an invariant probability measure for (𝑥𝑛)𝑛≥0. ■

Lemma D.17. There exists a compact set X ⊂ ℝ𝑑 , 𝜂0 > 0, such that for any compact set X ′ ⊂ ℝ𝑑 such that X ⊂ X ′, there
exists 𝑎, 𝑏 > 0, such that

∀𝜂 ≤ 𝜂0 , 𝑥 ∈ X ′ \ X , 𝑛 ≥ 0 , ℙ𝑥 (𝜎X > 𝑛) ≤ exp
(
−𝑎𝑛
𝜂
+ 𝑏
𝜂

)
.

Proof. This result is a consequence of Lemma D.14: there exists K ⊂ ℝ𝑑 compact, 𝜂0 > 0, 𝑐 > 0 such that, for any 𝜂 ≤ 𝜂0,
𝑛 ≥ 0, if 𝑥𝑛 ∉ K, then, almost surely,

𝑈∞ (𝑥𝑛+1) −𝑈∞ (𝑥𝑛) ≤ 𝜂
(
∥𝑢(𝑥𝑛, 𝜔𝑛)∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

− (16𝑑 log 6 + 𝑐)
)
. (D.7)

First, let us choose X . There is some 𝑅 > 0 such that K ⊂ 𝔹(0, 𝑅). Define 𝑅 := 𝑒4𝑀+1 (𝑅 + 1) and X := 𝔹(0, 𝑅). With
𝜂 ≤ (4𝑀)−1, if, for some 𝑛 ≥ 0, 𝑥𝑛 is not in X , by Lemma B.3, for any 𝑘 ≤ ⌈𝜂−1⌉, 𝑥𝑛+𝑘 has norm greater or equal to 𝑅 and
thus 𝑥𝑛+𝑘 is not in K either.

Now, fix 𝑁 ≥ 0 and consider the event {𝜎X > 𝑁} with 𝑥0 = 𝑥 ∈ X ′ \ X . This means that, for any 0 ≤ 𝑛 ≤ 𝑁 , 𝑥𝜂𝑛 is outside
of X and so, for any 0 ≤ 𝑛 ≤ 𝑁 ⌊𝜂−1⌋, 𝑥𝑛 is not in K.

Summing Eq. (D.7) over 𝑛 = 0, . . . , 𝑁 ⌊𝜂−1⌋ − 1 yields

𝑈∞ (𝑥𝜂𝑁 ) −𝑈∞ (𝑥0) = 𝑈∞ (𝑥𝑁 ⌊𝜂−1 ⌋) −𝑈∞ (𝑥0) ≤ 𝜂
𝑁 ⌊𝜂−1 ⌋−1∑︁

𝑛=0

(
∥𝑢(𝑥𝑛, 𝜔𝑛)∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

− (16𝑑 log 6 + 𝑐)
)
.

Define Δ := supX ′\X 𝑈∞ − infℝ𝑑\X 𝑈∞ which is finite since 𝑓 is coercive. By definition, we have that𝑈∞ (𝑥𝜂𝑁 ) −𝑈∞ (𝑥0) ≥
−Δ.

Therefore, on the event {𝜎X > 𝑁}, we have

𝑁 ⌊𝜂−1 ⌋−1∑︁
𝑛=0

∥𝑢(𝑥𝑛, 𝜔𝑛)∥2

𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

≥ 𝑁 ⌊𝜂−1⌋ (16𝑑 log 6 + 𝑐) − Δ

𝜂
.

Now, on the whole event, consider the random variable 𝑋 ∈ ℝ𝑁 ⌊𝜂−1 ⌋𝑑 defined by

(𝑋𝑛𝑑 + 1, . . . , 𝑋(𝑛+1)𝑑) =
𝑢(𝑥𝑛, 𝜔𝑛)√︁
𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

for 𝑛 = 0, . . . , 𝑁 ⌊𝜂−1⌋ − 1 ,

we have that ℙ𝑥 (𝜎X > 𝑁) ≤ ℙ𝑥

(
∥𝑋 ∥2 ≥ 𝑁 ⌊𝜂−1⌋ (16𝑑 log 6 + 𝑐) − Δ

𝜂

)
.

Since, for any 𝑣 ∈ ℝ𝑑 ,

log𝔼

[
exp

(〈
𝑣,

𝑢(𝑥𝑛, 𝜔𝑛)√︁
𝜎2
∞ ◦ 𝑓 (𝑥𝑛)

〉) ����� 𝑥0, 𝑥1, . . . , 𝑥𝑛

]
≤ ∥𝑣∥

2

2
,

the random variable 𝑋 satisfies the assumptions of Lemma D.13 with 𝑑 ← 𝑁 ⌊𝜂−1⌋𝑑.

First, suppose that 𝑡 := 𝑁 ⌊𝜂−1⌋ (16𝑑 log 6 + 𝑐) − Δ
𝜂

is non-negative. Applying Lemma D.13 with this 𝑡 yields that

ℙ𝑥 (𝜎X > 𝑁) ≤ ℙ𝑥

(
∥𝑋 ∥2 ≥ 𝑁 ⌊𝜂−1⌋ (16𝑑 log 6 + 𝑐) − Δ

𝜂

)
≤ 6𝑁 ⌊𝜂

−1 ⌋𝑑 exp

(
−
𝑁 ⌊𝜂−1⌋ (16𝑑 log 6 + 𝑐) − Δ

𝜂

8

)
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= exp

(
−
𝑁 ⌊𝜂−1⌋ (8𝑑 log 6 + 𝑐) − Δ

𝜂

8

)
.

If 𝑡, defined above, is negative, then in particular Δ
𝜂
≥ 𝑁 ⌊𝜂−1⌋𝑐 so that this bounds still (trivially) holds.

Finally, in particular, for 𝜂 ≤ 1/2, ⌊𝜂−1⌋ ≥ (2𝜂)−1 and we obtain,

ℙ𝑥 (𝜎X > 𝑁) ≤ exp
(
−𝑁 (8𝑑 log 6 + 𝑐)

16𝜂
+ Δ

8𝜂

)
.

■

D.4 Preliminary estimates and lemmas

We will use the following lemma, which corresponds to Kifer [32, Lem. 5.3].

Lemma D.18. Let K ⊂ ℝ𝑑 be a compact set such that K ∩ crit( 𝑓 ) = ∅. Then there exists 𝑐 > 0, 𝑁 ≥ 1, 𝜂0 > 0, such that,
for any 𝑛 > 𝑁 , 𝑥 ∈ K, 𝜂 ≤ 𝜂0,

ℙ𝑥

(
𝜎ℝ𝑑\K > 𝑛

)
= ℙ𝑥 (𝜏K > 𝑛) ≤ exp(−𝑐(𝑛 − 𝑁)/𝜂) .

Proof. The proof is exactly the same as the proof Kifer [32, Lem. 5.3], which only uses the l.s.c. of A𝑁 (Corollary C.2). ■

The following lemma provides a convenient reformulation of the results of Lemma D.17 and Lemma D.18.

Lemma D.19.

• There exists X ⊂ ℝ𝑑 a compact set, 𝜂0 > 0, such that for any X ′ ⊂ ℝ𝑑 compact set such that X ⊂ X ′, there exists
𝛼0, 𝑎, 𝑏 > 0 such that,

∀𝜂 ≤ 𝜂0, 𝛼 ≤ 𝛼0, 𝑥 ∈ X ′ \ X , 𝔼𝑥

[
𝑒
𝛼𝜎X
𝜂

]
≤ 𝑒

𝑎𝛼
𝜂
+𝑏
.

• For any K ⊂ ℝ𝑑 compact such that K ∩ crit( 𝑓 ) = ∅, there exists 𝜂0, 𝛼0, 𝑎, 𝑏 > 0 such that,

∀𝜂 ≤ 𝜂0, 𝛼 ≤ 𝛼0, 𝑥 ∈ K , 𝔼𝑥

[
𝑒
𝛼𝜏K
𝜂

]
≤ 𝑒

𝑎𝛼
𝜂
+𝑏
.

Proof. The proofs of both statements are very similar, so we prove only the second one for notational convenience. Fix
K ⊂ ℝ𝑑 compact such that K ∩ crit( 𝑓 ) = ∅. By Lemma D.18, there exists 𝑐 > 0, 𝑁 ≥ 1 such that, for any 𝑛 > 𝑁 , 𝑥 ∈ K,
𝜂 ≤ 𝜂0,

ℙ𝑥 (𝜏K > 𝑛) ≤ exp(−𝑐(𝑛 − 𝑁)/𝜂) . (D.8)

Let us first bound 𝔼𝑥

[
exp

(
𝛼(𝜏K−𝑁 )

𝜂

)]
. We have that

𝔼𝑥

[
exp

(
𝛼(𝜏K − 𝑁)

𝜂

)]
=

∫ ∞

0
ℙ𝑥

(
exp

(
𝛼(𝜏K − 𝑁)

𝜂

)
> 𝑡

)
𝑑𝑡

≤ 𝑒
𝛼
𝜂 +

∫ ∞

𝑒
𝛼
𝜂

ℙ𝑥

(
𝜏K > 𝑁 + 𝜂 log 𝑡

𝛼

)
𝑑𝑡

≤ 𝑒
𝛼
𝜂 +

∫ ∞

𝑒
𝛼
𝜂

ℙ𝑥

(
𝜏K > 𝑁 +

⌊
𝜂 log 𝑡
𝛼

⌋)
𝑑𝑡

≤ 𝑒
𝛼
𝜂 +

∫ ∞

𝑒
𝛼
𝜂

exp
(
− 𝑐
𝜂

⌊
𝜂 log 𝑡
𝛼

⌋)
𝑑𝑡 ,

where we used Eq. (D.8) in the last inequality.

35



What is the Long-Run Distribution of SGD? A Large Deviations Analysis

Lower bounding ⌊𝑠⌋ by 𝑠 − 1, we obtain that

𝔼𝑥

[
exp

(
𝛼(𝜏K − 𝑁)

𝜂

)]
≤ 𝑒

𝛼
𝜂 +

∫ ∞

𝑒
𝛼
𝜂

exp
(
− 𝑐
𝜂

𝜂 log 𝑡
𝛼
+ 𝑐
𝜂

)
𝑑𝑡

= 𝑒
𝛼
𝜂 +

∫ ∞

𝑒
𝛼
𝜂

𝑒
𝑐
𝜂 𝑡−

𝑐
𝛼 𝑑𝑡 .

Performing the change of variable 𝑠← 𝑒
− 𝛼
𝜂 𝑡, we obtain that

𝔼𝑥

[
exp

(
𝛼(𝜏K − 𝑁)

𝜂

)]
≤ 𝑒

𝛼
𝜂

(
1 +

∫ ∞

1
𝑠−

𝑐
𝛼 𝑑𝑠

)
.

When 𝛼 ≤ 𝑐/2, we obtain that

𝔼𝑥

[
exp

(
𝛼(𝜏K − 𝑁)

𝜂

)]
≤ 𝑒

𝛼
𝜂

(
1 +

∫ ∞

1
𝑠−2 𝑑𝑠

)
,

and therefore,

𝔼𝑥

[
exp

(
𝛼𝜏K
𝜂

)]
≤ 𝑒

(𝑁+1)𝛼
𝜂

(
1 +

∫ ∞

1
𝑠−2 𝑑𝑠

)
,

which concludes the proof. ■

The following lemma upper-bounds the probability of exiting a large neighborhood of the critical points before visiting a
smaller one critical points.

Lemma D.20. Consider crit( 𝑓 ) ⊂ U ⊂ X ⊂ ℝ𝑑 with U an open set and X a compact set. There exists X ′ ⊂ ℝ𝑑 compact
set such that X ⊂ X ′, Δ > 0, 𝜂0 > 0 such that, for any 𝜂 ≤ 𝜂0, 𝑥 ∈ X ,

ℙ𝑥
(
𝜏X ′ < 𝜎U

)
≤ exp

(
−Δ
𝜂

)
.

Proof. Define X ′ := {𝑥 ∈ ℝ𝑑 : 𝑓 (𝑥) ≤ supX 𝑓 + 1} and let𝑈∞ be as in Lemma D.6.

Since 𝛼∞ is (stricly) increasing as its derivative is (stricly) positive by definition, we have

Δ := 𝛼∞
(
sup
X

𝑓 + 1
)
− 𝛼∞

(
sup
X

𝑓

)
> 0 .

By Lemma D.18 applied to K← X ′
𝛿
\ U , there exists 𝑐 > 0, 𝑁0 ≥ 1, 𝜂0 > 0 such that for any 𝑛 > 𝑁0, 𝑥 ∈ X ′

𝛿
\ U , 𝜂 ≤ 𝜂0,

ℙ𝑥

(
𝜏X ′

𝛿
\U > 𝑛

)
≤ exp(−𝑐(𝑛 − 𝑁0)/𝜂) .

Defining 𝑁 :=
⌈
Δ
𝑐

⌉
+ 𝑁0, which is greater or equal than 1, we obtain that, for any 𝜂 ≤ 𝜂0, 𝑥 ∈ X ′

𝛿
\ U ,

ℙ𝑥

(
𝜏X ′

𝛿
\U ≥ 𝑁

)
≤ exp

(
−Δ
𝜂

)
. (D.9)

Note that this inequality actually holds for any 𝑥 ∈ X ′
𝛿
.

We now bound ℙ𝑥

(
𝜏X ′

𝛿
> 𝜎U

)
for 𝑥 ∈ X by distinguishing the cases where 𝜏X ′

𝛿
< 𝑁 and 𝜏X ′

𝛿
≥ 𝑁 . For any 𝑥 ∈ X , we

have that

ℙ𝑥

(
𝜏X ′

𝛿
< 𝜎U

)
≤ ℙ𝑥

(
𝜏X ′

𝛿
< 𝜎U , 𝜏X ′

𝛿
< 𝑁

)
+ ℙ𝑥

(
𝜏X ′

𝛿
< 𝜎U , 𝜏X ′

𝛿
≥ 𝑁

)
≤ ℙ𝑥

(
𝜏X ′

𝛿
< 𝑁

)
+ ℙ𝑥

(
𝜏X ′

𝛿
\U ≥ 𝑁

)
≤ ℙ𝑥

(
𝜏X ′

𝛿
< 𝑁

)
+ exp

(
−Δ
𝜂

)
,

36



What is the Long-Run Distribution of SGD? A Large Deviations Analysis

where we used Eq. (D.9).

We now focus on bounding the first term. For this, we first show that 𝜏X ′
𝛿
< 𝑁 implies that

dist𝑁
(
𝑥𝜂 , Γ

{𝑥}
𝑁
(Δ/4)

)
> 𝛿/2 .

For the sake of contradiction, suppose that this inequality does not hold. Therefore, there must exist 𝜉 ∈ Γ{𝑥}
𝑁
(Δ/4) such

that dist𝑁
(
𝑥𝜂 , 𝜉

)
< 𝛿. In particular, there is some 𝑛 < 𝑁 such that 𝜉𝑛 ∉ X ′, so that, by Definition 3,

A𝑁 (𝜉) ≥ A𝑛+1 (𝜉) ≥ 𝐵(𝜉0, 𝜉𝑛) .

By Lemma D.6, we have that

𝐵(𝜉0, 𝜉𝑛) ≥
1
2
(𝑈∞ (𝜉𝑛) −𝑈∞ (𝜉0))

≥ 1
2

(
𝛼∞

(
inf

ℝ𝑑\X ′
𝑓

)
− 𝛼∞

(
sup
X ′

𝑓

))
,

since 𝛼∞ is increasing. By construction of X ′, we have further that

𝐵(𝜉0, 𝜉𝑛) ≥
1
2

(
𝛼∞

(
sup
X

𝑓 + 1
)
− 𝛼∞

(
sup
X

𝑓 )
))

=
Δ

2
,

so that A𝑁 (𝜉) ≥ Δ/2, which is a contradiction with 𝜉 ∈ Γ{𝑥}
𝑁
(Δ/4).

Therefore, we have that

ℙ

(
𝜏X ′

𝛿
< 𝑁

)
≤ ℙ

(
dist𝑁

(
𝑥𝜂 , Γ

{𝑥}
𝑁
(Δ/4)

)
> 𝛿/2

)
≤ exp

(
− Δ

8𝜂

)
,

where we invoked Corollary C.2 with 𝛿← 𝛿/2, 𝑠← Δ/2, 𝜀 ← Δ/8. ■

The following lemma is key to our analysis: it shows that SGD spends most of its time near its critical points.

Lemma D.21. Consider crit( 𝑓 ) ⊂ U ⊂ X ⊂ ℝ𝑑 with U an open set and X a compact set. Then, there is some
𝜂0, 𝛼0, 𝑎, 𝑏 > 0 such that,

∀𝜂 ≤ 𝜂0, 𝛼 ≤ 𝛼0, 𝑥 ∈ X , 𝔼𝑥

[
𝑒
𝛼𝜎U
𝜂

]
≤ 𝑒

𝑎𝛼
𝜂
+𝑏
.

Proof. Fix 𝜀 > 0. Without loss of generality, assume that X is large enough to include the compact set given by the first
item of Lemma D.19 (note that the guarantee of the first item of Lemma D.19 still holds even if X is larger).

Apply Lemma D.20 with U ← U , X ← X and denote by X̃ the obtained compact and 𝜂0,Δ > 0 such that, for every 𝜂 ≤ 𝜂0,
𝑥 ∈ X ,

ℙ𝑥
(
𝜏X̃ < 𝜎U

)
≤ exp

(
−Δ
𝜂

)
.

Define 𝑟 := sup𝑥∈X̃ ∥𝑥∥ and 𝑅 = 𝑒8𝑀 (1 + 𝑟). Assuming that 𝜂 ≤ 1, by Lemma B.2, for any 𝑥 ∈ X̃ , the next two iterates of
(𝑥𝜂𝑛 )𝑛≥0 satisfies ∥𝑥𝜂1 ∥ ≤ 𝑅 and ∥𝑥𝜂2 ∥ ≤ 𝑅. Define X ′ := 𝔹(0, 𝑅).

We invoke both items of Lemma D.19 with K← X̃ \ U and denote by 𝑐 > 0 a constant that satisfies the bounds of both
items. In the rest of the proof, we consider 𝜂 and 𝛼 smaller than the bounds given by this lemma.

Our goal is to bound, for any 𝑁 ≥ 0, the quantity,

𝑠𝑁 (𝛼, 𝜂) := sup
𝑥∈X

𝔼𝑥

[
exp

(
𝛼𝜎𝑁U
𝜂

)]
, where 𝜎𝑁U := min(𝑁, 𝜎U ) .
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Note that, by construction, 𝑠𝑁 (𝛼, 𝜂) is finite.

Take 𝑥 ∈ X . In particular, Lemma D.19 implies that 𝜏X̃ \U < +∞ almost surely for all 𝑥 ∈ X .

exp

(
𝛼𝜎𝑁U
𝜂

)
= 1{𝑥𝜂𝜏X̃ \U ∈ U } exp

(
𝛼𝜏X̃ \U
𝜂

)
+ 1{𝑥𝜂𝜏X̃ \U ∉ X𝛿} exp

(
𝛼𝜏X̃ \U
𝜂

)
exp

©­­«
𝛼

(
𝜎𝑁U − 𝜏X̃ \U

)
𝜂

ª®®¬
≤ 1{𝑥𝜂𝜏X̃ \U ∈ U } exp

(
𝛼𝜏X̃ \U
𝜂

)
+ 1{𝑥𝜂𝜏X̃ \U ∉ X𝛿} exp

(
𝛼𝜏X̃ \U
𝜂

)
exp

©­­«
𝛼min

(
𝜎U − 𝜏X̃ \U , 𝑁

)
𝜂

ª®®¬
so that we can apply the strong Markov property to the Markov chain (𝑥𝜂𝑛 )𝑛≥0 with stopping time 𝜏X̃ \U to obtain that

𝔼𝑥

[
exp

(
𝛼𝜎𝑁U
𝜂

)]
≤ 𝔼𝑥

[
1{𝑥𝜂𝜏X̃ \U ∈ U } exp

(
𝛼𝜏X̃ \U
𝜂

)
+ 1{𝑥𝜂𝜏X̃ \U ∉ X𝛿} exp

(
𝛼𝜏X̃ \U
𝜂

)
𝔼𝑥𝜂𝜏X̃ \U

[
exp

(
𝛼𝜎𝑁U
𝜂

)]]
(D.10)

We now bound

1{𝑥𝜂𝜏X̃ \U ∉ X𝛿}𝔼𝑥𝜂𝜏X̃ \U

[
exp

(
𝛼𝜎𝑁U
𝜂

)]
= 𝔼𝑥𝜂𝜏X̃ \U

[
1{𝑥𝜂0 ∉ X𝛿} exp

(
𝛼𝜎𝑁U
𝜂

)]
Since 𝑥 is in X , by definition, 𝜏X̃ \U is at least equal to 1 and 𝑥𝜂

𝜏X̃ \U−1 is still in X̃ . By definition of X ′, 𝑥𝜂𝜏X̃ \U must still be in
X ′. Therefore, the guarantee of Lemma D.19 applies and, since in particular it implies that 𝜎X is finite almost surely when
the chain is started at 𝑥𝜂𝜏X̃ \U , we can apply the strong Markov property to obtain that

𝔼𝑥𝜂𝜏X̃ \U

[
1{𝑥0 ∉ X̃ } exp

(
𝛼𝜎𝑁U
𝜂

)]
≤ 𝔼𝑥𝜂𝜏X̃ \U

[
1{𝑥0 ∉ X̃ } exp

(
𝛼𝜎X
𝜂

)
𝔼𝑥𝜂𝜎X

[
exp

(
𝛼𝜎𝑁U
𝜂

)]]
≤ 𝑠𝑁 (𝛼, 𝜂) 𝔼𝑥𝜂𝜏X̃ \U

[
1{𝑥0 ∉ X̃ } exp

(
𝛼𝜎X
𝜂

)]
,

where, for the second inequality, we used the definition of 𝑠𝑁 (𝛼, 𝜂) and the fact that 𝑥𝜎X is in X .

Now, to bound the remaining expectation, note that 𝑥0 does not belong to X̃ and, a fortiori, does not belong to X . Therefore,
𝜎X depends only on (𝑥𝜂𝑛 )𝑛≥1 and the (weak) Markov property implies that

𝔼𝑥𝜂𝜏X̃ \U

[
1{𝑥0 ∉ X̃ } exp

(
𝛼𝜎X
𝜂

)]
≤ 𝔼𝑥𝜂𝜏X̃ \U

[
1{𝑥0 ∉ X̃ }𝔼𝑥1

[
exp

(
𝛼(1 + 𝜎X )

𝜂

)] ]
≤ exp

(
𝛼(1 + 𝑐)

𝜂

)
𝔼𝑥𝜂𝜏X̃ \U

[
1{𝑥0 ∉ X̃ }

]
,

by Lemma D.19, since the 𝑥𝜂
𝜏X̃ \U−1 is still in X̃ so that 𝑥1 of the chain started at 𝑥𝜂𝜏X̃ \U is still in X ′.

Lemma D.20 then implies that,

𝔼𝑥𝜂𝜏X̃ \U

[
1{𝑥0 ∉ X̃ } exp

(
𝛼𝜎X ′

𝜂

)]
≤ exp

(
𝛼(1 + 𝑎) − Δ

𝜂
+ 𝑏

)
Combining these bounds with Eq. (D.10) then gives

𝔼𝑥

[
exp

(
𝛼𝜎𝑁U
𝜂

)]
≤

(
1 + 𝑠𝑁 (𝛼, 𝜂) exp

(
𝛼(1 + 𝑎) − Δ

𝜂
+ 𝑏

))
𝔼𝑥

[
exp

(
𝛼𝜏X̃ \U
𝜂

)]
≤

(
1 + 𝑠𝑁 (𝛼, 𝜂) exp

(
𝛼(1 + 𝑎) − Δ

𝜂
+ 𝑏

))
exp

(
𝑎𝛼

𝜂
+ 𝑏

)
,
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by Lemma D.19. Since this inequality is valid for any 𝑥 ∈ X , we have shown that

𝑠𝑁 (𝛼, 𝜂) ≤
(
𝑒
𝑎𝛼
𝜂
+𝑏 + 𝑠𝑁 (𝛼, 𝜂)𝑒

𝛼(1+2𝑎)−Δ
𝜂

+𝑏
)
.

For 𝛼 ≤ Δ/(2(1 + 2𝑎)) and 𝜂 small enough,

𝑒
𝛼(1+2𝑎)−Δ

𝜂
+𝑏 ≤ 𝑒−

Δ
2𝜂 +𝑏 ≤ 1

2
,

and we obtain that
𝑠𝑁 (𝛼, 𝜂) ≤ 2𝑒

𝑎𝛼
𝜂
+𝑏
.

Taking 𝑁 → +∞ and using Fatou’s lemma yields that

sup
𝑥∈X

𝔼𝑥

[
exp

(
𝛼𝜎U
𝜂

)]
≤ 2𝑒

𝑎𝛼
𝜂
+𝑏
,

which concludes the proof. ■

D.5 Estimates of the invariant measure

Define, for sets 𝐴, 𝐵 ⊂ ℝ𝑑 ,
𝐵(𝐴, 𝐵) := inf{𝐵(𝑥, 𝑧) : 𝑥 ∈ 𝐴, 𝑧 ∈ 𝐵} .

Recall that for any 𝑖, 𝑗 , we define

𝐵𝑖, 𝑗 = 𝐵(K𝑖 ,K 𝑗 ) = inf{𝐵(𝑥, 𝑧) : 𝑥 ∈ K𝑖 , 𝑧 ∈ K 𝑗 } .

Recall that, to avoid degenerate cases, we assume that Assumption 4 holds, i.e., that

Assumption 8. 𝐵𝑖 𝑗 < ∞ for all 𝑖, 𝑗 = 1, . . . , 𝐾 .

With Lemma D.12, this assumption is satisfied in particular if the following condition holds: for any 𝑖, 𝑗 = 1, . . . , 𝐾 , there
exists a C1 path 𝛾 joining K𝑖 and K 𝑗 such that, for all 𝑡, ∇ 𝑓 (𝛾𝑡 ) belongs to the interior of the closed convex hull of the
support of the noise 𝑢(𝛾𝑡 , 𝜔):

∇ 𝑓 (𝛾𝑡 ) ∈ int conv supp 𝑢(𝛾𝑡 , 𝜔) ,

This means there is a sufficient level of noise for the probability of going from K𝑖 to K 𝑗 with at least one path to be non-zero
(though it can be vanishingly small). Note that it does not constrain the nature of the noise itself — which can be discrete,
continuous or else —, only the support of its distribution.

Moreover, if Assumption 8 was not to hold, the same analysis as in this section could still be carried out. We would consider
the components of the graph G connected by edges with finite weights proceed with the proof on each of them, and obtain
the same results on each of these components. To keep the complexity of the proof reasonable, we will not consider this
case here.

We adapt to our context Kifer [32, Lem. 5.4] and simplify it using ideas from Freidlin & Wentzell [18, Chap. 6].

Definition 6 (Freidlin & Wentzell [18, Chap. 6,§2]). For 𝑖, 𝑗 ,

𝐵𝑖, 𝑗 := inf

{
A𝑁 (𝜉) : 𝑁 ≥ 1, 𝜉 ∈ (ℝ𝑑)𝑁 , 𝜉0 ∈ K𝑖 , 𝜉𝑁−1 ∈ K 𝑗 , 𝜉𝑛 ∉

⋃
𝑙≠𝑖, 𝑗

K𝑙 for 𝑛 = 1, . . . , 𝑁 − 2

}
.

We now defined an important object: the law of the (accelerated) iterated at the first time they reach some set V (typically a
neighborhood of the critical set), following e.g., Douc et al. [12, Chap. 3.4].

Definition 7 (Kifer [32, Prop. 5.3]). For V open set, with hitting time (of the accelerated sequence) 𝜎V := inf{𝑛 ≥ 1 : 𝑥𝜂𝑛 ∈
V} , (as in Definition 5), denote the law of 𝑥𝜂𝜎V started at 𝑥 by ℚV (𝑥, ·) and the corresponding 𝑁-step transition probability
by ℚ𝑁V (𝑥, ·).
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In words, ℚV (𝑥, ·) is the distributions of the 𝑥𝜂 started at 𝑥 at the first time they reach V . Typically, ℚV (𝑥,U) is the
probability that U ⊂ V is reached first among V . Then, ℚ𝑁V (𝑥, ·) is the distribution of the 𝑥𝜂 started at 𝑥 at the 𝑁-th time
they reach V .

We first give estimates of the transition probabilities using the 𝐵𝑖, 𝑗 . We will then translate them to 𝐵𝑖, 𝑗 .

Lemma D.22. For any 𝜀 > 0, for any small enough neighborhoods V𝑖 of K𝑖 , 𝑖 = 1, . . . , 𝐾 , there is some 𝜂0 > 0 such that
for all 𝑖, 𝑗 , 𝑥 ∈ V𝑖 , 0 < 𝜂 < 𝜂0,

ℚV (𝑥,V 𝑗 ) ≤ exp

(
−
𝐵𝑖, 𝑗

𝜂
+ 𝜀
𝜂

)
.

where we defined V := ⋃𝐾
𝑖=1 V𝑖 .

Proof. Assume that, without loss of generality, 𝜀 is small enough so that Lemma D.8 with 𝑟 ← 𝜀 can be applied to every
K𝑖 , 𝑖 = 1, . . . , 𝐾 . Denote by W𝑖 , 𝑖 = 1, . . . , 𝐾 the corresponding neighborhoods of K𝑖 .

Since these W𝑖’s are open neighborhoods of the K𝑖’s, there exists 𝛿 > 0 such that U2𝛿 (K𝑖) ⊂ W𝑖 for all 𝑖 = 1, . . . , 𝐾.
Require then that V𝑖 be contained in U𝛿 (K𝑖) so that U𝛿 (V𝑖) ⊂ W𝑖 for all 𝑖 = 1, . . . , 𝐾. Moreover, assume that 𝛿 > 0 is
small enough so that the neighborhoods U𝛿 (K𝑖), 𝑖 = 1, . . . , 𝐾 are pairwise disjoint.

Define 0 < 𝛿′ ≤ 𝛿 such that U𝛿′ (K𝑖) is contained in V𝑖 for all 𝑖 = 1, . . . , 𝐾 .

Fix 𝑖, 𝑗 ∈ 𝐼 and consider 𝜉 ∈ (ℝ𝑑)𝑁 such that 𝜉0 ∈ U𝛿′ (V𝑖) ⊂ W𝑖 , 𝜉𝑁−1 ∈ U𝛿′ (V 𝑗 ) ⊂ W 𝑗 and 𝜉𝑛 ∈ U𝛿′
(
ℝ𝑑 \⋃𝑙≠𝑖, 𝑗 V𝑙

)
for all 𝑛 = 1, . . . , 𝑁 − 2. By the choice of 𝛿′, 𝜉𝑛 cannot be in

⋃
𝑙≠𝑖, 𝑗 K𝑙 for any 𝑛 = 1, . . . , 𝑁 − 2.

By definition of W𝑖 and W 𝑗 , there are 𝑥 ∈ K𝑖 , 𝑥′ ∈ K 𝑗 such that 𝜌(𝑥, 𝜉0) < 𝜀, 𝜌(𝜉𝑁−1, 𝑥
′) < 𝜀. Therefore, the path

𝜁 ∈ (ℝ𝑑)𝑁+2 defined as 𝜁 = (𝑥, 𝜉0, 𝜉1, . . . , 𝜉𝑁−1, 𝑥
′) satisfies

A𝑁 (𝜉) ≥ A𝑁+2 (𝜁) − 2𝜀 .

and, by definition of 𝐵𝑖, 𝑗 , we thus obtain,

A𝑁 (𝜉) ≥ A𝑁+2 (𝜁) − 2𝜀 ≥ 𝐵𝑖, 𝑗 − 2𝜀 . (D.11)

Fix 𝑥 ∈ V𝑖 . Let us now bound the probability

ℚV (𝑥,V 𝑗 ) = ℙ𝑥
(
𝑥
𝜂
𝜎V ∈ V𝑖

)
.

We have, for any 𝑁 ≥ 0,
ℙ𝑥

(
𝑥
𝜂
𝜎V ∈ V𝑖

)
≤ ℙ𝑥

(
𝑥
𝜂
𝜎V ∈ V𝑖 , 𝜎V < 𝑁

)
+ ℙ𝑥 (𝜎V ≥ 𝑁) .

We first bound the second probability using Lemma D.21 applied to U ← V𝑖 . Take 𝑁 such that 𝛼0 (𝑎 − 𝑁) + 𝜂0𝑏 ≤ −𝐵𝑖, 𝑗 .
Then, by Markov’s inequality and Lemma D.21, it holds that for all 𝜂 ≤ 𝜂0

ℙ𝑥 (𝜎V ≥ 𝑁) ≤ ℙ𝑥

(
exp

(
𝛼0𝜎V
𝜂

)
≥ exp

(
𝛼0𝑁

𝜂

))
≤ exp

(
𝛼0 (𝑎 − 𝑁)

𝜂
+ 𝑏

)
≤ exp

(
−𝐵𝑖, 𝑗
𝜂

)
. (D.12)

We now bound the term ℙ𝑥
(
𝑥
𝜂
𝜎V ∈ V 𝑗 , 𝜎V < 𝑁

)
for this choice of 𝑁 .

For this, we show that 𝑥𝜂𝜎V ∈ V 𝑗 with 𝜎V < 𝑁 implies that

dist𝑁
(
𝑥𝜂 , Γ

{𝑥}
𝑁

(
𝐵𝑖, 𝑗 − 3𝜀

))
>
𝛿′

2
.
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Indeed, on the event 𝑥𝜂𝜎V ∈ V 𝑗 with 𝜎V < 𝑁 , there is some 𝑁 ′ ≤ 𝑁 such that 𝜎V = 𝑁 ′ −1. If dist𝑁
(
𝑥𝜂 , Γ

{𝑥}
𝑁

(
𝐵𝑖, 𝑗 − 3𝜀

))
>

𝛿′

2 did not hold, this would mean that there exists 𝜉 ∈ (ℝ𝑑)𝑁 ′ such that dist𝑁 ′ (𝑥𝜂 , 𝜉) < 𝛿′, 𝜉0 = 𝑥 and, A𝑁 ′ (𝜉) ≤ 𝐵𝑖, 𝑗 − 3𝜀.
In particular, 𝜉 would also satisfy 𝜉𝑁 ′−1 ∈ U𝛿′ (V 𝑗 ), 𝜉𝑛 ∈ U𝛿′ (ℝ𝑑 \ V) for all 𝑛 = 1, . . . , 𝑁 ′ − 2. This would be in direct
contradiction of Eq. (D.11).

Therefore, we have that

ℙ𝑥
(
𝑥
𝜂
𝜎V ∈ V 𝑗 , 𝜎V < 𝑁

)
≤ ℙ𝑥

(
dist𝑁

(
𝑥𝜂 , Γ

{𝑥}
𝑁

(
𝐵𝑖, 𝑗 − 3𝜀

))
>
𝛿′

2

)
≤ exp

(
−
𝐵𝑖, 𝑗 − 4𝜀

𝜂

)
,

by Corollary C.2.

Combining this bound with Eq. (D.12) yields

ℙ𝑥 (𝑥𝜂𝜎V ∈ V 𝑗 ) ≤ exp

(
−
𝐵𝑖, 𝑗 − 4𝜀

𝜂

)
+ exp

(
−𝐵𝑖, 𝑗
𝜂

)
,

which concludes the proof. ■

Lemma D.23. For any 𝜀 > 0,for any neighborhoods V𝑖 of K𝑖 , 𝑖 = 1, . . . , 𝐾 small enough, there exists 𝑁 ≥ 0, 𝜂0 > 0 such
that for all 𝑖, 𝑗 , 𝑥 ∈ V𝑖 , 0 < 𝜂 < 𝜂0,

ℚ𝑁V (𝑥,V 𝑗 ) ≥ exp

(
−
𝐵𝑖, 𝑗

𝜂
− 𝜀
𝜂

)
.

Proof. For any 𝑖, 𝑗 , there exists 𝑁𝑖, 𝑗 ≥ 1, 𝜉𝑖, 𝑗 ∈ (ℝ𝑑)𝑁𝑖, 𝑗 such that 𝜉𝑖, 𝑗0 ∈ K𝑖 , 𝜉𝑖, 𝑗𝑁𝑖, 𝑗−1 ∈ K 𝑗 , 𝜉
𝑖, 𝑗
𝑛 ∉

⋃
𝑙≠𝑖, 𝑗 K𝑙 for

all 𝑛 = 1, . . . , 𝑁𝑖, 𝑗 − 2 and A𝑁𝑖, 𝑗 (𝜉𝑖, 𝑗 ) ≤ 𝐵𝑖, 𝑗 + 𝜀. Define 𝛿𝑖, 𝑗 := min
{
𝑑 (𝜉𝑖, 𝑗𝑛 ,

⋃
𝑙≠𝑖, 𝑗 K𝑙) : 𝑛 = 1, . . . , 𝑁𝑖, 𝑗 − 2

}
and

𝛿 := min𝑖, 𝑗∈𝐼 𝛿𝑖, 𝑗 . By construction, it holds that 𝛿 > 0.

Require that V𝑖 be contained in W𝑖 ∩ U𝛿/2 (K𝑖) for all 𝑖 = 1, . . . , 𝐾 . Now, given such V𝑖 neighborhoods of K𝑖 , 𝑖 = 1, . . . , 𝐾 ,
there exists 0 < 𝛿′ ≤ 𝛿/2 such that U𝛿′ (K𝑖) is contained in V𝑖 for all 𝑖 = 1, . . . , 𝐾 .

Apply Lemma D.9 to K𝑖 , 𝑖 = 1, . . . , 𝐾 with 𝜀 ← min(𝜀, 𝛿′/2) and denote by 𝑁𝑖 the bound on the length of paths obtained.
Define

𝑁 := max
𝑖∈𝐼

𝑁𝑖 + 1 .

Fix 𝑖, 𝑗 ∈ 𝐼 and 𝑥 ∈ V𝑖 . Since V𝑖 ⊂ W𝑖 , there exists 𝑧 ∈ K𝑖 such that 𝜌(𝑥, 𝑧) < 𝜀. Moreover, note that 𝜌(𝑧, 𝑧) = 0 since 𝑧 is
a critical point of 𝑓 .

By Lemma D.9, there exists 𝑛 ≤ 𝑁 , 𝜉 ∈ (ℝ𝑑)𝑛 such that 𝜉0 = 𝑧, 𝜉𝑁−1 = 𝜉
𝑖, 𝑗

0 , 𝜉𝑘 ∈ U𝛿′/2 (K𝑖) for all 𝑘 = 1, . . . , 𝑛 − 2 and
A𝑛 (𝜉) < 𝜀.

Considering the concatenation

𝜁 :=
©­­«𝑥, 𝑧, 𝑧, . . . , 𝑧︸     ︷︷     ︸

𝑁−𝑛 times

, 𝜉0, 𝜉1, . . . , 𝜉𝑛−2, 𝜉𝑛−1, 𝜉
𝑖, 𝑗

1 , . . . , 𝜉
𝑖, 𝑗

𝑁𝑖, 𝑗−1

ª®®¬
which is a path of length 𝑁 + 𝑁𝑖, 𝑗 made of 𝑥 ∈ V𝑖 , then exactly 𝑁 points in U𝛿′/2 (K𝑖) then 𝑁𝑖, 𝑗 − 2 in ℝ𝑑 \ U𝛿/2 (V) and
𝜉
𝑖, 𝑗

𝑁𝑖, 𝑗−1 ∈ K 𝑗 . Moreover, by construction, A𝑁+𝑁𝑖, 𝑗 (𝜁) ≤ 𝐵𝑖, 𝑗 + 3𝜀. Therefore, if

dist𝑁+𝑁𝑖, 𝑗
(
𝑥𝜂 , 𝜁

)
< 𝛿′/2 , (D.13)

with 𝑥𝜂0 = 𝑥, then 𝑥𝜂1 , . . . , 𝑥
𝜂

𝑁
are in U𝛿′ (K𝑖) ⊂ V𝑖 and, since 𝛿′ ≤ 𝛿/2, 𝑥𝜂

𝑁+1, . . . , 𝑥
𝜂

𝑁+𝑁𝑖, 𝑗−2 are not in U𝛿/4 (V), and

therefore not in V . Moreover, 𝑥𝜂
𝑁+𝑁𝑖, 𝑗−1 would be in U𝛿′/2 (K 𝑗 ) ⊂ V 𝑗 .
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Thus, all the paths 𝑥𝜂 satisfying (D.13) with 𝑥𝜂0 = 𝑥 are started at 𝑥 and their 𝑁-th point that fall into V belongs to V 𝑗 .

Therefore, using the definition of ℚ𝑁V , we have that

ℚ𝑁V (𝑥,V 𝑗 ) ≥ ℙ𝑥

(
dist𝑁+𝑁𝑖, 𝑗

(
𝑥𝜂 , 𝜁

)
< 𝛿′/2

)
≥ exp

(
−
𝐵𝑖, 𝑗 + 4𝜀

𝜂

)
,

by Corollary C.2. ■

Lemma D.24. For any 𝑖, 𝑗 ∈ 𝐼,

𝐵𝑖, 𝑗 = min

{
𝑛−2∑︁
𝑙=0

𝐵𝑖𝑙 ,𝑖𝑙+1 : 𝑖0 = 𝑖, 𝑖𝑛−1 = 𝑗 , 𝑖𝑙 ∈ 𝐼 for 𝑙 = 1, . . . , 𝑛 − 2 , 𝑛 ≥ 1

}
= min

{
𝐾−2∑︁
𝑙=0

𝐵𝑖𝑙 ,𝑖𝑙+1 : 𝑖0 = 𝑖, 𝑖𝐾−1 = 𝑗 , 𝑖𝑙 ∈ 𝐼 for 𝑙 = 1, . . . , 𝐾 − 2

}
.

Proof. It suffices to show that

𝐵𝑖, 𝑗 = min

{
𝑛−2∑︁
𝑙=0

𝐵𝑖𝑙 ,𝑖𝑙+1 : 𝑖0 = 𝑖, 𝑖𝑛−1 = 𝑗 , 𝑖𝑙 ∈ 𝐼 for 𝑙 = 1, . . . , 𝑛 − 2 , 𝑛 ≥ 1

}
.

The statement of the lemma then follows from the fact that 𝐵𝑙,𝑙 = 0 for all 𝑙 ∈ 𝐼 and that shortest paths on graphs can be
chosen not to visit the same node twice.

For the inequality (≥), notice that any path between K𝑖 and K 𝑗 can be decomposed into a concatenation of paths between K𝑖
and K𝑖1 , K𝑖1 and K𝑖2 , . . . , K𝑖𝑛−1 and K 𝑗 for some 𝑖1, . . . , 𝑖𝑛−1 ∈ 𝐼 that do not enter any other equivalence class in between.
Therefore, the inequality (≥) follows from the definition of 𝐵𝑖, 𝑗 and 𝐵𝑖𝑙 ,𝑖𝑙+1 .

We now focus on (≤).

Fix 𝜀. Take 𝑛 ≥ 1, 𝑖0 = 𝑖, 𝑖𝑛−1 = 𝑗 , 𝑖𝑙 ∈ 𝐼 for 𝑙 = 1, . . . , 𝑛 − 2. There are paths 𝜉0, . . . , 𝜉𝑛−2 of lengths 𝑁0, . . . , 𝑁𝑛−2 such
that 𝜉𝑙0 ∈ K𝑖𝑙 , 𝜉

𝑙
𝑁𝑙−1 ∈ K𝑖𝑙+1 , A𝑁𝑙 (𝜉𝑙) ≤ 𝐵𝑖𝑙 ,𝑖𝑙+1 + 𝜀/𝑛 for 𝑙 = 0, . . . , 𝑛 − 2.

By Lemma D.9, for all 𝑙 = 0, . . . , 𝑛−2, 𝜉𝑙
𝑁𝑙−1 and 𝜉𝑙+10 can be connected by path of cost at most 𝜀/𝑛. Therefore concatenating

all these paths yield 𝜁 of length 𝑁 with 𝜁0 ∈ K𝑖 , 𝜁𝑁−1 ∈ K 𝑗 and A𝑁 (𝜁) ≤
∑𝑛−2
𝑙=0 𝐵𝑖𝑙 ,𝑖𝑙+1 + 2𝜀. Since A𝑁 (𝜁) ≥ 𝐵𝑖, 𝑗 , we

obtain the desired result. ■

Notation 1. We will write, for non-decreasing 𝑓 : ℝ→ ℝ,

𝑎≍ 𝑓 (𝑏 ± 𝑐) ⇐⇒ 𝑓 (𝑏 − 𝑐) ≤ 𝑎 ≤ 𝑓 (𝑏 + 𝑐) .

Proposition D.2. For any 𝜀 > 0 and any small enough neighborhoods V𝑖 of K𝑖 , 𝑖 = 1, . . . , 𝐾, there exists 𝑁 ≥ 0, 𝜂0 > 0
such that for all 𝑖, 𝑗 , 𝑥 ∈ V𝑖 , 0 < 𝜂 < 𝜂0,

ℚ𝑁V (𝑥,V 𝑗 )≍ exp
(
−
𝐵𝑖, 𝑗

𝜂
± 𝜀
𝜂

)
.

Proof. Let us first start with (≥).

Let 𝑁 satisfy the conditions of Lemma D.23 and define 𝑁 ′ := (𝐾 − 1)𝑁 . For any 𝑖, 𝑗 ∈ 𝐼, by Lemma D.24, there exist 𝑖0 = 𝑖,
𝑖𝐾−1 = 𝑗 , 𝑖𝑙 ∈ 𝐼 for 𝑙 = 1, . . . , 𝐾 − 2 such that

𝐵𝑖, 𝑗 =
𝐾−2∑︁
𝑙=0

𝐵𝑖𝑙 ,𝑖𝑙+1 .
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Therefore, we have that the probability of reaching V 𝑗 from 𝑥 ∈ V𝑖 in 𝑁 ′ = (𝐾 − 1)𝑁 steps is greater than the probability of
reaching sequentially the V𝑖𝑙+1 from any point 𝑥 ∈ V𝑖𝑙 , i.e.,

inf
𝑥∈V𝑖

ℚ𝑁
′

V (𝑥,V 𝑗 ) ≥
𝐾−2∏
𝑙=0

inf
𝑥∈V𝑖𝑙

ℚ𝑁V (𝑥,V𝑖𝑙+1 )

≥
𝐾−2∏
𝑙=0

exp

(
−
𝐵𝑖𝑙 ,𝑖𝑙+1

𝜂
− 𝜀
𝜂

)
= exp

(
−
𝐵𝑖, 𝑗

𝜂
− (𝐾 − 1)𝜀

𝜂

)
where we used Lemma D.23 to get the second inequality.

Now for the reverse inequality (≤). Take 𝑖, 𝑗 ∈ 𝐼 and denote 𝑖0 = 𝑖, 𝑖𝑁 ′−1 = 𝑗 . By Lemma D.22, we have that

sup
𝑥∈V𝑖

ℚ𝑁
′

V (𝑥,V 𝑗 ) ≤
∑︁

𝑖1 ,...,𝑖𝐾−2∈𝐼

𝐾−2∏
𝑙=0

sup
𝑥∈V𝑖𝑙

ℚ𝑁V (𝑥,V𝑖𝑙+1 )

≤
∑︁

𝑖1 ,...,𝑖𝐾−2∈𝐼

𝐾−2∏
𝑙=0

exp

(
−
𝐵𝑖𝑙 ,𝑖𝑙+1

𝜂
+ 𝜀
𝜂

)
≤

∑︁
𝑖1 ,...,𝑖𝐾−2∈𝐼

exp

(
−
∑𝑁 ′

𝑙=0 𝐵𝑖𝑙 ,𝑖𝑙+1

𝜂
+ (𝐾 − 1)𝜀

𝜂

)
.

Using Lemma D.24, we obtain that

sup
𝑥∈V𝑖

ℚ𝑁
′

V (𝑥,V 𝑗 ) ≤
∑︁

𝑖1 ,...,𝑖𝐾−2∈𝐼
exp

(
−
𝐵𝑖, 𝑗

𝜂
+ (𝐾 − 1)𝜀

𝜂

)
= 𝐾𝐾−2 exp

(
−
𝐵𝑖, 𝑗

𝜂
+ (𝐾 − 1)𝜀

𝜂

)
,

which concludes the proof. ■

Let us now give our first estimates on the invariant measure.

Definition 8 ([18, Chap. 6,§4]). Define, for every 𝑖 ∈ 𝐼,

𝐸𝑖 = 𝐸 (K𝑖) := min
𝑇∈T𝑖

∑︁
( 𝑗→𝑙) ∈𝑇

𝐵 𝑗 ,𝑙 ,

where T𝑖 denotes the set of trees rooted at 𝑖 in the complete graph on 𝐼.

Proposition D.3. For any 𝜇𝜂V invariant probability measure for ℚV , the induced chain on V , in the setting of Proposition D.2,
for any 𝑖 ∈ 𝐼,

𝜇
𝜂

V (V𝑖)≍ exp
(
−
𝐸 (K𝑖) −min 𝑗∈𝐼 𝐸 (K 𝑗 )

𝜂
± 𝜀
𝜂

)
.

Proof. If 𝜇𝜂V is an invariant measure of ℚV , then it is an invariant measure of ℚ𝑁V for any 𝑁 given by Proposition D.2.

Freidlin & Wentzell [18, Chap .6, Lem. 3.1-3.2] combined with Proposition D.2 then give

exp(−(2 card 𝐼 + 2)𝜀/𝜂) exp(−𝐸 (K𝑖)/𝜂)∑
𝑗∈𝐼 exp(−𝐸 (K 𝑗 )/𝜂)

≤ 𝜇𝜂V (V𝑖) ≤ exp((2 card 𝐼 + 2)𝜀/𝜂) exp(−𝐸 (K𝑖)/𝜂)∑
𝑗∈𝐼 exp(−𝐸 (K 𝑗 )/𝜂)

.

For 𝜂 small enough, it holds that ∑︁
𝑗∈𝐼

exp(−𝐸 (K 𝑗 )/𝜂)≍ exp
(
−min
𝑗∈𝐼

𝐸 (K 𝑗 )/𝜂 ± 𝜀/𝜂
)
,

which concludes the proof. ■
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We now state a result that links invariant measures of (𝑥𝜂𝑛 )𝑛 and ℚV . It is a consequence of Douc et al. [12, Thm. 3.6.5].

Lemma D.25. There is 𝜂0 > 0 such that, for 0 < 𝜂 ≤ 𝜂0, if (𝑥𝜂𝑛 )𝑛 has an invariant probability measure 𝜇𝜂∞, then, for any V
measurable neighborhood of crit( 𝑓 ), we have that 𝜇𝜂∞ (V) > 0 and 𝜇𝜂V , the restriction of 𝜇𝜂∞/𝜇

𝜂
∞ (V) to V is an invariant

measure for the induced chain on V and, for any measurable set 𝐸 ⊂ X ,

𝜇
𝜂
∞ (𝐸)
𝜇
𝜂
∞ (V)

=

∫
V
𝑑𝜇

𝜂

V (𝑥) 𝔼𝑥

[
𝜎V−1∑︁
𝑛=0

1{𝑥𝜂𝑛 ∈ 𝐸}
]
.

Proof. We invoke the first item of Lemma D.19: there exists X ⊂ ℝ𝑑 a compact set, 𝜂0 > 0, such that for any X ′ ⊂ ℝ𝑑

compact set such that X ⊂ X ′, there exists 𝛼0 > 0 such that,

∀𝜂 ≤ 𝜂0, 𝑥 ∈ X ′ , 𝔼𝑥

[
𝑒
𝛼0𝜎X
𝜂

]
< +∞ . (D.14)

Without loss of generality, at the potential expense of expanding X , assume that V ⊂ X .

By applying Lemma D.21 to U ← V and X ← X , we get that there is some 𝜂0, 𝛼0, > 0 such that, for any 𝜂 ≤ 𝜂0, 𝑥 ∈ X ,

𝔼𝑥

[
𝑒
𝛼𝜎V
𝜂

]
< +∞ .

In particular, we have that ℙ𝑥 (𝜎V < ∞) = 1 for any 𝑥 ∈ X , and a fortiori for any 𝑥 ∈ V .

Let us now show that, for any 𝑥 ∈ ℝ𝑑 , ℙ𝑥 (𝜎V < ∞) = 1. Fix 𝑥 ∈ ℝ𝑑 . By choosing X ′ large enough to contain both X and
𝑥, Eq. (D.14) implies that, with 𝑥0 = 𝑥, 𝜎X < ∞ almost surely. Therefore, by the strong Markov property, it holds that,

ℙ𝑥 (𝜎V < ∞) ≥ inf
𝑧∈X

ℙ𝑧 (𝜎V < ∞) = 1 .

Therefore the assumptions of Douc et al. [12, Thm. 3.6.5] are satisfied as well as its first item which yields the result. ■

We reach the next proposition, which is the first part of our main result. It is an adaptation of Freidlin & Wentzell [18,
Thm. 4.1] to the discrete time setting.

Proposition D.4. For any 𝜀 > 0, for any V1, . . . ,V𝐾 measurable neighborhoods of K1, . . . ,K𝐾 small enough, there exists
𝜂0 > 0 such that for any 0 < 𝜂 < 𝜂0, 𝜇𝜂∞ invariant probability measure for (𝑥𝜂𝑛 )𝑛, for any 𝑖 ∈ 𝐼,

𝜇
𝜂
∞ (V𝑖)≍ exp

(
−
𝐸 (K𝑖) −min 𝑗∈𝐼 𝐸 (K 𝑗 )

𝜂
± 𝜀
𝜂

)
.

Proof. Let us first provide estimates for the unnormalized measure defined by, for any measurable set 𝐸 ,

𝜇(𝐸) :=
∫
𝐸

𝑑𝜇
𝜂

V (𝑥) 𝔼𝑥

[
𝜎V−1∑︁
𝑛=0

1{𝑥𝜂𝑛 ∈ 𝐸}
]
.

By definition of 𝜎V , in the sequence of points 𝑥𝜂0 , . . . , 𝑥
𝜂

𝜎V−1, only 𝑥𝜂0 can be in V . Therefore, for any 𝑖, 𝑗 ∈ 𝐼, 𝑥 ∈ V 𝑗 ,

𝔼𝑥

[
𝜎V−1∑︁
𝑛=0

1{𝑥𝜂𝑛 ∈ V𝑖}
]
=

{
1 if 𝑖 = 𝑗 ,

0 otherwise .

Thus, we have that,

𝜇(V𝑖) = 𝜇𝜂V (V𝑖)

≍ exp
(
−
𝐸 (K𝑖) −min 𝑗∈𝐼 𝐸 (K 𝑗 )

𝜂
± 𝜀
𝜂

)
,
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by Proposition D.3. It now remains to estimate the normalization constant 𝜇(ℝ𝑑). On the one hand, we have that

𝜇(ℝ𝑑) ≥ max
𝑖∈𝐼

𝜇(V𝑖)

≥ max
𝑖∈𝐼

exp
(
−
𝐸 (K𝑖) −min 𝑗∈𝐼 𝐸 (K 𝑗 )

𝜂
− 𝜀
𝜂

)
= exp

(
−𝜀
𝜂

)
.

On the other hand, by Lemma D.21 applied with U ← V and X ← clV (choosing V small enough so that is bounded), the
quantity

𝑐 := sup{𝔼𝑥 [𝜎V ] : 𝑥 ∈ V , 0 < 𝜂 ≤ 𝜂0}
is finite. Therefore, we have that

𝜇(ℝ𝑑) =
∫
ℝ𝑑

𝑑𝜇
𝜂

V (𝑥) 𝔼𝑥 [𝜎V ]

≤ 𝑐
∫
ℝ𝑑

𝑑𝜇
𝜂

V (𝑥) = 𝑐 ,

which, along with choosing 𝜂0 small enough so that 𝑐 ≤ exp(𝜀/𝜂), concludes the proof. ■

We will need the following lemma to prove the second part of our main result.
Lemma D.26. For any 𝜀 > 0, for any V1, . . . ,V𝐾 measurable neighborhoods of K1, . . . ,K𝐾 small enough, 𝐷 measurable
set, 𝛿𝐷 > 0, there exists 𝜂0 > 0 such that, for any 0 < 𝜂 < 𝜂0, for any 𝑖 ∈ 𝐼, 𝑥 ∈ V𝑖 ,

ℙ𝑥

(
𝜎𝐷−𝛿𝐷 < 𝜎V

)
≤ exp

(
−𝐵(K𝑖 , 𝐷) − 𝜀

𝜂

)
,

where
𝐷−𝛿𝐷 :=

{
𝑧 ∈ 𝐷 : 𝑑 (𝑧,ℝ𝑑 \ 𝐷) ≥ 𝛿𝐷

}
.

Proof. The requirement on the V𝑖 are the same in the proof of Lemma D.22 but we restate them here for completeness.

Assume that, without loss of generality, 𝜀 is small enough so that Lemma D.8 with 𝑟 ← 𝜀 can be applied to every K𝑖 ,
𝑖 = 1, . . . , 𝐾. Denote by W𝑖 , 𝑖 = 1, . . . , 𝐾 the corresponding neighborhoods of K𝑖 . Since these W𝑖’s are neighborhoods
of the K𝑖’s, there exists 𝛿 > 0 such that U2𝛿 (K𝑖) ⊂ W𝑖 for all 𝑖 = 1, . . . , 𝐾. Require then that V𝑖 be contained in U𝛿 (K𝑖)
so that U𝛿 (clV𝑖) ⊂ W𝑖 for all 𝑖 = 1, . . . , 𝐾. Moreover, assume that 𝛿 > 0 is small enough so that the neighborhoods
U𝛿 (K𝑖), 𝑖 = 1, . . . , 𝐾 are pairwise disjoint and that 𝛿 ≤ 𝛿𝐷 . Define 0 < 𝛿′ ≤ 𝛿 such that U𝛿′ (K𝑖) is contained in V𝑖 for all
𝑖 = 1, . . . , 𝐾 .

Fix 𝑖 ∈ 𝐼 and consider 𝜉 ∈ (ℝ𝑑)𝑁 such that 𝜉0 ∈ U𝛿′ (clV𝑖), 𝜉𝑁−1 ∈ U𝛿′ (𝐷−𝛿𝐷 ). By construction, 𝜉0 ∈ U𝛿 (V𝑖) ⊂ W𝑖 .
Therefore, there exists 𝑥 ∈ K𝑖 such that 𝜌(𝑥, 𝜉0) < 𝜀. Moreover, since 𝛿′ ≤ 𝛿 ≤ 𝛿𝐷 , U𝛿′ (𝐷−𝛿𝐷 ) ⊂ 𝐷 so that 𝜉𝑁−1 ∈ 𝐷.

Define 𝜁 := (𝑥, 𝜉0, . . . , 𝜉𝑁−1) which is a path from K𝑖 to 𝐷 so that

A𝑁 (𝜉) ≥ A𝑁+1 (𝜁) − 𝜀 ≥ 𝐵(K𝑖 , 𝐷) − 𝜀 .

We now follow the same outline as for the proof of Lemma D.22. Fix 𝑥 ∈ V𝑖 . For any 𝑁 ≥ 0, we have that

ℙ𝑥

(
𝜎𝐷−𝛿𝐷 < 𝜎V

)
≤ ℙ𝑥

(
𝜎𝐷−𝛿𝐷 < 𝜎V , 𝜎V < 𝑁

)
+ ℙ𝑥 (𝜎V ≥ 𝑁) .

For some 𝑁 large enough, Lemma D.21 yields

ℙ𝑥 (𝜎V ≥ 𝑁) ≤ exp
(
−𝐵(K𝑖 , 𝐷) − 𝜀

𝜂

)
.

We now bound ℙ𝑥

(
𝜎𝐷−𝛿𝐷 < 𝜎V , 𝜎V < 𝑁

)
for this choice of 𝑁 . For this, it suffices to note that 𝜎𝐷−𝛿𝐷 < 𝜎V , 𝜎V < 𝑁

implies that dist𝑁
(
𝑥𝜂 , Γ

{𝑥}
𝑁
(𝜉 − 2𝜀)

)
> 𝛿′

2 . Then, applying Corollary C.2 yields

ℙ𝑥

(
𝜎𝐷−𝛿𝐷 < 𝜎V , 𝜎V < 𝑁

)
≤ exp

(
−𝐵(K𝑖 , 𝐷) − 3𝜀

𝜂

)
,

which concludes the proof. ■
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We can use this lemma to upper-bound the 𝜇𝜂∞ (𝐷).
Lemma D.27. For any 𝜀 > 0, any bounded measurable set 𝐷, there exists 𝜂0 > 0 such that for any 0 < 𝜂 < 𝜂0, 𝜇𝜂∞
invariant probability measure for (𝑥𝜂𝑛 )𝑛, for any 𝑖 ∈ 𝐼,

𝜇
𝜂
∞ (𝐷−𝛿𝐷 ) ≤ exp

(
−min𝑖∈𝐼 {𝐸 (K𝑖) + 𝐵(K𝑖 , 𝐷)} −min𝑖∈𝐼 𝐸 (K𝑖)

𝜂
+ 𝜀
𝜂

)
,

where

𝐷−𝛿𝐷 :=
{
𝑧 ∈ ℝ𝑑 : 𝑑 (𝑧,ℝ𝑑 \ 𝐷) ≥ 𝛿𝐷

}
.

Proof. Using V1, . . . ,V𝐾 measurable neighborhoods of K1, . . . ,K𝐾 small enough given by Lemma D.26, we provide an
estimate for the weight of 𝐷 for the unnormalized measure 𝜇 defined in the proof of Proposition D.4, i.e., for

𝜇(𝐷−𝛿𝐷 ) :=
∫
V
𝑑𝜇

𝜂

V (𝑥) 𝔼𝑥

[
𝜎V−1∑︁
𝑛=0

1{𝑥𝜂𝑛 ∈ 𝐷−𝛿𝐷 }
]
,

and the result will follow from the estimate on the normalization constant 𝜇(ℝ𝑑) obtained in the proof of Proposition D.4.

By Lemma D.21 applied with U ← V and X ← clV ∪ 𝐷 (choosing V small enough so that is bounded), the quantity

𝑐 := sup{𝔼𝑥 [𝜎V ] : 𝑥 ∈ V ∪ 𝐷, 0 < 𝜂 ≤ 𝜂0}

is finite.

Fix 𝑖 ∈ 𝐼 and 𝑥 ∈ V𝑖 . If 𝜎𝐷−𝛿𝐷 ≥ 𝜎V , then
∑𝜎V−1
𝑛=0 1{𝑥𝜂𝑛 ∈ 𝐷−𝛿𝐷 } would be 0 so, we have that

𝔼𝑥

[
𝜎V−1∑︁
𝑛=0

1{𝑥𝜂𝑛 ∈ 𝐷−𝛿𝐷 }
]
= 𝔼𝑥

[
1{𝜎𝐷−𝛿𝐷 < 𝜎V }

𝜎V−1∑︁
𝑛=0

1{𝑥𝜂𝑛 ∈ 𝐷−𝛿𝐷 }
]

≤ 𝔼𝑥

[
1{𝜎𝐷−𝛿𝐷 < 𝜎V }𝜎V

]
= 𝔼𝑥

[
1{𝜎𝐷−𝛿𝐷 < 𝜎V }

(
𝜎𝐷−𝛿𝐷 + 𝔼𝑥𝜂𝜎𝐷−𝛿𝐷

[𝜎V ]
)]
,

where we used the strong Markov property. Bounding 𝜎𝐷−𝛿𝐷 by 𝜎V on the event {𝜎𝐷−𝛿𝐷 < 𝜎V }, we obtain that

𝔼𝑥

[
𝜎V−1∑︁
𝑛=0

1{𝑥𝜂𝑛 ∈ 𝐷−𝛿𝐷 }
]
≤ 𝔼𝑥

[
1{𝜎𝐷−𝛿𝐷 < 𝜎V }

(
𝜎V + 𝔼𝑥𝜂𝜎V [𝜎V ]

)]
≤ 2𝑐ℙ𝑥

(
𝜎𝐷−𝛿𝐷 < 𝜎V

)
≤ 2𝑐 exp

(
−𝐵(K𝑖 , 𝐷) − 𝜀

𝜂

)
,

where we invoked Lemma D.26 for the last inequality.

Combining this bound and Proposition D.3, we obtain that

𝜇(𝐷−𝛿𝐷 ) ≤ 2𝑐
∑︁
𝑖∈𝐼

𝜇
𝜂

V (V𝑖) exp
(
−𝐵(K𝑖 , 𝐷) − 𝜀

𝜂

)
≤ 2𝑐 card 𝐼 exp

(
−min𝑖∈𝐼 {𝐸 (K𝑖) + 𝐵(K𝑖 , 𝐷)} −min𝑖∈𝐼 𝐸 (K𝑖)

𝜂
+ 2𝜀
𝜂

)
,

which concludes the proof. ■
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D.6 Convergence and stability

Let us first begin by showing that, for every initial point, the flow of 𝑓 converges to one of the K𝑖 .
Lemma D.28. For any 𝑥 ∈ ℝ𝑑 , there is 𝑖 ∈ 𝐼 such that

lim
𝑡→+∞

𝑑 (Θ𝑡 (𝑥),K𝑖) = 0.

Proof. Fix 𝑥 ∈ ℝ𝑑 . For any 𝑡 ≥ 0, Θ𝑡 (𝑥) belongs to {𝑧 ∈ ℝ𝑑 : 𝑓 (𝑧) ≤ 𝑓 (𝑥)}, which is compact by coercivity of 𝑓 .
Therefore, the set of accumulation points of (Θ𝑡 (𝑥))𝑡≥0 is non-empty, connected and included in crit( 𝑓 ). Therefore, since
the K𝑖 , for 𝑖 ∈ 𝐼, are the connected components of crit( 𝑓 ), there is 𝑖 ∈ 𝐼 such that the accumulation points of (Θ𝑡 (𝑥))𝑡≥0 all
belong to K𝑖 .

If 𝑑 (Θ𝑡 (𝑥),K𝑖) did not converge to 0, there would be a subsequence that would converge to some point out of any K𝑖 , which
would be a contradiction. Therefore, 𝑑 (Θ𝑡 (𝑥),K𝑖) must converge to 0. ■

Let us restate the definition of minimizing component that we introduced in the main text.

Definition 9. For any 𝑖 ∈ 𝐼, we say that K𝑖 is a minimizing component if there exists U a neighborhood of K𝑖 such that,

arg min
𝑥∈U

𝑓 (𝑥) = K𝑖 .

K𝑖 is called minimizing otherwise.

We now state a standard definition for asymptotic stability.

Definition 10. A connected component of the critical points K𝑖 , for some 𝑖 ∈ 𝐼, is said to be asymptotically stable if there
exists U a neighborhood of K𝑖 such that, for any 𝑥 ∈ U , Θ𝑡 (𝑥) converges to K𝑖 .

The notions of minimizing component and asymptotic stability are equivalent in our context.

Lemma D.29. For any 𝑖 ∈ 𝐼, K𝑖 is a minimizing component if and only if it is asymptotically stable.

Proof. We start with the direct implication. Assume that K𝑖 is a minimizing component. Therefore, there exists 𝛿 > 0 such
that

arg min
𝑥∈clU𝛿 (K𝑖 )

𝑓 (𝑥) = K𝑖 .

Moreover, assume that 𝛿 is small enough so that, clU𝛿 (K𝑖) ∩ crit( 𝑓 ) = K𝑖 .

Then, for any 𝑥 ∈ U𝛿 (K𝑖), 𝑓 (𝑥) < 𝑓 (K𝑖) and, for any 𝑥 ∈ ℝ𝑑 \ clU𝛿 (K𝑖), 𝑓 (𝑥) > 𝑓 (K𝑖). By continuity of 𝑓 , compactness
of clU𝛿 (K𝑖) \ U𝛿/2 (K𝑖) and definition of minimizing component, we have that

min
𝑥∈clU𝛿 (K𝑖 )\U𝛿/2 (K𝑖 )

𝑓 (𝑥) > 𝑓 (K𝑖) .

Define 𝛿′ := 1
2 min𝑥∈clU𝛿 (K𝑖 )\U𝛿/2 (K𝑖 ) { 𝑓 (𝑥) − 𝑓 (K𝑖)} and

V :=
{
𝑥 ∈ U𝛿/2 (K𝑖) : 𝑓 (𝑥) < 𝑓 (K𝑖) + 𝛿′

}
,

which is a neighborhood of K𝑖 by continuity of 𝑓 .

We now show that trajectories of the flow starting in V converge to K𝑖 . Take 𝑥 ∈ V . Since 𝑓 (Θ𝑡 (𝑥)) is non-increasing, then
(Θ𝑡 (𝑥))𝑡 remains in V by construction. By Lemma D.28, (Θ𝑡 (𝑥))𝑡 converges to some component of the critical points,
which must be K𝑖 since V is disjoint from the other components.

We now show the converse implication. Since K𝑖 is a connected component of crit( 𝑓 ), 𝑓 is constant on K𝑖 . Denote by 𝑓 ∗
𝑖

this value. Take 𝛿 > 0 small enough such that U𝛿 (K𝑖) ∩ crit( 𝑓 ) = K𝑖 and such that, for any 𝑥 ∈ U𝛿 (K𝑖), (Θ𝑡 (𝑥))𝑡 converges
to K𝑖 . Take 𝑥 ∈ U𝛿 (K𝑖) \K𝑖 . We show that 𝑓 (𝑥) > 𝑓 ∗

𝑖
. For any 𝑡 > 0,

𝑓 (Θ𝑡 (𝑥)) − 𝑓 (K𝑖) = −
∫ 𝑡

0
∥∇ 𝑓 (Θ𝑠 (𝑥))∥2 𝑑𝑠 ,
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which must (strictly) negative since 𝑥 is not a critical point of 𝑓 . Since 𝑓 (Θ𝑡 (𝑥)) is non-increasing in 𝑡 and lower-bounded —
because infℝ𝑑 𝑓 > −∞ by coercivity of 𝑓 —, it must converge as 𝑡 → +∞ and its limit satisfies lim𝑡→+∞ 𝑓 (Θ𝑡 (𝑥)) < 𝑓 (𝑥).
Moreover, (Θ𝑡 (𝑥))𝑡 converges to K𝑖 so that all its accumulation points belong to K𝑖 and have the same objective value 𝑓 ∗

𝑖
.

Hence, we have that lim𝑡→+∞ 𝑓 (Θ𝑡 (𝑥)) = 𝑓 ∗
𝑖

and 𝑓 ∗
𝑖
< 𝑓 (𝑥). ■

In the following, we will thus use the terms minimizing component and asymptotically stable interchangeably.

The next lemma shows that if K𝑖 is not asymptotically stable, then it is unstable in the sense of Freidlin & Wentzell [18,
Chap. 6,§4].

Lemma D.30. If K𝑖 is not asymptotically stable, then there exists 𝑗 ∈ 𝐼 such that 𝐵𝑖, 𝑗 = 0.

Proof. If K𝑖 is not asymptotically stable, then, for every 𝑛 ≥ 1, there exists 𝑥𝑛 ∈ U1/𝑛 (K𝑖) such that Θ𝑡 (𝑥𝑛) does not
converge to K𝑖 . By Lemma D.28, there exists 𝑗𝑛 ∈ 𝐼 such that (Θ𝑡 (𝑥𝑛))𝑡 converges to K 𝑗𝑛 . Since 𝐼 is finite, there exists
𝑗 ∈ 𝐼 such that 𝑗𝑛 = 𝑗 for infinitely many 𝑛. Replacing (𝑥𝑛)𝑛≥1 by a subsequence, we can assume that (Θ𝑡 (𝑥𝑛))𝑡 converges
to K 𝑗 for all 𝑛 ≥ 1.

We now show that 𝐵𝑖, 𝑗 = 0.

Fix 𝜀 > 0 and consider W𝜀 (K𝑖),W𝜀 (K 𝑗 ) which are neighborhoods of K𝑖 ,K 𝑗 by Lemma D.8. Since (𝑥𝑛)𝑛≥1 converges
to K𝑖 , there exists 𝑛 such that 𝑥𝑛 ∈ W𝜀 (K𝑖). In turn, since Θ𝑡 (𝑥𝑛) converges to K 𝑗 , there exists 𝑇 > 0, which we can
choose integer, such that, Θ𝑇 (𝑥𝑛) ∈ W𝜀 (K 𝑗 ). Therefore, there exists 𝑥 ∈ K𝑖 and 𝑧 ∈ K 𝑗 such that 𝜌(𝑥, 𝑥𝑛) < 𝜀 and
𝜌(Θ𝑇 (𝑥𝑛), 𝑧) < 𝜀. Consider the discrete path 𝜉 ∈ (ℝ𝑑)𝑇+3 defined by 𝜉0 = 𝑥, 𝜉𝑛 = Θ𝑛−1 (𝑥) for all 1 ≤ 𝑛 ≤ 𝑇 + 1 and
𝜉𝑇+2 = 𝑧. By Lemma D.2, we have that

A𝑇+3 (𝜉) = 𝜌(𝑥, 𝑥𝑛) + 𝜌(Θ𝑇 (𝑥), 𝑧) < 2𝜀 ,

and therefore, since 𝜉0 ∈ K𝑖 and 𝜉𝑇+2 ∈ K 𝑗 , 𝐵𝑖, 𝑗 < 2𝜀. ■

The following lemma is now a straightforward adaptation of Freidlin & Wentzell [18, Chap. 6, Lemma 4.2].

Lemma D.31. If K𝑖 is not asymptotically stable, then there exists 𝑗 ∈ 𝐼 such that 𝐵𝑖, 𝑗 = 0 and such that, for any 𝑙 ∈ 𝐼,
𝐵 𝑗 ,𝑙 > 0.

Proof. For the sake of contradiction, assume that such a 𝑗 does not exist. Then we build an infinite sequence 𝑗0 = 𝑖, 𝑗1, . . .
such that 𝐵 𝑗𝑛 , 𝑗𝑛+1 = 0 for all 𝑛 ≥ 0. By definition of equivalence classes, any 𝑗 cannot appear twice in this sequence. But
since 𝐼 is finite, this is a contradiction. ■

We now reach our final result on unstable equivalence classes: they have negligible weight in the invariant measure.

Lemma D.32. If K𝑖 is not asymptotically stable, or, equivalently, non-minimizing, then there exists 𝑗 ∈ 𝐼 such that K 𝑗 is
asymptotically stable, 𝐵𝑖, 𝑗 = 0 and,

𝐸 𝑗 < 𝐸𝑖

Proof. By Lemma D.31, there exists 𝑗 ∈ 𝐼 such that 𝐵𝑖, 𝑗 = 0 and such that, for any 𝑙 ∈ 𝐼, 𝐵 𝑗 ,𝑙 > 0. Lemma D.30 implies in
particular that K 𝑗 must be asymptotically stable

It remains to show that 𝐸 𝑗 < 𝐸𝑖 . Take 𝑇 ∈ T𝑖 such that

𝐸𝑖 =
∑︁

(𝑙→𝑘 ) ∈𝑇
𝐵𝑙,𝑘 .

𝑗 has an outgoing edge in 𝑇 and denote by 𝑗 ′ the other end of that edge. Now, consider the tree 𝑇 ′ ∈ T 𝑗 obtained from 𝑇 by
removing the outgoing edge from 𝑗 to 𝑖′ and adding an edge from 𝑖 to 𝑗 . Then, by definition of 𝐸 𝑗 ,

𝐸 𝑗 ≤
∑︁

(𝑙→𝑘 ) ∈𝑇 ′
𝐵𝑙,𝑘 =

∑︁
(𝑙→𝑘 ) ∈𝑇

𝐵𝑙,𝑘 − 𝐵 𝑗 , 𝑗′ + 𝐵𝑖, 𝑗 .

But, by definition of 𝑗 , 𝐵𝑖, 𝑗 = 0 and 𝐵 𝑗 , 𝑗′ > 0. Therefore, 𝐸 𝑗 < 𝐸𝑖 . ■
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We now show the second part of our main result: the invariant measure concentrates on the ground states, which are
asymptotically stable by Lemma D.32.

For this, we need the following lemma.

Lemma D.33. For any 𝑖 ∈ 𝐼 such that K𝑖 is minimizing, there exists 𝛿 > 0 such that, for any 0 < 𝛿′ ≤ 𝛿,

𝐵(K𝑖 ,ℝ𝑑 \ U𝛿′ (K𝑖)) > 0 .

Proof. Since K𝑖 is minimizing, there exists 𝛿 > 0 such that, for any 𝑥 ∈ U𝛿 (K𝑖), 𝑓 (𝑥) > 𝑓𝑖 where 𝑓𝑖 is the value of 𝑓
on K𝑖 . Take 𝛿′ ≤ 𝛿, U := U𝛿′ (K𝑖) and Δ := min

{
𝑈∞ (𝑥) − 𝛼∞ ( 𝑓𝑖) : 𝑥 ∈ ℝ𝑑 , 𝑑 (𝑥,K𝑖) = 𝛿′/2

}
. By the continuity of 𝑈∞

and the fact that 𝛼∞ is (strictly) increasing, we have that Δ > 0. To conclude the proof of this lemma, we now show that
𝐵(K𝑖 ,ℝ𝑑 \ U) ≥ Δ

2 . Consider some 𝑇 > 0 and 𝛾 ∈ C ( [0, 𝑇],ℝ𝑑) such that 𝛾0 ∈ K𝑖 and 𝛾𝑇 ∈ ℝ𝑑 \W . By continuity of 𝛾
and 𝑑 (·,K𝑖), there exists 𝑡 ∈ [0, 𝑇] such that 𝑑 (𝛾𝑡 ,K𝑖) = 𝛿′/2. By the same computation as in Lemma D.6, we have that

Δ ≤ 𝑈∞ (𝛾𝑡 ) −𝑈∞ (𝛾0)

= 2
∫ 𝑡

0

⟨ ¤𝛾𝑠 ,∇ 𝑓 (𝛾𝑠)⟩
𝜎2
∞ ◦ 𝑓 (𝛾𝑠)

≤ 2S0,𝑡 (𝛾)
≤ 2S0,𝑇 (𝛾) .

Since this is valid for any 𝛾, we obtain that 𝐵(K𝑖 ,ℝ𝑑 \ U) ≥ Δ
2 . ■

The next proposition shows that the invariant measure concentrates exponentially on states that are asymptotically stable
(and contain the ground states).

Proposition D.5. Consider 𝐽 ⊂ 𝐼 such that, forall any 𝑖 ∈ 𝐽, K𝑖 is minimizing and, such that, 𝐽 contains arg min𝑖∈𝐼 𝐸𝑖 .
Consider V𝑖 small enough neighborhoods of K𝑖 for 𝑖 ∈ 𝐽. Then, there exists 𝑐 > 0, 𝜂0 > 0 such that, for any 𝜂 ≤ 𝜂0, for any
𝜇
𝜂
∞ invariant measure of (𝑥𝜂𝑛 )𝑛≥0,

𝜇
𝜂
∞

(
ℝ𝑑 \

⋃
𝑖∈𝐽

V𝑖

)
≤ 𝑒−

𝑐
𝜂 .

Proof. Take 𝛿 > 0 small enough so that, for any 𝑖 ∈ 𝐽, U𝛿 (K𝑖) ⊂ V𝑖 and

𝑑 (K𝑖 ,ℝ𝑑 \ U𝛿 (K𝑖)) > 0 .

This is possible by Lemma D.33.

Define
𝐷 := ℝ𝑑 \

⋃
𝑖∈𝐽

U𝛿/2 (K𝑖) .

With the notations of Lemma D.27, we show that

ℝ𝑑 \
⋃
𝑖∈𝐽

V𝑖 ⊂ 𝐷−𝛿/2 .

Indeed, take 𝑥 ∈ ℝ𝑑 \⋃𝑖∈𝐽 V𝑖 . Then, for any 𝑖 ∈ 𝐽, it holds that 𝑑 (𝑥,K𝑖) ≥ 𝛿 and so, we have

𝑑 (𝑥,ℝ𝑑 \ 𝐷) = 𝑑
(
𝑥,ℝ𝑑 \

⋃
𝑖∈𝐽

U𝛿/2 (K𝑖)
)
≥ 𝛿

2
.

Hence 𝑥 ∈ 𝐷−𝛿/2 and it suffices to bound 𝜇𝜂∞ (𝐷−𝛿/2) to show the result.

Moreover, for any 𝑖 ∈ 𝐽,
𝐵(K𝑖 , 𝐷) ≥ 𝐵(K𝑖 ,ℝ𝑑 \ U𝛿/2 (K𝑖)) > 0 ,
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so that the quantity

𝑐 := min
(
min
𝑖∉𝐽

𝐸𝑖 −min
𝑖∈𝐼

𝐸𝑖 ,min
𝑖∈𝐽

𝐵(K𝑖 , 𝐷)
)

is positive.

Apply Lemma D.27 with 𝛿𝐷 ← 𝛿/2, 𝜀 ← 𝑐/2 to get that, for any 𝜂 ≤ 𝜂0,

𝜇
𝜂
∞ (𝐷−𝛿/2) ≤ exp

(
−

min𝑖∈𝐼 {𝐸 (K𝑖) + 𝐵(K𝑖 , 𝐷)} −min 𝑗∈𝐼 𝐸 (K 𝑗 )
𝜂

+ 𝑐

2𝜂

)
.

But, for any 𝑖 ∈ 𝐼, the exponent can be estimated as

{𝐸 (K𝑖) + 𝐵(K𝑖 , 𝐷)} −min
𝑗∈𝐼

𝐸 (K𝑖) ≥
{
𝐸 (K𝑖) −min 𝑗∈𝐼 𝐸 (K 𝑗 ) if 𝑖 ∉ 𝐽
𝐵(K𝑖 , 𝐷) if 𝑖 ∈ 𝐽 ,

which is always positive, even in the first case, since arg min 𝑗∈𝐼 𝐸 (K 𝑗 ) ⊂ 𝐽. Therefore, it holds that

min
𝑖∈𝐼
{𝐸 (K𝑖) + 𝐵(K𝑖 , 𝐷)} −min

𝑗∈𝐼
𝐸 (K 𝑗 ) − 𝜀 ≥ 𝑐 − 𝜀 =

𝑐

2
,

which concludes the proof. ■

D.7 Main results

In this section, we restate the main results Theorems 1–4 and provide their proofs. They are now mostly corollaries of the
results of Appendices D.5 and D.6.

Theorem 5. Suppose that 𝜇𝜂∞ is invariant under (SGD), fix a tolerance level 𝜀 > 0, and let U𝑖 ≡ U𝑖 (𝛿), 𝑖 = 1, . . . , 𝐾, be
𝛿-neighborhoods of the components of crit( 𝑓 ). Then, for all sufficiently small 𝛿, 𝜂 > 0, we have��𝜂 log 𝜇𝜂∞ (U𝑖) + 𝐸𝑖 −min 𝑗 𝐸 𝑗

�� ≤ 𝜀
and ����𝜂 log

𝜇
𝜂
∞ (U𝑖)
𝜇
𝜂
∞ (U 𝑗 )

+ 𝐸𝑖 − 𝐸 𝑗
���� ≤ 𝜀.

More compactly, with notation as above, we have:

𝜇
𝜂
∞ (U𝑖) ∝ exp

(
−𝐸𝑖 +O(𝜀)

𝜂

)
.

Proof. Note that if 𝜇𝜂∞ is invariant for (SGD), it is a fortiori invariant for the accelerated process (𝑥𝜂𝑛 )𝑛≥0. This result is
then a direct consequence of Proposition D.4 (Appendix D.5). ■

Theorem 6. Suppose that 𝜇𝜂∞ is invariant under (SGD), and let K be a non-minimizing component of 𝑓 . Then, with notation
as in Theorem 1, there exists a minimizing component K′ of 𝑓 and a positive constant 𝑐 ≡ 𝑐(K,K′) > 0 such that

𝜇
𝜂
∞ (U)

𝜇
𝜂
∞ (U ′)

≤ exp
(
−𝑐(K,K

′) + 𝜀
𝜂

)
for all all sufficiently small 𝜂 > 0 and all sufficiently small neighborhoods U and U ′ of K and K′ respectively. In particular,
in the limit 𝜂→ 0, we have 𝜇𝜂∞ (U) → 0.

Proof. Let K = K𝑖 be a non-minimizing component. By Lemma D.32, there exists 𝑗 ∈ 𝐼 such that 𝐸 𝑗 < 𝐸𝑖 . The statement
then follows from Theorem 1. ■

Theorem 7. Suppose that 𝜇𝜂∞ is invariant under (SGD), fix a tolerance level 𝛿 > 0, and let U ≡ U (𝛿) be a 𝛿-neighborhood
of crit( 𝑓 ). Then there exists a constant 𝑐 ≡ 𝑐𝛿 > 0 such that, for all sufficiently small 𝜂 > 0, we have:

𝜇
𝜂
∞ (U) ≥ 1 − 𝑒−𝑐/𝜂 .
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Proof. We actually show a slighly stronger result. Define 𝐽 := {𝑖 ∈ 𝐼 : K𝑖 is minimizing}. We prove that there exists U
neighborhood of

⋃
𝑖∈𝐽 K𝑖 , a constant 𝑐 > 0, such that, for all 𝜂 small enough,

𝜇
𝜂
∞

(
ℝ𝑑 \

⋃
𝑖∈𝐽

V𝑖

)
≤ 𝑒−

𝑐
𝜂 .

This is then a consequence of Proposition D.5 (Appendix D.6) with 𝐽 ← 𝐽. Note 𝐽 contain the ground states since they are
minimizing by Lemma D.32. ■

Theorem 8. Suppose that 𝜇𝜂∞ is invariant under (SGD), fix a tolerance level 𝛿 > 0, and let U0 ≡ U0 (𝛿) be a 𝛿-neighborhood
of the system’s ground state K0. Then there exists a constant 𝑐 ≡ 𝑐𝛿 > 0 such that, for all sufficiently small 𝜂 > 0, we have:

𝜇
𝜂
∞ (U0) ≥ 1 − 𝑒−𝑐/𝜂 .

Proof. It suffices to apply Proposition D.5 (Appendix D.6) with 𝐽 as the set of ground states arg min𝑖∈𝐼 𝐸𝑖 . They are
necessarily minimizing by Lemma D.32. ■

D.8 Extension: the mean occupation measures

We now state and prove analogue of Theorems 1–4 for the mean occupation measure 𝜇𝑛.

For this we will need a strengthened version of Assumption 7:

Assumption 9. The signal-to-noise ratio of G satisfies

∥∇ 𝑓 (𝑥)∥2

𝜎2
∞ ◦ 𝑓 (𝑥)

→ +∞ as ∥𝑥∥ → +∞ .

In this section, we will assume that Assumption 9 holds in addition to our general blanket assumptions Appendix B.1.

Let us now state the theorems.

Theorem 9. Fix a tolerance level 𝜀 > 0, and let U𝑖 ≡ U𝑖 (𝛿), 𝑖 = 1, . . . , 𝐾 , be 𝛿-neighborhoods of the components of crit( 𝑓 ).
Then, for all sufficiently small 𝛿, 𝜂 > 0 and large enough 𝑛, we have��𝜂 log 𝜇𝑛 (U𝑖) + 𝐸𝑖 −min 𝑗 𝐸 𝑗

�� ≤ 𝜀
and ����𝜂 log

𝜇𝑛 (U𝑖)
𝜇𝑛 (U 𝑗 )

+ 𝐸𝑖 − 𝐸 𝑗
���� ≤ 𝜀.

More compactly, with notation as above, we have:

𝜇𝑛 (U𝑖) ∝ exp
(
−𝐸𝑖 +O(𝜀)

𝜂

)
.

Theorem 10. Let K be a non-minimizing component of 𝑓 . Then, with notation as in Theorem 1, there exists a minimizing
component K′ of 𝑓 and a positive constant 𝑐 ≡ 𝑐(K,K′) > 0 such that

𝜇𝑛 (U)
𝜇𝑛 (U ′)

≤ exp
(
−𝑐(K,K

′) + 𝜀
𝜂

)
for all all sufficiently small 𝜂 > 0, 𝑛 large enough and all sufficiently small neighborhoods U and U ′ of K and K′ respectively.

Theorem 11. Fix a tolerance level 𝛿 > 0, and let U ≡ U (𝛿) be a 𝛿-neighborhood of crit( 𝑓 ). Then there exists a constant
𝑐 ≡ 𝑐𝛿 > 0 such that, for all sufficiently small 𝜂 > 0 and large enough 𝑛, we have:

𝜇𝑛 (U) ≥ 1 − 𝑒−𝑐/𝜂 .

Theorem 12. Fix a tolerance level 𝛿 > 0, and let U0 ≡ U0 (𝛿) be a 𝛿-neighborhood of the system’s ground state K0. Then
there exists a constant 𝑐 ≡ 𝑐𝛿 > 0 such that, for all sufficiently small 𝜂 > 0 and large enough 𝑛, we have:

𝜇𝑛 (U0) ≥ 1 − 𝑒−𝑐/𝜂 .
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We begin with a preliminary lemma which shows that, under Assumption 9, the sequence of mean occupation measure
(𝜇𝑛)𝑛≥0 is tight (see e.g., Kallenberg [30, Chap. 23]).
Lemma D.34. The sequence of mean occupation measures (𝜇𝑛)𝑛≥0 is tight.

The proof of this lemma first follows the proof of Lemma D.16 and then relies on the same reasoning as the proof of Douc
et al. [12, Thm. 12.3.3].

Proof. By Lemma D.14, there exists K ⊂ ℝ𝑑 compact, 𝜂0 > 0, 𝑐 > 0 such that, for any 𝜂 ≤ 𝜂0, 𝑥0 = 𝑥 ∉ K,

𝑈∞ (𝑥1) −𝑈∞ (𝑥) ≤ 𝜂
(
∥𝑢(𝑥, 𝜔0)∥2

𝜎2
∞ ◦ 𝑓 (𝑥)

− ∥∇ 𝑓 (𝑥)∥
2

𝜎2
∞ ◦ 𝑓 (𝑥)

)
.

Passing to the expectation yields that, for any 𝑥 ∉ K,

𝔼𝑥 [𝑈∞ (𝑥1)] −𝑈∞ (𝑥) ≤ 𝜂
(
𝔼𝑥

[
∥𝑢(𝑥, 𝜔0)∥2

]
𝜎2
∞ ◦ 𝑓 (𝑥)

− ∥∇ 𝑓 (𝑥)∥
2

𝜎2
∞ ◦ 𝑓 (𝑥)

)
.

Appplying Corollary D.2 with 𝑋 ← 𝑢(𝑥,𝜔0 )√
𝜎2
∞◦ 𝑓 (𝑥 )

(the conditions of application are verified from Assumption 6(c)) yields that

𝔼𝑥 [𝑈∞ (𝑥1)] −𝑈∞ (𝑥) ≤ −𝜂
∥∇ 𝑓 (𝑥)∥2

𝜎2
∞ ◦ 𝑓 (𝑥)

+ 𝜂 × 16𝑑 log 6 .

Hence, for any 𝑥 ∈ ℝ𝑑 , it holds

𝔼𝑥 [𝑈∞ (𝑥1)] −𝑈∞ (𝑥) ≤ 1{𝑥 ∈ K}
(

sup
𝑥′∈K

𝔼𝑥′ [𝑈∞ (𝑥′)] − inf
ℝ𝑑
𝑈∞

)
− 1{𝑥 ∉ K}

(
𝜂
∥∇ 𝑓 (𝑥)∥2

𝜎2
∞ ◦ 𝑓 (𝑥)

− 𝜂 × 16𝑑 log 6
)
,

or, after rearranging,

𝔼𝑥 [𝑈∞ (𝑥1)] − 1{𝑥 ∈ K}
(

sup
𝑥′∈K

𝔼𝑥′ [𝑈∞ (𝑥′)] − inf
ℝ𝑑
𝑈∞

)
+ 1{𝑥 ∉ K}

(
𝜂
∥∇ 𝑓 (𝑥)∥2

𝜎2
∞ ◦ 𝑓 (𝑥)

− 𝜂 × 16𝑑 log 6
)
≤ 𝑈∞ (𝑥) .

Since the function

𝑥 ↦→ −1{𝑥 ∈ K}
(

sup
𝑥′∈K

𝔼𝑥′ [𝑈∞ (𝑥′)] − inf
ℝ𝑑
𝑈∞

)
+ 1{𝑥 ∉ K}

(
𝜂
∥∇ 𝑓 (𝑥)∥2

𝜎2
∞ ◦ 𝑓 (𝑥)

− 𝜂 × 16𝑑 log 6
)

is measurable, lower-bounded and goes to infinity as ∥𝑥∥ → +∞ by Assumption 9, one can then apply the same computations
as in the proof of Douc et al. [12, Thm. 12.3.3] to obtain that the sequence of occupation measures (𝜇𝑛)𝑛≥0 is tight. ■

We now prove Theorem 9 by adapting the proof of Theorem 1. Since the process is exactly the same for Theorems 10–12,
we omit their proofs.

Proof of Theorem 9. We show that, for sufficiently small 𝛿, 𝜂 > 0, for any 𝑖 ∈ 𝐼, we have that

exp
(
−
𝐸𝑖 −min 𝑗 𝐸 𝑗 + 𝜀

𝜂

)
≤ lim inf

𝑛→+∞
𝜇𝑛 (U𝑖) ≤ lim sup

𝑛→+∞
𝜇𝑛 (U𝑖) ≤ exp

(
−
𝐸𝑖 −min 𝑗 𝐸 𝑗 − 𝜀

𝜂

)
, (D.15)

and the results in the statement will follow with 2𝜀 in place of 𝜀.

We apply Proposition D.4 (Appendix D.5): take 𝛿 small enough so Proposition D.4 can be applied with both the neigh-
borhoods U1, . . . ,U𝐾 and clU1, . . . , clU𝐾 . One then obtain 𝜂0 > 0 such that, for all 0 < 𝜂 < 𝜂0 and any 𝜇𝜂∞ invariant
probability measure for (𝑥𝜂𝑛 )𝑛, for any 𝑖 ∈ 𝐼,

𝜇
𝜂
∞ (U𝑖) ≥ exp

(
−
𝐸 (K𝑖) −min 𝑗∈𝐼 𝐸 (K 𝑗 )

𝜂
− 𝜀
𝜂

)
𝜇
𝜂
∞ (clU𝑖) ≤ exp

(
−
𝐸 (K𝑖) −min 𝑗∈𝐼 𝐸 (K 𝑗 )

𝜂
+ 𝜀
𝜂

)
.

(D.16)
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We now prove that Eq. (D.15) holds. Fix 𝑖 ∈ 𝐼. By Lemma D.34, the sequence of mean occupation measures (𝜇𝑛)𝑛≥0 is
tight, so that, by Prohorov theorem [30, Thm. 23.2], it is sequentially compact for the weak topology, or, in other terms, for
the convergence in distribution. Therefore, (𝜇𝑛)𝑛≥0 admits a weak accumulation point which is a probability distribution
and that we denote by 𝜈. Applying Portmanteau theorem [30, Thm. 5.25] to the open set U𝑖 and the closed set clU𝑖 yields
that

𝜈(U𝑖) ≤ lim inf
𝑛→+∞

𝜇𝑛 (U𝑖) ≤ lim sup
𝑛→+∞

𝜇𝑛 (clU𝑖) ≤ 𝜈(clU𝑖) . (D.17)

Since (𝑥𝑛)𝑛≥0, the sequence of iterates of SGD, is (weak) Feller by Lemma D.15, 𝜈 is actually invariant for (𝑥𝑛)𝑛≥0, by,
e.g., Douc et al. [12, Prop. 12.3.1], and a fortiori invariant for the accelerated process (𝑥𝜂𝑛 )𝑛≥0. Combining Eq. (D.16) with
Eq. (D.17) gives the result Eq. (D.15).

■
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E Potential for the invariant measure

E.1 Gaussian noise

Though it does not formally fit into our setting, let us first begin with the case where the noise is Gaussian. Since it is
unbounded, our assumptions are not satisfied and our theorems describing the invariant measure do not apply. However, all
the objects we consider are still well-defined, and, in that case, it is possible to compute the 𝐸𝑖 explicitely. Moreover, this
section serves as a blueprint for the truncated Gaussian case of the next section.

Assume that, for every 𝑥 ∈ ℝ𝑑 , 𝑢(𝑥, 𝜔) follows a centered Gaussian distribution with covariance 𝜎2 ( 𝑓 (𝑥))𝐼 for some
continuous function 𝜎2 : ℝ→ (0, +∞).

Akin to𝑈∞ in Appendix D, a key role is played by the function𝑈 : ℝ𝑑 → ℝ defined by

𝑈 (𝑥) := 2𝛼( 𝑓 (𝑥)) with 𝛼 : ℝ→ ℝ a primitive of 1/𝜎2 .

Since the noise is Gaussian, the Lagrangian and Hamiltonian have explicit expressions: for every 𝑥, 𝑝, 𝑣 ∈ ℝ𝑑 ,

H(𝑥, 𝑝) = −⟨∇ 𝑓 (𝑥), 𝑝⟩ + 1
2
𝜎2 ( 𝑓 (𝑥))∥𝑝∥2

L(𝑥, 𝑣) = ∥𝑣 + ∇ 𝑓 (𝑥)∥
2𝜎2 ( 𝑓 (𝑥))

.

This expression of L make it clear that the action function penalizes the deviation of a path from the flow: for a path
𝛾 ∈ C ( [0, 𝑇]) for some 𝑇 > 0,

S𝑇 (𝛾) =
∫ 𝑇

0

∥ ¤𝛾𝑡 + ∇ 𝑓 (𝛾𝑡 )∥2
2𝜎2 ( 𝑓 (𝛾𝑡 ))

𝑑𝑡 .

The computation of the 𝐸𝑖 relies on the following observation. Take a path 𝛾 ∈ C ( [0, 𝑇]) for some 𝑇 > 0 and consider 𝜑
defined by 𝜑𝑡 = 𝛾𝑇−𝑡 for 𝑡 ∈ [0, 𝑇]. Then, the action cost of 𝜑 is given by,

S𝑇 (𝜑) =
∫ 𝑇

0

∥− ¤𝛾𝑡 + ∇ 𝑓 (𝛾𝑡 )∥2
2𝜎2 ( 𝑓 (𝛾𝑡 ))

𝑑𝑡

=

∫ 𝑇

0

∥ ¤𝛾𝑡 + ∇ 𝑓 (𝛾𝑡 )∥2
2𝜎2 ( 𝑓 (𝛾𝑡 ))

𝑑𝑡 −
∫ 𝑇

0

2⟨ ¤𝛾𝑡 ,∇ 𝑓 (𝛾𝑡 )⟩
𝜎2 ( 𝑓 (𝛾𝑡 ))

𝑑𝑡

= S𝑇 (𝛾) −
∫ 𝑇

0
⟨ ¤𝛾𝑡 ,∇𝑈 (𝛾𝑡 )⟩ 𝑑𝑡 ,

since ∇𝑈 (𝑥) = 2∇𝛼( 𝑓 (𝑥))∇ 𝑓 (𝑥). Therefore, we get that

S𝑇 (𝜑) = S𝑇 (𝛾) − (𝑈 (𝛾𝑇 ) −𝑈 (𝛾0)) .

Take 𝑖, 𝑗 ∈ 𝐼. This equality then translates to a relation between 𝐵𝑖, 𝑗 and 𝐵 𝑗 ,𝑖: considering 𝛾 ∈ C ( [0, 𝑇]) such that 𝛾0 ∈ K𝑖 ,
𝛾𝑇 ∈ K 𝑗 and taking the infimum over all such paths, we get that

𝐵 𝑗 ,𝑖 ≤ 𝐵𝑖, 𝑗 + (𝑈 𝑗 −𝑈𝑖) .

where, since 𝑓 is constant on K𝑖 and K 𝑗 , we denote by𝑈𝑖 and𝑈 𝑗 the values of𝑈 on K𝑖 and K 𝑗 respectively.

Reversing the roles of 𝑖 and 𝑗 and applying the same argument shows that this inequality is an equality:

𝐵 𝑗 ,𝑖 +𝑈 𝑗 = 𝐵𝑖, 𝑗 +𝑈𝑖 .

Denote by 𝐶𝑖, 𝑗 this common value. Crucially, 𝐶𝑖, 𝑗 is symmetric in 𝑖 and 𝑗 .

Consider now 𝑇∗ a minimum weight spanning tree on the complete but now undirected graph on 𝐼 with weights (𝐶𝑖, 𝑗 )𝑖, 𝑗 .
We show that the minima in the 𝐸𝑖 are attained 𝑇∗, or more precisely, a directed version of it.
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Fix 𝑖 and consider 𝑇 ∈ T𝑖 a spanning tree rooted at 𝑖. We have that, since any node 𝑗 is the origin of exactly one edge in 𝑇 ,∑︁
( 𝑗→𝑙) ∈𝑇

𝐵 𝑗 ,𝑙 +
∑︁
𝑗∈𝐼
𝑈 𝑗 =

∑︁
( 𝑗→𝑙) ∈𝑇

(
𝐵 𝑗 ,𝑙 +𝑈 𝑗

)
+𝑈𝑖

=
∑︁

( 𝑗→𝑙) ∈𝑇
𝐶 𝑗 ,𝑙 +𝑈𝑖 .

But by definition of 𝑇∗, this sum is at least greater than
∑
( 𝑗↔𝑙) ∈𝑇∗ 𝐶 𝑗 ,𝑙 so that we have∑︁

( 𝑗→𝑙) ∈𝑇
𝐵 𝑗 ,𝑙 +

∑︁
𝑗∈𝐼
𝑈 𝑗 ≥

∑︁
( 𝑗↔𝑙) ∈𝑇∗

𝐶 𝑗 ,𝑙 +𝑈𝑖 ,

and taking 𝑇𝑖 an oriented version of 𝑇∗ rooted at 𝑖, the equality is attained. Therefore, we have that

𝐸𝑖 =
∑︁

( 𝑗→𝑙) ∈𝑇𝑖
𝐵 𝑗 ,𝑙 −

∑︁
𝑗∈𝐼
𝑈 𝑗 +𝑈𝑖 ,

or, in short, 𝐸𝑖 = 𝑈𝑖 + 𝑐 where 𝑐 > 0 is independent of 𝑖.

Therefore, the mass distribution over critical points is governed by a Gibbs measure with potential𝑈.

Let us now mention two particular cases.

• If 𝜎2 is constant, then𝑈 =
2 𝑓
𝜎2 .

• It 𝜎2 is linear, i.e., of the form 𝜎2 ( 𝑓 (𝑥)) = 𝜎2
1 ( 𝑓 (𝑥) + 𝜎2

0), then𝑈 = 2
𝜎21

log( 𝑓 + 𝜎2
0).

E.2 Truncated Gaussian noise

To fit into our theoretical framework, we consider truncated Gaussian noise instead. The general outline of the proof but
with added steps to handle the error due to the truncation. In particular, one must show that, without loss of generality, we
can only conider paths whose derivative has the same norm as the gradient of 𝑓 . This is done with Freidlin & Wentzell [18,
Chap. 4, Lem. 3.1] that we adapt to our setting.

Assume that 𝑢(𝑥, 𝜔) follows a centered Gaussian distribution with covariance 𝜎2 ( 𝑓 (𝑥))𝐼 conditioned on being in 𝔹(0, 𝑅(𝑥))
for some 𝑅(𝑥) > 0.

As in Definition 4, we define𝑈 (𝑥) = 2𝛼( 𝑓 (𝑥)) with 𝛼′ = 1
𝜎2 and denote by𝑈𝑖 the value taken by𝑈 on K𝑖 .

Consider some 0 < 𝜂 ≤ 1
2 and assume that

sup
𝑥∈ℝ𝑑

2𝑑+4 (𝑑 + 1)𝑒−
𝑅2

16𝜎2 ≤ 𝜂 ,

so that the error term 2𝐸 (𝜎2 ( 𝑓 (𝑥)), 𝑅(𝑥)) in Lemma F.2 is bounded by 𝜂.

Moreover, assume that, for any 𝑥 ∈ ℝ𝑑

∥∇ 𝑓 (𝑥)∥ ≤ 𝑅(𝑥)
8

Lemma E.1. Consider 𝛾 ∈ C ( [0, 𝑇]). Then, there exists �̃� ∈ C ( [0, 𝑆]) a reparametrization of 𝛾 such that, for any 𝑡 ∈ [0, 𝑆],

∥ ¤̃𝛾𝑠 ∥ = ∥∇ 𝑓 (�̃�𝑠)∥ .

and

S𝑇 (𝛾) ≥
∫ 𝑆

0

∥ ¤̃𝛾𝑠 + ∇ 𝑓 (�̃�𝑠)∥2

2(1 + 𝜂)𝜎2 ( 𝑓 (�̃�𝑠))
𝑑𝑠 .

Proof. By the proof Freidlin & Wentzell [18, Chap. 4, Lem. 3.1], there exists 𝑡 (𝑠) change of time such that, with �̃�𝑠 = 𝛾𝑡 (𝑠) ,
∥ ¤̃𝛾𝑠 ∥ = ∥∇ 𝑓 (�̃�𝑠)∥.
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We have that

S𝑇 (𝛾) =
∫ 𝑡−1 (𝑇 )

0
¤𝑡 (𝑠)L(�̃�𝑠 , (¤𝑡 (𝑠))−1 ¤̃𝛾𝑠) 𝑑𝑠 ,

so it suffices to bound L(�̃�𝑠 , ¤̃𝛾𝑠) from below: by definition, we have

L(�̃�𝑠 , (¤𝑡 (𝑠))−1 ¤̃𝛾𝑠) ≥ sup
{
⟨𝑝, (¤𝑡 (𝑠))−1 ¤̃𝛾𝑡 + ∇ 𝑓 (�̃�𝑠)⟩ − H̄(�̃�𝑠 , 𝑝) : 𝑝 ∈ ℝ𝑑 : ∥𝑝∥ ≤ 𝑅(�̃�𝑠)

2𝜎2 ( 𝑓 (�̃�𝑠))

}
≥ sup

{
⟨𝑝, (¤𝑡 (𝑠))−1 ¤̃𝛾𝑡 + ∇ 𝑓 (�̃�𝑠)⟩ − (1 + 𝜂)

𝜎2 ( 𝑓 (�̃�𝑠))
2

∥𝑝∥2 : 𝑝 ∈ ℝ𝑑 : ∥𝑝∥ ≤ 𝑅(�̃�𝑠)
2𝜎2 ( 𝑓 (�̃�𝑠))

}
,

by Lemma F.2. Applying Lemma F.3 with 𝜆← ¤𝑡 (𝑠), now exactly yields, for almost all 𝑠,

L(�̃�𝑠 , (¤𝑡 (𝑠))−1 ¤̃𝛾𝑠) ≥ ¤𝑡 (𝑠) sup
{
⟨𝑝, ¤̃𝛾𝑡 + ∇ 𝑓 (�̃�𝑠)⟩ − (1 + 𝜂)

𝜎2 ( 𝑓 (�̃�𝑠))
2

∥𝑝∥2 : 𝑝 ∈ ℝ𝑑 : ∥𝑝∥ ≤ 𝑅(�̃�𝑠)
2𝜎2 ( 𝑓 (�̃�𝑠))

}
= ¤𝑡 (𝑠)

∥ ¤̃𝛾𝑠 + ∇ 𝑓 (�̃�𝑠)∥2

2(1 + 𝜂)𝜎2 ( 𝑓 (�̃�𝑠))
,

since ∥ ¤̃𝛾𝑠 + ∇ 𝑓 (�̃�𝑠)∥ ≤
𝑅 (𝛾𝑠 )

2 . ■

Lemma E.2. With this setting, for any 𝑖 ∈ 𝐼

𝐸𝑖 = 𝑈𝑖 +
∑︁

( 𝑗→𝑙) ∈𝑇𝑖
𝐵 𝑗 ,𝑙 −

∑︁
𝑗∈𝐼
𝑈 𝑗 +O(𝜂)

Proof. Consider 𝛾 ∈ C ( [0, 𝑇]) such that 𝛾0 ∈ K𝑖 , 𝛾𝑇 ∈ K 𝑗 and S𝑇 (𝛾) < +∞. Then, by the previous lemma Lemma E.1,
there exists �̃� ∈ C ( [0, 𝑆]) a reparametrization of 𝛾 such that, for any 𝑡 ∈ [0, 𝑆],

S𝑇 (𝛾) ≥
∫ 𝑆

0

∥ ¤̃𝛾𝑠 + ∇ 𝑓 (�̃�𝑠)∥2

2(1 + 𝜂)𝜎2 ( 𝑓 (�̃�𝑠))
𝑑𝑠

=

∫ 𝑆

0

∥− ¤̃𝛾𝑠 + ∇ 𝑓 (�̃�𝑠)∥2

2(1 + 𝜂)𝜎2 ( 𝑓 (�̃�𝑠))
𝑑𝑠 + 𝑈 (𝛾𝑇 ) −𝑈 (𝛾0)

1 + 𝜂 ,

where we performed the same computations as above in Appendix E.1. Considering the path (�̃�𝑆−𝑠)𝑠∈[0,𝑆 ] and invoking the
upper-bound on the Lagrangian from Lemma F.2 with − ¤̃𝛾𝑠 + ∇ 𝑓 (�̃�𝑠) which still has norm less than 𝑅(�̃�𝑠)/4, we get that

S𝑇 (𝛾) ≥
1 − 𝜂
1 + 𝜂 𝐵 𝑗 ,𝑖 +

𝑈 (𝛾𝑇 ) −𝑈 (𝛾0)
1 + 𝜂 .

The result now follows from the same computations as in Appendix E.1. ■

E.3 Local dependencies

Under local assumptions similar to Mori et al. [51], we demonstrate how the modelling of the noise influences the invariant
measure.

Lemma E.3. Consider K𝑖 minimizing, 𝜎2 : ℝ→ (0, +∞) continuous, and take 𝛼 : ℝ→ ℝ such that 𝛼′ = 1
𝜎2 . Assume that

𝐻∗ is a positive definite matrix such that, locally near K𝑖 , it holds that:

𝛼( 𝑓 (𝑥)) =
∑︁

𝜆∈eig𝐻∗
𝑔𝜆 (𝑥𝜆) ,

where 𝑥𝜆 denotes the orthogonal projection of 𝑥 on the eigenspace of the eigenvalue 𝜆 and where 𝑔𝜆 : ℝ𝑑 → ℝ is
continuously differentiable. Define the potential𝑈 : ℝ𝑑 → ℝ by

𝑈 (𝑥) =
∑︁

𝜆∈eig𝐻∗

2𝑔𝜆 (𝑥𝜆)
𝜆

.
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If we have the anistropic subGaussian bound: for 𝑥 in a neighborhood of K𝑖 , 𝑝 ∈ 𝔹(0, ∥𝑈 (𝑥)∥),

H̄(𝑥, 𝑝) ≤ 𝜎
2 ( 𝑓 (𝑥))

2
⟨𝑝, 𝐻∗𝑝⟩ ,

then there is 𝛿 > 0 such that, for all 𝑗 ≠ 𝑖, any 0 < 𝛿′ ≤ 𝛿,

𝐸 𝑗 ≥ min{𝑈 (𝑥) −𝑈𝑖 : 𝑥, 𝑑 (𝑥,K𝑖) = 𝛿′} > 0 ,

where𝑈𝑖 is the value of𝑈 on K𝑖 .

Moreover, there exists 𝑅 > 𝛿 such that, if there exists 𝑐 > 0, 𝑠2 > 0, such that, for all 𝑥 ∈ 𝔹(0, 𝑅) \U𝛿 (K𝑖), 𝑣 ∈ 𝔹(∇ 𝑓 (𝑥), 𝑐),

L̄(𝑥, 𝑣) ≤ ∥𝑣∥
2𝑠2 ,

then there exists 𝐶 > 0 that depends only on 𝑟, 𝑅, 𝑐, 𝑓 restricted to ℝ𝑑 \ U𝑟 (K𝑖) such that

𝐸𝑖 ≤
𝐶

𝑠2 .

The assumptions on the Hamiltonian and the Lagrangian roughly say that the noise share some similarities with Gaussian
distributions with the prescribed variances. In particular, they are satisfied in the (truncated) Gaussian case, as shown in
Lemma F.2.

Moreover, a takeway of this lemma is that, if 𝜎2 or the eigenvalues of 𝐻∗ are small enough, then K𝑖 must be the ground state
even if it may not be the global minimum of𝑈. This lemma is general enough to handle non-constant variance: a notable
example is when 𝜎2 ( 𝑓 (𝑥)) is linear in 𝑓 (𝑥) and where the resulting potential𝑈 then depends logarithmically on the value 𝑓 .

Proof. Denote 𝑃𝜆 ∈ ℝ𝑑×𝑑 the orthogonal projection on the eigenspace of 𝐻∗ associated with the eigenvalue 𝜆. 𝑈 can thus
be rewritten as

.𝑈 (𝑥) =
∑︁

𝜆∈eig𝐻∗

2𝑔𝜆 (𝑃𝜆𝑥)
𝜆

,

so that its gradient is given by

∇𝑈 (𝑥) =
∑︁

𝜆∈eig𝐻∗

2𝑃𝜆∇𝑔𝜆 (𝑃𝜆𝑥)
𝜆

.

In particular, we obtain that for 𝑥 close enough to K𝑖 , using the orthogonality of the projections,

H̄(𝑥,∇𝑈 (𝑥)) ≤ 𝜎
2 ( 𝑓 (𝑥))

2
⟨∇𝑈 (𝑥), 𝐻∗∇𝑈 (𝑥)⟩

=
𝜎2 ( 𝑓 (𝑥))

2
∑︁

𝜆∈eig𝐻∗

4∥𝑃𝜆∇𝑔𝜆 (𝑃𝜆𝑥)∥2
𝜆

=
𝜎2 ( 𝑓 (𝑥))

2
⟨∇𝑈 (𝑥), 2∇(𝛼 ◦ 𝑓 ) (𝑥)⟩

= ⟨∇𝑈 (𝑥),∇ 𝑓 (𝑥)⟩ .

Therefore, for 𝑥 close enough to K𝑖 , we have that

H(𝑥,∇𝑈 (𝑥)) = −⟨∇𝑈 (𝑥),∇ 𝑓 (𝑥)⟩ + H̄(𝑥,∇𝑈 (𝑥)) (E.1)
≤ 0 .

For 𝑥 close to K𝑖 , let us compute ⟨∇𝑈 (𝑥),∇ 𝑓 (𝑥)⟩:

⟨∇𝑈 (𝑥),∇ 𝑓 (𝑥)⟩ = 𝜎2 ( 𝑓 (𝑥))⟨∇𝑈 (𝑥),∇(𝛼 ◦ 𝑓 ) (𝑥)⟩

= 𝜎2 ( 𝑓 (𝑥))
∑︁

𝜆∈eig𝐻∗

2∥𝑃𝜆∇𝑔𝜆 (𝑃𝜆𝑥∥
𝜆

,

57



What is the Long-Run Distribution of SGD? A Large Deviations Analysis

which is (stricly) positive in a small neighborhood of K𝑖 (excluding K𝑖 itself). Therefore,𝑈 is decreasing on trajectories
of the flow in this neighborhood. With the same proof as in Lemma D.29, we deduce that there exists 𝛿 > 0 such that
arg min𝑥∈U𝛿 (K𝑖 ) 𝑈 (𝑥) = K𝑖 . Moreover, take 𝛿 > 0 small enough such that Eq. (E.1) holds on U𝛿 (K𝑖), U𝛿 (K𝑖)∩crit( 𝑓 ) = K𝑖
and the trajectories of the flow started in U𝛿 (K𝑖) stay converge to K𝑖 . We now proceed as in the proof of Lemma D.33. Take
𝛿′ ≤ 𝛿/2, U := U𝛿′ (K𝑖) and Δ := min

{
𝑈 (𝑥) −𝑈𝑖 : 𝑥 ∈ ℝ𝑑 , 𝑑 (𝑥,K𝑖) = 𝛿′

}
, which is positive by definition. Fix 𝑗 ≠ 𝑖: we

show that 𝐵𝑖, 𝑗 ≥ Δ. Consider some 𝑇 > 0 and 𝛾 ∈ C ( [0, 𝑇],ℝ𝑑) such that 𝛾0 ∈ K𝑖 and 𝛾𝑇 ∈ K 𝑗 . By definition of 𝛿 and by
continuity of 𝛾 and 𝑑 (·,K𝑖), there exists 𝑡 ∈ [0, 𝑇] such that 𝑑 (𝛾𝑡 ,K𝑖) = 𝛿′. Therefore, we have that

S0,𝑇 (𝛾) ≥ S0,𝑡 (𝛾)

=

∫ 𝑡

0
L(𝛾𝑠 , ¤𝛾𝑠) 𝑑𝑠 ,

and therefore, by definition of L as the conjugate of H, we obtain that

S0,𝑇 (𝛾) ≥
∫ 𝑡

0
⟨ ¤𝛾𝑠 ,∇𝑈 (𝛾𝑠)⟩ − H̄(𝛾𝑠 ,∇𝑈 (𝛾𝑠)) 𝑑𝑠

≥
∫ 𝑡

0
⟨ ¤𝛾𝑠 ,∇𝑈 (𝛾𝑠)⟩ ,

where we used Eq. (E.1) in the last inequality. Thus, we get

S0,𝑇 (𝛾) ≥ 𝑈 (𝛾𝑡 ) −𝑈 (𝛾0)
≥ Δ ,

with any 𝛿′ ≤ 𝛿/2 (and therefore 𝛿 in the statement corresponds to 𝛿/2 here).

Finally, it remains to show that, any 𝑙 ≠ 𝑖, 𝐸𝑙 ≥ Δ. Consider any tree rooted at 𝑙: it must have an edge of the form 𝑖 → 𝑗 for
some 𝑗 ∈ 𝐼 and therefore the sum of its weights will be at least 𝐵𝑖, 𝑗 ≥ Δ. Hence, since it holds for any such tree, we have
that 𝐸𝑙 ≥ Δ.

We now prove the second part of the lemma. 𝛿 was chosen small enough so that it is possible to find 𝑅 > 𝛿 such that
𝔹(0, 𝑅) \ U𝛿 (K𝑖) contains all the K 𝑗 for 𝑗 ≠ 𝑖 and not K𝑖 . The assumption on the Lagrangian implies that, for any
𝑥 ∈ 𝔹(0, 𝑅) \ U𝛿 (K𝑖), 𝑣 ∈ 𝔹(0, 𝑐),

L(𝑥, 𝑣) ≤ ∥𝑣 + ∇ 𝑓 (𝑥)∥
2

2𝑠2 .

Fix 𝑗 ≠ 𝑖 and take 𝛾 ∈ C1 ( [0, 𝑇],ℝ𝑑) such that 𝛾0 ∈ K 𝑗 , 𝑥 := 𝛾𝑇 ∈ U𝛿 (K𝑖) and 𝛾 remains in 𝔹(0, 𝑅) \ U𝛿 (K𝑖). Without
loss of generality, at the expense of replacing 𝛾 by a reparametrization, we can assume that ¤𝛾𝑡 in 𝔹(0, 𝑐) for all 𝑡 ∈ [0, 𝑇].
Then, we have that

S0,𝑇 (𝛾) ≤
∫ 𝑇

0
L(𝛾𝑠 , ¤𝛾𝑠) 𝑑𝑠

≤
∫ 𝑇

0

∥ ¤𝛾𝑠 + ∇ 𝑓 (𝛾𝑠)∥2
2𝑠2 𝑑𝑠 ,

which depends only on the value of ∇ 𝑓 outside of U𝛿/2 (K𝑖). But, by the same reasoning as in Lemma D.31, since the flow
started at 𝑥 converges to K𝑖 , we have that 𝐵({𝑥},K𝑖) = 0. Therefore, we have that,

𝐵 𝑗 ,𝑖 ≤
∫ 𝑇

0

∥ ¤𝛾𝑠 + ∇ 𝑓 (𝛾𝑠)∥2
2𝑠2 𝑑𝑠 ,

and, taking the maximum of such quantities over all 𝑗 ≠ 𝑖, we obtain 𝐶 > 0 such, for any 𝑗 ≠ 𝑖,

𝐵 𝑗 ,𝑖 ≤
𝐶

𝑠2 .

To conclude on the value of 𝐸𝑖 , we consider the tree rooted at 𝑖 made of all the edges ( 𝑗 , 𝑖) for 𝑗 ≠ 𝑖. It has weight at most
(𝐾 − 1)𝐶/𝑠2 and therefore, we have that 𝐸𝑖 ≤ (𝐾 − 1)𝐶/𝑠2. ■
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F Auxiliary results

F.1 Truncated Gaussian distribution

Lemma F.1. Consider 𝑋 ∼ N (0, Σ) a multivariate Gaussian distribution Σ ∈ ℝ𝑑×𝑑 positive definite. For 𝑅 > 0, define the
truncated Gaussian random variable (r.v.) 𝑋𝑅 by conditioning 𝑋 to the ball 𝔹(0, 𝑅). Define

H̄(𝑝) := log𝔼
[
𝑒⟨𝑝,𝑋𝑅 ⟩

]
and

𝐸 (Σ, 𝑅) := 𝑒−
𝑅2

4∥Σ∥ (trΣ + ∥Σ∥)2𝑑+3

Then, for 𝑅 > 0 such that
𝑅 ≥

√︁
∥Σ∥(2𝑑 + 4) log 2 ,

it holds that, for any 𝑝 ∈ ℝ𝑑 such that ∥Σ𝑝∥ ≤ 𝑅 − 𝑅,��H̄(𝑝) − 1
2 ⟨𝑝, Σ𝑝⟩

�� ≤ 1
2𝐸 (Σ, 𝑅)∥𝑝∥

2

∇H̄(𝑝) − Σ𝑝

 ≤ 𝐸 (Σ, 𝑅)∥𝑝∥

Hess H̄(𝑝) − Σ


 ≤ 𝐸 (Σ, 𝑅) .

Proof. Define, for 𝐴 a measurable set,

𝑍 (𝐴) =
∫
𝐴

𝑒
− 1

2 𝑥 ·Σ
−1𝑥

𝑑𝑥 ,

and, for convenience, K := 𝔹(0, 𝑅). For notational convenience, in this proof, we will denote the inner product between two
vectors 𝑥 and 𝑝 with a simple dot 𝑥 · 𝑝. We have that

𝔼
[
𝑒𝑋𝑅 ·𝑝

]
=
𝑒

1
2 𝑝 ·Σ𝑝

𝑍 (K)

∫
K
𝑒
− 1

2 (𝑥−Σ𝑝) ·Σ
−1 (𝑥−Σ𝑝)

𝑑𝑥

=
𝑒

1
2 𝑝 ·Σ𝑝

𝑍 (K)

∫
K−Σ𝑝

𝑒
− 1

2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

= 𝑒
1
2 𝑝 ·Σ𝑝

𝑍 (K − Σ𝑝)
𝑍 (K) ,

where we performed the change of variable 𝑥′ ← 𝑥 − Σ𝑝.

Define
𝑓 (𝑝) := 𝑍 (K − Σ𝑝) =

∫
K
𝑒
− 1

2 (𝑥−Σ𝑝) ·Σ
−1 (𝑥−Σ𝑝)

𝑑𝑥 .

so that
H̄(𝑝) = log𝔼

[
𝑒𝑋𝑅 ·𝑝

]
=

1
2
𝑝 · Σ𝑝 + log

𝑓 (𝑝)
𝑓 (0) .

Therefore it suffices to bound log 𝑓 (𝑝)
𝑓 (0) and its derivatives.

Differentiating yields

∇ 𝑓 (𝑝) =
∫
K
(𝑥 − Σ𝑝)𝑒−

1
2 (𝑥−Σ𝑝) ·Σ

−1 (𝑥−Σ𝑝)
𝑑𝑥

Hess 𝑓 (𝑝) =
∫
K
(𝑥 − Σ𝑝) (𝑥 − Σ𝑝)⊤𝑒−

1
2 (𝑥−Σ𝑝) ·Σ

−1 (𝑥−Σ𝑝)
𝑑𝑥 − Σ 𝑓 (𝑝) .

Note that, by symmetry of 𝔹(0, 𝑅), ∇ 𝑓 (0) = 0.

We first bound Hess 𝑓 (𝑝). Performing the change of variable 𝑥′ ← 𝑥 − Σ𝑝 agin gives us

Hess 𝑓 (𝑝) =
∫
K−Σ𝑝

𝑥′𝑥′⊤𝑒−
1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′ − Σ 𝑓 (𝑝)
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=

∫
K−Σ𝑝

(𝑥′𝑥′⊤ − Σ)𝑒−
1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

= −
∫
ℝ𝑑\(K−Σ𝑝)

(𝑥′𝑥′⊤ − Σ)𝑒−
1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′ ,

where we used that
∫
ℝ𝑑
(𝑥′𝑥′⊤ − Σ)𝑒−

1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′ = 0.

By definition of 𝑅, K − Σ𝑝 contains 𝔹(0, 𝑅). We now bound the operator norm of Hess 𝑓 (𝑝):

∥Hess 𝑓 (𝑝)∥ ≤
∫
ℝ𝑑\(K−Σ𝑝)

(∥𝑥′∥2 + ∥Σ∥)𝑒−
1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

≤
∫
ℝ𝑑\𝔹(0,𝑅)

(∥𝑥′∥2 + ∥Σ∥)𝑒−
1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

≤ 𝑒−
𝑅2

4∥Σ∥
∫
ℝ𝑑
(∥𝑥′∥2 + ∥Σ∥)𝑒−

1
4 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

= 𝑒
− 𝑅2

4∥Σ∥ (trΣ + ∥Σ∥)(4𝜋)𝑑/2 det(Σ)1/2 , (F.1)

We now bound ∇ 𝑓 (𝑝). The change of variable 𝑥′ ← 𝑥 − Σ𝑝 yields

∇ 𝑓 (𝑝) =
∫
K−Σ𝑝

𝑥′𝑒−
1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

=

∫
ℝ𝑑\(K−Σ𝑝)

𝑥′𝑒−
1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′ ,

where we used that
∫
ℝ𝑑
𝑥′𝑒−

1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′ = 0.

Therefore, similar computations as above yield that

∥∇ 𝑓 (𝑝)∥ ≤
∫
ℝ𝑑\(K−Σ𝑝)

∥𝑥′∥𝑒−
1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

≤
∫
ℝ𝑑\𝔹(0,𝑅)

∥𝑥′∥𝑒−
1
2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

≤ 𝑒−
𝑅2

4∥Σ∥
∫
ℝ𝑑
∥𝑥′∥𝑒−

1
4 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

≤ 𝑒−
𝑅2

4∥Σ∥
√

trΣ(4𝜋)𝑑/2 det(Σ)1/2 . (F.2)

Let us now lower-bound 𝑓 (𝑝). In the same fashion as above, we have that

𝑓 (𝑝) =
∫
K−Σ𝑝

𝑒
− 1

2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

≥
∫
𝔹(0,𝑅)

𝑒
− 1

2 𝑥
′ ·Σ−1𝑥′

𝑑𝑥′

≥ (2𝜋)𝑑/2 det(Σ)1/2
(
1 − 2𝑑/2𝑒−

𝑅2

4∥Σ∥

)
,

so that, if 𝑅 ≥
√︁
∥Σ∥(2𝑑 + 4) log 2, it holds that

𝑓 (𝑝) ≥ 1
2 (2𝜋)

𝑑/2 det(Σ)1/2 (F.3)

The Hessian of log 𝑓 / 𝑓 (0) is then given by

Hess log
𝑓 (𝑝)
𝑓 (0) =

Hess 𝑓 (𝑝)
𝑓 (𝑝) − ∇ 𝑓 (𝑝)∇ 𝑓 (𝑝)

⊤

𝑓 (𝑝)2
.
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Eqs. (F.1)–(F.3) combined yield that



Hess log
𝑓 (𝑝)
𝑓 (0)





 ≤ 𝑒− 𝑅2

4∥Σ∥ (trΣ + ∥Σ∥)2𝑑/2+1 +
(
𝑒
− 𝑅2

4∥Σ∥
√

trΣ2𝑑/2+1
)2

≤ 𝑒−
𝑅2

4∥Σ∥ (trΣ + ∥Σ∥)2𝑑+3 = 𝐸 (Σ, 𝑅) .

Taylor-Lagrange inequality now yields the full result since log 𝑓 (0)/ 𝑓 (0) = 0 and ∇ log 𝑓 (0) = 0. ■

Lemma F.2. Consider 𝑋 ∼ N (0, 𝜎2𝐼) a multivariate Gaussian distribution with 𝜎2 > 0. For 𝑅 > 0, define the truncated
Gaussian r.v. 𝑋𝑅 by conditioning 𝑋 to the ball 𝔹(0, 𝑅). Define

H(𝑝) := log𝔼
[
𝑒⟨𝑝,𝑋𝑅 ⟩

]
L(𝑝) := H∗ (𝑝) ,

and

𝐸 (𝜎2, 𝑅) := 𝑒−
𝑅2

16𝜎2 2𝑑+3 (𝑑 + 1)

and assume that 𝑅 > 0 satisfies
𝑅 ≥ 4𝜎

√︁
(𝑑 + 3) log 2 + log(𝑑 + 1) .

Then, for any 𝑝 ∈ ℝ𝑑 such that ∥𝑝∥ ≤ 𝑅

2𝜎2 , 𝑣 ∈ ℝ𝑑 such that ∥𝑣∥ ≤ 𝑅
4 , it holds that(

1 − 𝐸 (𝜎2, 𝑅)
) 𝜎2∥𝑝∥2

2
≤H̄(𝑝) ≤

(
1 + 𝐸 (𝜎2, 𝑅)

) 𝜎2∥𝑝∥2
2(

1 − 2𝐸 (𝜎2, 𝑅)
) ∥𝑣∥2

2𝜎2 ≤L̄(𝑣) ≤
(
1 + 2𝐸 (𝜎2, 𝑅)

) ∥𝑣∥2
2𝜎2 .

Proof. First, let us show that, for any 𝑟 > 0, ∇H
(
𝔹(0, 𝑟)

)
is an open ball centered at 0. Since the distribution of 𝑋𝑅 is

invariant by rotation, this set can be rewritten as

∇H
(
𝔹(0, 𝑟)

)
=

{
𝑣 ∈ ℝ𝑑 : ∥𝑣∥ ∈

{
∥∇H(𝑝)∥ : 𝑝 ∈ 𝔹(0, 𝑟)

}}
.

But, by connectedness of 𝔹(0, 𝑟) and continuity of ∇H,
{
∥∇H(𝑝)∥ : 𝑝 ∈ 𝔹(0, 𝑟)

}
is an interval. Since ∇H(0) = 0, it is

either [0, ∥∇H(𝑟)∥] or [0, ∥∇H(−𝑟)∥). ∇H
(
𝔹(0, 𝑟)

)
being compact and therefore closed, it must be the latter. Hence, we

have shown that

∇H
(
𝔹(0, 𝑟)

)
= 𝔹

(
0, sup

𝔹(0,𝑟 )
∥∇H∥

)
.

We apply Lemma F.1 with 𝑅 ← 𝑅
2 . Note that our choice of 𝑅 implies that 𝑅 satisfies the condition of Lemma F.1 and,

moreover, that 𝐸 (𝜎2, 𝑅) ≤ 1
2 . Lemma F.1 directly implies the bound on H̄.

Consider 𝑝 ∈ ℝ𝑑 such that ∥𝑝∥ ≤ 𝑅

2𝜎2 . Then, by Lemma F.1, we have that



∇H̄(𝑝)

 ≥ 𝜎2∥𝑝∥ − 𝑒−
𝑅2

16𝜎2 2𝑑+3
(
tr
(
𝜎2𝐼

)
+



𝜎2𝐼


) ∥𝑝∥

= 𝜎2∥𝑝∥(1 − 𝐸 (𝜎2, 𝑅))

≥ 𝜎
2∥𝑝∥
2

,

where we used that 𝐸 (𝜎2, 𝑅) ≤ 1
2 . Therefore, we obtain that sup

{

∇H̄(𝑝)

 : 𝑝 ∈ 𝔹
(
0, 𝑅

2𝜎2

)}
≥ 𝑅

4 so that ∇H
(
𝔹(0, 𝑅

2𝜎2 )
)

contains 𝔹(0, 𝑅4 ).
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Take 𝑝 ∈ 𝔹(0, 𝑅4 ) which therefore belongs to ∇H
(
𝔹(0, 𝑅

2𝜎2 )
)
. Therefore, L̄(𝑣) can be rewritten as

L̄(𝑣) = sup
𝑝∈𝔹(0, 𝑅

2𝜎2 )
⟨𝑣, 𝑝⟩ − H̄(𝑝) .

Using Lemma F.1 again, we obtain that

sup
𝑝∈𝔹(0, 𝑅

2𝜎2 )
⟨𝑣, 𝑝⟩ − 𝜎

2

2
(1 + 𝐸 (𝜎2, 𝑅))∥𝑣∥2 ≤ L̄(𝑣) ≤ sup

𝑝∈𝔹(0, 𝑅
2𝜎2 )
⟨𝑣, 𝑝⟩ − 𝜎

2

2
(1 − 𝐸 (𝜎2, 𝑅))∥𝑣∥2 ,

so that, since 𝐸 (𝜎2, 𝑅) ≤ 1
2 , we obtain that

∥𝑣∥2
2𝜎2 (1 + 𝐸 (𝜎2, 𝑅))

≤ L̄(𝑣) ≤ ∥𝑣∥2
2𝜎2 (1 − 𝐸 (𝜎2, 𝑅))

.

Since, for 𝑥 ∈ [0, 1/2], both 1
1+𝑥 ≥ 1 − 2𝑥 and 1

1−𝑥 ≤ 1 + 2𝑥 hold, we get

∥𝑣∥2
2𝜎2

(
1 − 2𝐸 (𝜎2, 𝑅)

)
≤ L̄(𝑣) ≤ ∥𝑣∥

2

2𝜎2

(
1 + 2𝐸 (𝜎2, 𝑅)

)
,

which concludes the proof.

■

We will require the following technical lemma.

Lemma F.3. Consider 𝑣, 𝑤 ∈ ℝ𝑑 such that 0 < ∥𝑤∥ ≤ 𝜇𝑅

2 for some 𝑅, 𝜇 > 0. Define,

𝑓 (𝑢) = sup
𝑝∈ℝ𝑑 :∥ 𝑝∥≤𝑅

⟨𝑝, 𝑢⟩ − 𝜇
2
∥𝑝∥2 ,

then, with 𝜆 =
∥𝑣∥
∥𝑤∥ ,

𝜆 𝑓

( 𝑣
𝜆
+ 𝑤

)
≤ 𝑓 (𝑣 + 𝑤) .

Proof. Define 𝑝 := 1
𝜇

(
𝑣
𝜆
+ 𝑤

)
which has norm at most 𝑅 since ∥𝑤∥ ≤ 𝑅

2𝜇 . Then, we have that

𝜆 𝑓

( 𝑣
𝜆
+ 𝑤

)
− 𝑓 (𝑣 + 𝑤) ≤ 𝜆

(〈
𝑝,
𝑣

𝜆
+ 𝑤

〉
− 𝜇

2
∥𝑝∥2

)
−

(
⟨𝑝, 𝑣 + 𝑤⟩ − 𝜇

2
∥𝑝∥2

)
= (𝜆 − 1)

(
⟨𝑝, 𝑤⟩ − 𝜇

2
∥𝑝∥2

)
= (𝜆 − 1) × 1

𝜇

(
⟨𝑣, 𝑤⟩
𝜆
+ ∥𝑤∥2 − 1

2

(
2∥𝑤∥2 + 2

⟨𝑣, 𝑤⟩
𝜆

))
= 0 ,

which concludes the proof. ■
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