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Abstract

The last decade has been revolutionary for re-
inforcement learning (RL) — it can now solve
complex decision and control problems. Success-
ful RL methods were handcrafted using mathe-
matical derivations, intuition, and experimenta-
tion. This approach has a major shortcoming—it
results in specific solutions to the RL problem,
rather than a protocol for discovering efficient
and robust methods. In contrast, the emerging
field of meta-learning provides a toolkit for au-
tomatic machine learning method optimisation,
potentially addressing this flaw. However, black-
box approaches which attempt to discover RL
algorithms with minimal prior structure have thus
far not been successful. Mirror Learning, which
includes RL algorithms, such as PPO, offers a
potential framework. In this paper we explore the
Mirror Learning space by meta-learning a “drift”
function. We refer to the result as Learnt Policy
Optimisation (LPO). By analysing LPO we gain
original insights into policy optimisation which
we use to formulate a novel, closed-form RL al-
gorithm, Discovered Policy Optimisation (DPO).
Our experiments in Brax environments confirm
state-of-the-art performance of LPO and DPO, as
well as their transfer to unseen settings.

1. Introduction
Recent advancements in deep learning have allowed rein-
forcement learning (RL) algorithms to successfully tackle
large-scale problems. Early deep RL algorithms, such as
A2C (Mnih et al., 2016) and DDPG (Lillicrap et al., 2015)
follow the scheme of generalized policy iteration (GPI),
where the RL agent alternates between policy evaluation
and policy improvement phases (Sutton and Barto, 2018).
Namely, they train a critic neural network that estimates
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the value function, and an actor network which models the
agent’s policy, and use these to estimate the update direc-
tion with policy gradients of the expected return. Another
approach is that of trust-region learning (TRL) methods,
which construct a surrogate objective that they optimise
within a small region around the current policy (Schulman
et al., 2015), aiming at guaranteeing stability of the policy
iterates. Indeed, TRL-inspired algorithms, such as TRPO
(Schulman et al., 2015) and PPO (Schulman et al., 2017),
have been among the most widely used methods (Berner
et al., 2019) and are known for their performance and stabil-
ity. Nevertheless, although these research threads have deliv-
ered a handful of successful techniques, their design relies
on concepts handcrafted by humans, rather than discovered
in a learning process. As a possible consequence, these
methods often suffer from various flaws, such as the brit-
tleness to hyperparameter settings (Schulman et al., 2015;
Haarnoja et al., 2018a), and a lack of optimality guarantees.

Unfortunately, the most promising alternative approach, al-
gorithm discovery, thus far has been a tough nut to crack.
First of all, techniques that enable optimisation of algorithm
components in the outer loop process—meta RL (Schmid-
huber, 1995; Finn et al., 2017)—are at an early stage of
development, and are vastly more compute intensive than
the RL problem in the inner loop (Xu et al., 2018). Second,
to discover more complex algorithms, one needs to solve
a more sophisticated, and computationally taxing meta-
optimisation problem. As a result, most methods discover
simple algorithms at best (Oh et al., 2020).

Recently, Mirror Learning (Kuba et al., 2022), a new theo-
retical framework, introduced an infinite space of provably
correct algorithms, all of which share the same template. In
a nutshell, a Mirror Learning algorithm is defined by four
attributes, but in this work we focus on the drift function. A
drift function guides the agent’s update, usually by penalis-
ing large changes. Any mirror learning algorithm provably
achieves monotonic improvement of the return, and con-
verges to an optimal policy (Kuba et al., 2022). Popular RL
methods such as TRPO and PPO are instances of Mirror
Learning.

In this paper, we use meta-learning to discover a new state-
of-the-art (SOTA) RL algorithm within the Mirror Learn-
ing space. Our algorithm thus inherits theoretical conver-
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gence guarantees by construction. Specifically we param-
eterise a drift function with a neural network, which we
then meta-train using evolution strategies (Salimans et al.,
2017, ES). The outcome of this meta-training is a specific
mirror-learning algorithm which we name Learnt Policy
Optimisation (LPO). However, we take a step further and
learn from LPO about important RL concepts that it has
discovered by visualising and analysing its optimisation
objective.

Building upon these insights we propose a new, closed-form
algorithm which we name —Discovered Policy Optimisa-
tion (DPO). We evaluate LPO and DPO in the Brax (Free-
man et al., 2021) continuous control environments, where
they obtain superior performance compared to PPO. Impor-
tantly, both LPO and DPO generalise to environments that
were not used for training.

Related Work For an in-depth discussion on related work,
we point the reader to Appendix D. Next, we continue by
introducing the basic concepts and algorithms to understand
our contributions.

2. Background
Please find details of the RL and Meta-RL problem formu-
lations, as well as the Evolution Strategies frameworks for
solving them, in Appendix E.

2.1. Mirror Learning

A mirror-learning agent (Kuba et al., 2022), in addition
to value functions, has access to the following operators:
the drift function Dπk

(π|s) which, intuitively, evaluates
the significance of change from policy πk to π at state s;
the neighbourhood operator N (πk) which forms a region
around the policy πk; as well as sampling and drift distri-
butions βπk

(s) and νππk
(s) over states. With these defined,

a mirror-learning algorithm updates an agent’s policy by
maximising the mirror objective as follows:

πk+1 = argmax
π∈N (πk)

{
Es∼βπk

[
Aπk

(s, a)
]

− Es∼νπ
πk

[
Dπk

(π|s)
]}

.

(1)

If, for all policies π and π̄, the drift function satisfies the
following conditions:

1. It is non-negative everywhere and zero at identity
Dπk

(π|s) ≥ Dπk
(πk|s) = 0,

2. Its gradient with respect to π is zero at π = πk,

then the Mirror Learning algorithm attains the monotonic
improvement property, η(πk+1) ≥ η(πk), and converges

to the optimal return, η(πk) → η(π∗), as k → ∞ (Kuba
et al., 2022). A mirror-learning agent can be implemented
in practice by specifying functional forms of the drift func-
tion and neighbourhood operator, and parameterising the
policy of the agent with a neural network, πθ. As such, the
agent approximates the objective in Equation (1) by sample
averages, and maximises it with an optimisation method,
like gradient ascent. It can be shown that PPO is a valid
instance of Mirror Learning with drift function

DPPO
πk

(π|s) ≜ Ea∼πk

[
fPPO

]
, (2)

fPPO = ReLU
([

r(π)− clip (r(π), 1± ϵ)
]
Aπk

(s, a)
)
.

Although in its formulation, PPO puts no explicit constraints
on its update size (Schulman et al., 2017), as its maximisa-
tion oracle (see Equation (1)) is N steps of gradient ascent,
with learning rate α and gradient clipping threshold c, it
implicitly employs a neighbourhood of an Euclidean ball or
radius Nαc around θk.

2.2. Evolution Strategies

Please see Appendix E.1

3. Methods
Our overall approach is to meta-learn a drift function to
perform policy optimisation over a fixed episode length K.
Hence, our meta-objective is the expected final return

F (ϕ) = E[η(πK)|ϕ] .

In Subsection 3.1 we describe the parameterisation of our
learnt drift function, while in Subsection 3.2 we provide a
detailed description of our meta-learning approach.

3.1. Drift Function Network

The drift function that we learn takes form Dπk
(π|s) =

Ea∼πk
[fϕ(x)|s], where fϕ(x) as a fully-connected neural

network parameterised by ϕ. Our drift network is a function
of the probability ratio between a candidate and the old
policy, r = π(a|s)/πk(a|s), and of the advantage A =
Aπk

(s, a) (which we assume to be normalised across each
batch). To ease learning complicated mappings, we include
non-linear transformations of these arguments, ultimately
forming the following input:

xr,A =
[
(1− r), (1− r)2, (1− r)A, (1− r)2A,

log(r), log(r)2, log(r)A, log(r)2A
]
.

In order to guarantee that the neural network is a valid
drift function, it suffices to impose that fϕ(xr,A) = 0 and
∇rfϕ(xr,A) = 0 whenever r = 1, and fϕ(xr,A) ≥ 0
everywhere. As in our model, xr,A = 0 whenever r =
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(a) (b) (c)

Figure 1: Objective visualisation: Comparing the derivatives at fixed advantage values across policy ratios. (a) - PPO, (b) -
LPO, and (c) - DPO. See Appendix B for heat maps of the ratio derivatives.

1, the former condition is guaranteed by excluding bias
terms from the network architecture. To meet the latter two
conditions, we apply the ReLU activation at the last layer
with a slight shift, x 7→ ReLU(x− ξ), where ξ = 10−6.

3.2. Meta-Training the Drift Function Network

The meta-objective we optimise is the performance of
the learner policy at the end of training: F (ϕ) =
E
[
η(πθK )|algϕ], where θK is the K th (last) iterate of the

RL training under the mirror-learning algorithm algϕ. The
expectation is taken over the randomness of the initial pa-
rameter θ0 and stochasticity of the environment. We solve
this problem using evolution strategies. At each generation
(outer loop iteration), we sample a batch of perturbations
of ϕ, initialise the policy parameters θ0, and then train the
policy under algϕ, using the drift function’s parameter ϕ,
for K iterations. At the end of the inner-loop training, we
estimate the return of the final policy ϕθK , and use it to
estimate the gradient of ∇ϕF (ϕ) as in Equation (4).

We meta-learn the drift function and evaluate policies
trained by it in the Brax (Freeman et al., 2021) physics
simulator environments. We implement our method on
top of the Brax version of PPO, which provides a Mir-
ror Learning-friendly code template, keeping the policy
architecture and training hyperparameters unchanged. For
meta-training we use both evosax (Lange, 2022) and the
Learned_optimization (Metz et al., 2022) libraries.

4. Empirical Studies
We consider two different meta-training setups. First, as de-
scribed in Subsection E.3 we attempt to learn a drift function
completely from scratch to investigate how similar it is to
existing algorithms like PPO. Second, in Subsection 4.1 we
ask whether we can learn a drift function that successfully
generalises to multiple environments, if it is initialised near
PPO. See Appendix E.3 for drift learning from scratch.

4.1. Learning with the PPO Initialisation

In this setting, fϕ is a small neural network, with a single
hidden layer with 128 neurons, with bias terms removed,
and tanh activation function. We add PPO to the output of
the last hidden layer before passing it to the shifted ReLU,

fϕ(xr,A) = ReLU
(
f̃ϕ(xr,A)− ξ

+ ReLU
(
[r − clip(r, 1± ϵ)]A

))
,

where f̃ϕ(xr,A) is the output of the last hidden layer of the
drift network. As such, the resulting drift function is similar
to that of PPO at initialisation.

Surprisingly, we have found that meta-training in a single
environment is sufficient to generate drift functions whose
abilities transfer to unseen tasks. Moreover, we found that
the learnt drifts generally display similar characteristics. For
readability, we chose the drift function that was trained on
Ant, whose induced algorithm we refer to as Learnt Policy
Optimisation (LPO).

The results on Appendix A Figure 2 show that LPO, trained
only on Ant, outperforms PPO in unseen environments.
Furthermore, the Brax PPO implementation uses different
hyperparameters, such as the number of update epochs and
the total number of timesteps, for each of the tasks. This
means that LPO, which was trained on Ant with hyperpa-
rameters associated to it, is robust not only against new
environments, but also against new hyperparameters. We
visualise the derivative of the LPO loss in Figure 5, which
enables us to derive an analytical version of it in Section 5.

5. Analysis of LPO
In this section, we analyse the two key features that are con-
sistently learnt and contribute most to LPO’s performance.
We then interpret their effect on policy entropy, and the
update asymmetry discovered by LPO, through which it
differs largely from PPO (see Appendix B Figure 5 for visu-
alisation). This analysis often refers to the heatmaps of the
learned objectives, which can be found in Appendix B.
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Rollback for negative advantage. In the bottom-left
quadrant of the heat map, which corresponds to A < 0
and r < 1, we observe that the ratio derivative of the LPO
objective is positive in a large region, roughly correspond-
ing to r < 1 − ϵ. This implies that actions that fall into
this quadrant, although seemingly not appealing, are encour-
aged to be taken by the agent, which can be interpreted as
a form of rollback (Wang et al., 2020). Hence, LPO learns
to decrease r down to 1 − ϵ, but unlike PPO, encourages
r to stay precisely around that value. By doing so, LPO
prevents the agent from giving up on actions that appear
poor at the moment, and encourages it to keep exploring
them at a moderate frequency.

Cautious optimism for positive advantage. The upper-
right quadrant corresponds to A > 0 and r > 1, which is
induced by actions that seem the most appealing to update
to. Nevertheless, LPO is cautious in doing so, gradually
decreasing the pace of its update towards them, and even-
tually abstaining from chasing the most extreme advantage
values—these may come from critic errors. We want to
highlight that this view of LPO on positive advantages is
different than that of PPO, which simply removes any in-
centive from updating towards actions with r > 1 + ϵ, and
thus can be viewed as optimistic relative to PPO.

Implicit entropy maximisation. Together, these two cen-
tral features of LPO encourage the agent to spread its pol-
icy probability mass moderately over all actions, thus lead-
ing to larger entropy and allowing for richer exploration.
Thus, LPO has implicitly discovered entropy maximisation,
which we demonstrate in Appendix C Figure 7.

We provide more analysis in Appendix F.

6. Discovered Policy Optimisation: A New RL
Algorithm Inspired By LPO

In this section, advancing concepts that LPO has discov-
ered, we introduce a novel algorithm— Discovered Policy
Optimization (DPO).

6.1. The Discovered Drift Function Model

Combining the key features identified in Section 5, we con-
struct a closed-form model of LPO that can easily be imple-
mented with just a few lines of code on top of an existing
PPO implementation. We name the algorithm Discovered
Policy Optimisation (DPO) because we have not derived
it—it was instead discovered in the meta-learning process.
DPO is a mirror-learning algorithm, with a drift function
that takes different functional forms, depending on the sign
of advantage A, as dictated by the update asymmetry princi-
ple from the previous section. Specifically, we have found

that the (parameter-free) drift function f(r,A) given by{
ReLU

(
(r − 1)A− α tanh((r − 1)A/α)

)
A ≥ 0

ReLU
(
log(r)A− β tanh(log(r)A/β)

)
A < 0

faithfully reproduces the key features of LPO (cautious
optimism and rollback) for appropriate constants α = 2
and β = 0.6 (see Appendix E.2 for verification of the drift
conditions). We visualise DPO in Figure 6 and note that
even the “crossing-over” of gradient slices of LPO on Figure
5 is faithfully reproduced.

6.2. Results

We compare DPO to PPO and LPO on all Brax environ-
ments with provided hyperparameters in Appendix A Figure
2. LPO and DPO significantly outperform PPO on most
environments. We use the PPO implementation provided by
Brax, which we enhanced with advantage normalisation as
we observed it to improve performance across the majority
of the environments. Our methods also use this implemen-
tation technique. While evaluating DPO, similarly to LPO,
we do not re-tune any hyperparameters that were originally
selected for PPO in Brax. The results on Figure 2 reveal
that DPO matches the performance of LPO and outperforms
PPO on the evaluated environments, despite being a two-
line analytic model of LPO based on two key features. This
enables RL practitioners to implement DPO as easily as
PPO with a performance on par with our best learnt drift
function.

7. Conclusion
In this paper, we performed algorithm discovery by restrict-
ing our meta-learning to the space of valid Mirror Learning
algorithms. Specifically, we optimised a drift function pa-
rameterised by a neural network, which we trained with Evo-
lution Strategies. We consider this work to be an example
of the new, promising paradigm of RL algorithm discovery.
Namely, our strategy was to develop a high-performing RL
algorithm by combining theoretical insights with large-scale
computational techniques. As a result of the training, we
obtained a theoretically sound method that we named Learnt
Policy Optimisation (LPO), which outperforms a state-of-
the-art baseline (PPO) in unseen environments, and with
unseen hyperparameter settings. After analysing the learned
features discovered by LPO, we introduced Discovered Pol-
icy Optimisation (DPO)—a closed-form approximation to
LPO. Our experimental results show that DPO matches LPO
in performance and robustness to hyperparameters. In the
future, we plan to expand the variety of inputs to the learnt
drift function, as well as to meta-learn other attributes of
mirror learning. We expect these advancements to provide
more insights into policy optimisation, ultimately resulting
in more robust and better performing RL algorithms.
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A. All Environment Results

(a) Grasp (b) Ant (c) Fetch

(d) Reacher (e) Humanoid (f) ur5e

(g) HalfCheetah (h) Walker2d

Figure 2: Performance comparison between PPO (blue), LPO (orange), and DPO (green) in Brax environments. The curves
represent mean evaluation return across 10 random seeds, with error bars showing standard error. Both LPO and DPO beat
PPO across most environments even though they were only meta-trained on Ant, and make use of no hyper parameter tuning.
Furthermore, both LPO and DPO are more consistent across runs.
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B. Objective Visualisations

(a) (b)

Figure 3: Visualisation of the LPO-Zero (learning from scratch) objective: (a) is the heat map of the ratio derivative of the
LPO-Zero objective, and (b) shows its slices for fixed advantage values. The algorithm encourages updates towards actions
with positive values of the ratio derivative.

(a) (b)

Figure 4: PPO objective visualisation: (a) is the heat map of the ratio derivative of the PPO objective, and (b) shows its slices
for fixed advantage values. The algorithm encourages updates towards actions with positive values of the ratio derivative.
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(a) (b)

Figure 5: Visualisation of the LPO objective: (a) is the heat is the heat map of the ratio derivative of the LPO objective, and
(b) shows its slices for fixed advantage values. The algorithm encourages updates towards actions with positive values of the
ratio derivative.

(a) (b)

Figure 6: Visualisation of the DPO objective: (a) is the heat is the heat map of the ratio derivative of the DPO objective, and
(b) shows its slices for fixed advantage values. Positive values of the derivative encourage updates towards the action.



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Discovered Policy Optimisation

C. Entropy Visualisation

Figure 7: Entropy comparison, throughout training on Ant, between PPO (blue), LPO (orange), and DPO (green, see Section
6) across 10 seeds. Error bars denote standard error. While entropy of all methods decrease throughout training, the entropy
of policy learned by both LPO and DPO remain significantly higher than that of PPO.

D. Related Work
In the last few years, significant effort has been directed at developing effective RL algorithms through both algorithmic
and implementational advances. Fujimoto et al. (2018, TD3) combine DDPG policy training with estimates of pessimistic
Bellman targets from a separate critic. Hsu et al. (2020) stabilise the, previously unsuccessful (Schulman et al., 2017),
KL-penalised version of PPO and improve its robustness through novel policy design choices. Haarnoja et al. (2018b)
introduce a mechanism that automatically adjusts the temperature parameter of the entropy bonus in SAC. However, none
of these hand-crafted efforts succeeds in fully mitigating common RL pathologies, such as sensitivity to hyperparameter
choices and lack of domain generalisation (Duan et al., 2016). This motivates radically expanding the RL algorithm search
space through automated means.

Indeed, recent work explores applications of meta-RL techniques in guiding RL algorithm discovery and design. RL2

equips a learning agent with a recurrent neural network conditioning on transitions between tasks, and adapts the agent’s
behaviour to the current environment (Duan et al., 2016). Similarly, a MAML agent learns policy meta-parameters which
can adapt to any task with a few steps of gradient descent (Finn et al., 2017). Neither RL2 nor MAML, however, go beyond
improving the robustness of ultimately hand-crafted algorithms. To overcome this, Xu et al. (2018, FRODO) introduce
an actor-critic method that adjusts its hyperparameters online using meta-gradients that are updated with every few inner
iterations. Similarly, STAC (Zahavy et al., 2020) uses implementation techniques from IMPALA (Espeholt et al., 2018) and
auxiliary loss-guided meta-parameter tuning to further improve on FRODO.

Such advances have inspired extending meta-gradient RL techniques to more ambitious objectives, including the discovery of
algorithms ab initio. Notably, Oh et al. (2020) succeeded in meta-learning an RL algorithm, LPG, that can solve simple tasks
efficiently without explicitly relying on concepts such as value functions and policy gradients. Similarly, Evolved Policy
Gradients (Houthooft et al., 2018, EPG) meta-trains a policy loss network function with Evolution Strategies (Salimans et al.,
2017, ES). Although EPG surpasses PPO in average performance, it suffers from much larger variance (Houthooft et al.,
2018). MetaGenRL (Kirsch et al., 2019) instead meta-learns the loss function for deterministic policies which are inherently
less affected by estimators’ variance (Silver et al., 2014). MetaGenRL, however, fails to improve upon DDPG (Lillicrap
et al., 2015) in terms of performance, despite building up on it. Neither EPG nor MetaGenRL have resulted in the discovery
of novel analytical RL algorithms, perhaps due to the limited interpretability of the loss functions learnt. Lastly, Co-Reyes
et al. (2021), Garau-Luis et al. (2022) and Alet et al. (2020) discover and improve standard RL conventions by evolving,
symbolically, algorithms represented as graphs, which leads to improved performance in simple tasks. However, none of
those trained-from-scratch methods inherit correctness guarantees, limiting our certainty of the generality of their abilities.
In contrast our method, LPO, is meta-developed in a Mirror Learning space (Kuba et al., 2022), where every algorithm is
guaranteed convergence to an optimal policy. As a result to this construction, meta-training of LPO is easier than that of
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methods that learn “from scratch”, and achieves great performance across environments. Furthermore, thanks to the clear
meta-structure of Mirror Learning, LPO is interpretable, and lets us discover new learning strategies. This lets us introduce
DPO—an efficient algorithm with a closed-form formulation that exploits the discovered learning concepts.

E. Additional Background
E.1. Reinforcement Learning

Formulation We formulate the reinforcement learning (RL) problem as a Markov decision process (MDP) (Sutton and
Barto, 2018) represented by a tuple ⟨S,A, r, P, γ, d⟩ which defines the experience of a learning agent as follows: at time
step t ∈ N, the agent is at state st ∈ S (where s0 ∼ d) and takes an action at ∈ A according to its stochastic policy π(·|st),
which is a member of the policy space Π. The environment then emits the reward r(st, at) and transits to the next state
st+1 drawn from the transition function, st+1 ∼ P (·|st, at). The agent aims to maximise the expected value of the total
discounted return

η(π) ≜ Eπ [R
γ ] = Es0∼d,at∼π,st∼P

[ ∞∑
t=0

γtr(st, at)

]
.

The agent guides its learning process with value functions that evaluate the expected return conditioned on states or
state-action pairs

Vπ(s) ≜ E [Rγ |π, s0 = s]

Qπ(s, a) ≜ E [Rγ |π, s0 = s, a0 = a]

respectively. The function that the agent is concerned about most is the advantage function, which computes relative values
of actions at different states,

Aπ(s, a) ≜ Qπ(s, a)− Vπ(s).

Policy Optimisation In fact, by updating its policy simply to maximise the advantage function at every state, the agent is
guaranteed to improve its policy, η(πnew) ≥ η(πold) (Sutton and Barto, 2018). This fact, although requiring a maximisation
operation that is intractable in large state-space settings tackled by deep RL (where the policy πθ is parameterised by weights
θ of a neural network), has inspired a range of algorithms that perform it approximately. For example, A2C (Mnih et al.,
2016) updates the policy by a step of policy gradient (PG) ascent

θk+1 = θk +
α

B

B∑
b=1

Aπθk
(sb, ab)∇θ log πθk(ab|sb)

estimated from a batch of B transitions with α ∈ (0, 1). Nevertheless, such simple adoptions of generalized policy iteration
(Sutton and Barto, 2018, GPI) suffer from large variance and instability (Zhao et al., 2011; Silver et al., 2014; Schulman
et al., 2017). Hence, methods that constrain (either explicitly or implicitly) the policy update size are preferred (Schulman
et al., 2015). Among the most popular, as well as successful ones, is Proximal Policy Optimization (Schulman et al., 2017,
PPO), inspired by trust region learning (Schulman et al., 2015), which updates its policy by maximising the PPO-clip
objective

πk+1 = argmax
π∈Π

Es∼ρπk
,a∼πk

[
LPPO

]
, (3)

LPPO = min
(
r(π)Aπk

(s, a), clip
(
r(π), 1± ϵ

)
Aπk

(s, a)
)

where r(π) ≜ π(a | s)/πk(a | s) is the policy ratio and clip(·, 1 ± ϵ) clips the input inside the [1 − ϵ, 1 + ϵ] interval if
necessary. In deep RL, the maximisation oracle in Equation (3) is implemented through a few steps of gradient ascent on
policy parameters.

Meta-RL The above approaches to policy optimisation rely on human-possessed knowledge, and thus are limited by
humans’ understanding of the problem. The goal of meta-RL is to optimise the algorithm of the learning agent. Formally,
suppose that an RL algorithm algϕ, parameterised by ϕ, trains an agent for K iterations. Meta-RL aims to find the
meta-parameter ϕ = ϕ∗ such that the expected return of the output policy, E[η(πK)|algϕ], is highest.
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Evolution Strategies Evolution Strategies [ES] (Rechenberg, 1973; Salimans et al., 2017) is a backpropagation-free
approach to optimisation of stochastic functions. At their core lies the following identity, which holds for any continuously
differentiable function F of ϕ, and any positive scalar σ:

∇ϕEϵ∼N [F (ϕ+ σϵ)] =
1

σ
Eϵ∼N [F (ϕ+ σϵ)ϵ] , (4)

where N ≜ N (0, I) denotes the standard multivariate normal distribution. By taking the limit σ → 0, the gradient on the
left-hand side recovers the gradient of ∇ϕF (ϕ). These facts inspire an approach of optimising F with respect to ϕ without
estimating gradients with backpropagation—for a random sample ϵ1, . . . , ϵn ∼ N , the vector 1

nσ

∑n
i=1 F (ϕ+ σϵi)ϵi is an

unbiased gradient estimate. To reduce variance of this estimator, antithetic sampling is commonly used (Owen, 2014). In the
context of Meta-RL, where ϕ is the meta-parameter of an RL algorithm algϕ, the role of F (ϕ) is played by the average
return after the training, F (ϕ) = E[η(πK)|ϕ]. As oppose to the meta-gradient approaches described in Section D, ES does
not require backpropagation of the gradient through the whole training episode—a cumbersome procedure which, often
approximated by the truncated backpropagation, introduces bias (Werbos, 1990; Wu et al., 2018; Oh et al., 2020; Feng et al.,
2021; Metz et al., 2021).

E.2. DPO Drift Proof

The DPO drift function f(r,A) is given by{
ReLU

(
(r − 1)A− α tanh((r − 1)A/α)

)
A ≥ 0

ReLU
(
log(r)A− β tanh(log(r)A/β)

)
A < 0 .

The first condition for a valid drift is that f be non-negative everywhere, which trivially holds since ReLU(x) ≥ 0 for all
x ∈ R.

The second condition is that f be zero at π = πold. Now r = π/πold = 1 implies r− 1 = 0 and log r = 0, which combined
with tanh(0) = 0 imply that f = 0 as required.

The final condition is that the gradient of f with respect to π be zero at π = πold. This is equivalent to having zero gradient
with respect to r = π/πold at r = 1 since the gradients are equal up to a constant. Now writing

f+ = (r − 1)A− α tanh((r − 1)A/α)

f− = log(r)A− β tanh(log(r)A/β)

for A ≥ 0 and A < 0 respectively, we have

∂f+

∂r
= A−A cosh−2((r − 1)A/α)

∂f−

∂r
=

A

r
− A

r
cosh−2(log(r)A/β)

which both evaluate to 0 at r = 1, since cosh(0) = 1. This implies for A ≥ 0 that

∂f

∂r
=

∂ReLU(f+)

∂r
=

{
∂f+

∂r if f+ ≥ 0

0 if f+ < 0
= 0

at r = 1 and for A < 0 that
∂f

∂r
=

∂ReLU(f−)

∂r
=

{
∂f−

∂r if f− ≥ 0

0 if f− < 0
= 0

at r = 1. Taken together we conclude, for all A, that f has zero gradient at r = 1.
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E.3. Learning drift functions from scratch

In this setting, fϕ is a neural network with two hidden layers of size 256 and a ReLU activation function. We meta-train it
across 5 Brax environments. We name the resulting algorithm LPO-Zero, and visualise it in Figure 3.

Interestingly, LPO-Zero appears to have learnt a few PPO-like features, as can be observed on Figure 3. For example, it
appears to have learnt to clip the update incentive at a specific ratio threshold, much like PPO; however, it only does so for
negative advantages. Nevertheless, LPO-Zero largely underperforms with respect to LPO, and possibly requires much more
training to catch up.

F. More Analysis of LPO
Update asymmetry. LPO learns asymmetric features that respect a natural asymmetry of behaviour change in RL:
increasing r for positive advantage A may encourage exploration of a newly-found action or strengthen a dominant action,
whereas decreasing r for negative A will always discourage exploration of that action and strengthen a dominant action.
In this context, the two discussed features of LPO make it completely unlike PPO, which clips the update incentives
symmetrically around the origin.

Secondary Features. LPO, but not LPO-Zero, appears to consistently learn objectives with gradient spikes around r = 1
in the upper left and lower right quadrants. Nevertheless, adding them to our analytic model of LPO did not improve
performance. We speculate, therefore, that these spikes are mostly artifacts of the network parameterisation.


